南京理工大学电类综合实验报告
南京理工大学EDA设计(一)实验报告
南京理⼯⼤学EDA设计(⼀)实验报告(此⽂档为word格式,下载后您可任意编辑修改!)⽬录实验⼀单级放⼤电路的设计与仿真 (2)⼀、实验⽬的 (2)⼆、实验要求 (2)三、实验原理图 (3)四、实验过程及结果 (3)1、电路的饱和失真和截⽌失真分析 (3)2、三极管特性测试 (7)3.电路基本参数测定 (10)五、数据分析 (14)六、实验感想 (14)实验⼆差动放⼤电路的设计与仿真 (15)⼀、实验⽬的 (15)⼆、实验要求 (15)三、实验原理图 (15)四、实验过程及结果 (17)1、电路的静态分析 (17)2.电路电压增益的测量 (23)五、数据分析 (26)六、实验感想 (27)实验三反馈放⼤电路的设计与仿真 (27)⼀、实验⽬的 (27)⼆、实验要求 (27)三、实验原理图 (27)四、实验过程及结果 (28)1.负反馈接⼊前后放⼤倍数、输⼊电阻、输出电阻的测定 (28)2.负反馈对电路⾮线性失真的影响 (32)五、实验结论 (37)六、实验感想 (37)实验四阶梯波发⽣器电路的设计 (38)⼀、实验⽬的 (38)⼆、实验要求 (38)三、电路原理框图 (38)四、实验过程与仿真结果 (39)1.⽅波发⽣器 (39)2.微分电路 (40)3.限幅电路 (42)4.积分电路 (43)5.⽐较器及电⼦开关电路 (45)五、实验思考题 (46)六、实验感想 (47)写在后⾯的话对此次EDA设计的感想 (47)问题与解决 (47)收获与感受 (48)期望与要求 (48)实验⼀单级放⼤电路的设计与仿真⼀、实验⽬的1.掌握放⼤电路静态⼯作点的调整和测试⽅法2.掌握放⼤电路的动态参数的测试⽅法3.观察静态⼯作点的选择对输出波形及电压放⼤倍数的影响⼆、实验要求1.设计⼀个分压偏置的胆管电压放⼤电路,要求信号源频率10kHz(峰值1—10mV),负载电阻,电压增益⼤于80.2.调节电路静态⼯作点(调节偏置电阻),观察电路出现饱和失真和截⽌失真的输出信号波形,并测试对应的静态⼯作点值。
实验四LC正弦波振荡电路实验,高频电子线路,南京理工大学紫金学院实验报告
高频实验报告实验名称:LC正弦波振荡电路实验姓名:学号:班级:通信时间:2014.01南京理工大学紫金学院电光系一、 实验目的1.进一步学习掌握正弦波振荡电路的相关理论。
2.掌握电容三点式LC 振荡电路的基本原理,熟悉其各元件功能;熟悉静态工作点、耦合电容、反馈系数、等效Q 值对振荡器振荡幅度和频率的影响。
3.熟悉LC 振荡器频率稳定度,加深对LC 振荡器频率稳定度的理解。
二、实验基本原理与电路1. LC 振荡电路的基本原理LC振荡器实质上是满足振荡条件的正反馈放大器。
LC振荡器是指振荡回路是由LC元件组成的。
从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。
如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。
在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。
普通电容三点式振荡器的振荡频率不仅与谐振回路的LC 元件的值有关,而且还与晶体管的输入电容i C 以及输出电容o C 有关。
当工作环境改变或更换管子时,振荡频率及其稳定性就要受到影响。
为减小i C 、o C 的影响,提高振荡器的频率稳定度,提出了改进型电容三点式振荡电路——串联改进型克拉泼电路、并联改进型西勒电路,分别如图2-1和2-2所示。
串联改进型电容三点式振荡电路——克拉泼电路振荡频率为:图2-1克拉泼振荡电路C LCC L图2-2西勒振荡电路∑=LC 10ω其中∑C 由下式决定io C C C C C C ++++=∑211111 选C C >>1,C C >>2时,C C -∑~,振荡频率0ω可近似写成LC10≈ω这就使0ω几乎与o C 和i C 值无关,提高了频率稳定度。
电工电子综合实验1--裂相电路仿真实验报告格-2
电子电工综合实验论文专题:裂相〔分相〕电路院系:自动化学院专业:电气工程及其自动化:小格子学号:指导老师:徐行健裂相(分相)电路摘要:本实验通过仿真软件Mulitinism7,研究如何将一个单相的交流分裂成多相交流电源的问题。
用如下理论依据:电容、电感元件两端的电压和电流相位差是90度,将这种元件和与之串联的电阻当作电源,这样就可以把单相交流源分裂成两相交流电源、三相电源。
同时本实验还研究了裂相后的电源接不同的负载时电压、功率的变化。
