冶金原理6.ppt

合集下载

冶金传输原理-第6章导热讲法

冶金传输原理-第6章导热讲法

导热系数
导热系数是材料导热性的重要参数,代表了任意物质在其内部传热的难易程度。了解导热系数可以帮助我们 更好地优化系统设计,以达到最佳传热效果。
金属材料的导热系数
绝缘材料的导热系数
金属材料通常具有比较高的导热系数,其中银、铜、 铝等材料的导热系数最高,一些非金属材料如陶瓷 的导热系数则远低于金属。
除了分子间的能量传递外,热也可以通过物体中的 扩散来传递。这种方法在固体导热中尤其常见。
辐射传输
导热基本概念
导热的基本概念包括温度、传热速率和传热时间常数等。要理解这些概念的物理意义,可以更好地分析材料导 热的过程。
温度
温度是物体吸收热量与释放 热量的平衡状态的表现。温 度差是导热的推动力。
传热速率
隔热计法的测试结果
隔热计法用于测试材料的隔热性能,根据热源的加 热功率、升温速度和温度分布,得出样品的热导率。
导热系数的测定方法
热导率是材料导热的一个基本参数,测定导热系数的方法有多种,如静态方法、动态方法和绝缘法等。
静态测定法
静态测定法基于四极杆热流计或梯度热流计,在稳 态下进行导热测量。这种方法精度较高,适用于测 定各种材料的导热性质。
导热材料的连接方式
选择合适的连接方式对于导热效率至关重要,常见的方法包括银焊法、压接法和夹紧法等。
材料的热稳定性
对于在长时间高温环境下工作的材料,它的热稳定性变得尤为重要。
导热介质的均匀性
在进行导热设计时,我们需要考虑材料内部导热介质的均匀性。例如在冶金领域,铜被广泛用作 导热介质,因其在受热情况下有助于传递中间的热量。
太阳能热水器技术
材料不同热传输的效率不同,在采用太阳能热水器 时,必须合理安装材料,以增强其太阳能辐射吸收 和热传导等效果。

钢铁冶金原理课件

钢铁冶金原理课件

钢铁冶金行业的可持续发展需要技术 创新、政策引导和市场机制等多方面 的努力,推动行业向低碳化、智能化 和循环经济方向发展。
钢铁冶金行业是高能耗、高排放的行 业之一,对环境产生一定的影响,因 此需要采取措施降低能耗和减少排放 ,实现可持续发展。
THANK YOU
全球铁矿分布
主要集中在澳大利亚、中国、巴西等国家。
中国铁矿分布
鞍山、马鞍山、攀枝花等地区。
铁矿的采矿技术
露天开采:剥离表土 层,开采矿石。
采矿技术发展趋势: 智能化、绿色化。
地下开采:挖掘巷道 ,进行矿石开采。
铁矿的选矿原理
选矿目的
将铁矿石中的铁含量提高到60%以上。
选矿原理
根据铁矿石与脉石的物理性质差异进行分离。

直接还原技术
通过在低于熔点的温度下将铁矿石 还原成直接还原铁,再通过电弧炉 熔炼成钢,可减少能源消耗和环境 污染。
氢冶金技术
利用氢气作为还原剂,替代传统的 碳作为还原剂,减少温室气体排放 ,是未来钢铁工业的发展方向。
钢铁冶金的未来发展方向
1 2 3
低碳化
随着全球对环境保护的重视,钢铁冶金行业将向 低碳化方向发展,降低碳排放,提高能源利用效 率。
钢的连铸技术
总结词
连铸技术是将液态钢转变为固态钢的过程,涉及结晶、凝固和收缩等物理变化 。
详细描述
连铸过程中,液态钢流入结晶器,在冷却水的作用下逐渐结晶凝固。随着钢坯 的连续拉出,凝固过程继续进行,直至形成完整的钢坯。控制结晶速度、冷却 强度和拉坯速度是连铸技术的关键要素。
钢的轧制原理
总结词
轧制是通过一对旋转轧辊对金属施加压力,使其发生塑性变形的过程。
熔融与凝固

