发展中的合成气制乙二醇技术
合成气制乙二醇成套技术中试研究通过评议
算为 主要判据 ,干 态临界转速计算 只做 参考 。 2 )根 据洛 马金 理论及 公式 可以 推
出泵 的湿态临界转 速值与环状压 力密封
两 端 压差 成 正 比 ;与密 封 环长 度 成 正 比;与密封环半径 成正比 。但是 与密封
环 间隙值成反 比。
图2 转子支撑力学模 型
3 ) 当环状 压力 密封 的间 隙设计 合 适时会提高泵的临界转速 ,但 因磨 损等原因间隙变大时 临界转速会下降 。同样一 台泵 开始是刚性转 子 ,但当间
I n
用
_
结构 ,内壳 体为径向多级节段式离心泵 ,轴 承采用四油
密封 口 环直 径D=1 5 2 mm,密封 间隙b = 0 . 4 mm,压差p
=
1 . 3 1 MP a 。
( 4 )次级径D=1 3 2 mm,密 封间隙b = 0 . 4 am,压差p r
隙变大 ,临界转速下 降就 可能 变成 柔性 转子。因此泵产
处 、轴承处 、附加质量 中心处 、环状压 力密封中心处均
通 劈 点。下面重点对主要环状压 力密封部 位节点数据 设立节
做一介绍 。
拱 ∽
( 1 )首级叶轮入 I : 1 处
密封 口环长度L =2 7 mm,
品在运行一定时期后 ,发现振 动逐 渐加 大时要及时更换 密封 口环也是一项重要措施 。GM
密封 口环直径D=1 6 8 m m,密封 间隙b = 0 . 4 mm,压差p
=
1 . 3 4 MP a 。
( 收稿 日 期: 2 0 1 3 / 0 7 / 0 8 ) 密封 I : 1 环长度L =1 9 mm,
( 2 )首级叶轮轮 毂处
合成气制乙二醇的偶联反应过程和机理分析赵永鲁
合成气制乙二醇的偶联反应过程和机理分析赵永鲁发布时间:2023-07-29T04:38:04.536Z 来源:《中国科技信息》2023年9期作者:赵永鲁[导读] 现今我国的偶联反应,偶联反应也就是合成气生产乙二醇工艺中的反应。
现今很多实验表明,在原定偶联反应的催化剂已经确定好的情况下,就可以选择效果最好最合适的草酸二甲酯来进行制备。
所以在偶联反应中要控制原料的杂质浓度,在反应中严格按照偶联反应所需的原材料以及相关比例,以及在反应中的实验操作,以保证反应过程的安全性也是草酸二甲酯制备中的关键环节。
河南省中原大化集团有限责任公司河南濮阳 457001摘要:现今我国的偶联反应,偶联反应也就是合成气生产乙二醇工艺中的反应。
现今很多实验表明,在原定偶联反应的催化剂已经确定好的情况下,就可以选择效果最好最合适的草酸二甲酯来进行制备。
所以在偶联反应中要控制原料的杂质浓度,在反应中严格按照偶联反应所需的原材料以及相关比例,以及在反应中的实验操作,以保证反应过程的安全性也是草酸二甲酯制备中的关键环节。
关键字:合成化气;乙二醇;偶联反映;酯化反映引言该工艺技术也在中国石化电子行业中受到了普遍重视。
目前,在我国国内的化学研究中,关于合成反映生产EG均使用气相法,在我国有很多相关科研人员进行了相关的研究,并在研究过程中,选择了不同的方向,也在各个方向中研发了很多新方面。
例如,就有研究人员研究了CO偶联制备草酸酯催化剂的工艺技术流程;还有科研人员研制了NOx和乙酰丙胺的工艺过程。
所以本文将对草酸二甲酯(DMO)在其形成过程中的偶联反映和形成亚硝酸甲酯(MN)的酯化反应对其反映速度等多方面进行比较,从而使人们可以比较完整、清晰地掌握偶联反应流程。
一、 MN偶联反应制 DMOMN制备:将计量好的软水、亚钠、甲醇在溶解釜中充分混合均匀,然后打入反应釜,滴加稀硝酸进行反应,产生亚硝酸甲酯提供给合成系统使用。
反应原理的主反应为:NaNO2 + HNO3 +CH3OH = NaNO3 + H20 + CH3ONO;副反应:2NaN02 + 2HNO3 = 2NaN03 + H20 + NO↑ + N02↑;6HNO3 + CH3OH = 5H20 + CO2↑ + 6N02↑;4HNO3 + CH3OH = 4H20 + CO↑ + 4N02↑。
合成气制乙二醇
工艺选择目前,乙二醇制备技术路线有3种:石油路线、煤路线和生物路线。
1.石油路线生产乙二醇石油路线法均以石油化工产品乙烯或其所制产品环氧乙烷为原料,再经不同反应过程制得乙二醇,国内工业生产实际应用的石油路线法为环氧乙烷直接水合法。
环氧乙烷直接水合法采用原料环氧乙烷与水在190~200 ℃、MPa 操作条件下,反应 h,生成乙二醇含量约 10%的乙二醇、二乙二醇、三乙二醇混合水溶液,再经分离制得乙二醇。
优点:技术成熟,应用面广,收率为90%。
缺点:依赖石油资源,水耗大,成本高,并且国内缺少自主产权技术,即工艺技术对外依赖程度高。
2.煤路线生产乙二醇该工艺是以煤为原料,制得合成气后,通过直接合成法或间接合成法最终制成乙二醇。
目前国内合成气路线法乙二醇生产装置均采用间接法。
实际工程应用的间接法为草酸酯法。
即先制得合成气,然后再经催化反应生成草酸二甲酯(DMO),然后以 Cu/SiO2为催化剂,150 ℃条件下进行 DMO 的低压加氢制取乙二醇。
该方法转化率达 %,乙二醇选择性 %。
优点:成本低,能耗低,水耗低,适合我国缺油、少气、煤炭资源相对丰富的资源国情。
缺点:技术不成熟,目前催化剂寿命较短,聚合级产品质量不稳定,工程放大存在风险。
3.生物路线生产乙二醇自然界中的碳水化合物,无论是淀粉基的多糖类作物(如玉米、小麦等),还是单糖或多糖类农作物(如甜高粱、菊芋等)均可以作为生物路线生产乙二醇的原料。
中科院大连化学物理研究所研究人员首次尝试采用廉价的碳化钨催化剂应用于纤维素的催化转化,利用碳化钨催化剂在涉氢反应中具有的类贵金属性质,可以替代价格昂贵的贵金属催化剂,将纤维素全部转化为多元醇,而且对乙二醇的生成表现出独特的选择性,尤其是在少量镍的促进作用下,乙二醇的收率可高达61%, 是一种极具工业应用前景的绿色工艺路线。