得到如下结论:1.裂相后的电源接相等负载时两端的电压和负载值成正相关关系;2.接适当的负载,裂相后的电路负载消耗的功率将远大于电源消耗的功率;3.负载为感性时,两实验得到的曲线差异较小,反之,则较大。
关键词:分相两相三相负载功率阻性容性感性引言根据电路理论可知,电容元件和电感元件最容易改变交流电的相位,又因它们不消耗能量,可用作裂相电路的裂相元件。
所谓裂相,就是将适当的电容、电感与三相对称负载相配接,使三相负载从单相电源获得三相对称电压。
而生活和工作中一般没有三相动力电源,只有单相电源,如何利用单相电源为三相负载供电,就成了值得深入研究的问题了。
正文1.实验材料与设置装备本实验是理想状态下的实验,所有数据都通过在电路专用软件Multisim 7中模拟实验测得的;所有实验器材为〔均为理想器材〕实验原理:(1). 将单相电源分裂成两相电源的电路结构设计把电源U1分裂成U1和U2输出电压,如下列图所示为RC桥式分相电压原理,可以把输入电压分成两个有效值相等,相位相差90度的两个电压源。
上图中输出电压U1和U2与US之比为Us U 1=2)11(11C wR + Us U 2=2)221(11C wR +对输入电压Us 而言,输出电压U1和U2与其的相位为: Φ1=-tg (wR1C1) Φ2=tg (221C wR )或 ctg φ2=wR2C2=-tg(φ2+90°) 假设 R1C1=R2C2=RC 必有 φ1-φ2=90°一般而言,φ1和φ2与角频率w 无关,但为使U1与U2数值相等,可令wR1C1=wR2C2=1则在确定R,C 数值时,可先确定C=10µF ,则根据上式可确定R=318.31Ω。
南京理工大学EDA1实验报告(模电部分)
南京理工大学EDA课程设计(一)实验报告专业:自动化班级:姓名:学号:指导老师:2013年10月摘要在老师的悉心指导下,通过实验学习和训练,我已经掌握基了于Multisim的电路系统设计和仿真方法。
在一周的时间内,熟悉了Multisim软件的使用,包括电路图编辑、虚拟仪器仪表的使用和掌握常见电路分析方法。
能够运用Multisim软件对模拟电路进行设计和性能分析,掌握EDA设计的基本方法和步骤。
实验一:单级放大电路的仿真及设计,设计一个分压偏置的单管电压放大电路,并进行测试与分析,主要测试最大不失真时的静态工作点以及上下限频率。
实验二:负反馈放大电路的设计与仿真,设计一个阻容耦合两级电压放大电路,给电路引入电压串联深度负反馈,,观察负反馈对电路的影响。
实验三:阶梯波发生器的设计与仿真,设计一个能产生周期性阶梯波的电路,对电路进行分段测试和调节,直至输出合适的阶梯波。
改变电路元器件参数,观察输出波形的变化,确定影响阶梯波电压范围和周期的元器件。
关键词:EDA设计及仿真multisim 放大电路反馈电路阶梯波发生器实验一:单级放大电路的仿真及设计一、实验要求1、设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(峰值10mV) ,负载电阻5.1kΩ,电压增益大于50。
2、调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3、调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。
在此状态下测试:(1)电路静态工作点值;(2)三极管的输入、输出特性曲线和 、r be 、r ce值;(3)电路的输入电阻、输出电阻和电压增益;(4)电路的频率响应曲线和f L、f H值。
二、实验步骤1、设计分压偏置的单级放大电路如图1-1所示:图1-1、单级放大电路原理图2、电路饱和失真输出电压波形图调节电位器的阻值,改变静态工作点,当电阻器的阻值为0%Rw,交流电压源为10mV时,显示饱和失真的波形图如图1-2所示:图1-2、电路饱和失真输出电压波形图饱和失真时的静态工作点:Ubeq=636。
FPGA实验报告
南京理工大学泰州科技学院FPGA系统设计实验报告教材名称:FPGA系统设计与应用开发指导教师:周莉莉实验室:4401学院(系):电子电气工程学院专业班级:10电信(1)班姓名:周根生朱守超学号:1002040149 1002040150实验学期:2013-2014学年第一学期总评成绩:教师签字:南京理工大学泰州科技学院FPGA系统设计实验报告目录实验一Max+plusII原理图设计输入 (1)实验二简单逻辑电路设计与仿真 (6)实验三组合逻辑电路设计(一) (11)实验四组合逻辑电路设计(二) (16)实验五有限状态机的设计 (26)实验六数字频率计 (32)南京理工大学泰州科技学院FPGA系统设计实验报告课程: FPGA系统设计班级:10电信1班姓名:周根生朱守超学号:10020401491002040150指导教师:周莉莉实验日期:实验题目:Max+plusII原理图设计输入成绩:一、设计任务采用原理图设计输入法,设计一个具有四舍五入功能的电路,其输入为4位二进制数,要求输入大于或等于0101时,电路输出为高电平,小于0101时电路输出为低电平。
