新课标高二数学考试题(理科)
2019-2020年大连五校高二上册期末数学试卷(理科)(有答案)-(新课标人教版)
辽宁省大连五校高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∀>0,﹣ln>0,则¬p为()A.∀>0,﹣ln≤0 B.∀>0,﹣ln<0C.∃0>0,0﹣ln0>0 D.∃0>0,0﹣ln0≤02.(5分)设等差数列{a n}的前n项和为S n,已知2a1+a13=﹣9,则S9=()A.﹣27 B.27 C.﹣54 D.543.(5分)若a,b∈R,则“<”是“>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线方程为﹣2y=0,则该双曲线的离心率是()A. B.C.D.5.(5分)直三棱锥ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A. B.C.D.6.(5分)已知等比数列{a n}中,a2=2,则其前三项和S3的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,0)∪(1,+∞)C.[6,+∞)D.(﹣∞,﹣2]∪[6,+∞)7.(5分)已知变量,y满足约束条件,若目标函数=+2y的最小值为2,则m=()A.2 B.1 C.D.﹣28.(5分)60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则CD的长为()A.B.C. D.9.(5分)已知不等式y≤a2+2y2对任意∈[1,2],y∈[4,5]恒成立,则实数a的取值范围是()A.[﹣1,+∞)B.[﹣6,+∞)C.[﹣28,+∞)D.[﹣45,+∞)10.(5分)设椭圆与函数y=3的图象相交于A,B两点,点P为椭圆C上异于A,B的动点,若直线PA的斜率取值范围是[﹣3,﹣1],则直线PB的斜率取值范围是()A.[﹣6,﹣2]B.[2,6]C.D.11.(5分)设数列{a n}的前n项和S n,若+++…+=4n﹣4,且a n≥0,则S100等于()A.5048 B.5050 C.10098 D.1010012.(5分)已知双曲线Γ:﹣=1(a>0,b>0)的上焦点F(0,c)(c>0),M是双曲线下支上的一点,线段MF与圆2+y2﹣y+=0相切于点D,且|MF|=3|DF|,则双曲线Γ的渐近线方程为()A.4±y=0 B.±4y=0 C.2±y=0 D.±2y=0二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知命题p:2+2﹣3>0,命题q:>a,若¬p是¬q的充分不必要条件,则实数a的取值范围是.14.(5分)已知正项等比数列{a n}的公比为2,若,则的最小值等于.15.(5分)已知M是抛物线2=4y上一点,F为其焦点,点A在圆C:(+1)2+(y﹣6)2=1上,则|MA|+|MF|的最小值是.16.(5分)如图,在直三棱柱A1B1C1﹣ABC中,,已知G与E分别是棱A1B1和CC1的中点,D与F分别是线段AC与AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}是等比数列,首项a1=1,公比q>0,其前n项和为S n,且S1+a1,S3+a3,S2+a2成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足,求数列{b n}的前n项和T n.18.(12分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(1)证明:AC⊥D1E;(2)求DE与平面AD1E所成角的正弦值.19.(12分)已知数列{{a n}满足,.(1)求证:数列是等比数列;(2)若数列{b n}是单调递增数列,求实数λ的取值范围.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且平面PAD⊥平面ABCD,E为PD中点,AD=2.(Ⅰ)求证:平面AEC⊥平面PCD.(Ⅱ)若二面角A﹣PC﹣E的平面角大小θ满足cosθ=,求四棱锥P﹣ABCD的体积.21.(12分)已知过抛物线E:y2=2p(p>0)的焦点F,斜率为的直线交抛物线于A(1,y1),B(2,y2)(1<2)两点,且|AB|=6.(1)求该抛物线E的方程;(2)过点F任意作互相垂直的两条直线l1,l2,分别交曲线E于点C,D和M,N.设线段CD,MN的中点分别为P,Q,求证:直线PQ恒过一个定点.22.(12分)如图,在平面直角坐标系oy中,已知圆C:(+1)2+y2=16,点A(1,0),点B (a,0)(|a|>3),以B为圆心,|BA|的半径作圆,交圆C于点P,且的∠PBA的平分线次线段CP于点Q.(I)当a变化时,点Q始终在某圆锥曲线τ是运动,求曲线τ的方程;(II)已知直线l过点C,且与曲线τ交于M、N两点,记△OCM面积为S1,△OCN面积为S2,求的取值范围.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∀>0,﹣ln>0,则¬p为()A.∀>0,﹣ln≤0 B.∀>0,﹣ln<0C.∃0>0,0﹣ln0>0 D.∃0>0,0﹣ln0≤0【解答】解:因为全称命题的否定是特称命题,所以命题“∀>0,﹣ln>0”的否定是∃>0,﹣ln≤0.故选:D.2.(5分)设等差数列{a n}的前n项和为S n,已知2a1+a13=﹣9,则S9=()A.﹣27 B.27 C.﹣54 D.54【解答】解:∵等差数列{a n}的前n项和为S n,2a1+a13=﹣9,∴3a1+12d=﹣9,∴a1+4d=﹣3,∴S9==9(a1+4d)=﹣27.故选:A.3.(5分)若a,b∈R,则“<”是“>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∀a,b∈R,a2+ab+b2=+b2≥0,当且仅当a=b=0时取等号.∴>0⇔(a﹣b)ab>0,⇔“<”.∴“<”是“>0”的充要条件.故选:C.4.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线方程为﹣2y=0,则该双曲线的离心率是()A. B.C.D.【解答】解:∵双曲线﹣=1(a>0,b>0)的一条渐近线方程为﹣2y=0,∴a=2b,∴c=b,∴双曲线的离心率是e==.故选:D.5.(5分)直三棱锥ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A. B.C.D.【解答】解:根据已知条件,分别以C1A1,C1B1,C1C所在直线为,y,轴,建立如图所示空间直角坐标系,设CA=2,则:A(2,0,2),N(1,0,0),B(0,2,2),A1(2,0,0),B1(0,2,0),M(1,1,0);∴;∴;∴BM与AN所成角的余弦值为.故选:D.6.(5分)已知等比数列{a n}中,a2=2,则其前三项和S3的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,0)∪(1,+∞)C.[6,+∞)D.(﹣∞,﹣2]∪[6,+∞)【解答】解:∵等比数列{a n}中,a2=2,∴其前三项和S3=,当q>0时,S3=≥2+2=6;当q<0时,S3=≤2﹣2=2﹣4=﹣2.∴其前三项和S3的取值范围是(﹣∞,﹣2]∪[6,+∞).故选:D.7.(5分)已知变量,y满足约束条件,若目标函数=+2y的最小值为2,则m=()A.2 B.1 C.D.﹣2【解答】解:由变量,y满足约束条件,作出可行域如图,化目标函数=+2y为y=﹣+,由图可知,当直线y=﹣+过A时,直线在y轴上的截距最小,有最小值为2.由,解得A(m,m),A代入=+2y,可得m+2m=2,解得m=.故选:C.8.(5分)60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则CD的长为()A.B.C. D.【解答】解:∵60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,∴=,∵AB=4,AC=6,BD=8,∴2=()2=+2=36+16+64+2×6×8×cos120°=68.∴CD的长为||=2.故选:B.9.(5分)已知不等式y≤a2+2y2对任意∈[1,2],y∈[4,5]恒成立,则实数a的取值范围是()A.[﹣1,+∞)B.[﹣6,+∞)C.[﹣28,+∞)D.[﹣45,+∞)【解答】解:由题意可知:不等式y≤a2+2y2对于∈[1,2],y∈[4,5]恒成立,即:a≥﹣2()2,对于∈[1,2],y∈[4,5]恒成立,令t=,则2≤t≤5,∴a≥t﹣2t2在[2,5]上恒成立,∵y=﹣2t2+t的对称轴为t=,且开口向下,∴y=﹣2t2+t在[2,5]单调递减,∴y ma=﹣2×22+2=﹣6,∴a≥﹣6,故选B.10.(5分)设椭圆与函数y=3的图象相交于A,B两点,点P为椭圆C上异于A,B的动点,若直线PA的斜率取值范围是[﹣3,﹣1],则直线PB的斜率取值范围是()A.[﹣6,﹣2]B.[2,6]C.D.【解答】解:∵椭圆C:与函数y=3的图象相交于A,B两点,∴A,B两点关于原点对称,设A(1,y1),(﹣1,﹣y1),则,即.设P(0,y0),则,可得:.∴.∵直线PA的斜率1的取值范围[﹣3,﹣1],∴﹣3≤≤﹣1,得,∴直线PB的斜率取值范围是[].故选:D.11.(5分)设数列{a n}的前n项和S n,若+++…+=4n﹣4,且a n≥0,则S100等于()A.5048 B.5050 C.10098 D.10100【解答】解:当n=1时,=0,则a1=0.当n≥2时,+++…++=4n﹣4,①+++…+=4n﹣8,②+++…++=4n,③由①﹣②得到:=4,∵a n≥0,∴a n=2n,由③﹣①得到:=4,=2n+2,∴a n+1﹣a n=2,∴a n+1∴数列{a n}是等差数列,公差是2,综上所述,a n=,∴S100=S1+S2+S3++…+S100=0+×(100﹣1)=10098.故选:C.12.(5分)已知双曲线Γ:﹣=1(a>0,b>0)的上焦点F(0,c)(c>0),M是双曲线下支上的一点,线段MF与圆2+y2﹣y+=0相切于点D,且|MF|=3|DF|,则双曲线Γ的渐近线方程为()A.4±y=0 B.±4y=0 C.2±y=0 D.±2y=0【解答】解:由2+y2﹣y+=0,得2+(y﹣)2=,则该圆的圆心坐标为(0,),半径为.设切点D(0,y0)(y0>0),则由2+y2﹣y+=0与(0,y0﹣c)•(0,y0﹣)=0,解得:0=,y0=.∴D(,),由|MF|=3|DF|,得=3,得M(,﹣),代入双曲线Γ:﹣=1(a>0,b>0)整理得b=2a,∴双曲线Г的渐近线方程为y=±.故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知命题p:2+2﹣3>0,命题q:>a,若¬p是¬q的充分不必要条件,则实数a的取值范围是[1,+∞).【解答】解:由2+2﹣3>0得>1或<﹣3,若¬p是¬q的充分不必要条件,则q是p的充分不必要条件,∵q:>a,∴a≥1,即实数a的取值范围是[1,+∞),故答案为:[1,+∞).14.(5分)已知正项等比数列{a n}的公比为2,若,则的最小值等于.【解答】解:正项等比数列{a n}的公比为2,若,可得(a1•2m﹣1)(a1•2n﹣1)=4(2a1)2,即有m﹣1+n﹣1=4,则m+n=6,可得=(m+n)()=(2+++)≥(+2)=×=.