优点:不需要消耗大量的氧气,没有废气、废水排放,属于环境友好技术。
缺点:收率低,技术难度大,目前达不到工业化生产要求。
合成气制乙二醇工艺技术
合成气制乙二醇工艺技术合成气制乙二醇(ethylene glycol production from synthesis gas)是一种重要的工艺技术,用于生产乙二醇(ethylene glycol),乙二醇是一种广泛应用于化工、纺织和医药等领域的重要基础化学品。
合成气制乙二醇的工艺主要包括合成气制乙醇和乙醇水合成乙二醇两种方法。
其中,合成气制乙醇方法是通过合成气(合成气是一种由一氧化碳和氢气组成的可燃气体)催化制得乙醇,并将乙醇再催化合成乙二醇。
乙醇水合成乙二醇方法是将乙醇与水反应生成乙二醇。
以下是合成气制乙二醇工艺的具体流程。
首先,以天然气或煤作为原料,通过蒸汽重整催化剂将其转化为合成气。
合成气主要由一氧化碳和氢气组成,其化学式为CO+H2。
然后,将合成气与催化剂进行反应,得到乙醇。
合成气与催化剂反应生成乙醇的反应式为CO+2H2→C2H5OH。
接下来,将乙醇进一步催化反应,生成乙二醇。
乙醇催化合成乙二醇的反应式为2C2H5OH→C2H4(OH)2+H2O。
最后,对乙二醇进行精制和除水处理,得到纯度高的乙二醇产品。
乙二醇的精制过程主要包括蒸馏、结晶和吸附等步骤,以去除杂质和提高纯度。
合成气制乙二醇的工艺技术具有以下优点。
首先,原料广泛,可利用天然气、煤、石油等作为原料,能够提高资源利用率。
其次,反应过程中无需使用高温高压,操作相对简单,投资和运营成本低。
另外,乙二醇是一种多功能化合物,在化工、纺织和医药等领域有广泛应用,其生产规模和市场需求都很大。
然而,合成气制乙二醇的工艺技术也存在一些挑战和问题。
首先,催化剂的选取和催化剂寿命对工艺的影响较大,需要持续进行催化剂研究和改进。
其次,乙醇水合成乙二醇的方法反应选择性较差,容易产生副产物,需要进一步提高反应的选择性和产率。
此外,气相催化反应过程中管道和设备对反应物质的传输和分离也是一个挑战,需要合理设计和优化。
综上所述,合成气制乙二醇是一种重要的工艺技术,具有广泛的应用前景和市场需求。
合成气制乙二醇
工艺选择目前,乙二醇制备技术路线有3种:石油路线、煤路线和生物路线。
1.石油路线生产乙二醇石油路线法均以石油化工产品乙烯或其所制产品环氧乙烷为原料,再经不同反应过程制得乙二醇,国内工业生产实际应用的石油路线法为环氧乙烷直接水合法。
环氧乙烷直接水合法采用原料环氧乙烷与水在190~200 ℃、2.23 MPa 操作条件下,反应 0.5 h,生成乙二醇含量约 10%的乙二醇、二乙二醇、三乙二醇混合水溶液,再经分离制得乙二醇。
优点:技术成熟,应用面广,收率为90%。
缺点:依赖石油资源,水耗大,成本高,并且国内缺少自主产权技术,即工艺技术对外依赖程度高。
2.煤路线生产乙二醇该工艺是以煤为原料,制得合成气后,通过直接合成法或间接合成法最终制成乙二醇。
目前国内合成气路线法乙二醇生产装置均采用间接法。
实际工程应用的间接法为草酸酯法。
即先制得合成气,然后再经催化反应生成草酸二甲酯(DMO),然后以 Cu/SiO2为催化剂,150 ℃条件下进行 DMO 的低压加氢制取乙二醇。
该方法转化率达 99.8%,乙二醇选择性 95.3%。
优点:成本低,能耗低,水耗低,适合我国缺油、少气、煤炭资源相对丰富的资源国情。
缺点:技术不成熟,目前催化剂寿命较短,聚合级产品质量不稳定,工程放大存在风险。
3.生物路线生产乙二醇自然界中的碳水化合物,无论是淀粉基的多糖类作物(如玉米、小麦等),还是单糖或多糖类农作物(如甜高粱、菊芋等)均可以作为生物路线生产乙二醇的原料。
中科院大连化学物理研究所研究人员首次尝试采用廉价的碳化钨催化剂应用于纤维素的催化转化,利用碳化钨催化剂在涉氢反应中具有的类贵金属性质,可以替代价格昂贵的贵金属催化剂,将纤维素全部转化为多元醇,而且对乙二醇的生成表现出独特的选择性,尤其是在少量镍的促进作用下,乙二醇的收率可高达61%, 是一种极具工业应用前景的绿色工艺路线。
优点:不需要消耗大量的氧气,没有废气、废水排放,属于环境友好技术。
合成气间接法制乙二醇技术的进展
2 国 内研 究 进 展
国 内从 2 纪 8 代 初 期 就开 始 了 C 0世 O年 O催 化 合成草 酸酯及 其衍 生物产 品草 酸 、 乙二醇 的研 究 。国
内研究 的方 向基本 上是 以气相法 为 主 , 国家 “ 五” 在 八
催 化剂 , 反应 温 度 9 ' 压 力 9 8 MP 在 0E, . a下 , 过 液 通
相 反应合 成 草 酸 二 丁 酯 , 后 再 采 用 液 相 加 氢 合 成 然 E G。反 应 中草酸二 酯生 成 速率 低 、 产 物 多 , 加 氢 副 且 压力 高 。 目前很 多研 究都 是 以此 为基 础而 开展 的 。
乙二醇技 术 的进展 。
种重要 的石油 化工基 础有 机原料 , 主要用 来 生产 聚 酯
纤 维 ( E ) 塑料 、 胶 、 P T、 橡 聚酯 漆 、 粘 剂 、 离子 表 面 胶 非 活性 剂 、 乙醇胺 以及 炸药 , 大量 用 作 溶 剂 、 滑 剂 、 也 润 增 塑剂和 防冻 剂 等 。 目前 全 球 需 求 量 约 为 20 0万 0
1 2 气相 法 . 意大 利蒙特 一爱迪 生 公 司 与 宇部 公 司合 作 开 发 了气 相法 , 采用 乙醇 , 经亚硝 酸 乙酯 合成草 酸二 乙酯 。 目前 , 宇部兴 产 和联 碳公 司都 有气 相合 成 法 的专 利 报告 。气相法 较液 相法又 向前 发展 了一 步 , 它不使
