车架CAE模态分析过程

合集下载

基于有限元的白车身模态刚度CAE分析及其优化

基于有限元的白车身模态刚度CAE分析及其优化

摘要汽车工业发展到今天,汽车车身已成为影响其各种性能的最大组成部分之一,特别是轿车车身,它在很大程度上决定了汽车的商品价值和销售市场。

近几十年来,人们对汽车的安全性、舒适性、经济性、可靠性和耐久性的要求越来越高;由于能源的紧缺和激烈的汽车市场竞争,又迫使汽车要实现轻量化并尽可能降低成本,因而引发材料工程与制造业巨大的变化,并促使设计理念和设计方法不断改进。

有限元法是关于连续体的一种离散化的数值计算方法,亦即在力学模型上近似的数值方法,它在车身结构分析中发挥着重要的作用。

本论文利用先进的CAE技术,以某轿车白车身为主要研究对象,在Hyperworks软件下,建立了轿车白车身详细有限元模型,进行白车身自由模态分析、扭转工况和弯曲工况下的白车身刚度分析,以检测白车身是否满足基本的模态刚度要求。

并利用CAE 软件进行白车身钣金件的优化,以达到轻量化的目的,提高白车身的经济性和安全性,满足市场需求。

关键词:白车身模态刚度Hyperworks 优化备注:因要遵循公司保密条约,本论文数据已处理。

Modal and Stiffness Analysis and OPtimizationon Body-in-whiteof Car Based on Finite Element MethodAbstractAutomobile industry development today, the body has become the various properties of the largest part of the car body, in particular, it largely determines the value of the goods and the sale market of automobile. In recent decades, the vehicle safety, comfort, economy, reliability and durability of the increasingly high demand; because of the shortage of energy resources and the car market with intense competition, and forced the car to lighten and reduce costs as much as possible, and thus lead to materials engineering and manufacturing industry tremendous changes, and make the design concept and design method of continuous improvement. The finite element method is a kind of continuum discrete numerical calculation method, the mechanics model to approximate the numerical method,the body-in-whit structure analysis plays an important role.In this paper, the use of advanced CAE technology, to body-in-whit as the main research object, in Hyperworks software, establish the detailed finite element model of body-in-whit, for white body free modal analysis of torsional and bending condition and working condition of BIW stiffness analysis of body-in-whit, to detect whether meet the basic modal stiffness degree requirements. And the use of CAE software for white main body sheet metal parts optimization, has reached the goal of lightening the body-in-whit, improve the economy and safety of, meet market demand.Key words:Body-in-whit Moda Hyperworks Stiffness Optimization目录中文摘要 (Ⅰ)英文摘要. (Ⅱ)目录 (Ⅲ)第一章绪论 (1)1.1引言 (1)1.2国内外车身CAE技术研究现状 (2)1.3本文的主要内容 (3)第二章有限元法理论 (4)2.1引言 (4)2.2有限单元法和白车身刚度的基本原理 (4)2.2.1有限元和模态分析基本理论 (4)2.2.2白车身扭转刚度基本理论 (5)2.2.3白车身弯曲刚度基本理论 (7)2.2.4白车身门窗开口变形理论 (8)第三章某轿车白车身有限元建模 (9)3.1引言 (9)3.2建模要求 (9)3.2.1网格标准的确定 (9)3.2.2网格质量要求 (9)3.3建模的基本步骤 (10)3.3.1建模原则 (10)3.3.2单元类型的选择 (10)3.3.3连接方式的选择 (10)3.3.4单位制及材料特性 (11)3.2.5模型的装配 (11)第四章轿车白车身模态分析 (13)4.1白车身模态分析的意义 (13)4.2白车身模态分析的基本设置 (13)4.3白车身模态分析结果分析 (13)4.4本章小结. (16)第五章轿车白车身刚度分析 (17)5.1引言 (17)5.2白车身扭转工况分析 (17)5.2.1加载及约束条件 (17)5.2.2白车身扭转刚度结果表达及评价标准 (18)5.2.3轿车白车身扭转刚度数据处理及分析结果 (18)5.3白车身弯曲工况分析 (22)5.3.1加载及约束条件 (22)5.3.2白车身弯曲刚度结果表达及评价标准 (22)5.3.3轿车白车身弯曲刚度数据处理及分析结果 (23)5.4本章小结 (25)第六章轿车白车身优化分析 (26)6.1引言. (26)6.2优化分析的基本原理 (26)6.3优化分析的基本步骤 (27)6.3.1在Hypermesh中完成相关设置 (27)6.3.2提交Nastran完成计算 (28)6.3.3提取灵敏度信息 (28)6.3.4确定优化方案 (28)6.4白车身优化结果分析 (28)第七章结论与展望 (29)7.1本文结论 (29)7.2工作展望. (29)参考文献 (30)致谢 (32)第一章.绪论1.1引言近几年,我国汽车工业快速而稳步发展,打造我国自主品牌、开发核心技术是我国汽车工业的必然选择。