冶金原理ppt课件

冶金原理ppt课件
2.2 熔渣的相平衡图
2.2 熔渣的相平衡图
2.2.1 重要的二元熔渣系相平衡图 一、CaO-SiO2二元系 二、Al2O3-SiO2二元系 三、CaO-Al2O3二元系 四、FeO-SiO2二元系 五、CaO-FeO与CaO-Fe2O3二元系
2.2.2 CaO-Al2O3-SiO2三元系相平衡图 2.2.3 CaO-FeO-SiO2三元系相平衡图
转熔线:1条(1475°C) 偏晶线:l条(1700°C) 固相分解线:2条(1250°C,1900°C) 晶型转变线:6条(1470°C,1420°C,
1210°C,870°C,725°C,575°C)
8
2.2.1 重要的二元熔渣系相平衡

体系特点(续)
图222 ④
各种钙硅酸盐的熔化温度都很高
C2S比较稳定,熔化时只部分分解; CS在熔化时则几乎完全分解。
一般而言,可根据化合物组成点处液相线的形状(平滑
程度),近似推断熔融态内化合物的分解程度。
若化合物组成点处的液相线出现尖峭高峰形,则该化 合物非常稳定,甚至在熔融时也不分解;
若化合物组成点处的液相线比较平滑,则该化合物熔 融时会部分分解;
12
三2、.C2a.O1-Al2重O3 二要元的系 二元熔渣系相平衡 图 体系特点
3个一致熔融化合物将体系分解为4个独立的二元系
12CaO·7Al2O3(Cl2A7)或 5CaO·3 Al2O3(C5A3) CaO·Al2O3(CA) CaO·2Al2O3(CA2)
2个不一致熔融化合物
3CaO·Al2O3(C3A) CaO·6Al2O3(CA6)
FeO·SiO2(FS)仅存在于熔体中,不会在熔 度图中出现。

冶金原理精品PPT课件

冶金原理精品PPT课件
冶金原理精品课程
第二节 氯化反应的热力学
一、金属与氯的反应 氯的化学活性很强,所以绝大多数金属很易被氯 气氯化生成金属氯化物。所有金属氯化物的生成自由 能,在一般冶金温度下均为负值,且它们的△G—T 关系多数已经测出,在某些手册,专著中可以方便地 查得。 金属氯化物的—T关系也可用图示表达。为了便 于比较,将它们都换算成与一摩尔氯气反应的标准生 成吉布斯自由能变化。图5-1列出了它们的△G—T关 系。
冶金原理精品课程
所谓氯化冶金就是将矿石(或冶金半成品)与 氯化剂混合,在一定条件下发生化学反应,使金属 转变为氯化物再进一步将金属提取出来的方法。
氯化冶金主要包括氯化过程,氯化物的分离过 程,从纯氯化物中提取金属等三个基本过程。在自 然界中金属主要以氯化物、硫化物、硅酸盐、硫酸 盐等形式存在,因此从原料中制取金属氯化物的氯 化过程,显然是氯化冶金最基本和最重要的过程。
冶金原理精品课程
MeO +Cl2 === MeCl2 +O2 C + O2 === CO2 C +1/2O2 === CO2 由(4)×2 +得 (5)
冶金原理精品课程
Mg+Cl2=MgCl2 -)1/2Ti+Cl2=1/2TiCl4
Mg
1 2 TiCi2
MgCl2
1 Ti 2
D G3q
DGMq gCl2
1 2
DGTqiCl 4
DG q MgCl2 DGq TiCl4
DG3q (3)
冶金原理精品课程
由图5-1可见,MgCl2的生成吉布斯自由能曲线在 下面,显然1/2TiCl4的生成吉布斯自由能曲线在上面,
冶金原理精品课程
金属氧化物与氯气反应的—T关系已有人 测出,列于图5-2,图5-3中。从图中可见: SiO2、TiO2 、Al2O3、Fe2O3、MgO在标准状 态下不能被氯气氯化。而许多金属的氧化物如 PbO、Cu2O、CdO、NiO、ZnO、CoO、BiO 可以被氯气氯化。