二、设计过程根据设计要求列出四舍五入的真值表,如图1.1所示。
图1.1 四舍五入真值表由图1.1可得化简的表达式为OUT=A+BD+BC,由逻辑表达式可知,要设计的电路图有四个输入端(A,B,C,D)和一个输出端OUT,整个电路由两个2输入端的与门和一个3输入的或门组成。
启动MAX+plusII,新建Graphic Editor file文件,后缀为.gdf。
在编辑界面空白处双击左键,出现输入元件对话框如图1.2所示,在Symbol Name栏中直接输入元件的符号名OK,输入端(input),输出端(output),连接电路如图1.3所示。
图1.2 操作图1.3 原理图芯片型号选择单击Assign,选择Device,如图1.4所示。
图1.4 型号引脚命名双击PIN_NAME,使其变黑后输入引脚名,并保存文件然后编译,如图1.5所示。
南理工电子电工实验2
电子电工综合实验(II)实验报告——数字计时器设计班级:11042101学号: 1104210121姓名:蒋华熔目录一、实验目的 (3)二、实验要求 (3)三、实验内容 (3)四、实验器件 (3)五、元器件引脚图及功能表 (4)六、实验原理 (10)1.秒脉冲发生电路 (11)2.计时器电路 (11)3.译码显示电路 (12)4.报时电路 (13)5.校分电路 (14)6.清零电路 (15)七、逻辑图 (16)八、引脚接线图 (16)九、实验总结 (16)参考文献 (17)一、实验目的1.掌握常见集成电路的工作原理和使用方法。
2.学会单元电路的设计方法和单元间设计组合。
二、实验要求实现从00′00″到59′59″的多功能数字计时器,并且满足规定的清零,快速校分以及报时功能的要求。
三、实验内容1.设计、安装、调试脉冲发生电路。
2.设计、安装、调试59′59″计时器电路。
3.设计、安装、调试译码显示电路。
4.设计、安装、调试任意状态清零电路。
5.设计、安装、调试快速校分电路。
6.设计、安装、调试整点报时电路(59′53″、59′55″、59′57″时发出频率为500Hz的低声;59′59″时发出频率为1KHz的高声)。
7.设计1-5项联接构成数字计时器电路四、实验器件1、集成电路:NE555 1片(多谐振荡)CD4040 1片(分频)CD4518 2片(8421BCD码十进制计数器)CD4511 4片(译码器)74LS00 3片(与非门)74LS20 1片(4输入与非门)74LS21 2片(4输入与门)74LS74 1片(D触发器)2、电阻:1KΩ1只3KΩ1只330Ω(300Ω)28只3、电容:0.047uf 1只4、共阴极双字屏显示器两块。
五.元器件引脚图及功能表1.NE555 1片(多谐振荡):(1)引脚布局图:图1 NE555引脚布局图(2)逻辑功能表:(引脚4 )2.CD4040 1片(分频):(1)引脚布局图:图2 CD4040引脚布局图(2)逻辑功能说明:CD4040是一种常用的12分频集成电路。
南理工EDA设计实验报告
南京理工大学EDA设计(Ⅰ)实验报告作者: 周竹青学号:914000720215 学院(系):教育实验学院专业: 自动化吴少琴指导老师:实验日期: 10.10--- 10.132016年 10月摘要本次EDA实验主要由四个实验组成,分别是单级放大电路的设计与仿真、差动放大电路的设计与仿真、负反馈放大电路的设计与仿真、阶梯波发生器电路的设计。
通过电路的设计和仿真过程,进一步强化对模拟电子线路知识的理解和应用,增强实践能力和对仿真软件的运用能力。