当且仅当m=2n=4,都不是取得等号,则的最小值为.故答案为:.15.(5分)已知M是抛物线2=4y上一点,F为其焦点,点A在圆C:(+1)2+(y﹣6)2=1上,则|MA|+|MF|的最小值是6.【解答】解:抛物线2=4y的焦点F(0,1),准线方程为y=﹣1,如图所示:利用抛物线的定义知:|MP|=|MF|,当A,M,P三点共线时,|MA|+|MF|的值最小.即CM⊥轴,此时|MA|+|MF|=|AP|=|CP|﹣1=7﹣1=6,故答案为:6.16.(5分)如图,在直三棱柱A1B1C1﹣ABC中,,已知G与E分别是棱A1B1和CC1的中点,D与F分别是线段AC与AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围是.【解答】解:以A为原点,AB为轴,AC为y轴,AA1为轴,建立如图所示的空间直角坐标系,则A(0,0,0),E(0,1,),G(,0,1),F(,0,0),D(0,y,0),=(﹣,y,﹣1),=(,﹣1,﹣),∵GD⊥EF,∴=﹣=0,即+2y﹣1=0∴DF===,∵0<<1,0<y<1,∴0<y<,当y=时,线段DF长度的最小值=,当y=0时,线段DF长度的最大值是1,而不包括端点,故y=0不能取1.∴线段DF的长度的取值范围是[,1).故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}是等比数列,首项a1=1,公比q>0,其前n项和为S n,且S1+a1,S3+a3,S2+a2成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足,求数列{b n}的前n项和T n.【解答】解:(1)因为S1+a1,S3+a3,S2+a2成等差数列,所以2(S3+a3)=(S1+a1)+(S2+a2),所以(S3﹣S1)+(S3﹣S2)+2a3=a1+a2,所以4a3=a1,因为数列{a n}是等比数列,所以,又q>0,所以,所以数列{a n}的通项公式.(2)由(1)知,,,所以,=20+21+22+…+2n﹣1﹣n•2n,=.故.18.(12分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(1)证明:AC⊥D1E;(2)求DE与平面AD1E所成角的正弦值.【解答】(1)证明:连接BD,∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,又AC⊂平面ABCD,∴D1D⊥AC,在长方形ABCD中,AB=BC,∴BD⊥AC,又BD∩D1D=D,∴AC⊥平面BB1D1D,而D1E⊂平面BB1D1D,∴AC⊥D1E;(2)如图,以D为坐标原点,以DA,DC,DD1所在的直线为,y,轴建立空间直角坐标系,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),,设平面AD 1E的法向量为,则,令=1,则,∴,所以DE与平面AD1E所成角的正弦值为.19.(12分)已知数列{{a n}满足,.(1)求证:数列是等比数列;(2)若数列{b n}是单调递增数列,求实数λ的取值范围.【解答】解:(1)因为数列{a n}满足,所以,即,又a1=1,所以,所以数列是以2为首项,公比为2的等比数列.(2)由(1)可得,所以,因为b1=﹣λ符合,所以.>b n,即(n﹣λ)•2n>(n﹣1﹣λ)•2n﹣1,因为数列{b n}是单调递增数列,所以b n+1化为λ<n+1,所以λ<2.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且平面PAD⊥平面ABCD,E为PD中点,AD=2.(Ⅰ)求证:平面AEC⊥平面PCD.(Ⅱ)若二面角A﹣PC﹣E的平面角大小θ满足cosθ=,求四棱锥P﹣ABCD的体积.【解答】(Ⅰ)证明:取AD中点为O,BC中点为F,由侧面PAD为正三角形,且平面PAD⊥平面ABCD,得PO⊥平面ABCD,故FO⊥PO,又FO⊥AD,则FO⊥平面PAD,∴FO⊥AE,又CD∥FO,则CD⊥AE,又E是PD中点,则AE⊥PD,由线面垂直的判定定理知AE⊥平面PCD,又AE⊂平面AEC,故平面AEC⊥平面PCD;(Ⅱ)解:如图所示,建立空间直角坐标系O﹣y,令AB=a,则P(0,0,),A(1,0,0),C(﹣1,a,0).由(Ⅰ)知=()为平面PCE的法向量,令=(1,y,)为平面PAC的法向量,由于=(1,0,﹣),=(2,﹣a,0)均与垂直,∴,解得,则,由cos θ=||=,解得a=.故四棱锥P﹣ABCD的体积V=S ABCD•PO=•2••=2.21.(12分)已知过抛物线E:y2=2p(p>0)的焦点F,斜率为的直线交抛物线于A(1,y1),B(2,y2)(1<2)两点,且|AB|=6.(1)求该抛物线E的方程;(2)过点F任意作互相垂直的两条直线l1,l2,分别交曲线E于点C,D和M,N.设线段CD,MN的中点分别为P,Q,求证:直线PQ恒过一个定点.【解答】解:(1)抛物线的焦点,∴直线AB的方程为:联立方程组,消元得:,∴∴,解得p=±2.∵p>0,∴抛物线E的方程为:y2=4.(2)证明:设C,D两点坐标分别为(1,y1),(2,y2),则点P的坐标为.由题意可设直线l1的方程为y=(﹣1)(≠0).由,得22﹣(22+4)+2=0.△=(22+4)﹣44=162+16>0因为直线l1与曲线E于C,D两点,所以.所以点P的坐标为.由题知,直线l2的斜率为,同理可得点Q的坐标为(1+22,﹣2).当≠±1时,有,此时直线PQ的斜率.所以,直线PQ的方程为,整理得y2+(﹣3)﹣y=0.于是,直线PQ恒过定点(3,0);当=±1时,直线PQ的方程为=3,也过点(3,0).综上所述,直线PQ恒过定点(3,0).22.(12分)如图,在平面直角坐标系oy中,已知圆C:(+1)2+y2=16,点A(1,0),点B (a,0)(|a|>3),以B为圆心,|BA|的半径作圆,交圆C于点P,且的∠PBA的平分线次线段CP于点Q.(I)当a变化时,点Q始终在某圆锥曲线τ是运动,求曲线τ的方程;(II)已知直线l过点C,且与曲线τ交于M、N两点,记△OCM面积为S1,△OCN面积为S2,求的取值范围.【解答】解:(I)如图,∵BA=BP,BQ=BQ,∠PBQ=∠ABQ,∴△QAB≌△QPB,∴QA=QP,∵CP=CQ+QP=QC+QA,QC+QA=4,由椭圆的定义可知,Q点的轨迹是以C,A为焦点,2a=4的椭圆,故点Q的轨迹方程为(II)由题可知,设直线l:=my﹣1,不妨设M(1,y1),N(2,y2)∵,,∵,∴(3m2+4)y2﹣6my﹣9=0,△=144m2+144>0,∴,∵,即∈(﹣,0],∈(﹣3,﹣),∴=﹣∈(,3).。
高二数学(理科)期末试卷
高二数学(理科)期末试卷
本文档为高二数学(理科)期末试卷的题目和答案。
试卷题目包
括选择题、填空题、计算题和证明题。
试卷内容涵盖了高二数学课
程的各个知识点。
选择题部分包括了多项选择题和单项选择题,考察了学生对数
学概念和定理的理解和应用能力。
填空题部分要求学生填写正确的数值或表达式,考察了学生对
问题的分析和解决能力。
计算题部分要求学生进行具体的计算操作,涉及到数值运算、
代数运算、几何运算等,考察了学生对运算方法和计算规则的掌握。
证明题部分要求学生运用已学的数学理论和方法进行推导和证明,考察了学生的逻辑思维能力和数学推理能力。
试卷内容难度适中,旨在检测学生对高二数学知识的掌握程度
和应用能力。
根据试卷得分,可以评估学生的数学水平,并作出针
对性的教学调整。
希望本次期末试卷能够促进学生对数学学科的兴趣和研究动力,帮助他们提升数学能力和解决问题的能力。
对于学生来说,认真复课堂内容和做好试卷的备考是取得好成
绩的关键。
希望学生们抓住这次机会,全力以赴,取得优秀的成绩。
祝愿每位学生都能在高二数学(理科)期末试卷中取得好成绩!。
新课标高二数学考试题(理科)
高二数学轮考试题(理科)★请将答案填写在答题卡的相应位置上★一、选择题:本次题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. “直线l 与平面内无数条直线都垂直”是“直线l 与平面垂直”的( )条件 A .充要 B .充分非必要 C .必要非充分 D .既非充分又非必要2. 在下列结论中,正确的结论为( )①“p 且q ”为真是“p 或q ”为真的充分不必要条件 ②“p 且q ”为假是“p 或q ”为真的充分不必要条件 ③“p 或q ”为真是“非p ”为假的必要不充分条件 ④“非p ”为真是“p 且q ”为假的必要不充分条件A ①②B ①③C ②④D ③④ 3. 三棱锥A-BCD 中,AB=AC=AD=2, ∠BAD=90,∠BAC=60, ∠CAD=60,则→→⋅CD AB = ( )A. -2B. 2C. 23-3 4. 已知=(1,2,3), =(3,0,-1),=⎪⎭⎫ ⎝⎛--53,1,51给出下列等式:①∣++∣=∣--∣ ②c b a ⋅+)( =)(c b a +⋅ ③2)(++=222++④c b a ⋅⋅)( =)(c b a ⋅⋅其中正确的个数是 A 、1个 B 、2个 C 、3个 D 、4个5. 椭圆22143x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 46,. 抛物线的顶点和椭圆221259x y +=的中心重合,抛物线的焦点和椭圆221259x y +=的右焦点重合,则抛物线的方程为 ( )(A)216y x = (B) 28y x = (C)212y x = (D)26y x = 7. 已知圆锥曲线2244mx y m +=的离心率e 为方程22520x x -+=的根,则满足条件的圆锥曲线的条数为 ( ) A .1 B .2 C .3 D .48. 椭圆22143x y +=上有n 个不同的点:P1 ,P2 ,…,Pn , 椭圆的右焦点为F ,数列{|PnF|}是公差大于1100的等差数列, 则n 的最大值是( )A .198B .199C .200D .2019. 空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC >的值是A 21B 22C -21D 010. 连接双曲线12222=-b y a x 与12222=-ax b y 的四个顶点构成的四边形的面积为S 1,连接它们的的四个焦点构成的四边形的面积为S 2,则S 1:S 2的最大值是 ( )A .2B . 1C .21D .41 二、填空题:本大题共5小题,每小题5分,共25分. 11. 已知,是空间二向量,若则,7||,2||,3||=-==的夹角为12. 在△ABC 中,BC 边长为24,AC 、AB 边上的中线长之和等于39.若以BC 边中点为原点,BC 边所在直线为x 轴建立直角坐标系,则△ABC 的重心G 的轨迹方程为: .BANMA BDCO13.若异面直线,a b 所成角为060,AB是公垂线(,,b B a A ∈∈且b AB a AB ⊥⊥,),E,F 分别是异面直线,a b 上到A,B 距离为2和1的两点,当3EF =时,线段AB 的长为 .14.“神舟七号”飞船的运行轨道是以地球球心为一个焦点的椭圆。
自贡蜀光中学高中二年级下理科数学期中考试理科数学_人教新课标
x 1 ,令
f ( x ) 2ln x x , f (x) 2 1 , 当 x (0,2) 时 , f (x) 0 , f (x) 为增函数 , 当 x (2, ) 时 ,
x
f (x) 0, f (x) 为减函数 ,所以 f (x) 的极大值为 f (2) 2ln 2 2 .