冶金传输原理PPT课件

冶金传输原理PPT课件
z
dz
dy 0yBiblioteka dx x3.2 连续性方程
单位时间输入微元体的质量-输出的质量=累积的质量
单位时间内,x方向输入输出的流体质量为:
A点坐标( x,y,z), 流体质点速u度 x、uy、uz,
kgkg m
kg
mm 32
ss
mm s
密度。
z
输入面(左侧面):(ux) xdydz
输出面(右侧面):
ux A
Y
1
1
P x P y
dux dt duy
dt
Z
1
P z
duz dt
(3.38) 欧拉方程
适用范围——可压缩、不可压缩流体,稳定流、非稳定流。
用矢量表示—— W1PDu
Dt
(3.39)
3.3 理想流体动量传输方程——欧拉方程
把 d d x u t u tx u x u x x u y u y x u z u z x a x
对于不可压缩流体ρ=常数,根据连续性方程,上式最后一项为0:
d dxu tX P x 2 x u 2 x 2 y u 2 x 2 zu 2x
3.4 实际流体动量传输方程——纳维尔-斯托克斯方程
上式两边同除以ρ,且 得:
d dxu tX 1 P x 2 x u 2 x 2 y u 2 x 2 z u 2 x
将式(b)代入式(a),方程两边同除以ρ,得:
1d d t u xx u yy u zz 0 (c)
3.2 连续性方程
引入哈密顿算子:i jk x y z
所以: U x i y j k k u x i u y j u z k u x x u y y u z z
在流场中取一微元体dxdydz,顶点A处的运动参数为:

《钢铁冶金》课件

《钢铁冶金》课件

钢铁冶金技术发展
钢铁冶金技术的历史
钢铁冶金技术始于古代,经历了手工冶炼、高炉冶炼、平炉冶炼等阶段,逐渐发展成为现代 化的自动化制造过程。
钢铁冶金技术的现状和趋势
现代钢铁冶金技术包括冶炼工艺优化、节能减排、自动化控制等方面,未来的发展趋势是提 高生产效率和环境友好性。
钢铁冶金的应用
钢铁冶金的应用领域
炼铁
1
炼铁流程
炼铁的基本流程包括原料准备、炉料制备、高炉冶炼和铁水处理等环节。
2
炼铁原理
炼铁过程中,通过高温和还原剂的作用将铁矿石中的氧化铁还原为金属铁,并脱除杂质。
钢铁制备
炼钢流程
炼钢的主要流程包括炉料准备、炼钢炉冶炼、钢水 调质和连铸成形。
炼钢原理
炼钢过程中,通过控制温度、氧化还原反应和冷却 速度等因素,调整钢中的碳含量和杂质含量。
《钢铁冶金》PPBiblioteka 课件钢铁冶金是指通过冶炼和制备过程将铁矿石转化为钢铁的科学与技术领域。 本课件将深入介绍钢铁冶金的流程、原理、技术发展和应用。
钢铁冶金介绍
1 钢铁冶金概念
钢铁冶金是将铁矿石经过特定的冶炼和制备过程转化为钢铁材料的过程。
2 钢铁冶金的重要性
钢铁是现代社会的基础材料,广泛应用于建筑、交通、机械等各个领域,对经济发展至 关重要。
钢铁广泛应用于建筑、桥梁、汽车、机械等各个领 域,为现代社会的发展提供了强大的支撑。
钢铁冶金的未来发展方向
未来的钢铁冶金将注重绿色制造、高强度材料、节 能降耗等方面的技术创新。
结论
1 钢铁冶金对经济的重要性
钢铁冶金是现代工业化社会的基石,对国家经济发展有着不可替代的重要作用。
2 钢铁冶金的未来前景
随着科技的不断进步和需求的不断增长,钢铁冶金将继续发展,应用领域将进一步扩大。