美 国 A O化学 公 司和 1 宇 部兴 产 公 司 最初 RC 3本 采 用活性 炭作 载体 的 P d催化 剂 , 基 醇为正 丁 醇 , 烷 经
过 亚硝酸 丁 酯 液 相 加 压 合 成 草 酸 二 丁 酯 , 建 成 了 并 60 0ta 0 的草酸 装置 , / 称为 液相法 。
乙二醇合成技术研究进展
乙二醇合成技术研究进展乙二醇是一种非常重要的有机化工原料,它在我国的化工产业中有着非常广泛的应用,但是乙二醇是一种化学合成物,并不是天然的,所以要想利用乙二醇,必须要首先要对其进行合成。
经过多年的研究,我国在乙二醇合成技术方面已经取得了一定的成就,当前已经可以通过多种技术来对乙二醇进行合成,比如说氯乙醇法、环氧乙烷水合法和甲醛法等。
本文就乙二醇的合成技术及其发展趋势进行了一定的研究。
标签:乙二醇;合成技术;研究进展0 前言乙二醇又被称为甘醇,它的分子式为HOCH2CH2OH,它属于脂肪族二元醇,在工业中有着非常广泛的用途,乙二醇可以用来作为汽车防冻剂、润滑剂和涂料等,正是由于它的使用范围非常广泛,所以其合成技术也引起了人们的重视,如果能够高效地合成乙二醇,将大大地提高乙二醇的生产效率,所以对其合成技术进行研究是非常有必要的。
1 催化水合法合成乙二醇催化水合法主要可以分为两类:第一类是均相催化水合法;第二类是非均相催化水合法。
催化水合法的技术关键就在于对新的水合催化剂的开发,因为在传统的直接水合法中,水和环氧乙烷的摩尔比往往较高,这对于乙二醇的合成是极为不利的,而改善了水合催化剂之后,可以使得水和环氧乙烷的摩尔比得到有效的降低,从而提高乙二醇的选择性。
当前应用得较为广泛的两种水合催化剂是钼酸盐复合催化剂和负载于离子交换树脂上的阴离子催化剂,通过对这两种催化剂的使用可以有效地提高乙二醇选择性,在一定的摩尔比条件下可以使得乙二醇选择性达到96%以上。
随着科研人员对于乙二醇合成技术研究的不断深入,越来越多的新型的催化剂不断地被开发了出来,而且许多新型的催化剂能够在摩尔比较低的条件下使得乙二醇选择性得到明显的提高,甚至使其接近与100%。
催化水合法是当前应用得较为普遍的一种乙二醇合成方法,利用催化水合法的关键就在于水合催化剂,水合催化剂的质量直接影响着乙二醇的合成效率和质量。
2 以合成气为原料生产乙二醇近些年来,由于全球的石油资源日益枯竭,传统的依赖于石油资源生产乙二醇的方式已经受到了一定的限制,因此研究人员开始对煤和天然气进行研究,以期能够以煤和天然气作为初级原料来进行乙二醇的生产,当前已经取得了一定的成就,目前利用煤和天然气来进行乙二醇合成的方法主要有氧化偶联法、甲醇二聚法和甲醛电化加氢二聚法等。
华东理工大学科技成果——合成气制乙二醇技术
华东理工大学科技成果——合成气制乙二醇技术项目简介目前乙二醇(EG)主要生产路线是石油路线,即石油裂解得到乙烯,乙烯氧化制得环氧乙烷(EO),环氧乙烷水合制乙二醇。
我国是一个缺油贫气,煤炭资源相对丰富的国家。
目前国内煤炭气化技术已经较成熟,煤气化产生的合成气可以经草酸二甲酯加氢合成乙二醇,该工艺路线具有反应条件温和,设备压力等级和材质要求低,催化剂对环境污染小等优点,具有较好的发展前景。
在石油价格不断上涨的形势下,这一技术的开发对我国的经济发展具有重要的战略意义,其经济性也明显优于石油路线。
合成气合成乙二醇新技术的工艺过程有三个反应,分两步进行:首先一氧化碳与亚硝酸甲酯(MN)羰化偶联合成草酸二甲酯(DMO),反应生成的一氧化氮与氧气和甲醇反应生成亚硝酸甲酯,在反应体系中循环;第一步反应的产物草酸二甲酯再加氢制乙二醇(EG)。
其中,亚硝酸甲酯羰化偶联和草酸二甲酯加氢两步反应通过气-固催化反应完成。
该技术反应自封闭循环,生产过程消耗CO、H2(经分离的合成气),及氧气,生成乙二醇产品和少量水,是原子经济性较高的绿色化工路线。
华东理工大学发挥化学工程专业优势,与上海浦景化工技术有限公司和安徽淮化集团合作,完成了从催化剂到工业流程的工程开发过程,年产1000吨/年的中试装置一次开车成功,各步反应的转化率和选择性均大于设计值,产品乙二醇质量指标达到优级品标准。
目前在国内处于领先地位。
项目成熟度产业化应用前景乙二醇是重要合成材料聚酯的主要合成原料之一,也用于冷冻剂、化妆品等的制备。
我国2011年的表观需求量约800万吨,国内产量约200万吨,进口量约600万吨,国内产品的自给率<30%。
知识产权及项目获奖情况是自主开发和研究的成果,具有核心技术及自主知识产权。
合作方式技术转让。
合成气制备乙二醇
和以铜基催化剂为主的非均相气相或液相加氢法。 由于均相液相加氢需在高压下进行,产品的分离回收困难,人们更倾向于采用负载型催 化剂进行气相或液相催化加氢。 非均相催化加氢法生产乙二醇工艺中, 最早要属杜邦公司在 40 年代开发的甲醛偶合生产 乙醇酸(或乙醇酸甲酯),再加氢制乙二醇的工艺,加氢催化剂采用铜基催化剂,反应在气相 (200-225℃、3.04MPa)或液相(40.53MPa)进行,但乙二醇的收率很低,仅 30%。美国 ARCO 公司在 80 年代后期对草酸二酯液相加氢反应的负载催化剂进行了大量研究,发现铜铬系催 化剂具有较高的加氢活性和选择性。 采用负载在 Al2O3、 SiO2 或玻璃珠上的铜-铬系催化剂, 反应压力降为 1.034-3.275MPa,温度 200-230℃,但乙二醇的收率仅为 11.7%-18.9%。为降 低反应压力,提高反应选择性和收率,人们把目光转向了草酸酯气相加氢,1982 年 Tahara 等提出了草酸酯在铜铬催化剂上气相加氢制乙二醇的路线。 由于铬的毒性,即使微量的铬也会对人体造成极大的威胁,因而开发不含铬的催化剂成 为今后研究的重点。 