CAE模态分析 ppt课件

CAE模态分析  ppt课件

ppt课件
EI
4
y(x, t) x4

l
2 y(x, t) t 2

f (x,t)
方程含有对空间变量 x 的四阶偏导数和对时间变量 t 的二阶偏导数,求解时必须引入4
个边界条件和2个初始条件。
2. 固有频率和模态函数
讨论梁的自由振动,因此令
f (x,t) 0
得到运动方程
2 x2
5),导出特征方程 4 - 4 =0
4个特征根为 , i ,对应4个线性独立的解为 e x 和 ei x 。由于
e x =ch x sh x, ei x = cos x i sin x
因此可将方程(5)的通解写成
8
ppt课件
p/k
sin(t-)
(1- 2)2 +(2)2
固有频率和振型
3
ppt课件
• 固有频率:也可称为特征频率、共振频率、主频率。 • 振型:结构在特定频率下的变形称为主振动模态,也可称为振型、特
征型、固有型。 • 每一振型与特定的固有频率有关,这些结果反映结构动力特征,决定
结构怎样对动力载荷做出响应。
1. 动力学方程
5
ppt课件
l (x)dx
2 y t 2

FS
(FS
FS x
dx)
f
( x, t )dx
(1)
不考虑剪切变形和截面转动的影响时,微元体满足力矩平衡条件,
对右截面上任意点取矩,得
(M
+
M x
dx)

M

FS dx

f
( x, t )dx
dx 2

0

CAE分析流程

CAE分析流程

精心整理CAE 分析流程一、3D 建模:在三维模型在装配车架上零部件。

二、抽取中面:在CATIA 中,对车架纵梁、纵梁加强板、横梁及横梁连接板等车架系统本体的零部件进行抽取中面;板簧支座、油箱托架、电瓶框、尿素罐支架等保留3D 模型。

(保存为.stp 格式或者直接使用.CATProduct 格式) 三、划分网格:1、在Hypermesh 中打开3D 模型,对components 中的名字重新命名,方便查找对应的零部件。

2、对车架上的孔进行优化处理。

(更优网格质量)Geomautocleanup3、对完成后检测4、对components 进行3D 网格划分。

(板簧支架为例)选中要划分网格的components (shift+Volumtetra 选中solids (shift+鼠标左键框选),mesh 完成后注:在网格划分中,最好使要划分网格的components 置于当前。

在components 中右键,选择makecurrent 。

这个方便之后的材料及属性赋值。

四、铆钉(螺栓)的虚拟刚性连接1、在components 中新建一个集合如maoding 。

创建铆钉连接时候,把它置为当前。

效果清除网格手动清除22.1fefile —Propfile 下图1—2—3—4—5—holediameter —max 孔的直径最大值,一般选取100(怕溢出)2.2孔位没有对应或者没有孔的连接(联接角铁与底架)—calculatenode ,dependent —注:选择的点要在要连接的components 上(shift+左键)选中的多余的点删掉(shift+右键) 2.3按照以上两个流程把车架上面的所有零部件连接在一起,形成RBE2单元。

2.4车厢与车架之间的连接使用gap 单元。

五、材料、属性及赋值 1、材料material选择—材料命名,type —ALL ,cardimage —MAT1Create/edit 设置E 弹性模量、NU 密度return 2、属性property 1 2345选择—属性命名,type—2D,cardimage—PSHELL,material选择上面建立的材料Create/edit2.23D属性选择—属性命名,type—3D,cardimage—PSOLID,material选择上面建立的材料editreturn3、赋值(将材料,厚度的值分别赋予车架上面的所有零部件)选择—零部件,property—选择上面建好的属性注:1、2D、3D赋值是一样的,只是2D、3D的属性卡片不一样。

cae分析的工作流程

cae分析的工作流程

cae分析的工作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!CAE 分析的工作流程一般包括以下几个步骤:1. 问题定义:明确分析的目标和问题,确定需要分析的对象、边界条件、加载情况等。

车身(车架)刚度CAE分析和试验方法

车身(车架)刚度CAE分析和试验方法
扩大了标准的使用范围; 2) 增加了车身刚度测试时 CAE 的分析方法,以保证 CAE 模拟分析跟实验分析保持一致的方法; 3) 修改了车身刚度测量时实验方法,以减小理论分析与实验测试的差距;实验时以本标准为依据 。
本标准由奇瑞汽车有限公司汽车工程研究院和试验技术中心提出。 本标准由奇瑞汽车有限公司汽车工程研究院标准管理科归口。 本标准起草单位:汽车工程研究院 CAE 部和试验技术中心。 本标准主要起草人:杨晋、田冠男、章礼文、张厚平。
加载方法: 在驾驶室和车架的前两个安装点上施加一大小为2000N·m的力偶,力的方向沿Z向。
4.2 弯曲刚度
4.2.1 承载式轿车白车身
白车身弯曲刚度约束和加载方法如图5所示。
约束车身前左、 右减振器座 Y、Z 平动自由度
约束车身后左、 右弹簧座 X、Y、Z 平动自由度
载荷为 1500N
图 5 白车身弯曲刚度约束和加载方法
加载方法: 在前后约束点中间位置对应的纵梁处施加沿 Z 轴负向 F=1500N(试验时,可依据 CAE 分析出的
刚度结果和测试设备量程设定合理的载荷大小)的载荷(分别加于左右两处)。
4.3 试验设备
对于质量较小的乘用车、微型车,可以用根据英国 Lotus 公司的建议所做的静刚度试验专用试验台架 完成扭转和弯曲刚度试验;对于质量较大的商用车可以采用 MTS 设备进行扭转和弯曲刚度试验。
注:对于约束方法的第一条,在试验中如果已通过专用加载设施实现,就不必再用额外约束装置实现。
加载方法: 在车身和车架的前两个安装点上施加一大小为 2000N·m 的力矩,力的方向沿 Z 向。
4.1.4 车架 车架扭转刚度约束和加载方法如图4所示(适用于公司P系列和H系列车)。
载荷2000N·m