物理冶金原理:6-晶界与相界

物理冶金原理:6-晶界与相界

Processing Innovations
New Materials
Atomic Arrangements: - Crystal Structure and Defects
of Metals and Alloy Phases - Phase Constitutions of Alloys -Microstructure of Metals and Alloys
对力学性能影响较大 但对电性能影响小
沉淀强化:位错切割共格粒子
Precipitation Strengthening: Particle-Cutting
• 强化效果取决于粒子的本性!
沉淀析出第二相粒子的强化效果及 强化机制与粒子尺寸的关系:
Strengthening Effect and Mechanisms by Precipitation Particles
降低原子扩散速率 阻碍位错运动与交滑移 阻碍晶界滑移与迁移 阻碍晶粒长大
金属材料的高温蠕变
Service Conditions of Turbine Blades and Vanes in a Jet Engine
Turbofan GP7000 for Airbus 380
Hostile Service Conditions of Turbine Blades in Jet Engines
对称倾侧小角晶界HREM照片 (高分辨透射电子显微照片)
小角度晶界与亚晶
Small Angle Grain Boundaries and Subgrains
扭转小角度晶界:由两列柏氏矢量
互相垂直的螺位错组成(螺位错网) Twist Small Angle Grain Boundaries

《医学冶金原理》PPT课件

《医学冶金原理》PPT课件
势、气体氧化物氧势含义、定义式及其计算式; 熟悉掌握氧势图中氧势线走向规律、氧势图的应用。
6.1.1 基本概念
1
(1)冶金中常见的分解反应
氧化物分解反应: 碳酸盐分解反应: 硫化物的分解反应:
2MO 2M O2 MCO3 MO CO2
MS2 MS S
(2)化合物生成反应、分解反应定义 化合物生成反应:在一定条件下,由一种元素或简单化合
物和一种气体结合成一种新的化合物的反应。 化合物分解反应:在一定条件下,由一种化合物转变为一
种元素或另一种较简单的化合物和一种气体的反应。
6.1.2 化合物的标准摩尔生成吉布斯能
2
(1)化合物的标准摩尔生成吉布斯能定义
它是指在标准状态下,稳定单质和O2反应生 成1摩尔化合物的吉布斯自由能。
(2)化合物标准摩尔生成吉布斯能与温度关系
求。
T
4)氧化物被固体碳直接还原的开始温度的计算
MO C M CO (3)
2M O2 2MO (1)
2C O2 2CO (2)
e
(3) [(2) (1)]/ 2
G(3) 0
G氧 化物、GCO两直线交点
e点所对应的温度即是。
T开
5)计算在一定温度TK下,用气体还原剂 (CO、H2)还原金属氧化物的平衡气相成分
6 化合物的生成-分 解反应及碳氢的燃烧反应
课前复习: 炉渣碱度; 炉渣氧化-还原性含义; 炉渣容量性、CS、C´S。
6.1 氧化物的氧势图
本次课教学内容及其要求: 1 6.1.1 基本概念 2 6.1.2 化合物的标准摩尔生成吉布斯能 3 6.1.3 氧势图及其应用
了解化合物的形成-分解反应; 理解掌握氧势含义、意义及其定义式;固体氧化物氧