关键词EDA 设计仿真AbstractThe EDA experiment mainly consists of four experiments, respectively. The design and Simulation of single stage amplifier, differential amplifier circuit,the negative feedback amplifier circuit and ladder wave generator circuit. Through the circuit design and simulation process, We can further strengthen the understanding and application of analog electronic circuit knowledge and enhance practical ability and the ability to use simulation software.Keywords EDA simulation design目录实验一单级放大电路的设计与仿真 (4)实验二差动放大电路的设计与仿真 (17)实验三负反馈放大电路的设计与仿真 (26)实验四阶梯波发生器电路的设计与仿真 (38)结论 (58)参考文献 (58)实验一单级放大电路的设计与仿真一、实验目的1、掌握放大电路静态工作点的调试方法。
实验三 差分放大电路
Au1
2[RB1
(RC // RL ) rbe (1 )RW
/
2]
Ro Ro1 RC
5)恒流源放大电路静态分析
U AB
RB 2 RB1 RB2
( VCC
VEE
)
IE3
U AB U BE3 RE
IC3
UCE1 UCE 2 VCC IC RC UBE I B1RB
I E1
IE2
表3
长尾差放 Aud 恒流源差放 Aud 输入、输出信号波形双
估算值
3 端口输出 测量值
-24 -25.36
-24 -25.36
估算值
4 端口输出 测量值
24 25.36
24 25.36
5、通过 3、4 问求出放大电路双端输出、单端输出电压放大倍数的比值,分析该比值和什么 参数有关系。 该比值和 RC 与 RL 有关,当 RC=RL 时单端输出差模放大倍数和双端输出差模放大倍数比值为 4:3;当负载为空载时比值为 2:1.
R i d 2R i1
R o 2R o1
长尾电路双端输出电压放大倍数估算
3)静态时与双端输出相同。 4)动态分析: 共模放大倍数:
AC
uo ui
RB1 rbe
RC || RL (1 )(2RE
RW
/ 2)
RB1
RC || RL rbe (1 )(2RE )
差模放大倍数:
Ad
1 2
典型电路
恒流源电路
IE
[U EE U BE ] RE
I C1
IC2
IE 2
(认为 UB1=UB2≈0)
IC3
IE3
[R2 (UCC U EE (R1 R2 ) U BE
紫金学院-差分放大电路实验报告
一.实验目的1.熟悉差分放大电路的结构。
2.了解差分放大电路抑制零点漂移的原理。
3.掌握差分放大电路静态工作点的估算方法及仿真分析方法。
4.掌握差分放大电路的电压放大倍数、输入电阻、输出电阻的估算方法及仿真分析方法。
5.了解差分放大电路的大信号特性。
6.理解差分放大电路提高共模抑制比的方法。
二、实验原理1.单端输出差模电压放大倍数可正可负,当信号从3端口输出时,1端口称为同相输入端,2端口称为反相输入端;当信号从4端口输出时,1端口称为同相输入端,2端口称为反相输入端。
2.单端输出差模电压放大倍数与双端输出差模放大倍数的比值与负载大小有关系,当RL=RC时比值为4:3,当负载为空载时比值为2:1。
3.共模电压放大倍数为负值。
4.恒流源差分放大电路抑制共模信号的能力远大于长尾差分放大电路。
5.对于长尾差分放大电路而言,增大RE的值能提高抑制共模信如图为长尾差放(J1开关拨到右边即为恒流源差放)当信号由3端口输出时,估算电路的电压放大倍数示波器观察到的1、3端口波形如图。
仿真分析差模放大倍数:长尾差放的输出电压和输入电压:恒流源差放的输出电压和输入电压:2):如图为长尾差放(J1开关拨到右边即为恒流源差放),当信号由4端口输出时,估算电路的电压放大倍数示波器观察到的1、3端口波输入端1加上ib另一端2加上-i在Re上压降Vre=Re*(1+β)*ib+Re*(1+β)*(-ib)=0,Vb=Vbe+Vre=Vbe+0=Vbe即没有使Vbe减小,(Vb=常数)5.共模电压放大倍数总是负值吗?为什么?不是。
所谓的共模信号是指两个差动放大管VT1和VT2的基极接入幅度相同、极性相同的信号。
共模电压放大倍数就是接入的信号是电压信号的放大倍数。
共模信号对两个管子的作用是同相的,若两个电压信号均为正,将引起两个管子电流同量增加,而两个管子集电极电压将同量减少,故从两个管子集电极输出的共模电压为零。
所以,共模电压放大倍数为零。
南京理工大学数电实验——数字电路2