近年来发表了相当多的关于草酸酯加氢催化剂的专利, 其中宇部兴产在 80 年代初对铜基无铬催化剂进行了大量研究。他们针对以铜为主体的催化剂,考察了载体 (Al2O3、SiO2、La2O3 等)、助剂(K、Zn、Ag、MO、Ba 等)、制备方法等对催化活性和选 择性的影响。 在以铜基催化剂为基础的草酸酯气相加氢工艺中, 比较宇部兴产不同反应条件 下的结果可以得出,在相同的催化剂作用下通过改变氢酯比、温度、压力和停留时间等,可 以调节产物的组成,从而获得以乙醇酸酯或乙二醇为主的产品。 80 年代中期,美国 UCC 公司申请了一系列草酸二甲酯气相加氢制乙二醇的铜硅系催化 剂专利,采用浸渍法制备。 2.3 国内研究现状 国内研究的方向基本上是以气相法为主,在国家“八五”和“九五”重点科技计划中也都给 予了重点支持, 组织过国内科研机构进行技术攻关。 代表性研究单位中科院福建物质结构研 究所、天津大学、浙江大学、中科院成都有机化学研究所等对 CO 气相偶联合成草酸酯的反 应进行了广泛的研究,主要集中在偶联反应的工艺条件、动力学、反应机理、催化剂的考评 和载体效应,以及再生反应的工艺条件、动力学等方面。福建物构所、天津大学等对草酸酯 加氢催化剂进行了研究和考评,并取得了较好的结果。 2.3.1 草酸酯合成技术 对 CO 气相偶联合成草酸酯技术研究,国内进行了大量工作,且基本出发点都是在催化 反应过程中引入了强氧化剂亚硝化烷基酯,在 Pd/Al2O3 催化剂作用下进行偶联反应生成草 酸酯。 福建物构所陈庚申、天津大学等对羰化反应机理进行了较为深入的研究。陈庚申等认为 在反应条件下,活性中心 Pd 络合两个 CO 分子,形成钯的羰基络合物,由于载体和钯的相 互作用,使钯具有较多的负电荷,羰基上的碳原子带有较多的正电荷,因此有利于 RO-NO+ 的 RO-亲核进攻。通过氧化加成反应,形成双烷基钯,中间络合物,活性中心从 Pd0-Pd1,
高化学联合体合成气制乙二醇技术展示
高化学联合体合成气制乙二醇技术展示2015.2作为现代煤化工五大路径之一,煤制乙二醇的发展一直受到业内关注。
为了更好地交流合成气制乙二醇技术,推动煤制乙二醇技术产业化进程,从本期起,本刊将陆续介绍国内主流合成气制乙二醇技术,从工艺技术、工艺指标参数、经济效益、应用案例等方面,全面地展示合成气制乙二醇技术的特点与应用情况。
此次合成气制乙二醇技术展示的所有材料,由相关企业提供,均不代表本刊倾向和观点。
20世纪80年代,日本宇部兴产株式会社着手开展合成气制乙二醇技术的开发,首次将亚硝酸甲酯引入乙二醇合成,使得采用合成气制乙二醇技术具有了实现工业化生产的条件。
在日本,宇部兴产一直利用亚硝酸酯工艺,用合成气生产有机化工产品,如草酸、草酸铵、3,3-二甲氧基丙腈、碳酸二甲酯、草酸二甲酯等,积累了丰富的草酸酯合成经验,并建有年产15000吨草酸二甲酯的工业化生产装置,至今已经安全、连续运行了30年。
此外,宇部兴产在20世纪80年代建成了合成气制乙二醇的模式装置(1吨/月),但由于石油危机结束,且日本煤和天然气资源匮乏等因素,合成气制乙二醇技术的工业化进程未得到延续。
2009年,日本高化学株式会社获得了宇部兴产合成气制乙二醇技术的全权代理权,并与中国东华工程科技股份有限公司、浙江联盛化工公司签订了联合开发协议。
2010年5月,该联合体共同出资在台州建成了年产1500吨乙二醇的中试装置,并取得了完整的运行数据,其产品符合国家标准GB4649-2008优等品标准。
2013年1月6日,位于新疆的首套年产5万吨合成气制乙二醇工业化装置一次开车成功。
技术概述(一)反应流程合成气制乙二醇生产分两部分,第一部分为合成气氧化羰化制草酸二甲酯,第二部分为草酸酯加氢制乙二醇。
具体反应流程为草酸二甲酯与氢气在催化剂存在下,反应生成乙二醇和甲醇的混合物,经过精馏,获得乙二醇产品,同时副产甲醇,甲醇返回草酸二甲酯装置循环利用。
目前市场上的主要技术供应商基本采用以上的工艺路线,因此工艺路线相同的情况下,工业装置的安全,稳定,长周期,满负荷,产品指标是衡量技术优劣的关键。
合成气合成乙二醇
合成⽓合成⼄⼆醇⼀、概述⼄⼆醇是⼀种重要的有机化⼯原料,⼴泛⽤于⽣产聚酯纤维、防冻剂、润滑剂、涂料、炸药等。
传统的⼄⼆醇⽣产⽅法主要通过⽯油路线,但由于⽯油资源的有限性和价格的波动性,发展⼀种从合成⽓(⼀氧化碳和氢⽓的混合物)出发合成⼄⼆醇的⼯艺变得越来越重要。
本⽂将详细介绍合成⽓合成⼄⼆醇的⼯艺技术、反应机理、优缺点以及未来的发展趋势。
⼆、合成⽓合成⼄⼆醇的⼯艺技术合成⽓合成⼄⼆醇的主要⼯艺技术包括:甲醇脱⽔法、酯化加氢法和直接合成法。
1.甲醇脱⽔法:此⽅法⾸先将合成⽓转化为甲醇,然后通过加热使甲醇脱⽔得到⼄⼆醇。
此⽅法虽然技术成熟,但步骤多,能量消耗⼤。
2.酯化加氢法:该⽅法通过酯化反应将合成⽓转化为⼄⼆醇酯,再通过加氢反应将酯还原为⼄⼆醇。
这种⽅法需要使⽤催化剂,且反应条件较为温和。
3.直接合成法:此⽅法通过⼀步反应直接将合成⽓转化为⼄⼆醇,是最理想的⼯艺⽅法。
但⽬前此技术尚不成熟,还需要进⼀步研发。
三、反应机理合成⽓合成⼄⼆醇的反应机理主要涉及甲醇合成的反应和后续的脱⽔或加氢反应。
具体反应⽅程如下:CO+2H2→CH3OH(甲醇合成反应)CH3OH→EG+H2O(甲醇脱⽔反应)或CH3COOC2H5+H2→CH3CH2OH+CH3COOH(酯化反应)CH3CH2OH+CH3COOH→EG+H2O(酯还原反应)四、合成⽓合成⼄⼆醇的优缺点1.优点:从合成⽓出发合成⼄⼆醇可以降低对⽯油资源的依赖,同时也能在油价波动时保持⽣产的稳定性。
此外,使⽤合成⽓作为原料有助于减少碳排放,从⽽降低对环境的影响。