冶金原理课件中南大学

冶金原理课件中南大学
✓ 如电渣重熔用渣、铸钢用保护渣、钢液炉外精炼用渣 等。
✓ 这些炉渣所起的冶金作用差别很大。
▪ 例如,电渣重熔渣一方面作为发热体,为精炼提供 所需要的热量;另一方面还能脱出金属液中的杂质 、吸收非金属夹杂物。
▪ 保护渣的主要作用是减少熔融金属液面与大气的接 触、防止其二次氧化,减少金属液面的热损失。
五、熔渣的其它作用
作为金属液滴或锍的液滴汇集、长大和沉降的介质
冶炼中生成的金属液滴或锍的液滴最初是分散在熔渣中的,这些分 散的微小液滴的汇集、长大和沉降都是在熔渣中进行的。
在竖炉(如鼓风炉)冶炼过程中,炉渣的化学组成直接决定了炉缸 的最高温度。
对于低熔点渣型,燃料消耗量的增加,只能加大炉料的熔化量而不 能进一步提高炉子的最高温度。
化 学 组 成 / %(质量)
铝电解的电解质 镁电解的电解质
(电解氯化镁)
镁电解的电解质 (电解光卤石)
锂电解的电解质 铝电解精炼的电解质
(氟氯化物体系)
铝电解精炼的电解质 (纯氟化物体系)
镁熔剂精炼熔剂
Na3AlF6 82~90,AlF3 5~6,Al2O3 3~7,添加剂 (CaF2、MgF2 或 LiF) 3~5 MgCl2 10,CaCl2 30~40,NaCl 50~60,KCl 10~6
▪ 其它的碱金属、碱土金属,钛、铌、钽等高熔点金属以
及某些重金属(如铅)的熔盐电解法生产
▪ 利用熔盐电解法制取合金或化合物
如铝锂合金、铅钙合金、稀土铝合金、WC、TiB2等
熔盐的冶金应用(二)
▪ 某些氧化物料(如TiO2、MgO)的熔盐氯化
◇ 适合处理CaO、MgO含量高的高钛渣或金红石 ◇ 流程短、原料适应性强、设备生产率高、产物杂质含量低。

2024版钢铁冶金PPT课件

2024版钢铁冶金PPT课件
钢铁冶金PPT课件
目 录
• 钢铁冶金概述 • 原料与预处理 • 炼铁工艺及设备 • 炼钢工艺及设备 • 连铸与轧制技术 • 节能环保与资源综合利用 • 自动化与智能化发展趋势 • 总结与展望
01
钢铁冶金概述
钢铁冶金定义与特点
定义
钢铁冶金是一种研究从矿石、废钢 等原料中提取金属铁,并经过精炼、 铸造等工艺制成钢材的工业生产过 程。
THANKS
感谢观看
随着环保意识的提高,未来钢铁冶金 行业将更加注重节能减排,发展绿色 环保冶金技术。
智能化与自动化
借助人工智能、大数据等技术,实现 钢铁冶金过程的智能化与自动化,提 高生产效率和产品质量。
高端产品研发
为满足市场需求,钢铁企业将加大高 端产品的研发力度,如高性能钢材、 特种钢材等。
产业链整合与优化
通过整合上下游资源,优化产业链结 构,降低生产成本,提高市场竞争力。
05
连铸与轧制技术
连铸技术原理及设备组成
技Hale Waihona Puke 原理连铸是将熔融的金属连续不断地浇入 结晶器,凝固成铸坯,然后经过矫直、 切割等工序,最终得到所需尺寸和形 状的铸坯。
设备组成
连铸设备主要包括钢包、中间包、结晶 器、二次冷却装置、拉矫机、切割设备 及铸坯输送设备等。
轧制技术原理及设备组成
技术原理
轧制是利用轧辊的旋转和压缩,使金属坯料通过轧辊间的孔型,产生塑性变形以获 得具有一定形状、尺寸和性能的金属材料的加工方法。
07
自动化与智能化发展趋势
自动化技术在钢铁冶金中应用现状
自动化控制系统
广泛应用于高炉、转炉、连铸等 生产流程,实现精确控制和优化。
传感器与执行器
用于实时监测和调整生产过程中 的温度、压力、流量等参数。