数字逻辑电路实验实验报告学院:电子工程与光电技术学院班号:9171040G06姓名:徐延宾学号:9171040G0633实验编号:0259指导教师:花汉兵2019年5月3日目录1实验目的32实验要求32.1实验内容 (3)3实验原理3 4实验仪器65实验步骤65.1测试74LS161四位二进制计数器逻辑功能 (6)5.2设计计数器 (6)5.3测试CD4518BCD码计数器逻辑功能 (8)5.4绘制CD4518BCD码计数器的工作波形 (8)6实验总结9参考文献9实验3任意进制计数器设计1实验目的掌握任意进制计数器的逻辑功能及应用。
2实验要求实现模16内任意区间电路设计与十进制计数器工作波形绘制。
2.1实验内容1.按照表格3测试74LS161四位二进制计数器逻辑功能。
2.用74LS161四位二进制计数器设计完成0→1→2→3→4→5→6→B→C→D→0区间计数器。
3.按照表5测试CD4518BCD码计数器逻辑功能。
4.绘制CD4518BCD码计数器的工作波形(EN为时钟脉冲输入端)3实验原理1.74LS161四位二进制同步加法计数器逻辑功能如图1与引脚布局图如图2。
图1:74LS161四位二进制同步加法计数器逻辑图图2:74LS161引脚布局图图3:74LS161逻辑功能图CP:计数器脉冲输入端,上升沿触发。
Cr:异步清零端(复位端),低电平有效。
A,B,C,D:预置数并入数据输入端。
LD:同步预置数据控制端,低电平有效。
当控制端有效时,在时钟脉冲作用下,一次性将并入口数据送到输出端。
S1,S0:工作状态使能端,当S1S0=0时,计数器处于保持状态。
S1S0=1,计数器处于加法状态。
Q D,Q C,Q B,Q A:计数器四位输出端。
Q CC:进位输出端,当Q D·Q C·Q B·Q A·S1=1时,Q CC端输出高电平。
2.双四位同步BCD码加法计数器CD4518逻辑图与引脚布局图:图4:CD4518逻辑图与引脚布局图图5:CD4518逻辑功能图Cr:异步清零端(复位端),高电平有效。
南京理工大学电类综合实验报告
题目: 电类综合实验报告院(系): 自动化学院专业年级: 控制理论与控制工程(研一)姓名: coolkid 学号: coolkid_idxx年x月x 日失真度测试实验摘要失真度表征一个信号偏离纯正弦信号的程度,是无线电信号的一个重要参数。
在无线电计量测试中,许多参数的准确测量都涉及失真度测量问题。
例如:在检定电压表、功率表和交流数字式电压表时,为了减小不同检波式仪表的波形误差、提高检定的准确度,就必须减小信号源的失真。
本次实验通过函数/任意波形发生器(EE1661)产生1MHZ的正弦波,基于FPGA开发板(DE2-115)和AD/DA板(THDB-ADA)设计数字化失真度测量仪,实现方法上采用加窗的FFT法。
在Quartus中工具栏里的signalTap观察记录相应的输出结果。
一.实验目的1.熟练掌握一种硬件描述语言,能用硬件描述语言实现较为复杂的时序逻辑电路;2.掌握失真度测量的原理,了解模拟法和数字化方法的优缺点,基于FPGA 设计数字化失真度测量仪;3.掌握EDA电路设计软化和电路仿真软件的使用,能够熟练运用FPGA的IP核来设计电路,增强时序电路的稳定性,提高设计效率。
二.实验内容本实验基于FPGA开发板(DE2-115)和AD/DA板(THDB-ADA)设计数字化失真度测量仪,实现方法上采用加窗的FFT法,其基本信号处理流程如图1所示。
被测信号AD采样加窗FFT求模找最大值对应的索引求基波功率和总功率计算失真度显示失真度图1 数字化失真度测量仪的流程图1、AD采样DE2-115提供三个50MHz时钟,利用任意一个时钟,通过PLL可以产生任意频率时钟提供给ADC作为采样时钟,AD采样得到14位偏移码,将高位取反即可得到信号的补码形式。
2、信号加窗选用汉宁窗或三角窗对AD采样信号做加权处理。
3、加窗后的信号做FFTAltera提供FFT的核,该核为串行输入串行输出,设置输入输出为自然数顺序。
EDA设计2
EDA设计(Ⅱ) 实验报告院系:专业:学号:班级:姓名:指导教师:花汉兵时间:2012.11目录1.设计要求 (2)2.实验原理 (3)3.实验设计内容 (3)3.1分频脉冲发生电路 (3)3.2计时电路 (5)3.2.1基本时分秒计时电路 (5)3.2.2附加星期电路 (6)3.3动态显示电路 (7)3.4整点报时电路 (8)3.5校分电路 (9)3.6清零,保持电路 (9)3.7闹钟电路(附加) (9)4.总电路图 (11)5.程序下载 (11)6.实验中遇到的问题及解决方法 (12)7.电路改进及其他附加功能 (12)8.实验感想 (12)9.参考文献 (12)摘要:多功能数字钟具有24小时计时、星期显示、整点报时、闹钟等功能,并且数码管部分采用了动态显示。