2.缺点:与传统的⽯油路线相⽐,合成⽓路线所需的设备投资较⼤,且⼯艺复杂,导致⽣产成本相对较⾼。
此外,⽬前直接合成法的技术尚不成熟,影响了该⼯艺的⼤规模应⽤。
五、未来发展趋势随着技术的不断进步和环保意识的增强,从合成⽓出发合成⼄⼆醇的⼯艺将得到更⼴泛的应⽤。
未来研究⽅向主要包括:提⾼催化剂活性,降低能耗,简化⼯艺流程以及发展直接合成法等。
乙二醇生产工艺介绍
位号:AP-4403A/B(塔顶回流)
主要组分:DMC(62%左右)+MeOH(28%左右),检测器FID
其余组分:DMO(0.48%)+MF(3.5%)+ML(4%),检测器FID
H2O(ppm):卡氏水分测定仪
HCHO(<1000ppm):比色。
25
三、DMO工艺流程和分析项目
3、碱处理罐(V-4405,V-4406) 取样点一个,在V-4406底部出口。 位号:AP-4405A/B 组要组分:H2O(68%)+MeOH(28%)左右,用TCD检测器,
18
三、DMO工艺流程和分析项目
2)MN再生塔底部液体:位号:AP-42A/B/C/D09。 底部液体用泵(P-42A/B/C/D02A/B/C)循环至中部,一部
分送入硝化还原反应器(V-42A/B/C/D04A/B/C/D/E/F)。 主要组成:H2O(>40%)+MeOH(>50%),检测器TCD,色谱柱:
5
我公司煤制乙二醇主要工艺流程
原煤
煤炭气化装置 H2,CO
H2
CO
DMO
气体净化装置
DMO装置
EG装置
亚硝酸甲酯(MN)
现有成熟技术 宇部兴产 联合开发技术
6
我公司煤制乙二醇主要工艺流程
1)在气化工段,原料煤经过汽化炉的气化,产生CO和H2等 气体;
2)在净化工段,将气化炉的气体净化,分别分离出合格的 CO和H2气;
反应器的气体出口总管上有一个取样点,共6个取样点,气 体进入MN再生塔。 分析位号:出口气体:AP-42A/B/C/D10 主要组分:MN(12-13%,不分析), 其他组分:DMC+MF+ML<1.1%,MeOH(>10%),FID检测器。 CO2(<10%)+N2O(1-2%);CO(>10-20%);NO(>5%), TCD检测器。
乙二醇的工艺流程
乙二醇的工艺流程乙二醇,又称为1,2-乙二醇,是一种重要的有机化合物,化学式为C2H6O2。
它是一种无色、无味、粘稠的液体,具有良好的溶解性和稳定性,广泛应用于化工、医药、食品等领域。
乙二醇的生产工艺流程主要包括合成气制乙二醇法、乙烯氧化法和乙烯水合法等多种方法。
本文将重点介绍乙二醇的工艺流程及其生产过程。
一、合成气制乙二醇法合成气制乙二醇法是目前乙二醇生产的主要工艺之一。
该方法是以合成气(一氧化碳和氢气的混合气体)为原料,通过催化剂的作用进行一系列的反应制得乙二醇。
其工艺流程主要包括气相合成乙醇、水合成乙醇和乙醇制乙二醇三个步骤。
1. 气相合成乙醇合成气与催化剂在高温高压条件下进行反应,生成乙醇。
这一步骤是乙二醇生产的关键环节,需要选择适合的催化剂和控制好反应条件,以提高乙醇的选择性和产率。
2. 水合成乙醇乙醇经过水合反应生成乙二醇。
水合反应是在一定温度和压力下进行的,需要控制好反应条件和催化剂的选择,以提高乙二醇的产率和纯度。
3. 乙醇制乙二醇乙醇经过一系列的精制步骤,如蒸馏、结晶、干燥等,最终得到纯度较高的乙二醇产品。
二、乙烯氧化法乙烯氧化法是另一种常用的乙二醇生产工艺。
该方法是以乙烯和氧气为原料,通过氧化反应制得环氧乙烷,再经水解得到乙二醇。
其工艺流程主要包括乙烯氧化、环氧乙烷水解和乙二醇精制三个步骤。
1. 乙烯氧化乙烯与氧气在催化剂的作用下进行氧化反应,生成环氧乙烷。
这一步骤需要选择适合的催化剂和控制好反应条件,以提高环氧乙烷的选择性和产率。
2. 环氧乙烷水解环氧乙烷经过水解反应生成乙二醇。
水解反应是在一定温度和压力下进行的,需要控制好反应条件和催化剂的选择,以提高乙二醇的产率和纯度。
3. 乙二醇精制乙二醇经过一系列的精制步骤,如蒸馏、结晶、干燥等,最终得到纯度较高的乙二醇产品。
三、乙烯水合法乙烯水合法是一种新兴的乙二醇生产工艺。
该方法是以乙烯和水为原料,通过水合反应制得乙二醇。
其工艺流程主要包括乙烯水合和乙二醇精制两个步骤。
合成气制乙二醇技术
中科远东合成气制乙二醇技术中科远东合成气制乙二醇技术以宁波金远东石化工程技术有限公司、中国成达工程有限公司、山东华鲁恒升化工股份有限公司、中国科学院宁波材料技术与工程研究所为联合体,全权授予宁波金远东石化工程技术有限公司进行商业化推广,可为您提供乙二醇工艺包、核心催化剂、工程设计、员工技能培训及开车服务。
一、技术概况(一)发展历程宁波金远东石化工程技术有限公司自2007年开始进行一氧化碳催化偶联合成草酸酯及草酸酯加氢制乙二醇的研究工作。
2011年宁波金远东石化工程技术有限公司与中科院宁波材料所共同组建工程技术研究中心,在中科院宁波材料所新建科学试验及研发基地,由项裕桥、尹宏峰等16位科研人员组成核心技术团队,其中博士7位,硕士9位。
中心主要从事合成气制乙二醇工艺的研究开发。
历经八年的持续研究,在催化剂的研究开发、反应工程及机理研究、工艺过程研究、完整物性数据库的建立、物系分离系统研究等方面开展了详尽而又完善的实验工作,形成了CO合成草酸酯、草酸酯加氢等多项核心关键技术,包括:完善的物性数据库;酯化-羰化稳态封闭自循环关键技术;亚硝酸甲酯、一氧化碳及一氧化氮回收循环利用关键技术;草酸酯合成反应器及其工艺;草酸酯合成、加氢催化剂制备关键技术。
先后完成10吨/年的合成草酸酯及草酸酯加氢的模试研究,300吨/年合成草酸二甲酯及草酸二甲酯加氢的中试工作,并完成了万吨级CO偶联合成草酸酯、草酸酯加氢的工艺软件包。