cae分析流程范文

cae分析流程范文

cae分析流程范文1.确定问题和目标:首先,需要明确问题和目标。

工程师需要与设计团队和相关利益相关者沟通,了解产品的需求和性能要求。

同时,需要明确分析的目标,例如验证设计的可行性、优化产品性能等。

2.数据准备:在进行CAE分析之前,需要准备相关的数据。

这包括产品的几何模型、材料性质、边界条件和加载条件等。

通常,工程师可以使用计算机辅助设计(CAD)软件创建产品的几何模型,并导入到CAE软件中。

3.网格生成:在进行CAE分析之前,需要将产品的几何模型离散化为有限元网格。

有限元网格是由许多小的几何单元(例如三角形或四边形)组成的,用于对产品进行数值计算。

网格生成是一个关键步骤,其质量和密度直接影响到分析结果的准确性和计算效率。

4.定义材料和加载条件:在进行CAE分析之前,需要定义产品的材料性质和加载条件。

对于材料性质,可以通过实验或模型进行获取。

加载条件包括外部力、温度、压力等,需要根据实际应用场景进行定义。

5.模型设置:在进行CAE分析之前,需要设置分析模型。

这包括选择适当的分析方法(例如有限元分析、流体动力学分析等)、选择适当的求解器和设置数值参数等。

在设置模型时,需要根据实际问题和目标进行选择和调整。

6.运行分析:在设置好模型后,可以运行分析。

CAE软件会根据所选的分析方法和设置的参数对产品进行模拟和计算。

运行分析的时间取决于问题的复杂性和计算机性能等因素。

7.结果分析和评估:在分析完成后,需要对结果进行分析和评估。

结果可以包括产品的应力、应变、位移、温度等信息。

工程师可以对结果进行可视化和统计分析,评估产品的性能和可靠性。

8.结果解释和优化:根据分析结果,工程师可以对产品进行进一步的优化。

这可能包括调整产品的几何形状、材料选择、加载条件等。

通过CAE分析的结果,可以更好地指导产品设计和制造过程,提高产品性能和质量。

9.文档记录和报告:最后,需要对CAE分析的过程和结果进行文档记录和报告。

这有助于团队内部的沟通和知识共享,也有助于与利益相关者进行沟通和决策。

车架CAE模态分析过程

车架CAE模态分析过程

2021/3/8
18
CAE
4.2 螺栓连接

部 件 连 接
2021/3/8
19
CAE
4.3 焊点连接

部 件 连 接
2021/3/8
20
CAE CAE CAE CAE CAE CAE CAE

































程义ຫໍສະໝຸດ 2021/3/821
CAE
5.1自由边检查

结 果 读 取
2021/3/8
41
CAE
7.2模态振型 二扭:28.29Hz。

结 果 读 取
2021/3/8
42
CAE
7.2模态振型 局部模态:38.05Hz。

结 果 读 取
2021/3/8
43
CAE
7.2模态振型 局部模态:38.05Hz。

结 果 读 取
2021/3/8
44
谢谢!
2021/3/8

网 格 划 分
2021/3/8
11
CAE
3.3 网格划分
细节要求
螺栓孔:R6以上的安

装孔以带一层washer
的至少6个节点模拟,
washer宽度尽量与孔
半径相等;R4~6的安

装孔以4个节点模拟;

R4以下的孔删除,只 留圆心。

CAE仿真分析流程

CAE仿真分析流程

CAE仿真分析流程CAE仿真分析是一种基于计算机数值方法的工程分析方法,可以帮助工程师在设计开发过程中评估和优化产品的性能,包括结构强度、疲劳寿命、动态响应、流体力学、热传导等方面。