本文介绍了多功能数字闹钟的工作原理,设计方案,附加电路及遇到的问题和解决方法。
利用QuartusII软件和SmartSOPC实验箱实现了多功能数字钟的仿真和验证。
关键词:多功能数字钟校分校时动态显示整点报时 QuartusIIAbstract:Multifunction Digital clock has the following function:24 hours timing , week displaying, on time alarm, alarm clock and adopt the dynamic state manifestation .This paper introduces the principle,design,extra circuit and problem solution of multifunction digital alarm clock. By using QuartusII software and SmartSOPC experiment box , we achieve the simulation and verification of multifunction digital clock.Keyword:Multifunction Digital clock dynamic display time alarmQuartusII1.设计要求设计一个数字计时器,可以完成00:00:00到23:59:59的计时功能,并在控制电路的作用下具有保持、清零、快速校时、快速校分、整点报时等基本功能。
格雷码、二进制转换电路,vhdl南京理工大学紫金学院实验报告,eda
对于 n 位二进制码转换为格雷码的码转换电路,转换表达式如下:
g n an gi ai1 ai
2、GENERIC、GENERATE 语句 a、GENERIC GENERIC 被称为参数传递映射语句,它描述响应的元件类属参数间的衔接和传送方式。 参数传递语句用于设计从外部端口改变原件内部参数或结构规模的元件, 也可称其为类书元 件。该语句在改变电路结构或元件硬件升级方面显得尤为便捷。
1)学习用 VHDL 代码描述组合逻辑电路的方法。 2) 掌握 when…else…和 generate 并行语句的使用。
二、 实验原理
1、格雷码、二进制码转换理论分析 4 位格雷码二进制转换的真值表如图 1。
图 1 4 位格雷码二进制转换的真值表 由真值表得到的表达式如下:
B3 G 3 B 2 B3 G 2 B1 B 2 G1 B0 B1 G 0
将未配置的管脚设置为高阻态。 注意:总线“b”和总线“g”不需要配置管脚。 注意:配置好管脚后一定要记得编译。 4、下载 将文件下载到实验箱,对实验箱进行操作,将键 1~键 8 按钮设置为不同的电平,观察 D1~D8 发光二极管的情况。
四、 小结与体会
通过这次实验,我对理论课上老师所讲的 generate 并行语句有了更深一步的了解。 本次实验是我们的第二次实验,但是是第一次在 Quartus II 软件上编写代码。我掌握 when…else…和 generate 并行语句的使用, 并利用 generate 并行语句做了了 8 位二进制码 /格雷码转换电路,且利用实验箱验证了所设计电路的正确性。
注意: “Count every”值一定要比“End time”值小,且“Count every”值最好不要 设置太小 (如 10ns) , 避免在时序仿真是由于延时造成结果不正确。 “Count every” 值和 “End time”值共同决定了输入信号值的数目。 注意:每次仿真时最好从“Simulator Tool”中导入要仿真的文件,而不是直接点击工 具栏上的按钮,尤其是当工程中存在多个仿真文件时。 3、管脚配置 利用实验箱的模式 5 来验证设计电路的正确性。 用键 1~键 8 表示输入管脚 g0~g7,发光二极管 D1~D8 表示输出管脚 b0~b7。 选择“Assignment→Assignment Editor”弹出管脚配置图,在“Location”一栏中填 入相应器件的管脚。如下图。
南理工EDA1实验报告
南京理工大学EDA设计(Ⅰ)实验报告作者:学号:学院(系):电子工程与光电技术学院专业:电子信息工程实验日期: 2013年8.26 —8.30摘要本报告主要概述了有关模电方面的4个实验:单级放大电路的设计以及电路各参数的计算和分析差动放大电路的设计以及电路各参数的计算和分析多级放大电路的设计以及引入负反馈对电路各参数的影响阶梯波发生器电路的设计文中对电路中各个参数对电路性能的影响做了详细的实验和数据分析,并和理论数据进行对比,帮助我们更深刻的理解模拟电路中理论与实验的关系,指导我们更好的学习。