工程技术研究中心投入巨资购买了国内外最先进的测试、评价、试验等装置平台,针对合成气制乙二醇关键技术、草酸二甲酯合成;酯化再生、草酸二甲酯加氢、乙二醇精制等主要工序开展系统性的技术攻关。
2014年4月至2015年5月,宁波金远东石化工程技术有限公司和中科院宁波材料所对华鲁恒升原有5万吨/年乙二醇装置进行工艺和催化剂改造。
2015年6月至今,装置高负荷连续、稳定、安全运行,产品质量优等品率达95%以上,生产成本低位运行,在市场低迷的情况下取得不菲的效益。
绿色工艺乙二醇
摘要:乙二醇(MEG)是一种重要的有机化工原料,广泛应用于聚酯纤维、塑料、防冻液、精细化学品、纳米粒子制备等领域。
而近年来,随着聚对苯二甲酸乙二醇酯(PET)、聚对萘二甲酸乙二醇酯(PEN)、不饱和树脂行业的迅猛发展,MEG 需求量也与日俱增。
我国是一个“缺油少气富煤”大国,同时随着绿色化学工艺的兴起、可持续发展战略的要求,一条可持续发展的MEG合成路线具有重要的理论和现实意义。
关键词:乙二醇绿色化学可持续发展合成路线1、概括乙二醇(MEG)分子式为CH2OHCH2OH,分子中两个碳上各连一个羟基,具有沸点高、凝固点低和还原性弱等特点。
MEG 是一种重要的有机化工原料,广泛应用于聚酯纤维、塑料、防冻液、精细化学品、纳米粒子制备等领域。
目前,我国乙二醇的生产技术主要有以乙烯为原料经环氧乙烷(EO)水合生产MEG ,其技术路线最为成熟,也是应用最广的工业化生产路线。
然而随着石油资源的日益减少,其价格持续走高,该路线的成本不断增加。
因而,近年来从煤和天然气出发制备MEG 工艺异军突起,发展出碳酸乙烯酯、草酸二甲酯、甲醇甲醛等众多技术路线,其中,某些技术已经实现了一定规模的工业化生产,在一定程度上缓解了我国MEG 的供需矛盾。
而绿色化学的主要特点是原子经济性,也就是说,在获取新物质的转化过程中充分利用每个原料的原子,实现“零排放”。
因此,它既可以充分利用资源,又不产生污染。
传统化学向绿色化学的转变可以看作是化学从“粗放型”向“集约型”的转变。
目前,环氧乙烷直接水合法占据着世界乙二醇工业化生产的主导地位,即乙烯在银催化剂作用下氧化生成环氧乙烷(EO),环氧乙烷与水直接水合生成乙二醇的工艺。
直接水合制乙二醇工艺为了保证环氧乙烷的转化率和乙二醇的选择性,采用较高的水合比( 即水和环氧乙烷摩尔比 ),导致实际生产工艺流程长、设备庞大、能耗较高,直接影响了乙二醇的生产成本。
因此,结合中国贫油、少气和相对富煤的能源结构特点,开发一条以煤为原料,经济合理的乙二醇合成工艺路线,符合中国的可持续发展战略。
《合成气直接法制乙二醇反应基础研究》
《合成气直接法制乙二醇反应基础研究》篇一摘要:本文以合成气直接法制乙二醇反应为基础,探讨了该反应的基本原理、影响因素、反应动力学以及目前研究进展。
通过实验研究和理论分析,深入探讨了合成气直接法制备乙二醇的可行性及优化策略,为工业生产提供理论支持。
一、引言乙二醇作为一种重要的有机化工原料,广泛应用于化工、医药、纺织等领域。
传统的乙二醇生产方法多采用石油为原料,随着石油资源的日益紧缺,寻找替代的生物质资源或合成气资源成为研究热点。
合成气直接法制乙二醇作为一种新兴的工艺,具有原料来源广泛、环境友好等优势,成为当前研究的重点。
二、合成气直接法制乙二醇的基本原理合成气直接法制乙二醇的反应过程主要涉及一氧化碳(CO)和氢气(H2)在催化剂作用下,通过缩合、加氢等反应步骤,生成乙二醇。
该过程涉及到多个化学反应和反应中间体,反应机理复杂。
目前,研究者们通过实验和理论计算,对反应机理有了较为深入的认识。
三、影响合成气直接法制乙二醇的因素1. 原料气组成:原料气中CO和H2的比例对反应过程和产物分布有重要影响。
2. 反应温度和压力:反应温度和压力影响反应速率和产物选择性。
3. 催化剂:催化剂的种类和性质对反应过程起关键作用,不同催化剂对反应的促进效果不同。
4. 反应时间:反应时间影响产物的生成量和纯度。
四、反应动力学研究反应动力学研究是合成气直接法制乙二醇研究的重要组成部分。
通过动力学模型,可以描述反应过程中各组分的变化规律,预测反应结果。
研究者们通过实验数据和理论计算,建立了多种动力学模型,为优化反应条件提供了理论依据。
五、实验研究和优化策略通过实验研究,可以深入了解合成气直接法制备乙二醇的反应过程和影响因素。
研究者们采用不同的催化剂、反应条件和工艺流程,探究最佳的反应方案。
同时,通过优化催化剂、调整原料气组成、控制反应温度和压力等措施,可以提高乙二醇的产率和纯度。
六、目前研究进展与展望目前,合成气直接法制乙二醇的研究已取得一定进展,但仍存在诸多挑战。
合成气经草酸酯法制取乙二醇的技术进展
艺流程和技 术进展 ; 出加 强草 酸酯加 氢催化剂的研究并建立一定规模 的工业化 示范装置是合成 气经草酸 酯法制 指
乙二 醇 工 艺技 术进 入 大规 模 工 业 化 生 产 的 当务 之 急 。 关 键 词 :煤 制合 成 气 ; 乙二 醇 ; 酸 酯 催 化 加 氢技 术 苹
中图分类号 : Q23 1 T 2 .6
2 0+ R N C 2 O O一 ( O R) + N C O 2 2O C O和亚硝 酸酯 在催 化 剂 作 用 下进 行 羰 基 化 反
依靠 进 口。近 年来 我 国 乙二 醇 的供 需 状 况 见 表 1 。
由表 1可 以看 出 , 2 0 从 0 3年 开始 , 国 乙二 醇 的 自 我
等 。其 反应 原理 是 N O与 H 生 成 N 0 , 利用 醇类 再
与 N O 反应生成亚硝酸酯 , P , 在 d催 化 剂 作 用 下 ,
研 究。 中国科 学院福建物构 所经过约 3 0年 的不 懈努