15 . 过抛物线 y 2=6 x 的焦点作直线 , 交抛物线于 A( x1 , y1), B(x2, y2) 两点 , 如果 x1+ x2=8 ,那么
C
y 2 4 x ⋯⋯⋯⋯⋯⋯⋯⋯5⋯分
所求的抛物线 的方程为
(2 ) 假设存在符合题意的直线 l , 其方程为 y
由
y2 4x , 消 x 得 y2 2 y 2t 0
y 2x t
2x t
,
l
C
因为直线 与抛物线 有公共点 , 所以得
4 8t 0 ,解得 t
1 2 .⋯⋯⋯⋯⋯⋯⋯⋯9⋯分
OA l
d
, 再利用积分知识可得正弦曲线 y=sinx 与 x 轴围成的
区域的面积 , 从而可求概率 . 解: 构成试验的全部区域为圆内的区域 , 面积为 π3, 正弦曲线 y=-sinx 与 x
π
轴围成的区域记为 M , 根据图形的对称性得 :面积为 S=2 0 sin xdx =-2cosx| 0 =4 , 由几何概率的计算公
在点( , 处的切线方程是
A. a 1,b 2 B.a 1,b 2 C.a 1,b -2 D.a 1,b 2
9. 设 f (x)
1 x3 1 x2 2ax, 若 f (x) 在 ( 2,
32
3
) 上存在单调递增区间
, 则实数 a 的取值范围为
高二理科数学选修2-2测试题及答案
高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I卷选择题(共12小题,每小题5分,共60分)1.下列复数中,与5-2i共轭的是()。
A。
5+2i B。
5-2i C。
-5+2i D。
-5-2i2.已知f(x)=3x·sinx,则f'(1)=()。
A。
1/3+cos1 B。
11/3sin1+cos1 C。
3sin1-cos1 D。
sin1+cos13.设a∈R,函数f(x)=ex-ae-x的导函数为f'(x),且f'(x)是奇函数,则a为()。
A。
0 B。
1 C。
2 D。
-14.定积分∫1x(2x-e)dx的值为()。
A。
2-e B。
-e C。
e D。
2+e5.利用数学归纳法证明不等式1+1/2+1/3+…+1/(2n-1)<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了()项。
A。
1项 B。
k项 C。
2k-1项 D。
2k项6.由直线y=x-4,曲线y=2x以及x轴所围成的图形面积为()。
A。
40/3 B。
13 C。
25/2 D。
157.函数f(x)=x^3-ax^2-bx+a^2在x=1处有极值10,则点(a,b)为()。
A。
(3,-3) B。
(-4,11) C。
(3,-3)或(-4,11) D。
不存在8.函数f(x)=x^2-2lnx的单调减区间是()。
A。
(0,1] B。
[1,+∞) C。
(-∞,-1]∪(0,1] D。
[-1,0)∪(0,1]9.已知f(x+1)=2f(x)/(f(x)+2),f(1)=1(x∈N*),猜想f(x)的表达式是()。
A。
f(x)=4/(2x+2) B。
f(x)=2^(12/(x+1)) C。
f(x)=(x+1)/2 D。
f(x)=(2x+1)/210.若f(x)=-1/(2x^2+bln(x+2))在(-1,+∞)上是减函数,则b的取值范围是()。
A。
[-1,+∞) B。
(-1,+∞) C。
河南省郑州市高二下学期期末统考理科数学试题汇编(新课标)
B.假设 a, b, c 都大于 1 D.假设 a, b, c 都不小于 1
1 x
1 x2
B. (log 2 x) '
3
log 2 e x
2
C. (3 ) ' 3 log 3 e
x 2
2
D. (sin 2 x) ' 6sin 2 x
5.曲线 y e 在点 (4, e ) 处的切线与坐标轴所围成的三角形的面积为 A.
2
m R ,求实数 m 的值. z
18. (本小题满分 12 分) 某班主任对全班 50 名学生的学习积极性和对待班级工作的态度进行了调查,统计数据 如下表所示. 学习积极性高 学习积极性一般 积极参加班级工作 18 6 不太主动参加班级工作 7 19
(I)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多 少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少? (II)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是 否有关?并说明理由.
1 x 2 , 1 x 0 11.函数 f ( x) 与 x 轴围成的封闭图形的面积为 0 x cos x, 2
A.
4
1
B.
5 4
C.
5 4
D. 1
12. 已知点 P 、Q 分别为函数 y ln( x 1) 1 和 y e 当 | PQ | 最小时,直线 OQ 交函数 y e
B.第二象限
2
A.第一象限
C.第三象限
D.第四象限
2.如果随机变量 ~ N ( 2, ) ,且 P ( 3 1) 0.4 ,则 P ( 1) A.0.7 B.0.6 C.0.3 D.0.2
高二理科数学选修2-2测试题及答案(最新整理)
1
B. sin1+cos1
3
1
C. sin1-cos1
3
D.sin1+cos1
3、设 a R ,函数 f x ex aex 的导函数为 f ' x ,且 f ' x 是奇函数,则 a 为( )
A.0
B.1
C.2
D.-1
4、定积分
1
(2
x
e
x
)dx
的值为(
)
0
A. 2 e
B. e
C. e
2
3
3 27
为极大值,而 f (2) 2 c ,则 f (2) 2 c 为最大值,要使 f (x) c2 , x [1, 2]
恒成立,则只需要 c2 f (2) 2 c ,得 c 1,或c 2 …………12 分
21 解:(1) f (x) 6x2 6x, f (2) 12, f (2) 7, ………………………2 分
x
h x hx
0, x2
—
A
x2
0 极小值
x2,
+
A
1
依题意,
1 8a2 1,即 a2 3 ,
4
∵ a 0 ,∴ a 3 .
(2)解:对任意的 x1, x2 1,e 都有 f x1 ≥ g x2 成立等价于对任意的 x1, x2 1,e 都
有 f xmin ≥ g xmax . 当 x [1, e ]时, g x 1 1 0 .