材料加工冶金传输原理ppt课件

材料加工冶金传输原理ppt课件

v∞
v∞
紊流核心区
v∞
vx
缓冲区 vx
层流底层
4
一般平板 :
实验表明 : 4.1.3 管流边界层:
Le起始段
Rec 3105
1
L Re
层流
湍流
层流:当Re Re c,即层流边
界层在流过一段距离后其(x)
已达到或超过管轴,以后整个 管截面上均保持层流流动
vx呈抛物线分布 Le 0.05 Re D
x
当地阻力系数:Cf 0.646
0.646 / x
Rex
总阻力系数:
CD 1.292
1.292 / L
ReL
布拉修斯精确解:Cf 0.664 / Rex
CD 1.328 / ReL
当 3 105 Re 107 (湍流)
0.381
x
1
Re
5
x
CD
0.074
1
Re 5 L
15
x
即 0
vx y
y0 0.332v
v
x
总摩阻D : (b为板宽)
L
D 0dA b 0dx 0.664vb
A
0
总阻力系数 : Cd :
Cd
D
0.5 v2 A
1.328
Re L
当 Re 3 105时有效
Re L
9
4.3 边界层积分方程 层流:无压力梯度
层流:无压力梯度(势流 P 0, 湍流 P 0),当 P 0
dP dx
0
0
0
依势流柏努利方程(柏努利方程微分式)
dP
vdv
0
1
dP dx
v
dv dx

钢铁冶金概论课件

钢铁冶金概论课件

氮化反应
总结词
钢铁冶金中氮化反应是指将氮与铁结合生成氮化铁的过程。
详细描述
氮化反应在钢铁冶金中主要用于提高钢铁材料的强度和耐磨性。氮化处理过程中,氮原子会渗入钢铁表面形成氮 化铁层,从而提高钢铁的硬度和耐腐蚀性。
硫化反应
总结词
钢铁冶金中硫化反应是指将硫与铁结合生成硫化铁的过程。
详细描述
硫化反应在钢铁冶金中主要用于改善钢铁材料的切削加工性能。硫化处理过程中,硫化铁的形成会降 低钢铁的切削阻力,提高切削效率。此外,硫化铁还可以提高钢铁的抗腐蚀性能。
现代钢铁冶金采用先进的生产技术和设备,实现了高效 、低能耗、环保的生产。主要技术包括高炉大型化、转 炉和电炉炼钢、连铸连轧等。
钢铁冶金的重要性
钢铁是重要的基础材料
保障国家安全
钢铁是世界上最重要的基础材料之一 ,广泛应用于建筑、机械、汽车、船 舶、铁路等领域。
钢铁是国防和军事工业的重要原材料 ,对于保障国家安全具有重要意义。
循环经济与废弃物资 源化
钢铁冶金企业需要遵循循环经济的原 则,实现废弃物的资源化利用。例如 ,将废钢、废铁等再生资源回收利用 ,减少对原生资源的依赖;同时,还 需要将生产过程中产生的废弃物进行 资源化利用,如将高炉渣用于生产水 泥、将煤渣用于生产新型墙体材料等 。
资源节约与降耗
钢铁冶金企业需要采取一系列措施实 现资源节约和降耗,如采用先进的生 产工艺和技术、加强能源管理和节能 减排等。例如,采用连铸连轧工艺代 替传统的轧制工艺,可以大幅度提高 能源利用效率和降低能耗。
VS
相图
相图是描述物质在不同温度和压力条件下 各相之间关系的图表,在钢铁冶金中,相 图是指导生产的重要工具。
热处理
热处理

冶金原理课件(中南大学)