本文将介绍CAE仿真分析的流程,并以汽车碰撞仿真为例进行说明。

1.问题定义首先,需要明确模拟分析的目的和范围,明确需要分析的问题和关键因素。

例如,在汽车碰撞仿真中,需要评估车辆在不同碰撞条件下的结构强度和安全性能。

2.建立数值模型根据问题定义,建立数值计算模型。

对于复杂的结构,可以进行三维建模,并确定材料属性、载荷和边界条件等。

例如,在汽车碰撞仿真中,需要根据车辆CAD模型建立有限元模型,并确定材料模型和碰撞速度、角度等载荷条件。

3.网格划分对于建立的数值模型,需要进行网格划分,将结构划分成小的三角形、四面体或六面体等形状,以便进行数值计算。

网格划分需要根据结构复杂度和计算精度进行调整。

利用数值方法对建立和网格划分后的数值模型进行求解,得到模型在受力、变形等情况下的应力、位移、速度等结果。

在汽车碰撞仿真中,可以通过求解非线性动力学方程组,获得车辆碰撞前后的位移、速度、加速度等参数。

5.结果后处理对求解后得到的数值结果进行后处理,包括数据展示、可视化、统计分析等。

例如,在汽车碰撞仿真中,可以通过捕捉每个节点的受力和变形情况,评估车辆的结构强度和安全性能,并进行可视化展示。

6.评估和优化根据模拟结果,评估设计方案的性能,并进行优化改进。

此时可以调整材料选择、几何形状、结构布局等方面,以提高产品性能和降低成本等。

总结CAE仿真分析流程涵盖了问题定义、数值模型建立、网格划分、数值求解、结果后处理和评估、优化等步骤。

在工程设计中,CAE仿真分析已经成为必不可少的工具,它可以减少实验成本,提高产品性能和设计效率,为科技创新和可持续发展提供支持。

CAE分析报告流程

CAE分析报告流程

CAE分析报告流程CAE分析报告是以有限元分析(CAE)技术为基础的工程分析报告,用于对复杂结构或部件的性能进行深入评估和优化。

本文将详细介绍CAE分析报告的流程,包括前期准备、建模与网格划分、加载和边界条件的定义、求解和后处理等步骤。

一、前期准备阶段在开始CAE分析之前,首先需要明确分析的目标和要求,包括结构的应力、变形、疲劳寿命等指标。

此外,还需收集相关的材料性能参数、工程图纸、边界条件等基础数据,并对其中的约束和假设进行评估。

二、建模与网格划分阶段建模是将真实的结构或部件抽象成数学模型的过程。

在这个阶段,应根据实际情况选择合适的建模方法,如二维平面模型或三维实体模型,并建立相应的几何特征。

此外,还需要根据结构的复杂程度和精度要求选择适当的网格划分方法,如四面体网格、六面体网格或八面体网格等。

三、加载和边界条件的定义阶段加载和边界条件的定义是指对模型施加外部载荷和约束条件,模拟真实工况下的力学行为。

例如,可以通过定义施加载荷的大小、方向和分布方式来模拟实际工作状态下的负荷;同时,还需要定义与其他部件的接触、约束和固定等边界条件。

四、求解阶段在完成加载和边界条件的定义后,即可进行求解过程。

求解是基于有限元法,将结构或部件划分成有限数量的元素,利用数学和力学原理对每个元素进行离散描述,并通过求解相应的线性或非线性方程组得到模型的应力、变形和其他相关结果。

在进行求解之前,还需选择合适的求解器和合理的控制参数,并进行模型的数值稳定性和收敛性分析。

五、后处理阶段求解完成后,需要对计算结果进行后处理和分析。

后处理包括对结果数据的提取、整理和可视化,以便更直观地了解结构的应力、变形分布和其他性能指标。

同时,还可进行数据对比、灵敏度分析和优化设计等后处理工作,从而得到一些有关结构性能和优化可能性的建议。

最后,根据实际情况和需求,可以将最终的结果汇总成CAE分析报告。

该报告将包括前期准备、建模与网格划分、加载和边界条件的定义、求解和后处理等各个阶段的详细过程、结果和分析,以及对结构性能和优化方案的评估和建议。

《车身CAE流程讲座》课件

《车身CAE流程讲座》课件
20世纪90年代至今,CAE 技术不断发展和完善,成 为工程设计和产品开发的 重要工具。
02 车身CAE分析流程
建立车身有限元模型
总结词
建立车身有限元模型是CAE分析的基础,需要精确地模拟车身的结构和材料属 性。
详细描述
在建立车身有限元模型时,需要将车身划分为多个小的单元,每个单元称为有 限元。同时,需要输入正确的材料属性,如弹性模量、泊松比等,以模拟真实 的车辆结构。
疲劳耐久性分析
总结词
疲劳耐久性分析是评估汽车在长时间 使用过程中的疲劳性能的重要手段。
详细描述
通过模拟汽车在不同路况和载荷条件 下的疲劳寿命,分析车身结构的疲劳 损伤和应力分布,预测车身结构的疲 劳寿命,优化车身结构设计,提高汽 车的耐久性和可靠性。
空气动力学性能分析
总结词
空气动力学性能分析是评估汽车在行驶 过程中受到的气动力和气动噪声的重要 手段。
D展望技术不断创新来自随着计算机技术和数值计算方 法的不断发展,CAE技术的准 确性和效率将得到进一步提升

数据驱动设计
通过大数据和机器学习等技术 ,可以实现数据驱动的设计优 化,提高设计效率和准确性。
智能化协同
借助云计算和物联网等技术, 可以实现多学科之间的智能化 协同,提高设计效率。
个性化定制
通过CAE分析和优化,可以实 现更加个性化的车身设计,满
对未来研究的建议与展望
深入研究新型材料、工 艺和连接方式对车身结 构性能的影响,以提高 车身的轻量化、强度和 耐久性。
探索多学科优化方法在 车身CAE流程中的应用 ,以实现多目标、多约 束条件下的优化设计。
加强人工智能、机器学 习等技术在车身CAE流 程中的应用研究,以提 高分析效率、预测精度 和自动化水平。

车架模态分析报告(二)

车架模态分析报告(二)