关键词模拟电路设计实验分析理论对比AbstractThis report mainly describes 4 experiments of analog electronic circuit:C alculation and analysis of single stage amplifier circuit design and circuitparametersC alculation and analysis of the differential amplifier circuit design and circuitparametersD esign of multistage amplifier circuit and negative feedback effects onvarious parameters of the circuit.T he design of wave generator circuit ladderThe article on the various circuit parameters on circuit performance in detail the experiments and data analysis, and compare data and theory to help us gain a deeper understanding of analog circuits in the relationship between theory and experiment, to guide us to better learning.Keywords Analog Circuit Design Experimental analysis Theoretical comparison目录实验一 (1)实验二 (14)实验三 (21)实验四 (29)实验一 单级放大电路的设计与仿真一、实验目的1、掌握放大电路静态工作点的调整与测试方法。
嵌入式控制系统综合实验
南京理工大学数字电路课内实验数字电路4
数字逻辑电路实验实验报告学院:电子工程与光电技术学院班号:9171040G06姓名:徐延宾学号:9171040G0633实验编号:0259指导教师:花汉兵2019年5月14日目录1实验目的3 2实验要求3 3实验内容3 4实验原理45实验步骤55.174LS194四位双向移位寄存器逻辑功能测试 (5)5.274LS194设计实现左,右循环计数 (5)5.374LS194设计实现扭环计数 (8)5.4模15计数器设计 (8)5.574LS194设计实现五分频电路 (9)6实验思考与总结11参考文献11实验4移位寄存器及应用1实验目的掌握移位寄存器的逻辑功能及应用。
2实验要求用移位寄存器实现循环工作和分频器工作。
并绘制分频器工作波形。
3实验内容1.按表测试74LS194四位双向移位寄存器逻辑功能。
2.用74LS194设计实现(自启动)左,右循环计数,状态如图1。
图1:左,右循环计数状态转换图3.用74LS194设计实现(无自启动)扭环计数,状态如图2。
图2:扭环计数状态转换图4.用74LS194实现M=2n−1最大长度计数,反馈表达式为D SR=Q3⊕Q2观察并记录计数器循环状态(无自启动)。
5.用74LS194设计实现五分频电路,状态如图3。
通过示波器绘制工作波形。
图3:五分频电路状态图4实验原理74LS194四位双向移位寄存器•74LS194四位双向移位寄存器逻辑图图4:74LS194四位双向移位寄存器逻辑图•74LS194四位双向移位寄存器引脚部局图图5:74LS194四位双向移位寄存器引脚部局图•74LS194四位双向移位寄存器结构为四个主从RS触发器(已经转换成D触发器)与一些门电路组成。
1.C r:为异步清零端,低电平有效。
2.CP:为时钟脉冲输入端,上升沿有效。
3.D SR:为右移串行数据输入端。
4.D SL:为左移串行数据输入端。
5.M A,M B:为移位寄存器工作状态控制端,有四种状态可使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电类综合实验
实验报告
(数字FM调制解调器的设计)
姓名:金威
学号:1
学院名称:自动化学院
指导老师:薛文刘光祖
2016年6月
一、实验名称
数字FM 调制解调器的设计
二、实验目的
1、理解FM 数字调制解调的基本原理;