)
A.f(0)+f(2) 2 f(1)
B.f(0)+f(2) 2 f(1)
C.f(0)+f(2)> 2 f(1)
D.f(0)+f(2) 2 f(12)
0
高二数学上学期段考试题 理
高二数学上学期段考试题理一、单项选择题〔本大题一一共12小题.每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.答案填在答卷纸上〕。
1.假如,那么以下各式一定成立的是〔〕A. B. C. D.2.在等差数列中,假设,那么〔〕A. B.0 C.63.集合,,那么〔〕A. B. C. D.4.等比数列的前项和为,,,那么〔〕A.31 B.15 C.8 D.75.不等式的解集是〔〕A.B. C.D.6.在数列中,,,,那么〔〕B.77.数列的前项和,那么等于〔〕C.178.在公差不为0的等差数列中,满足,那么〔〕B.0C.19.在中,角A,B,C的对边分别为a,b,c,,那么〔〕B.210.数列满足=,那么数列的前项和为〔〕A.B.C.D.11.在中,,,角的角平分线,那么〔〕A.B.C.D.12.假设存在,使不等式成立,那么实数取值范围是〔〕A. B. C. D.二、填空题〔本大题一一共4小题,每一小题5分,一共20分〕。
13.在△ABC中,a,b,c分别是角A,B,C的对边,假设a=3,c=7,C=60°,那么边长b=_________.14.的内角,,所对的边分别为,,,且,那么______.15.在等比数列中,,,那么公比________.16.数列的首项,,,记,假设,那么正整数的最大值为__________.三、解答题(解容许写出文字说明,证明过程或者演算步骤。
一共70分)17.〔本小题满分是10分〕求以下不等式的解集:(1)-3x2-2x+8≥0;(2)0<x2-x-2≤4;18.〔本小题满分是12分〕等差数列的前n项和为,,.〔1〕求的通项公式;〔2〕求,并求当取何值时有最小值.19.〔本小题满分是12分〕如图,在中,,是边上的一点,,,.〔1〕求的面积;〔2〕求边的长.20.〔本小题满分是12分〕数列,,,.〔1〕求证:是等比数列;〔2〕设〔〕,求数列的前项和.21.〔本小题满分是12分〕在中,内角,,所对的边分别是,,,.〔1〕求角的大小;〔2〕设,的面积为,求的值.22.〔本小题满分是12分〕等比数列的首项,前项和满足.〔1〕务实数的值及通项公式;〔2〕设,求数列的前项和,并证明:.参考答案一.CADBDCACBBDA13.8 14.2 15.2q 16.=±17.(1).(2) .(1)原不等式可化为3x2+2x-8≤0,即(3x-4)(x+2)≤0.解得-2≤x≤,所以原不等式的解集为.(2)原不等式等价于⇔⇔⇔借助于数轴,如下图,原不等式的解集为.18.〔1〕a n=2n–9;〔2〕最小值为-16【详解】〔1〕设{a n}的公差为d,由题意得得a1=–7,d=2,所以{a n}的通项公式为a n=2n–9;〔2〕由〔1〕得,所以当n=4时,S n获得最小值,最小值为–16.19.〔1〕;〔2〕详解:〔1〕在中,由余弦定理得,∵为三角形的内角,,,.〔2〕在中,,由正弦定理得:∴.20.〔1〕见解析〔2〕【详解】〔1〕依题意,,所以,是首项为2、公比为2的等比数列.〔2〕由〔1〕得:,,数列的前项和为.21.〔1〕〔2〕【详解】〔1〕由正弦定理可得:,即〔2〕设的面积为,那么由得:,解得:由余弦定理得:22.(1), ;(2)见解析.【详解】〔1〕当时,,得,又由及,得因为等比数列,故有,解得,由,所以,故,故数列是首项为,公比为的等比数列,所以.〔2〕①②①-②得:所以,又,故令,那么,故单调递减,又,所以恒成立,所以励志赠言经典语录精选句;挥动**,放飞梦想。
四川省成都市2022-2023学年高二上学期1月期末考试理科数学试题及答案
高二年级理科数学试题考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。
2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。
3.考试结束后由监考老师将答题卡收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.过点(0,2)-,且与已知直线0x y +=垂直的直线方程为 A .20x y +-= B .20x y --= C .20x y ++=D .20x y -+=2.若一个圆的标准方程为221)4x y +(-=,则此圆的圆心与半径分别是 A .1,0)4(-; B .1,0)2(; C .0,1)4(-;D .0,1)2(;3.将某选手的得分去掉1个最高分,去掉1个最低分,剩余分数的平均分为91,现场作的分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则x = A .2 B .3 C .4D .54.某校为了了解高二学生的身高情况,打算在高二年级12个班中抽取3个班,再按每个班男女生比例抽取样本,正确的抽样方法是 A .简单随机抽样 B .先用分层抽样,再用随机数表法 C .分层抽样D .先用抽签法,再用分层抽样 5.若x ∈R ,则“44x -<<”是“22x x <”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知命题*1:2p x x x∀∈+R ,…,则p ⌝为 A .*00012x x x ∃∈+R ,… B .*00012x x x ∃∈+<R , C .*00012x x x ∃∉+<R ,D .12x x x∀∈+<R , 7.下列命题正确的是A .若0a b <<,则11a b<B .若ac bc >,则a b >C .若a b >,c d >,则a c b d ->-D .若22ac bc >,则a b >8.已知双曲线的上、下焦点分别为120,5)0,5)F F ((-,,P 是双曲线上一点且满足126||PF ||PF ||-=,则双曲线的标准方程为A .221169x y -=B .221916x y -=C .221169y x -=D .221916y x -=9.已知O e 的圆心是坐标原点O 0y --=截得的弦长为6,则O e 的方程为A .224x y +=B .228x y +=C .2212x y +=D .22216x y +=10.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a b ,分别为39,27,则输出的a = A .1 B .3 C .5D .711.若两个正实数x y ,满足311x y+=,则3x y +的最小值为A .6B .9C .12D .1512.直线l 过抛物线220)y px p =(>的焦点F ,且交抛物线于P ,Q 两点,由P ,Q 分别向准线引垂线PR ,QS ,垂足分别为R ,S ,如果2|4|PF |QF |==,,M 为RS 的中点,则|MF |=A .BC .D .2二、填空题:本题共4小题,每小题5分,共20分。
完整版高二数学期末试卷理科及含
高二数学期末考试卷〔理科〕一、选择题〔本大题共 11 小题,每题 3 分,共 33 分〕r 1、与向量 a (1, 3, 2)平行的一个向量的坐标是〔 〕A .〔 1 3,1,1〕 B .〔-1,-3,2〕C .〔- 1 2 , 3 2,-1〕 D .〔 2 ,- 3,-2 2 〕2、设命题 p :方程 2 3 1 0x x 的两根符号不一样;命题 q :方程2 3 1 0x x 的两根之和为 3,判断命题“ p 〞、“ q 〞、“ p q 〞、“ p q 〞为假命题的个数为 ( ) A .0 B .1 C .2 D .3 3、“a >b >0〞是“ ab <a 2b 22〞的 〔 〕A .充足而不用要条件B .必需而不充足条件C .充要条件D .既不充足也不用要条件2y 2 x的焦距为 2,那么 m 的值等于 〔 〕. 4、椭圆 1m 4A .5B .8C .5 或 3D .5 或 85、空间四边形 OABC 中, OA a ,OB b ,OC c ,点 M 在 OA 上,且 OM=2MA ,N 为 BC 中点,那么 MN =〔 〕1 2 1A . a b c2 3 22 1 1 B . a b c3 2 21 1 1 C . a b c2 2 22 2 1 D . a b c3 3 26、抛物线 2y 4x 上的一点 M 到焦点的距离为 1,那么点 M 的纵坐标为〔 〕A .17 16B .1516C .78D .07、对称轴为坐标轴的双曲线有一条渐近线平行于直线 x +2y -3=0,那么该双曲线的离心率为〔 〕或5 4B. 5 或52C. 3 或3 2或5 38、假定不等式 |x -1| <a 成立的充足条件是 0<x<4,那么实数 a 的取值范围是 ( )A .a 1B .a 3C .a 1D .a 39、a (1 t,1 t,t),b (2,t,t) ,那么| a b |的最小值为〔〕A .55 B.555C.3 55 D.11510、动点 P(x、y)知足 10 2 ( 2)2(x 1 y =|3x+4y+2|,那么动点 P 的轨迹是〔〕)A .椭圆 B.双曲线 C.抛物线 D.没法确立2 y2x11、 P 是椭圆125 9上的一点, O 是坐标原点, F 是椭圆的左焦点且1OQ (OP OF ), | OQ | 4,那么点 P 到该椭圆左准线的距离为〔〕25D.2高二数学期末考试卷〔理科〕答题卷一、选择题〔本大题共 11 小题,每题 3 分,共 33 分〕题号 1 2 3 4 5 6 7 8 9 10 11答案二、填空题〔本大题共 4 小题,每题 3 分,共 12 分〕2 x12、命题:x R, x 1 0的否定是2 y213、假定双曲线x 4 4 的左、右焦点是F1、F2 ,过F1 的直线交左支于 A、B 两点,假定|AB|=5 ,那么△ AF2B 的周长是 .14、假定a ( 2,3, 1),b ( 2 ,1,3) ,那么a,b为邻边的平行四边形的面积为.15、以下四个对于圆锥曲线的命题中:u uur uuur ①设A、B 为两个定点, k 为正常数,| PA| | PB | k ,那么动点P 的轨迹为椭圆;②双曲线2 2x y25 91 与椭圆2x352 1y 有同样的焦点;2 x③方程2x 5 2 0 的两根可分别作为椭圆和双曲线的离心率;25④和定点A( 5, 0) 及定直线l : x 的距离之比为4此中真命题的序号为 _________.54的点的轨迹方程为2 2x y16 91.三、解答题〔本大题共 6 小题,共 55 分〕2 2x y16、〔本题总分值 8 分〕命题 p:方程1表示焦点在 y 轴上的椭圆,命题 q:2m m 12 2y x 双曲线15 m 的离心率e (1, 2) ,假定p,q只有一个为真,务实数m 的取值范围.17、〔本题总分值 8 分〕棱长为 1 的正方体 AB CD-A1B1C1D1,试用向量法求平面 A1BC1与平面 AB CD 所成的锐二面角的余弦值。
高二数学试题参考答案及评分标准(理科)