车架模态分析报告(二)引言概述:车架模态分析是指对汽车车架进行振动模态的分析和研究,旨在评估车架的结构强度和稳定性。

本报告是车架模态分析的第二部分,将针对车架的振动模态进行详细的解析和探讨。

通过分析车架的振动特性,可以进一步改善汽车的舒适性和操控性,提高车辆的性能和安全性。

正文:1. 振动模态的测量与分析1.1 选择合适的测量设备和传感器进行振动模态的采集1.2 采集车架振动数据并进行预处理1.3 分析车架振动模态的频率和阻尼特性1.4 对车架振动模态的测量结果进行验证和校准1.5 基于振动模态的分析结果提出改进方案和建议2. 车架的固有频率与模态分布2.1 研究车架的固有频率和模态分布对车辆的动力学性能有着重要影响2.2 分析车架在不同频率下的振动响应特点2.3 探讨车架振动特性与车辆驾驶舒适性的关系2.4 分析车架振动模态对车辆操控性能的影响2.5 提出调整车架结构或材料的建议以优化固有频率和模态分布3. 车架的振动模态与结构相互关系3.1 研究车架振动模态与结构的相互关系可以揭示车架的强度和稳定性3.2 分析车架结构参数对振动模态的影响3.3 探讨车架材料的选择对振动模态的影响3.4 分析振动模态与车架结构缺陷的关系3.5 基于振动模态与结构相互关系提出车架优化设计的建议4. 车架振动模态的模拟与仿真4.1 采用有限元分析方法建立车架的振动模型4.2 对车架模型进行应力和振动响应的数值模拟4.3 分析仿真结果与实际测试结果的一致性4.4 基于仿真结果提出车架结构优化的方案和策略4.5 验证优化方案的有效性并进行必要的调整和改进5. 车架模态分析的应用和推广5.1 振动模态分析在车辆工程中的应用前景和意义5.2 探讨车架振动模态分析技术的改进和创新5.3 分析车架模态分析在新能源汽车和智能驾驶领域的应用5.4 推广车架模态分析技术的必要性和难点5.5 提出进一步研究车架模态分析的方向和思路总结:本报告对车架模态分析的各个方面进行了详细的阐述和探讨。

某型摩托车车架CAE分析报告

某型摩托车车架CAE分析报告

某型摩托车车架CAE分析报告重庆现代摩托车研究所摩托车车架可靠性分析前言车架是整个摩托车的基体。

作为摩托车的骨架,车架由多种管材及板材焊接而成,具有复杂的空间结构,它不仅支承、连接了摩托车的各零部件,还承受了摩托车本身和外在的各种载荷。

在摩托车行驶时,路况复杂多变,使车架不时处于扭转、弯曲之中,并改变车架上各零件的相对位置,使车内的受力发生变化。

因此,要使车架结构不影响使用,要求车架本身一方面具有高强度和合适的刚度,另一方面尽量减轻质量,这一切使其受力分析工作复杂而烦乱。

从设计摩托车出发,作为摩托车车架的全面分析,不仅需要了解车架的质量、转动惯量、加载点、量等基本情况,还需了解诸如车架各阶固频、振型和车架材料选用等信息。

在本次分析中,从材料的使用方面出发进行摩托车车架分析,校核材料的使用对车架受力性能的影响,为设计优化提供参考。

车架强度是车架设计中要考虑的首要问题,关系到车架的安全。

在摩托车车架分析中,采用三维实体、通过有限元分析模拟车架使用状况,着重关注应力的分布和大小。

为适应计算机的计算能力,所建立的模型对车架作了如下简化处理:a模型处理上,省略外挂零件,突出车架本身骨架及其加强部分;b加载上,力(含骑乘者与整车重量)与力矩转移到车架重心附近(取中间支撑为对象);c约束上,前减振器支撑点转移到转向柱上,后减振器支撑点转移到尾梁支承及摆臂枢轴孔上。

如下图1:图1 约束位置图2 平路行驶应力云图(普钢、不带边轮)1.典型工况摩托车车架应力在对摩托车车架的分析中,分别对摩托车选取平路行驶、刹车、启动(0加速)、转弯(带边轮)等几种典型工况进行分析。

为方便比较分析结果,将分析分为带边轮与不带边轮两种情况。

带边轮的情况以力转移的方式,将载荷加在车架上进行处理。

刹车时,假设后轮(及边轮)刚好离开地面,惯性力矩与重力矩平衡,摩托车车身没有偏转;启动时,假设前轮刚离开地面,加上向后的惯性力矩,摩托车车身没有偏转。

《CAE模态分析》课件

《CAE模态分析》课件
我们需要建立一个合适的模型,准备进行模态分析的工作。
2
网格划分
然后,我们将模型进行网格划分,以便更好地进行数值计算。
3
加载和边界条件
接下来,我们需要为模型设置加载和边界条件,以模拟真实情况下的振动行为。
4
求解线性方程组
然后,我们使用数值方法求解模态分析中的线性方程组,得出物体的固有频率和振动 模态。
5
结果后处理
最后,我们对模态分析的结果进行后处理,以便更好地理解和应用分析结果。
常见的CAE模态分析软件
ANSYS
ANSYS是一款广泛应用于工程领域的CAE模拟软件,在模态分析方面具有强大的功能和广 泛的应用。
Abaqus
Abaqus是一款领先的有限元分析软件,也被用于进行模态分析和振动分析。
MSC.Patran & Nastran
参考资料
1 相关论文
2 专业书籍
3 网络资源
《CAE模态分析》PPT课 件
CAE模态分析 PPT课件
介绍
CAE模态分析是使用计算机辅助工程(CAE)方法来研究物体的振动行为和 固有特性的一种分析技术。本节将介绍CAE模态分析的定义、应用场景以及 它所具有的意义和优势。
前置知识
在学习CAE模态分析之前,我们需要了解一些动力学的基础知识,以及模态分析的基本原理和常用的计 算方法。
MSC.Patran和Nastran是常见的结构分析软件,也可用于进行模态分析和振动分析。
案例分析
结构优化设计
使用CAE模态分析可以帮助进行结构优化设计,提高结构的性能和可靠性。
机械设备故障检测
CAE模态分析可以用于检测机械设备的故障,预测设备的寿命和可靠性。
总结