冶金原理课件(中南大学)
第三章 冶金熔体的结构
3.0 3.1 3.2 3.3 1.4 概述 金属熔体的结构 熔盐的结构 熔渣的结构 熔 锍
3.0 概 述
冶金熔体的结构:指冶金熔体中各种质点的排列状态。 熔体结构主要取决于质点间的交互作用能。 冶金熔体的物理化学性质与其结构密切相关。
相对于固态和气态,人们对液态结构,尤其是冶金熔体 结构的认识还很不够。
3.3 熔渣的结构
3.3.1 分子结构理论
一、分子理论的基本观点 二、分子理论的应用及存在的问题
3.3.2 离子结构理论
一、固体氧化物的结构与性质 二、液态炉渣的结构 三、离子理论的应用举例 四、离子理论存在的问题
3.3.3
分子与离子共存理论
一、共存理论的主要依据 二、共存理论的基本观点
3.3.4
图31
结论II
金属熔体在过热度不高的温度下具有准晶态的结构——晶
体中的相同(保持了近程序);
在稍远处原子的分布几乎是无序的(远程序消失)。
表 31 金属液态和固态的结构数据比较
金 属 Al Mg Zn Cd Cu Au 液 原子间距/nm 0.296 0.335 0.294 0.306 0.257 0.286 态 配位数 10.6 10 11 8 11.5 8.5 固 原子间距/nm 0.286 0.320 0.265, 0.294 0.297, 0.330 0.256 0.288 态 配位数 12 12 6+6 6+6 12 12
基本概念:单位晶胞、晶格常数、配位数、晶格结 点、金属键 典型的晶体结构:面心立方、体心立方和密堆六方 铁的结构:原子半径:1.2810l0m,
三种晶型: Fe → Fe (1185K) Fe → Fe (1667K) Fe、Fe:体心立方晶格,配位数为8 Fe:面心立方晶格,配位数为12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冶金原理精品课程
三、CaO-FeO-SiO2三元系
由于三元系的立体状态图比较复杂,实践中 应用较少,常将立体图中的面、线及点的关 系投影到浓度三角形平面上,使空间的相图 平衡关系简化成水平投影图。利用这种投影 图就易于分析炉渣的组成与温度之间的关系。
冶金原理精品课程
三、CaO-FeO-SiO2三元系
冶金原理精品课程
一、SiO2-CaO二元系
图化合1-1物是生C成aO:-SiO2系的状态图,这个体系内有下列 (和ß1两)中C晶aO体·S,iO182即17CKa熔O化Si。O3,称偏硅酸钙。它有α (分解2。)3CaO·2SiO2即Ca3SiO7,称焦硅酸钙1737Κ (β和3α)三种2晶Ca型O,·S2iO420即3ΚC熔a2化Si。O4,称正硅酸钙,有γ、 (21743Κ)分3解C。aO·SiO2 即 Ca3SiO5, 在 1523Κ 形 成 ,
三、CaO-FeO-SiO2三元系
其等温线由CaO-SiO边倾斜横越全图,直达 FeO-SiO2边,呈狭谷形状,其熔度最低的成 分位于45%FeO、20%CaO和35%SiO2附近, 其最低温度约为1273Κ,这个组成与铅鼓风 炉的炉渣成分大致相同。在这个系统内有一 个三元系化合物CaO·FeO·SiO2(钙铁橄榄 石)。
冶金原理精品课程
冶金原理精品课程
二、FeO-SiO2二元系
图1-2是FeO-SiO2二元系壮态图。严格说来,
这不是一个真正的二元系。因为FeO并不是一个固
定组成的化合物,而是溶解有Fe3O4的固熔体,将 Fe3O4看成FeO·Fe2O3,因而有一部分Fe系以Fe2O3 形态存在。此外,FeO的硅酸盐在熔化后易分解,
冶金原理
第一章冶金炉渣 第三节、炉渣系二、三元状态图
冶金原理精品课程
上一节
教学内容
概述 一、SiO2-CaO二元系 二、FeO-SiO2二元系 三、CaO-FeO-SiO2三元系 四、Al2O3-SiO2二元系 五、CaO-AL2O3二元系 六、CaO-Al2O3-SiO2三元系
冶金原理精品课程
从图1-1可见,各种硅酸钙盐的熔化 温度都很高,熔点低于1873Κ的硅酸钙位 于含CaO32~59%的狭窄组成范围内,而 且如在含CaO59%时再增加CaO,则熔点将 急剧升高。所以纯石灰质的硅酸盐在熔化 温度上就不适于用作有色金属冶炼渣。但 CaO能使炉渣的密度降低,且石灰质硅酸 盐溶解重金属硫化物的能力比较小,所以 作为一个造渣成分,还是有其有利的一面
冶金原理精品课程
冶金原理精品课程
三、CaO-FeO-SiO2三元系
以上分析说明纯氧化亚铁硅酸盐或纯氧
化钙硅酸盐都不适宜于单独有色冶炼炉渣。
在实践中,能符合有色冶金过程要求的炉渣
是铁钙硅酸盐的熔合体,其中基本组成部分
为 FeO、CaO 和 SiO2。 因 此 , CaO-FeOSiO2三元系是有色冶金炉渣的主要造渣系。
FeO也容易被氧化成高价氧化物。在作该二元系状
态图时已将各种含铁氧化物皆折算为FeO,因而此图
实际上是一个假二元系状态图。
冶金原理精品课程
二、FeO-SiO2二元系
在图上部算出了液相中Fe2O3含量随着SiO2含量 而改变的曲线。当液相成分接近于铁橄榄石(2
FeO·SiO2)时,Fe2O3含量为2.25%。
右),与有色冶炼炉渣的熔化温度相近。
因此,单就熔点来说,理论上用熔化温度
为1473Κ,而成为接近纯2FeO·SiO2的炉 渣进行造硫或还原熔炼是可行的。
冶金原理精品课程
二、FeO-SiO2二元系
但是,这种熔渣的缺点是密度较大(含 FeO高达70%),因而与锍或金属的分离 效果不好。又因硅酸盐中的FeO含量愈高, 其对硫化物的溶解能力愈大,导致金属损 失增大。因此,在实践中不能单独用氧化 亚铁硅酸盐作炉渣,而必须加入CaO以改 善炉渣的性能。
冶金原理精品课程
一、SiO2-CaO二元系
体系内形成三种共晶: (1)SiO与CaO·SiO2组成的共晶,共晶
温度为1709Κ。 (2)CaO·SiO2 与 3 CaO·2SiO2 组 成 的
共晶温度为1733Κ。 (3)CaO·SiO2 与 CaO 组 成 的 共 晶 , 共
晶温度为2338Κ。
概述
1、冶金炉渣的组成和物理化学性质杂很 大程度上与CaO-FeO-SiO2 三元系状态图和 CaO-Al2O3三元系状态图有关。
冶金原理精品课程
概述
2、通过对炉渣系二、三元状态图的研究, 可以了解炉渣的熔化温度与组成之间的关系以 及一定温度与组成下的相结构。
冶金原理精品课程
概述
3、状态图又称相图,是用几何图形表示 一个平衡体系的温度、压力和组成的关系。对 于炉渣的研究,常用的状态图是温度和组成的 平衡图。