高二数学试题参考答案及评分标准(理科)一、选择题:(每小题5分,满分50分)CDBAD CBDCA二、填空题:(每小题5分,满分25分)11.真 12.90 13.③④三、解答题(本大题共6小题,满分75分)16.解:∵直线3470x y +-=的斜率为34-,∴直线l 的斜率为34-. ………(3分)设直线l 的方程为34y x b =-+,令0y =,得43x b =;令0x =,得y b =. ………(7分)由于直线l 与两坐标轴围成的三角形的面积是24,∴142423S b b =⋅||⋅||=,解得6b =±, ………(10分)∴直线l 的方程是364y x =-±(或34240x y +±=). ………(12分)17.证明:⑴(必要性)∵⊿ABC 三个内角成等差数列,不妨设这三个内角依次为B B B αα-+,,,由()()180B B B αα-+++= ,得60B = ,∴⊿ABC 有一个内角等于60 . …………(5分)⑵(充分性)若ABC ∆有一个内角为60 ,不妨设60B = ,则180601202A C B +=-== , ∴A B B C -=-,∴三个内角A B C ,,成等差数列. …………(10分) 综合⑴⑵得,⊿ABC 三个内角成等差数列的充要条件是有一个内角等于60 . …………(12分) (说明:混淆了必要性与充分性,或未注明必要性与充分性,扣4分) 18.证明:⑴∵BC ABE ⊥平面,AE ABE ⊂平面,∴AE BC ⊥.又∵BF ACE ⊥平面,AE ACE ⊂平面,∴AE BF ⊥. …………(3分) ∵BF BC B = , ∴AE BCE ⊥平面.又∵BE BCE ⊂平面,∴AE BE ⊥. …………(6分) ⑵取DE 的中点P ,连接PA PN ,.∵点N 为线段CE 的中点,∴PN ∥DC ,且12P N D C =. …………(8分)又∵四边形A B C D 是矩形,点M 为线段AB 的中点,∴AM ∥DC ,且12AM DC =,∴PN ∥AM ,且P N A M =, ∴四边形A M N P 是平行四边形,∴MN ∥AP . …………(10分) ∵AP ⊂平面D A E ,M N ⊄平面D A E ,∴MN ∥平面D A E . …………(12分) 19.解:∵O M O N C M C N ==,,∴OC 垂直平分线段MN . ……………(4分)∵2MN k =-,∴12OC k =,∴直线OC 的方程是12y x =,∴212t t =,解得2t =或2t =-. ……………(8分)⑴当2t =时,圆心C 的坐标为(2,1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==<C 相交,符合题意.⑵当2t =-时,圆心C 的坐标为(-2,-1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==>直线与圆C 相离,不符合题意.………………(11分)综合⑴⑵得,圆C 的方程为22(2)(1)5x y -+-=. ………………(12分) 20.解:⑴如图,取AB 的中点E ,则//DE BC . ∵BC AC ⊥,∴DE AC ⊥.∵1A D ⊥平面ABC ,∴分别以1DE DC DA ,,所在直线为x y z ,,轴建立空间直角坐标系,得()01 0A -,,,()0 1 0C ,,,()2 1 0B ,,,()10 0 A t ,,,()10 2 C t ,,.由21130AC BA t ⋅=-+=,得t =…………(3分)设平面1A AB 的法向量为()1111n x y z =,,.∵(10 1AA = ,,()2 2 0AB = ,,,∴11111110220n AA y n AB x y ⎧⋅==⎪⎨⋅=+=⎪⎩. 设11z =,可得)1n =……………(5分)∴点1C 到平面1A AB的距离111AC n d n ⋅==||||. ……………(7分)(2)再设平面1ABC 的法向量为()2222n x y z =,,.∵(10 1CA =- ,,()2 0 0CB = ,,,∴212222020n CA y n CB x ⎧⋅=-=⎪⎨⋅==⎪⎩. 设21z =,可得()20n =, ……………(9分)∴121212cos ||||n n n n n n ⋅<>==⋅ ,……………(11分)根据法向量的方向可知,二面角1A ABC --. …………(13分) 21.解:⑴根据题意得22121914ab =⎨⎪+=⎪⎩,解得2243.a b ⎧=⎨=⎩,. …………(2分)∴椭圆C 的方程为 22143x y +=. …………(5分)⑵由22143x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 并整理,得 222(34)84120k x kmx m +++-=.∵直线l 与椭圆C 交于两点,∴0∆>,得22430k m -+> (*)设点A 、B 的坐标分别为1122()()A x y B x y ,,,, 则212122284123434km m x x x x k k -+=-⋅=++,. ………………(8分) ∵11A A AB ⊥,∴110A A A B ⋅=. 又∵点1A 的坐标为1(2 0)A ,,∴1212(2)(2)0x x y y --+=, 即1212(2)(2)()()0x x kx m kx m --+++=,221212(1)(2)()40k x x km x x m ++-+++=, ∴222224128(1)(2)()403434m km k km m k k-+⋅+--++=++,化简并整理得2271640m km k ++=, 解得2m k =-,或27m k =-,均满足条件(*). ………………(12分)当2m k =-时,:(2)l y k x =-,所过的定点为(2,0),与1A 重合,不合题意.当27m k=-时,2:()7l y k x=-,所过的定点为(27,0),符合题意.综上所述,直线l经过定点(27,0). ………………(14分)命题人:和县一中贾相伟含山二中王冲审题人:庐江中学汪京怀。
高二理科数学综合测试题(含参考答案)演示教学
所以11,3,0n是平面1AAM的一个法向量. 设平面1AMN的法向量为2222,,xyzn, 则212,,AMNMuuuuuruuuuurnn 即2120,0,AMNM??uuuuruuuurnn 故有22222231,,,,10,22,,3,0,00.xyzxyz?? 从而2222310,2230.xyzx 取22y,则21z, 所以20,2,1n是平面1AMN的一个法向量. 设二面角1AAMN的平面角为,又为锐角, 则1212cos??nnnn 1,3,00,2,115525??. 故二面角1AAMN的余弦值为155. 21.【解析】(1)依题意,42c,椭圆的焦点为1(2,0)F,2(2,0)F,………………1分 2222122||||(22)(2)(22)(2)42aPFPF,………………2分 ∴2224bac,椭圆的方程为22184xy.………………3分 (2)根据椭圆的对称性,直线AB与x轴不垂直, 设直线AB:mkxy, 由mkxyyx14822,得0824)12(222mkmxxk,………………4分 设11(,)Axy,22(,)Bxy,则122421kmxxk,21222821mxxk,………………5分 2222122211682||1||21kkmABkxxk,………………6分 O到直线AB的距离2||1mdk, ………………7分
联系网站删除
2017学年高二第1次月考------数学(理科)答案 一、选择题:本大题共l2小题,每小题5分,满分60分. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D C D A B D D B C A B A 二、填空题:本大题共4小题,每小题5分,满分20分 13、e2 14、),0(e 15、97 16、)3,0()3,( 三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过1 C.310 D.45 9.直线1:(1)30lkxky和2:(1)(23)20lkxky互相垂直,则k=( ) A. 1 B. -3 C. -3或1 D. 54 10.一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为2的正方形,俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为( ) A. 83 B. 48 C. 348 D. 34 11.若实数,xy满足约束条件220,240,2,xyxyy 则xy的取值范围是( ) A. 2,23 B.13,22 C.3,22 D.1,2 12.若实数xaxxxfcos2sin61)(在44,单调递增,则a的取值范围是( ) A.3232, B.3131, C.6161, D.22, 二、填空题:本大题共4小题,每小题5分,满分20分 13.定积分dxexx10)2(的值为____________ 14.函数xxxfln)(的单调增区间 15.已知1cos3,则sin22 . 16.设(),()fxgx分别是R上的奇函数和偶函数, 当0x<时,0)()()()(xgxfxgxf,且0)3(g,则不等式()()0fxgx<解集是
高二上学期期末考试数学(理)试题及答案 (11)
学年度高二第一学期期末学分认定考试数学试题(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(填空题和解答题)两部分。
满分150分; 考试时间120分钟.考试结束后,监考教师将答题纸和答题卡一并收回。
第Ⅰ卷(共50分)注意事项:本试卷分第I卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.一、选择题:本大题共10个小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列双曲线中,渐近线方程为2y x =±的是( )A .2214y x -= B .2214x y -=C .2212y x -= D .2212x y -= 2.设,a b ∈R ,则“0a b >>”是“11a b<”的( )条件 A .充分而不必要 B .必要而不充分 C .充分必要 D .既不充分也不必要 3.在ABC ∆中,如果=cos cos a bB A,则该三角形是 A .等腰三角形B .直角三角形C .等腰或直角三角形D .以上答案均不正确4.已知数列{}n a 的前n 项和21nn S =-,那么4a 的值为A .1B .2C .4D .85.在平面直角坐标系中,不等式组0400x y x y y -≥⎧⎪+-≤⎨⎪≥⎩表示的平面区域的面积是( )A . 2B . 4C . 8D . 16 6.若不等式08322≥-+kx kx的解集为空集,则实数k 的取值范围是( ) A . )0,3(- B .)3,(--∞ C . (]0,3- D .),0[]3,(+∞--∞ 7.下列命题中,说法正确的是( )A .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”B.“102x <<”是“(12)0x x ->”的必要不充分条件 C .命题“0x ∃∈R ,使得20010x x ++<”的否定是:“x ∀∈R ,均有210x x ++>”D .命题“在ABC ∆中,若A B >,则sin sin A B >”的逆否命题为真命题 8.等差数列{}n a 和{}n b 的前n 项和分别为S n 和T n ,且231n n S nT n =+,则55b a A .32 B . 149 C . 3120 D . 979.在ABC ∆中,,,4530,2===C A a 则ABC S ∆=( ) A .2 B .22 C .13+ D .()1321+10.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A . 3(0,]4B .3(0,]2 C .3[,1)2 D .3[,1)4第Ⅱ卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分,把答案填写在答题纸中横线上。
高二数学(理)综合考试题(含2-2,2-3,4-4,4-5)