车架模态分析报告(两篇)

车架模态分析报告(两篇)

引言:车架模态分析是一种重要的工程分析方法,用于评估汽车车架的振动和模态特性。

在汽车工程设计和制造的过程中,车架的振动特性对汽车性能和舒适性都有重要影响。

本报告旨在通过对车架模态分析的研究,为汽车工程师提供有关车架振动特性的详细信息,以帮助提高汽车的性能和舒适性。

概述:本文将通过对车架模态分析的深入研究,从多个方面详细阐述车架振动和模态特性的影响因素,并提出相应的解决方案。

首先,我们将介绍车架振动分析的背景和意义。

然后,我们将从刚度、材料、结构、载荷和边界条件等方面,分析车架振动的影响因素。

接下来,我们将详细介绍车架模态分析的方法和工具。

最后,我们将总结本文的主要观点,并提出一些建议和展望。

正文内容:1. 车架振动的影响因素1.1 刚度:车架的刚度是影响振动特性的重要因素之一。

在模态分析中,刚度可以通过改变结构形状、材料和壁厚等来调节。

1.2 材料:车架的材料也会对振动特性产生影响。

不同的材料具有不同的弹性模量和阻尼特性,会直接影响车架的振动频率和振幅。

1.3 结构:车架的结构形式和连接方式也会影响振动特性。

结构的设计应考虑到振动特性的优化,如加强部分、裁剪冗余部分等。

1.4 载荷:车架所承受的载荷也是影响振动特性的重要因素。

不同的载荷会导致不同的振动模态,需要合理设计来满足振动要求。

1.5 边界条件:车架与其他部件的连接方式和边界条件也会影响振动特性。

合理的边界条件可以减少振动传递和噪声的产生。

2. 车架模态分析的方法和工具2.1 有限元分析:有限元分析是车架模态分析中最常用的方法之一。

它通过将车架划分为多个小单元,建立数学模型并进行求解,来获得车架的振动特性。

2.2 模态测试:模态测试是直接测量车架振动特性的一种方法。

通过在实际车架上安装加速度计等传感器,可以记录下车架在不同频率下的振动模态。

2.3 优化设计:通过模态分析获得的振动特性信息,可以对车架进行优化设计。

从材料选择、结构调整到边界条件的改变,都可以用于改善车架的振动特性。

CAE分析流程

CAE分析流程

CAE 分析流程一、3D 建模:在三维模型在装配车架上零部件。

二、抽取中面:在CATIA 中,对车架纵梁、纵梁加强板、横梁及横梁连接板等车架系统本体的零部件进行抽取中面;板簧支座、油箱托架、电瓶框、尿素罐支架等保留3D 模型。

(保存为.stp 格式或者直接使用.CATProduct 格式)三、划分网格:1、在Hypermesh 中打开3D 模型,对components 中的名字重新命名,方便查找对应的零部件。

2、对车架上的孔进行优化处理。

(更优网格质量)autocleanup3、对components 进行2D 网格划分。

(横梁为例)automesh 选中要划分网格的components (shift+ mesh , 完成后 elem cleanup 清除坏的网格(shift+鼠标左键框选),完成后qualityindex 检测网格质量同时手动优化网格,直至failed 趋近于0效果4、对components 进行3D 网格划分。

(板簧支架为例)tetramesh选中要划分网格的components (shift+ Volum tetra 选中solids (shift+鼠标左键框选),mesh 完成后return注:在网格划分中,最好使要划分网格的components 置于当前。

在components 中右键,选择make current 。

这个方便之后的材料及属性赋值。

四、铆钉(螺栓)的虚拟刚性连接1、在components 中新建一个集合如maoding 。

创建铆钉连接时候,把它置为当前。

清除网格手动清除,Create 。

2、车架纵梁、加强板、横梁连接板等连接 2.1 孔位对应连接boltCreate设置情况:type —bolt(washer 1) 带弹垫螺栓连接 fe file —,基本不用动。

Prop file —在安装文件下找到connectors 文件夹,找到prop_hinge.tcl 文件 对节点设置:下图 1—location —nodes 选中节点2—connect what —comps 节点所在的components3—num layers —total (2,3,4……)连接几层板的意思 4—tolerance 容差 一般100(大一点的值)5—hole diameter —max 孔的直径最大值,一般选取100(怕溢出)1 23452.2 孔位没有对应或者没有孔的连接(联接角铁与底架)independent—calculate node,dependent—Create注:选择的点要在要连接的components上(shift+左键)选中的多余的点删掉(shift+右键)2.3 按照以上两个流程把车架上面的所有零部件连接在一起,形成RBE2单元。