力 , 用工业级 C N H , : 采 O, O, :O 和醇类 等作 为 原料 , 攻 克了相关难题 , 打通 了工艺 流程 。以此技 术建设 的全
份公 司位于 内蒙古通辽市 的 2 0万 ta 制 乙二 醇装 /煤 置 , 20 于 0 9年 l 2月 7日生 产 出合格 的乙二 醇产 品 ,
初步显示 了良好 的应 用前景 。
亚 硝 酸 酯 生 成 反 应 属 气 一液 反 应 , 需 催 化 无 剂, 反应 速度快 。研 究 最 多 的是 分 别 采 用 甲醇 或 乙
发 了一氧化碳 氧化偶联 生产草酸酯 工艺 , 并建 成 3万
吨级的工业化 装置 。2 0世 纪 8 0年代 , 国家 科技 部 和 化工部将其 列 入 “ 五 ” 点 攻 关项 目, 国 内几 家 八 重 由
合成气制乙二醇的偶联反应过程和机理分析
合成气制乙二醇的偶联反应过程和机理分析摘要:系统地论述了合成气制乙二醇工艺中的偶联反应过程和机理。
结果表明,在偶联催化剂确定的情况下,应选择适宜的反应条件以利于草酸二甲酯的生成。
关键词:合成气;乙二醇;偶联反应乙二醇(EG)是一种重要的基础有机化工原料,下游用途广泛,主要用于生产聚酯纤维(PET)和防冻剂,也可用于生产其他中间体及溶剂。
一、乙二醇的生产工艺乙二醇生产技术主要分为石化路线、生物质资源路线、煤化碳一路线。
1合成乙二醇方法概述。
(1)环氧乙烷直接水合法环氧乙烷直接水合法是目前国内外工业化生产乙二醇的主要方法,该工艺是在高温和加压条件下进行的。
通常是将环氧乙烷与水在管式反应器中以一定摩尔比混合,然后与离开水解反应器的乙二醇和水的混合物换热,预热到120~160℃后进入水解反应器,在190~200℃水解,停留时间约为30m in,操作压力约为2.23M Pa,过程为放热反应。
生成的乙二醇水溶液中乙二醇质量分数大约在10%左右,然后经过多效蒸发器脱水提浓和减压精馏分离得到乙二醇及副产物二乙二醇和三乙二醇等。
由于反应液中含有大量的水,需要设置多个蒸发器脱水,造成工艺流程长,设备多,能耗高,直接影响乙二醇的生产成本,这也是现行乙二醇工业生产方法的主要缺点。
基于石油路线的环氧乙烷直接水合法生产乙二醇的工艺路线存在如下问题。
乙烯是以石油为原料生产的,目前原油价格逐渐上涨,而且面临供应不足的趋势,经济性会逐渐降低。
乙烯氧化制环氧乙烷的选择性较低,理论选择性为85.7%,而且不可避免有大量副产物二氧化碳生成,工业上以乙烯计的乙二醇收率在70%左右。
环氧乙烷水合还会生成大量二乙二醇、三乙二醇等副产物,为了得到高收率的乙二醇,水合反应必需在较高的水比下进行,使生成物中乙二醇浓度很低,分离精制工艺复杂,能耗高。
(2)碳酸乙烯酯法碳酸乙烯酯法。
碳酸乙烯酯直接水合法是利用乙烯氧化生产环氧乙烷时排放的CO 2为原料,与EO在催化剂作用下生成碳酸乙烯酯,然后由碳酸乙烯酯水解生成乙二醇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CTEG界区
SEG
高安全性 100%
CO Pd
CH3ONO
易爆
DMO
NO
O2
19
CH3OH
“/50”
①以MN为氧化剂:提高安 全控制水平 ②在线监测系统:以MN三 元爆炸相图为基础开发 ③两个核心催化剂的开发: Pd及Cu催化剂,高性能, 长寿命,Pd流失极少。
高化学CTEG
CTEG技术简介
CTEG技术简介
发展中的合成气制乙二醇技术
福建 厦门
2014年4月23日
高化学CTEG
高化学集团简介
内容概述
一 高化学集团简介 中国乙二醇市场分析 高化学CTEG技术简介
二
三 四 五 六
1
CTEG装置及产品简介 提供完整的综合服务
小结
“/50”
高化学CTEG
高化学集团简介
高化学集团概况
分支机构 8家分公司
天津分公司 北京兴高化学 天津研发中心 东京研发中心 郑州事务所 重庆分公司 南通催化剂工厂 水合肼合资工厂 北京兴高化学上海分公司 东京总部 上海国际贸 易公司 上海研发中心 广州事务所
聚酯
防冻液
6% 除冰液和 表面涂料
3.5% 其他
世界乙二醇下游市场
8% 其他
中国乙二醇下游市场
“/50”
13
高化学CTEG
市场需求分析
中国聚酯生产情况
中国聚酯产量年增长率8-10%。 2012年,中国聚酯产量3145万吨,聚酯级乙二醇需求量1000万吨。预计2015 年中国聚酯产量将达到3963万吨 。 相应乙二醇需求量1300万吨。
“/50”
催化剂供应体系
高化学催化剂工厂
工 厂 正 门 中 央 控 制 室 铜 催 化 剂 车 间
钯 催 化 剂 车 间
加氢单元 催化剂
DMO单元 催化剂
· 2013年2月催化剂装置投产 · 高化学立志于催化剂的创新与改善,研发高性能的新产品 · 为业主持续提供高效的催化剂。
36
“/50”
高化学CTEG
“/50”
高化学CTEG
CTEG技术简介
CTEG技术工业化历程
O2 CO Syn-gas H2 DMO Synthesis MeOH DMO SEG
合成气制乙二醇反应
CTEG界区
Pd/Al2O3
2CO + ½O2+2CH3OH
①2NO + ½O2 + 2CH3OH ②2CO + 2CH3ONO SEG Synthesis 总反应 18 DMO + 4H2
二、中 国 乙 二 醇 市场分析
11
“/50”
高化学CTEG
市场需求分析
乙二醇下游市场
71.0%
聚酯 在世界范围内乙二醇还应用 于不饱和树脂、增塑剂,化 妆品和炸药,并用作溶剂。 94.0%
15%
85%的聚酯用于拉丝,15% 用于瓶片和薄膜等。 每生产1吨聚酯产品,需消耗 0.33吨乙二醇。
2.5% 防冻液
合成气制乙二醇典型消耗(按生产1吨乙二醇产品计)
项目
单位 指标
CO
Nm3 830
H2