高二数学(理)综合考试题(含2-2,2-3,4-4,4-5)一.选择题(每题5分,共计60分) 1·复数iz 215+=的共轭复数是; ( )A.i31035--B.i31035+-C.i 21-D.1+2i2.曲线2)(3-+=x x x f 在p 点处的切线与直线14-=x y 平行,则p 点的坐标为( ))0,1(-A)2,0(-B)或(0,1)4,1(--C )4,1(D3.在ABC ∆中,60,30==B A,求证:a<b.证明:因为6030=∠<=∠B A,所以a<b ,画线部分是演绎推理的( )A.大前提 B 小前提 C 结论 D 三段论 4·满足条件ii z 20132012+=-的复数在z 在复平面上对应的点的轨迹是( )A 一条直线B 一个点C 圆D 椭圆 5.已知3)2(31)(23++++=x b bxx x f 在R 上是增函数,则b 的范围是( )21.>-<b b A 或21.≥-≤b b B 或 21.<<-b C21.≤≤-b D6.设随机变量X 服从正态分布)9,2(N 若)1()1(-<=+>c X p c X p 则C 为( )A.0 B ·1 C ·2 D ·3 7·若n xx )13(-的展开式中各项系数之和为64,则展开式中2x 项的系数为( )A.-243 B ·243 C ·1458 D ·-14588·某单位有6个员工,借助互联网工作,每个员工上网的概率都是0.5(相互独立)则至少三人同时上网概率为( )1611.A 1613.B 3219.C 3221.D9·在一个盒子中有大小一样的20个球,其中10个红球,10个白球,则第一个人摸出1个红球,第二个人摸出1个白球的概率是( )195.A 197.B 1912.C 1913.D10.若)(...)41(2013201322102013R x x a x a x a a x ∈+++=-则=++++2013201322102...22a a a a1.-A 0.B 1.C 2012.D11.从学校到某地方途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,且概率都是52,设x 为途中遇到红灯的次数,则X 的方差是( )12.将5名志愿者分配到3个不同的奥运场馆,参加接待工作,每个场馆至少分配一名志愿者的方案种数为( )A.500B.300C.180D.150 二.填空题(每题5分,共计20分)13.掷一枚质地均匀的骰子,所得点数的样本空间为{}6,5,4,3,2,1=S 令事件{}5,3,2=A ,{}6,5,4,2,1=B 则)(B A P I 的值为14.设[](]⎰=∈∈⎪⎩⎪⎨⎧edx x f e x x xx x f 02)(,11,01)(则15.若函数x x x f +-=331)(在)10,(2a a -上有最大值,则实数a 的取值范围是16.复数),(R y x yi x z ∈+=满足24+=-z i z 则yx42+的最小值是三.解答题(共6题,总计70分)17、(10分)从烟台---大连的某次航运中,海上出现恶劣天气,随机调查男女乘客在船上晕船情况,男性共有83人,其中不晕船有5人;女性有32人,其中晕船的有8人,试据此判断有没有10090的把握认为晕船与性别有关?18.(12分)如图所示,直线y=kx 分抛物线y=x-x 2与x 轴所围图形为面积相等的两部分,求k 的值.19.(两道题选择其一做,12分) (1)在极坐标系中,曲线C :θθρcos 2sin2=,过点A (5,α)(α为锐角且43tan =α )作平行于4πθ=(ρ∈R)的直线l ,且l 与曲线C 分别交于F E ,两点.(I )以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线C 和直线l 的普通方程; (II )求EF 的长.(2)若关于x 的方程 x 2-4x+|a|+|a-3|=0有实根 (1)求实数a 的取值集合A(2)若存在a ∈A ,使得不等式t 2-2a|t|+12<0成立,求实数t 的取值范围.20.(12分)某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为元(为常数,且,设该食品厂每公斤蘑菇的出厂价为元(),根据市场调查,销售量与成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100千克.(Ⅰ)求该工厂的每日利润y 元与每千克蘑菇的出厂价元的函数关系式; (Ⅱ)若,当每公斤蘑菇的出厂价为多少元时,该工厂的利润最大,并求最大值.21、(12分)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095 – 2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米 ~ 75毫克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标。
高二理科数学综合测试题及参考答案
高二理科数学综合测试题一、选择题:每小题5分,共50 分1集合{}|20A x x =+=,集合{}2|40B x x =-=,则AB =( )A .{}2-B .{}2C .{}2,2-D .∅2双曲线2228x y -=的实轴长是( )A .2B .2 2C .4D .4 2 3向量(1,0)a =,11,22b ⎛⎫= ⎪⎝⎭,则下列结论中正确的是( ) A .a b = B .2a b ⋅=C .//a bD .a b -与b 垂直 4了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为0m ,平均值为x ,则( )A .e m =0m =xB .e m =0m <xC .e m <0m <xD .0m <e m <x5设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件 C.既不充分也不必要条件63),若2z x y =+的最小值为1,则a =( ).1 D .2 7且|a 7|=|a 8|,则使S n >0的最大正整数n 是( ) A C .14 D .15 8a >b D 、b >a >c9 )A 、44+πB 、40+4πC 、44+4πD 、44+2π10A ,B 均在双曲线C:22221y x a b-=(a >0,b >0)的右支上,点O 为坐标原点,双曲线C 的离心率为e .( )A .若eOA OB ⋅存在最大值 B .若1<e OA OB ⋅存在最大值 C .若e OA OB ⋅存在最小值 D .若1<e OA OB ⋅存在最小值二、填空题.(每小题5分,满分30分)11序框图如图所示,该程序运行后输出的值是 .12等比数列{a n },a 2+a 3=32,a 4+a 5=6,则a 8+a 9= .13已知24(,)x y x y R ++=∈,则21x y+的最小值为 . 14224(0)()0(0)4(0)x x x f x x x x x ⎧->⎪==⎨⎪--<⎩,则不等式()f x x >的解集为 .15ABC ∆中,角,A B 所对的边长分别为a16项等比数列{}n a 中,1212n n a a a a a a +++>⋅⋅⋅三、解答题:本大题共6小题,满分80骤. 16.(本题满分12分) 设向量()3sin ,sin a x x =,(cos ,sin b x x =(1)若a b =,求x 的值;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.18.(本题满分14分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB =,1AD =,PD ⊥底面ABCD . (1)证明:PA BD ⊥;(2)若PD AD =,求二面角A PB C --的余弦值. 19.(本题满分14分) 设数列{}n a 的前n 项和为n S ,已知11a =(1)求数列{}n a 的通项公式; (2)证明:对一切正整数n ,有1211174a a a +++<20(本小题满分14分)已知函数f(x)是定义在[-1,1]上的函数,若对于任意x ,y ∈[-1,1],都有f(x +y)=f(x)+f(y),且x>0时,有f (x )>0. (1)求f(0)的值;(2)判断函数的奇偶性;(3)判断函数f(x)在[-1,1]上是增函数还是减函数,并证明你的结论.21(本题满分14分)如图,已知椭圆C :22221x y a b+=,其左右焦点为()11,0F -及()21,0F ,过点1F 的直线交椭圆C 于,A B 两点,线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E两点,且1AF 、12F F 、2AF 构成等差数列.(1)求椭圆C 的方程;(2)记△1GF D 的面积为1S ,△OED (O 为原点)的面积为2S .试问:是否存在直线AB ,使得12S S =?说明理由.参考答案11.5 12.96 13.2 14由()f x x >,可得240x x x x ⎧->⎨>⎩或240x x xx ⎧-->⎨<⎩,解得550x x ><<或-,所以原不等式的解集为(5,0)(5,)-+∞.15由正弦定理得,2sin a B b =可化为2sin sin sin A B B =,又sin 0B ≠,所以1sin 2A =,又ABC ∆为锐角三角形,得6A π=.16由5671,3,2a a a =+=可得21()3,2q q +=即260,q q +-=所以2q =,所以62n n a -=,数列{}n a 的前n 项和5522n n S --=-,所以()(11)221212n n n n n a aa a a-==,由1212n n a a a a a a +++>⋅⋅⋅可得(11)552222n n n ---->,由(11)5222n n n -->,可求得n 的最大值为12,而当13n =时,8513222-->不成立,所以n 的最大值为12.三、解答题:(3sin a =, (cos 1b x ==, 及a b =,得s ,从而1sin 2x =,所以6x π=(2)2113sin sin 2cos 2222a b x x x x =⋅=+=-+ = 当0,x ∈⎢⎣,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦ 所以当2x 1 所以()f x 的最大值为32.50; (2)若采用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,则重量在[)80,85的个数541515=⨯=+; (3)设在[)80,85中抽取的一个苹果为x ,在[)95,100中抽取的三个苹果分别为,,a b c ,从抽出的4个苹果中,任取2个共有(,),(,),(,),(,),(,),(,)x a x b x c a b a c b c 6种情况,其中符合“重量在[)80,85和[)95,100中各有一个”的情况共有(,),(,),(,)x a x b x c 种;设“抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有一个”为事件A ,则事件A 的概率31()62P A ==;18解:(1)证明:因为60DAB ∠=︒,2AB AD =,由余弦定理得BD . ........... 从而222BD AD AB +=,故B D A D ⊥. PD ⊥面,ABCD BD ⊂面ABCD ,PD BD ∴⊥ 又,AD PD D ⋂= 所以BD ⊥平面PAD . .. 故PA BD ⊥. .............(6分)(2)如图,以D 为坐标原点,射线DA ,DB ,DP 分别为x ,y,z 的正半轴建立空间直角坐标系D -xyz , 则(1,0,0),(0,3,0),(13,0),(0,0,1)A B C P -.(1AB =-(0,3,1)PB =-,(1,0,0)BC =-.........(8分)设平面PAB 的法向量为(,,)n x y z =,则00n AB n PB ⎧⋅=⎪⎨⋅=⎪⎩ 即00x z ⎧-+=⎪-= 因此可取(3,1n =. .............