汽车车架静态及模态分析-patran&nastran

汽车车架静态及模态分析-patran&nastran

汽车CAE作业说明文档二、图1 为某车架结构简图。

车架纵梁为槽钢(开口向内,且左右纵梁形心之间的间距为850mm),横梁均为工字钢,左右对称,其尺寸见图1。

车架材料的弹性模量为200GPa,泊松比为0.3,密度为7840kg/m3。

1) 求简支边界条件下(以前、后轴线处为支撑位置,如下图所示),该车架左右侧纵梁受垂直均布载荷q=10kN/m 作用时的挠度;2) 约束车架后轴线上的结点,在车架前轴线处左、右侧结点分别施加垂直向上、向下的载荷F=0.1kN,如下图所示。

计算前轴线处车架扭转角度;3) 计算前20 阶自由振动模态(计算自由振动模态不需任何约束)。

1 以壳单元进行计算过程如下1.1 简支边界条件下挠度计算过程1)通过车架结构简图建立车架的三维实体,在槽钢和工字钢之间留有微小间隙1mm,然后在hypermesh中选用抽取中面的方法得到车架的壳单元2D模型。

如图1所示。

2)在hypermesh中直接建立车架的Material,Property,输入壳单元的厚度0.0065m 。

并将Property assign 给车架,在2D模块中,选用AUTOMESH,尺寸选择0.05,进行网格划分。

如下图所示。

3)将hypermesh中的结果文件以bdf的格式导出。

然后在Patran中导入,进行约束和力的加载,在MESH中,选择MPC,REB2,完成对车架横梁与纵梁交接处的焊接。

完成后图形显示如下。

4)车架左右侧纵梁受垂直均布载荷q=10kN/m,选用Distributed Load加载没有成功,后面选用Force进行加载,在Hypermesh中获知纵梁的节点数为136个。

每个节点加载力6.7510000496.3136F ⨯==N 。

分析类型选择线性静力学分析。

变形云图如下,最大扰度 w=3.21mm 。

1.2 车架扭转角度计算过程1) 使用题1.1的壳单元模型,将约束和加载力改变,更改完成后加载结果如图所示。

车辆CAE结构分析

车辆CAE结构分析

车身构架的静态分析和模态分析摘要:HyperMesh是一个高性能的有限元前后处理器,与其他的有限元处理器比较,HyperMesh的用户界面易于学习,支持直接输入已有的三维几何模型,并且导入的效率和模型质量都很高。

在处理几何模型和有限元网格的效率和质量方面,HyperMesh具有很好的速度,适应性和可定制性。

本文分析车身构架的静态分析和模态分析,得到了车身的刚度、应力值等,自由模态的分析可以分析一阶部分扭转和一阶整体扭转等。

为车身的进一步优化提供了一定的借鉴。

关键词:Hyeprmesh ;车身构架;静态分析;模态分析Static analysis of the body part of the framing freedom andmodal analysisXuXiaohanChongqing Jiaotong University, Electrical and Mechanical Engineering, Chongqing Jiaotong University andVehicle Mechatronics and Vehicle Engineering chongqing 40074Abstract:HyperMesh finite element before and after a high-performance processor, compared to other finite element processor, HyperMesh user interface is easy to learn, in support of an existing three-dimensional geometric model, and the efficiency and quality of imported models are high. In terms of process efficiency and quality geometry and finite element mesh, HyperMesh has good speed, flexibility and customizability. This paper analyzes the static analysis of the body frame 10 and order free modal analysis, stiffness, stress and other body, Modal analysis can be partially reversed the first-order analysis and order a whole torsion. To further optimize the body to provide some reference.Keywords: Hypermesh; body frame; static analysis; modal analysis1、打开hypermesh软件,在安装目录下打开penetration—check文件。

车架CAE模态分析过程共45页文档

车架CAE模态分析过程共45页文档

材料
CAE

几何
质量

处理
检查


网格 处理
连接 单元
建立
CAE
属性
结果
建立 约束
导出 计算
建工 作步
控制 卡片







CAE CAE CAE CAE CAE CAE CAE




























CAE
3.1 几何模型的导入 stp文件,igs文件等标准格式




























CAE
7.1结果导入 使用hyperview软件,导入模态计算结果。

结 果 读 取
CAE
7.2模态频率结果 计算了20阶模态,前6阶为刚体模态,频率为零。计算出的第7阶模 态频率为车架第一阶弹性模态,为6.07Hz。
jacobian≥0.6
TRIA单元数≤6%;除结构限制外,不允许有两个以上的TRIA单元连

在一起。

通用2D网格标准

采用10mm,允许出现小单元,但最小尺寸不能小于2mm。基本参 数如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.2模态振型 一扭:6.07Hz,节点X向在第二第三横梁,Y向在各横梁中心位置。