如图1-2所示,这个二元系只有一个稳定的
化合物,叫做铁橄榄石,其熔点为1478Κ,它的
液相线是平滑的,说明它熔化后易分解。此外,
这个二元系有两个共晶,其共晶温度几乎相等
(1450Κ和1451Κ)。
冶金原理精品课程
二、FeO-SiO2二元系
由图1-2可见,当SiO2含量在30%左
右时,系统的熔化温度最低(1460Κ左
图1-3为CaO-FeO-SiO2三元系水平 投影状态图,简称三元系相图,这个系统的 特点是其中有许多固熔体,而且在固相内进 行着复杂的变化。图中靠近SiO2顶角有较大 范围的硅酸盐的液相分层区,而在偏CaO顶 角则是高熔点的CaO存在区。在此两区之间 为1673Κ以下的单一液相区。
冶金原理精品课程
冶金原理精品课程
三、CaO-FeO-SiO2三元系
化三元铁系分与平解Fe衡、O状-氧S态i化O图2等二的原元研因系究,相带给同来C,一aO由定-F于困eO存难-在S,iO氧研2 究结果亦互有差异。
三元系内有三个组分,如再考虑温度的 影响,则用等边三角形平面表示组分浓度的 变化,再在此三角形平面上竖立垂直纵轴以 表示温度,这样就构成了三棱柱体的空间相 图。
冶金原理精品课程
一、SiO2-CaO二元系
纯CaO的熔点为2843Κ,纯SiO2的熔点为 2001Κ。SiO2在下列温度下发生晶型转变:
α-石英=α-磷石英= α-石英 此外,体系乃还存在液相分层区,大约在
1973K以上二液相平衡共存,它们的组成 由二边界线(虚线)表示。
冶金原理精品课程
一、SiO2-CaO二元系
相关文档
最新文档