(10分) 0m PB m BC ⎧⋅=⎪⎨⋅=⎪⎩(12分)4,m n -=故钝二面角A -PB -(14分)11a =,所以24a = ………(2分) 3211233n n n n +---,321122(1)(1)(1)(1)33n n S n a n n n -=------- ,两式相减得3232112122()((1)(1)(1)(1))3333n n n a na n n n n a n n n +=-----------整理得 1(1)(1)n n n a na n n ++=-+,即111n n a an n+-=+, ………(6分)又21121a a -=,故数列n a n ⎧⎫⎨⎬⎩⎭是首项为1,公差为1的等差数列, 所以11(1),n an n n=+⨯-=所以2n a n = ………(8分)(解法二) 2121233n n S a n n n +=---, 11=a ,得9432==a a ,, .......(2分) 猜想=S n (1)当n = (24分)当=n 1213k k S a k +=+(5分)(1)(2)(23)6k k k +++==(62n a n = .........………(9分)当1221444n a a =+=+=<时,; ………(10分)当2111113(1)1n n a n n n n n ≥=<=---时,, ………(12分) 此时22221211111111234n a a a n+++=+++++11111111117171()()()14233414244n n n n <++-+-++-=++-=-<- 综上,对一切正整数n ,有1211174n a a a +++< ……………(14分)20【解析】 (1)令x =y =0,则f(0+0)=f(0)+f(0),∴f(0)=0(2)令y =-x ,∴f(x -x)=f(x)+f(-x),∴f(x)+f(-x)=0,f(-x)=-f(x), ∴f(x)为奇函数. (3)f(x)为增函数.证明:令-1≤x 1<x 2≤1,∴x 2-x 1>0,∴f(x 2-x 1)>0.又∵f(x 2-x 1)=f(x 2)+f(-x 1)=f(x 2)-f(x 1),∴f(x 2)-f(x 1)>0,∴f(x 2)>f(x 1), ∴f(x)在[-1,1]上是增函数. 20.解:(1)因为1AF 、12F F 、2AF 构成等差数列 所以4222121==+=F F AF AF a ,所以2a =.……(2分)又因为1c =,所以23b =, ……(3分)所以椭圆C 的方程为22143x y +=. ……(4分)(2)假设存在直线AB ,使得 12S S =,显然直线AB 不能与,x y 轴垂直.设AB 方程为(1)y k x =+ …(5分)将其代入22143x y +=,整理得 2222(43)84120k x k x k +++-= …(6分) 23)43kk +.……(8分) 2243D k k -=+, ……(10分)Rt GDF ∆OD = ……(11分) 224343k k --+……(12分) 整理得 2890k +=. ……(13分)因为此方程无解,所以不存在直线AB ,使得 12S S =. ……(14分)。
高二数学理科测试卷含答案
高二理科测试卷(摸底)一 单项选择(本大题12小题,每小题5分,计60分)1.对于命题p 和q ,若p 且q 为真命题,则下列四个命题: ① p 或q ⌝是真命题 ② p 且q ⌝是真命题 ③ ⌝p 且q ⌝是假命题 ④ ⌝p 或q 是假命题其中真命题是( )A. ①②B. ③④C. ①③D.②④ 2. 已知命题p :存在,Z x ∈使2220x x ++≤ , 则p ⌝:( )A.存在,Z x ∈使2220x x ++> B.不存在,Z x ∈使2220x x ++> C.对任意,Z x ∈都有2220x x ++≤ D.对任意,Z x ∈都有2220x x ++>3. 若不重合的两个平面,αβ的法向量分别为,u v r r且u r ∥v r ,则α与β的位置关系是( )A.垂直B.平行C.相交D.不确定 4.已知:12,:(3)0p x q x x <<-<,则P 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知(1,0,2),(6,21,2),//,a b a b λλμλμ=+=-r r r r若则与的值分别为( )A .21,51 B .5,2 C .11,52--D .-5,-2 6. 已知椭圆的两个焦点分别为F 1(0, -4), F 2(0, 4), F 1到椭圆上点的最短距离是2, 则这个椭圆的方程为( )A.2213620x y += B.2212036x y +=C .2213616x y += D .2211636x y +=. 7. 已知方程22141x y m m +=-+表示双曲线,则m 的取值范围是( ) A . m<-1 B . m>4 C .m<-1或m>4 D .-1<m<48. 在同一坐标系中,方程22221a x b y +=与20ax by +=(a >b>0)的曲线大致是( )9. 在下列等式中,使M 与A ,B ,C 一定共面的是( )A.2OM OA OB OC =--u u u u r u u u r u u u r u u u rB.111532OM OA OB OC =++u u u u r u u u r u u u r u u u rC.0MA MB MC ++=u u u r u u u r u u u u r rD.0OM OA OB OC +++=u u u u r u u u r u u u r u u u r r10. 已知S 是ABC ∆所在平面外一点, 0,90SA ABC BAC ⊥∠=平面,2SA AB AC ==, E 、F 分别是SB 、AB 的中点,则异面直线AE 与CF 所成角的大小是( ) A. 030 B. 060 C. 0120 D. 015011.在正方体1111ABCD A B C D -中,点P 是面11BB C C 内一动点,若点P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线12.椭圆()222210x y a b a b+=>>上一点P,若01260F PF ∠=,则这个椭圆的离心率的取值范围是( )A .1(0,]2B .1[,1)2C .3D .3[二填空题(本大题4小题,每小题4分,计16分)13. .已知直线l 的方向向量为(1,1,1)s =-r ,平面π的法向量为(1,3,3)n x x =+-r ,若l ∥π,则x =________.14. 已知抛物线212y x a=-的通径长为2,则a =_______. 15.已知下列命题: (1)若a r ∥,b b r r ∥,0c b ≠r r r 且,则a r ∥c r;(2)若⋅=⋅,则=;(3) )()(⋅=⋅.则假命题的序号为__________.16.P 是双曲线221916x y -=的右支上一点, 1F 、2F 分别为左、右焦点,则12PF F ∆的内切圆的圆心横坐标为________.二解答题(本大题共6小题,计74分)17.(12分)已知原命题P:若03,a b a ==且则+b=3(1)写出P 的逆命题、否命题、逆否命题; (2)判断P 的否命题的真假,并说明理由.18. (12分)如图:空间四边形OABC 中,点,M G 分别是,BC AM 的中点.设,,OA a OB b OC c ===u u u r r u u u r r u u u r r(1)用,,a bc v v v表示向量OG u u u r .(2)若||||||a b c ===r r r 且a r 与b r 、c r 夹角的余弦值均为13,b r 与c r 夹角为600,求OG u u u u r19.(12分)已知抛物线的顶点在坐标原点,焦点F 在x 轴的正半轴上,且F 到抛物线的准线的距离为p.(1) 求出这个抛物线的方程; (2)若直线l 过抛物线的焦点F ,交抛物线与A 、B 两点, 且AB =4p ,求直线l 的方程.20.(12分)如图已知正四棱柱ABCD----A 1B 1C 1D 1,AB=1,AA 1=2,点E 为CC 1的中点,点F 为BD 1的中点。
2024年统编版2024高二数学下册阶段测试试卷含答案
2024年统编版2024高二数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四总分得分评卷人得分一、选择题(共6题,共12分)1、抛物线y=ax2(a≠0)的焦点坐标是()A.B.C.D.2、已知三边长分别为3、4、5的△ABC的外接圆恰好是球O的一个大圆,P为球面上一点,若点P到△ABC的三个顶点的距离相等,则三棱锥P-ABC的体积为()A. 5B. 10C. 20D. 303、设二次函数f(x)=x2-x+a,若f(-t)<0,则f(t+1)的值()A. 是正数B. 是负数C. 是非负数D. 正负与t有关4、高三年级有文科;理科共9个备课组;每个备课组的人数不少于4个,现从这9个备课组中抽出l2人,每个备课组至少1人,组成“年级核心组”商议年级的有关事宣.则不同的名分配方案共有()A. 129种。
B. 148种。
C. 165种。
D. 585种。
5、已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立;则称集合M是“垂直对点集”.给出下列四个集合:①M={};②M={(x;y)|y=sinx+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x-2}.其中是“垂直对点集”的序号是()A. ①②B. ②③C. ①④D. ②④6、设变量x、y满足约束条件则目标函数的最大值和最小值分别为A. 1,-5B. -1, -5C. 5, -1D. 1,5评卷人得分二、填空题(共7题,共14分)7、若等差数列{a n}的前5项和S5=25,且a2=3,则a7=____.8、设若则9、【题文】是虚数单位,计算_________.10、宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“茭草形段”第一个问题“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.问底子(每层三角形边茭草束数,等价于层数)几何?”中探讨了“垛枳术”中的落一形垛(“落一形”即是指顶上1束,下一层3束,再下一层6束,,成三角锥的堆垛,故也称三角垛,如图,表示第二层开始的每层茭草束数),则本问题中三角垛底层茭草总束数为____11、一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60°处;行驶4h后,船到达C处,看到这个灯塔在北偏东15°处.这时船与灯塔的距离为____km.12、已知函数g(x)=(a+1)x-2+1(a>0)的图象恒过定点A,且点A又在函数f(x)=log3(x+a)的图象上.则实数a= ______ .13、设i是虚数单位,若复数z满足z(1+i)=1-i,则|z|= ______ .评卷人得分三、作图题(共6题,共12分)14、用斜二测画法画出五棱锥P-ABCDE的直观图,其中底面ABCDE是正五边形,点P在底面的投影是正五边形的中心O(尺寸自定).15、函数y=-2-x-2的图象经过____象限.16、已知区域D满足,那么区域D内离坐标原点O距离最远的点P的坐标为____.17、对于每一个实数x,f(x)是2-x与x中的较小者,则函数f(x)的值域是____.18、如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是____.19、已知正方体ABCD-A1B1C1D1的棱长为1,E,F,G分别是AB,BC,B1C1的中点.下列命题正确的是____(写出所有正确命题的编号).①以正方体的顶点为顶点的三棱锥的四个面最多只有三个面是直角三角形;②P在直线FG上运动时;AP⊥DE;③Q在直线BC1上运动时,三棱锥A-D1QC的体积不变;④M是正方体的面A1B1C1D1内到点D和 C1距离相等的点,则M点的轨迹是一条线段.评卷人得分四、解答题(共1题,共8分)20、选修4-4:坐标系与参数方程已知极坐标系和直角坐标系中极点与坐标原点重合,极轴与x轴半轴重合,点P的直角坐标为直线l过点P且倾斜角为曲线C的极坐标方程是设直线l与曲线C交于A;B两点.