Nm3 1615
O2
Nm3 210
HNO3 (68%)
kg 40
甲醇
kg 90
循环水
t 750
电
kWh 750
蒸汽 (4.0MPa)
T 0.8
蒸汽 (1.5MPa)
t 7.2
以煤制气为原料的路线
装置规模 原料 建设投资 占地 原料煤 燃料煤 28 30万吨/年 乙二醇 (8000小时) CO≈2.49亿立方;H2≈4.84亿立方 ≈12亿以内(乙二醇界区内) ≈140亩 ≈49万吨/年 ≈50万吨/年
以宇部技术为基础、东华科技为工程依托、高化学组织成立联合 体,引进消化吸收创新了合成气制乙二醇技术,并在中国推广。
宇部兴产 高化学
- CTEG项目签约方 -协调联合体各方 -催化剂生产 -技术服务
-DMO技术来源 -性能考核保证
-技术培训
CTEG 联合体
-CTEG技术工程化
-技术服务 -台州加氢中试基地 ( 1,500t/y)
“/50”
典型项目建设进度
工艺包编制 工 程设计 装 置建设 总项目进度 6个月 10-12个月 14-16个月 18-24个月
CO H2 O2 乙二醇合成单条线生产能力可达 万吨/年 1m3 15 1m3 1m3 1250g 89.3 1428.5 单条线精馏能力可达 30万吨
高化学CTEG
CTEG乙二醇产品
东华科技 联盛化学 24
联盛化学
-提供加氢培训
高化学CTEG
高化学集团
北京兴高化学技术有限公司
四、CTEG装 置 及 产 品
25
“/50”
高化学CTEG
CTEG技术装置及产品
羰化及加氢工业化装置
山口宇部万吨级羰化偶联 装置 1500吨加 氢中试装置 5万吨工业 化装置 运行时间 3000小时 2012.12. 27投料开 车 乙二醇产 品达到聚 酯级标准 2013.1.6 乙二醇产 品达到聚 酯级标准
浙江台州1500吨加氢中试 装置 DMO转化率 ≈99% DMO转化率 ≈99% EG选择性 ≈98%
“/50”
工业化装置
EG选择性 ≈98% 装置负荷 92%以上 稳定运行
新疆工业化装置一 次开车成功,连续 产出优等品,并且 持续高负荷运行。
高化学CTEG
26
CTEG技术装置及产品
典型技术经济性分析
2.5~ 3.5MPag ≈100%
H2
尾气
蒸汽
甲 醇 回 收 塔
脱 醇 塔 脱 水 塔
合格品 EG EG 产 品 塔 EG 回 收 塔 优等品 EG
94~99% 250~ 360gEG /L.Cata.h
15
循环水
高 分
罐
闪 蒸 罐
加氢粗品罐
重组分
22
高化学CTEG
CTEG技术简介
CTEG 技术联合体分工 CTEG技术联合体分工
32
“/50”
高化学CTEG
CTEG乙二醇产品
CTEG乙二醇产品应用
33
“/50”
高化学CTEG
北京兴高化学技术有限公司
CTEG技术转让业绩
序 号 1 2 装置规模 年产 30万吨 年产 10万吨 年产5万吨 年产 60万吨 年产 80万吨 地区 贵州
2
内蒙古
3 、6 5 4
3
新疆 山 西 (两家业 主) 内 蒙 古 (两家业 主) 新疆
海关进口数据
2009年 582万吨 2010年 663万吨 2011年 727万吨 2012年 796万吨
15
2013年进口量824万吨,对外70%依存度
高化学CTEG
高化学集团
北京兴高化学技术有限公司
三
CTEG技术介绍
16
“/50”
高化学CTEG
CTEG技术简介
CTEG技术工业化历程
研发背景: - 20世纪70年代石油价格飞涨 - 宇部在其化工装置开始研究H2/CO的有效利用方法 研发并确立了 DMO/MEG 实验室级别工艺 ~1981 1982 1983
• 醋酸乙酯 • 环己酮 • 丙烯酸等 中国→日本 日本国内 • 添加剂 • 维生素 • 保健食品 • 调味料
• 电解液
• 各类添加剂 • 薄膜产品 ・谨慎选择厂家 ・产品生产技术改良 ・品质管理的指导 ・对产品质量的检验 ・制定稳定生产的保障 机制 ・完备的销售网络
基础化 学品 食品添 加剂
锂电池
CTEG乙二醇产品应用
工业化装置生产的乙二醇已经大批 量发往下游用户,并用于聚酯生产 截止2013年12月底,共产44000 吨乙二醇,其中41000吨优等品已 发往下游客户进行聚酯应用,通过 实际生产可100%使用合成气法制 备的乙二醇与PTA聚酯,并高速纺 长丝。 通过研究及工业化运行,我们找到 了合成气制乙二醇影响紫外透光的 关键因素及应对对策
“/50”
4
5
浙江
1
6
年产20万吨
34
截止2013年12月 共计205万吨
高化学CTEG
高化学集团
北京兴高化学技术有限公司
五、提供完整的综合服务
35
“/50”
服务内容
提供前期项目咨询服务
提供先进成熟的工艺技术
提供催化剂生产,回收与再生服务 提供产品的销售服务与物流支持 提供项目融资服务 提供开车指导与培训
LED
• 高纯度气体 • 基板 药液 • 封装
LED材料 日本 NO.1供 应商 高化学CTEG
截止2012年商品品种472种, 国内外客户289家 6
“/50”
高化学集团简介
3、化学品委托生产
・医农药中间体 ・原料药 ・功能性高分子聚合物和单体 ・专用化学品 ・试剂 总计100种以上
• • • • • • 7
DMO + H2O
H2O + CH3ONO
关键的中间反应由宇部发明,降低了MN Synthesis反应条件
Pd/Al2O3 Cu
DMO + 2NO
SEG + 2CH3OH SEG + H2O 高化学CTEG
2CO + 4H2 + ½O2
“/50”
CTEG技术简介
CTEG技术介绍
O2 CO Syn-gas DMO Synthesis H2 MeOH DMO
14
“/50”
高化学CTEG
市场需求分析
乙二醇市场需求