结 果 读 取
CAE
7.2模态振型 Y向一弯:16.11Hz,节点在一二横梁之间和三四横梁之间。

结 果 读 取
CAE
7.2模态振型 Z向一弯:20.73Hz,节点在一二横梁之间和三四横梁之间。

结 果 读 取
CAE

模 态 设 置
CAE
6.5定义控制卡片 sol控制卡片

模 态 设 置
CAE
6.5定义控制卡片 param控制卡片

模 态 设 置
CAE
6.导出计算 导出nastran计算文件,使用nastran进行计算。

模 态 设 置







CAE CAE CAE CAE CAE CAE CAE

质 量 检 查
CAE
5.2qualityindex检查

质 量 检 查
CAE
5.3 F10检查

质 量 检 查
5.3 质量一般要求
aspect ratio≤4
skew≤40 o
warpage≤15 o

45 o≤angle(quad)≤135 o
20 o≤angle(tria)≤120 o
CAE


பைடு நூலகம்


























CAE
7.1结果导入 使用hyperview软件,导入模态计算结果。

结 果 读 取
CAE
7.2模态频率结果 计算了20阶模态,前6阶为刚体模态,频率为零。计算出的第7阶模 态频率为车架第一阶弹性模态,为6.07Hz。

结 果 读 取
CAE
jacobian≥0.6
TRIA单元数≤6%;除结构限制外,不允许有两个以上的TRIA单元连

在一起。

通用2D网格标准

采用10mm,允许出现小单元,但最小尺寸不能小于2mm。基本参 数如下:

1、Min size 5mm, max interior angle quad: 135
2、max length 15mm, min interior angle quad: 45
1.3CAE模态分析的意义
一个系统的模态是其系统的固有性能,通过模态测试和模态CAE分 析都能分析出系统的模态。

CAE
分析出系统的模态后,可以根据模态频率之间的解耦,解决模态频率 相同或接近引起的共振问题;可以根据模态振型,合理布置零部件之 间的连接;可以根据模态阻尼,采取降低阻尼的办法减小振动。
辛雨 2012年12月







CAE CAE CAE CAE CAE CAE CAE




























1.1 模态分析的定义
模态分析实质上是一种坐标变换,其目的在于把原物理坐标系统中
描述的相应向量,转换到“模态坐标系统”中来描述,模态试验就是

通过对结构或部件的试验数据的处理和分析,寻求其“模态参数”。
6.3定义模态范围 使用阶数定义模态范围时不要忘记自由模态前6阶问题。

模 态 设 置
CAE
6.4定义工作步 Output----displacement---arguments---argument2 Displacement(plot)=all

模 态 设 置
CAE
6.5定义控制卡片 模态分析需要定义sol和param两个控制卡片
块下。(为软件BUG)







CAE CAE CAE CAE CAE CAE CAE




























CAE
6.1定义约束 自由模态不需要定义约束,但前6阶将为自由模态。

模 态 设 置
CAE
6.2定义载荷 模态不需要定义载荷。

模 态 设 置
CAE

网 格 划 分
CAE
3.2 几何清理 板单元:抽中面

网 格 划 分
CAE
3.2 几何清理 螺栓孔处理:washer

网 格 划 分
CAE
3.3 网格划分

网 格 划 分
3.3 网格划分
细节要求
螺栓孔:R6以上的安

装孔以带一层
washer的至少6个节
CAE
点模拟,washer宽
度尽量与孔半径相等;


进行CAE模态分析可以在系统设计的初期就进行系统的模态计算分

析,而不用等到样件制造出来后再进行试验。从而有效的节省了人力

成本,时间成本,以及制造成本。







CAE CAE CAE CAE CAE CAE CAE




























CAD数


建立材 料
3、aspect ratio 5, max interior angle tria: 120
4、warpage 10
min interior angle tria: 20
5、skrew angle: 45 jacobi 0.6 %of trias: <7%
6、单元检查,一定要在HyperMesh模块下画网,不能在Nastran模
CAE

几何处




网格处 理
质量检 查
连接单 元
建立属 性
CAE结 果
建立约 束
导出计 算
建工作 步
控制卡 片







CAE CAE CAE CAE CAE CAE CAE




























CAE
3.1 几何模型的导入 stp文件,igs文件等标准格式

网 格 划 分
圆角处理
CAE
3.4建立材料 常用材料: 钢材E:2.1e+5

NU:0.3 RHO:7.85e-9
网 格 划 分
CAE
3.5建立属性 Shell 厚度:T Psolid

网 格 划 分







CAE CAE CAE CAE CAE CAE CAE












7.2模态振型 二扭:28.29Hz。

结 果 读 取
CAE
7.2模态振型 局部模态:38.05Hz。

结 果 读 取
CAE
7.2模态振型 局部模态:38.05Hz。

结 果 读 取
谢谢!

R4~6的安装孔以4个 节点模拟;R4以下的

孔删除,只留圆心。


倒角处理: R5以下的 倒角忽略,R5以上宽度 5~8mm用1层单元表示, 宽度大于8mm用2层以 上的单元表示
CAE
3.3网格划分 Element Split-劈单元的荡然区域和方法

网 格 划 分
CAE
3.3网格划分 防止干涉的要求
1.2模态分析基本原理
CAE
模态分析有很多种方法,仅介绍频域法模态拟合的基本原理:

经离散化处理后,一个结构的动态特性可由N 阶矩阵微分方程描述:


经过拉普拉斯变换等处理,可得到频率响应函数矩阵H(ω),该矩阵
中矩阵中第i行第j列的元素

ωr、ξr 、Φr分别称为第r 阶模态频率、模态阻尼比和模态振型 。
















CAE
4.1 刚性连接 rbe2

部 件 连 接
CAE
4.2 螺栓连接

部 件 连 接
CAE
4.3 焊点连接
相关文档
最新文档