①写出直线l的参数方程;②求|PA|+|PB|的值.参考答案一、选择题(共6题,共12分)1、C【分析】【分析】先把抛物线方程整理成标准方程,进而根据抛物线的性质可得焦点坐标.【解析】【解答】解:当a≠0时,整理抛物线方程得x2= y;p=∴焦点坐标为(0,).抛物线y=ax2(a≠0)的焦点坐标为:(0,).故选:C2、A【分析】【分析】由题意可知△ABC为直角三角形,则其外接圆的圆心在AB的中点上,再由P到三个顶点的距离相等可得P在面ABC上的射影为球的球心,然后直接利用棱锥的体积公式求解.【解析】【解答】解:如图;在△ABC中;不妨设AB=5,AC=3,BC=4.则∠ACB=90°;∴△ABC的外接圆的圆心为AB的中点;即球的球心为AB的中点;又P到△ABC的三个顶点的距离相等;∴P在平面ABC上的射影到A;B、C的距离相等;∴O为P在平面ABC上的射影;则OP⊥面ABC;又P在球面上,∴OP为球的半径,∴OP= .∴= .故选:A.3、B【分析】【分析】根据二次函数解析式,得出f(t+1)=t2+t+a=f(-t),再结合题意即可得到f(t+1)的值为负数.【解析】【解答】解:∵f(x)=x2-x+a;∴f(t+1)=(t+1)2-(t+1)+a=t2+t+a;又∵f(-t)=t2+t+a;且f(-t)<0;∴f(t+1)<0;即f(t+1)为负数.故选:B4、C【分析】根据题意;只须将把12个名额分成9份,每份至少一个名额即可,分别对应8个备课组;选用隔板法;即将12个名额排成一列,共11个间隔即空位,从其11个空位中,选取8个,插入隔板就符合题意;即C118=C113=165;故选C.【解析】【答案】根据题意;只须将把12个名额分成8份,每份至少一个名额即可,分别对应12个备课组,选用隔板法,分析可得答案.5、D【分析】对于①y=是以x,y轴为渐近线的双曲线,渐近线的夹角是90°,所以在同一支上,任意(x1,y1)∈M,不存在(x2,y2)∈M,满足好集合的定义;在另一支上对任意(x1,y1)∈M,不存在(x2,y2)∈M,使得x1x2+y1y2=0成立;所以不满足“垂直对点集”的定义,不是“垂直对点集”.对于②M={(x,y)|y=sinx+1},对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立;例如(0,1);(π,0),满足“垂直对点集”的定义,所以M是“垂直对点集”;正确.对于③M={(x,y)|y=log2x};取点(1,0),曲线上不存在另外的点,使得两点与原点的连线互相垂直,所以不是“垂直对点集”.对于④M={(x,y)|y=e x-2},如下图红线的直角始终存在,对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立;例如取M(0,-1),则N(ln2,0),满足“垂直对点集”的定义,所以是“垂直对点集”;正确.所以②④正确.故选D.【解析】【答案】对于①利用渐近线互相垂直;判断其正误即可.对于②;③、④通过函数的定义域与函数的值域的范围,画出函数的图象,利用“垂直对点集”的定义,即可判断正误;6、A【分析】【解析】【答案】A二、填空题(共7题,共14分)7、略【分析】依题意可得d=2,a1=1∴a7=1+6×2=13故答案为:13【解析】【答案】根据等差数列的求和公式和通项公式分别表示出S5和a2,联立方程求得d和a1;最后根据等差数列的通项公式求得答案.8、略【分析】试题分析:因为所以所以考点:1分段函数;2定积分。
最新高二数学理科下学期期末考试试卷(5.22)
高二A 部数学试题(5.22)第I 卷(选择题,共60分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项符合题目要求。
1.复数ii -+1)1(4+2等于( )A .2-2iB .-2iC .1-ID .2i 2.若nn ba Rb a )(lim ,,∞→∈则存在的一个充分不必要条件是( )A .b >aB .b <aC .b <a <0D .0<b <a3.抽屈中有10只外观一样的手表,其中有3只是坏的,现从抽屈中随机地抽取4只,那么61等于 ( )A .恰有1只是坏的概率B .恰有2只是坏的概率C .恰有4只是好的概率D .至多2只是坏的概率4.将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端点异色,如果只有4 种颜色可供使用,则不同的染色的方法数为 ( ) A .24 B .60 C .48 D .725.设)(0,,0,2)(0x f im l x e x p x x f x x→⎩⎨⎧>≤-=若存在,则常数p 的值为 ( )A .-1B .0C .1D .e6.环卫工人准备在路的一侧依次载种7棵树,现只有梧桐树和柳树可供选择,则相邻两棵 树不同为柳树的栽种方法有 ( ) A .21 B .34 C .33 D .14 7.已知(5x -3)n的展开式中各项系数的和比nyy x 2)1(--的展开式中各项系数的和多1023, 则n 的值为( )A .9B .10C .11D .128.设函数*)()(1,12)()(N n n f x x f tx x x f m ∈⎭⎬⎫⎩⎨⎧+='+=则数列的导数的前n 项和为( )A .nn 1- B .nn 1+ C .1+n n D .12++n n9.设ξ是离散型随机变量,,,31)(,32)(2121x x x P x P <====且ξξ又已知 21,92,34x x D E +==则ξξ的值为 ( )A .35B .37C .3D .31110.已知关于x 的方程09)3(222=-+--b x a x ,其中a ,b 都可以从集合{1,2,3,4,5,6}中任意选取,则已知方程两根异号的概率为( )A .61 B .21 C .121 D .31 11.设n 是奇数,12)(,,++∈n i x b a R x 分别表示的展开式中系数大于0与小于0的项的个数,那么( )A .a =b +2B .a =b +1C .a =bD .a =b -112.设函数b x a x g x f b a x g x f <<'<'则当且上均可导在),()(,],[)(),(时,有 ( ) A .)()(x g x f >B .)()(x g x f <C .)()()()(a f x g a g x f +<+D .)()()()(b f x g b g x f +<+第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★请将答案填写在答题卡的相应位置上★
一、选择题:本次题共10小题,每小题5分,共50分,在每小题给出l与平面内无数条直线都垂直”是“直线l与平面垂直”的( )条件
A.充要 B.充分非必要
C.必要非充分 D.既非充分又非必要
2.在下列结论中,正确的结论为( )
12.在△ 中, 边长为 , 、 边上的中线长之和等于 .若以 边中点为原点, 边所在直线为 轴建立直角坐标系,则△ 的重心 的轨迹方程为:.
13.若异面直线 所成角为 ,AB是公垂线( 且 ),E,F分别是异面直线 上到A,B距离为2和1的两点,当 时,线段AB的长为.
14.“神舟七号”飞船的运行轨道是以地球球心为一个焦点的椭圆。设地球半径为R,且“神舟七号”飞船离地面的最大距离和最小距离分别是H和h,则“神舟七号”飞船的运行轨道的离心率是 .
17.已知命题 :“直线y=kx+1与椭圆 恒有公共点”命题 :只有一个实数 满足不等式 . 若命题“p或q”是假命题,求实数a的取值范围.
<
18.(本小题满分12分)设命题P:函数 的定义域为R;
命题q:不等式 对一切正实数均成立,
如果p或q为真命题,p且q为假命题,求实数 的取值范围。
19(本小题满分12分)已知向量 (其中x,y是实数),又设向量 , 点P(x,y)的轨迹为曲线C.
①“p且q”为真是“p或q”为真的充分不必要条件
②“p且q”为假是“p或q”为真的充分不必要条件
③“p或q”为真是“非p”为假的必要不充分条件
;
④“非p”为真是“p且q”为假的必要不充分条件
A①② B①③C②④ D③④
3.三棱锥A-BCD中,AB=AC=AD=2, ∠BAD= ,∠BAC= ,
∠CAD= ,则 =( )
9.空间四边形 中, , ,则 < >的值是A B C - D
>
10.连接双曲线 与 的四个顶点构成的四边形的面积为S1,连接它们
的的四个焦点构成的四边形的面积为S2,则S1:S2的最大值是( )
A.2B.1C. D.
二、填空题:本大题共5小题,每小题5分,共25分.
11.已知 是空间二向量,若 的夹角为
16.解:(Ⅰ)设抛物线方程为 ,将 代入方程得 ,
】
;
由题意知椭圆、双曲线的焦点为 ;
对于椭圆, ;
对于双曲线,
17.
19.解:作 于点P,如图,分别以AB,AP,AO所在直线为 轴建立坐标系
,
$
(1)
设平面OCD的法向量为 ,则
即
取 ,解得 (7分)
(9分)
(2)设 与 所成的角为 ,
, 与 所成角的大小为
(3)设点B到平面OCD的距离为 ,则 为 在向量 上的投影的绝对值,
由 ,得 .所以点B到平面OCD的距离为
,
19、解:(I)由题意知B(a,a,0),C(―a,a,0),D(―a,―a,0),
E 由此得:
………3分
………5分
由向量的数量积公式有:
……7分
(II)若 是二面角 的平面角,则
∴ ……8分
A. -2 B. 2 C. D.
4.已知 =(1,2,3), =(3,0,-1), = 给出下列等式:
①∣ ∣=∣ ∣ ② = ③ =
④ =
其中正确的个数是
A、1个 B、2个 C、3个 D、4个
\
5.椭圆 上一点P到左焦点的距离为3,则P到y轴的距离为 ( )
A. 1 B.2 C. 3 D 4
6,.抛物线的顶点和椭圆 的中心重合,抛物线的焦点和椭圆 的右焦点重合,则抛物线的方程为 ( )
由C(-a,a,0),V(0,0,h)有
又
解得: ………10分
∴ ………12分
又 且
从而 反之成立………13分
因此 当 时, 是二面角 的平面角,且二面角 的余弦值为 .………14分
(Ⅰ)证明:直线 ;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离.
>
21(本题满分13分)设椭圆 的离心率为 = ,点 是椭圆上的一点,且点 到椭圆 两焦点的距离之和为4.
(1)求椭圆 的方程;
(2)椭圆 上一动点 关于直线 的对称点为 ,求 的取值范围.
10.C ,∴ ,故选C。
(A) (B) (C) (D)
7.已知圆锥曲线 的离心率e为方程 的根,则满足条件的圆锥曲线的条数为()
A.1 B.2 C.3 D.4
8.椭圆 上有n个不同的点:P1 ,P2 ,…,Pn, 椭圆的右焦点为F,数列{|PnF|}是公差大于 的等差数列, 则n的最大值是( )
A.198B.199C.200D.201
(Ⅰ)求曲线C的方程;
(Ⅱ)设直线 与曲线C交于M、N两点,当|MN|= 时,求直线l的方程.
,
如图,以正四棱锥 底面中心 为坐标原点建立空间直角坐标系 ,其中 ;已知 ,点 是 的中点,底面正方形 边长为 ,高为 .
(Ⅰ)求 ;
(Ⅱ)当 取何值时, 是二面
角 的平面角,并求
二面角 的余弦值.
)
20.(本小题满分12分)如图,在四棱锥 中,底面 是边长为1的菱形, , , , 为 的中点, 为 的中点,以A为原点,建立适当的空间坐标系,利用空间向量解答以下问题:
15.在直三棱柱 中, .有下列条件:
① ;② ;③ .其中能成为
的充要条件的是(填上该条件的序号)________.
三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.
16.(本小题满分12分)已知抛物线、椭圆和双曲线都经过点 ,它们在 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.求这三条曲线的方程。