2、掌握FPGA 的基本结构及开发的一般流程;
3、掌握Quartus Ⅱ软件的基本使用。
三、实验内容
基于FPGA 开发板(DE2-115)和AD/DA 板(THDB-ADA )设计一个数字式FM 调制解调器,并要求测试调制解调器的功能和解调性能:
1、按照FM 调制的实现框图,设计一个FM 数字调制器,完成对设定波形的FM 数字调制。
并验证调制信号的正确性。
2、按照FM 解调的实现框图,选择合理方案设计一个FM 数字解调器,完成对输入已调信号的FM 数字解调,并验证其功能及性能。
四、实验要求
1、基本要求
(1)要求调制信号为正弦波,调制信号频率为100kHz ,最大频偏为100kHz ,载波频率为3MHz 。
(2)输入已调载波信号峰峰值幅度不超过1V ,调制信号频率不大于50kHz ,载波频率为3MHz 的正弦波。
五、FM 调制解调基本原理
1、FM 信号的数学表达式
FM 是一种以载波的瞬时频率变化来表示信息的调制方式,其载波的频率跟随输入信号的幅度直接成等比例变化,其数学表达式如下:
若调制信号为()m x t ,其振幅()1m x t ≤,载波信号为
()cos(2)c c x t A f t π= (1)
其中A为振幅,
c
f为载波中心频率,则已调信号为
()cos(22())
t
cm c m
x t A f t fx d
ππττ
=+∆
⎰(2) 其中f∆为最大频偏,表示相对于载波的最大频率偏离量。
2、FM调制信号的时域及频域波形图
图 1 已调信号时域波形图
O fc
Ω
fc
Ω
f
|A|
图 2 FM已调信号幅度谱
2、实现FM信号调制的两种方式
有两种方法分别是直接调频和间接调频。
直接调频就是,根据FM信号的瞬时频率与调制信号幅度程线性关系这一特征,可将调制信号的电压作为压控振荡器的控制电压,使其输出频率直接受调制信号电压的控制,这样压控振荡器的中心频率就是已调信号的中心频率,而信号的瞬时频率恰好由调制信号的电压幅度
决定,这种方式是最直接的频率调制实现方式。
所谓间接调频指的是,先对调制信号进行积分后得到瞬,然后利用得到的瞬时频率对载波信号的相位进行调制。
因此间接调频的实现方法实际上就是先积分再调相。
3、实现FM信号解调的两种方式
主要分为鉴相法和鉴频法。
鉴相法指的是利用鉴相电路将已调载波中的相位信息提取出来,再对相位信息求导即可得到调制信号,鉴相的方法可以鉴相的方法可以是模拟的也可以是数字的。
鉴频法指的是利用鉴频器直接将已调载波中的瞬时频率提取出来,鉴频方法主要有两种,一种是将FM信号经过频幅转换网络,转换成调频-调幅波,再经过调幅解调得到调制信号。
另一种是将FM信号经过频相转换网络转换成调频-调相波,再经过鉴相器得到调制信号。
4、FM调制的数字实现方案
FM调制的数字实现最直接的方法就是利用DDS技术。
DDS是通过控制相位累加器的累加增量值来改变相位累加器的循环频率。
再通过相位累加器对波形表进行查表得到所需频率的输出信号。
其工作原理决定了我们可以很容易的改变输出波形的频率和相位。
图 3 DDS实现的FM调制框图
基于DDS的基本原理,模拟调制方法中的直接法和间接法在DDS技术中实际上是统一的,因为DDS实现过程中的相位累加器实际上可以看作是一个积分器,而相位累加器的输出实际上就代表了信号的瞬时相位。
5、数字FM实现的改进方案
由于FM是一种非线性调制,因此已调信号的频谱宽度会大大展宽,而在实际应用中很多时候通信信道都是带限的,为了防止不同频道之间的干扰,对信号的边带抑制都有严格规定,而上述调制的实现方案实际上并没有考虑边带抑制的问题。
根据对FM信号的数学表达式的分析在最简单的单音调制下,已调信号的边频分量理论上是无限多的,其幅度按照贝塞尔函数的规律下降的,因此不能有
效进行边带抑制。
为了有效的进行边带抑制可以采用如下改进结构:
图 4 改进结构的FM数字调制实现框图
6、FM的数字解调实现方案
FM的数字解调可以采用鉴相法。
接收信号先经过正交下变频变为零中频信号,然后根据调制信号带宽进行适当倍数抽取以降低运算量。
正交解调得到的零中频信号可以计算出接收信号的瞬时相位,再通过对瞬时相位进行差分得到最后的解调信号。
图 5 FM数字解调实现框图
实现过程中的正交下变频以及抽取、差分等运算都是数字信号处理中的常见算法比较容易实现,实现比较困难的是求相位运算,这一步运算包含了除法以及反正切运算,运算量较大。
实现的方法一般有两种,一种是查表法,查表法在精度要求较高时需要很大的数据存储量。
另一种方法是利用Cordic算法来求解,由于Cordic算法的核心思想是通过迭代运算来逼近所求的非线性函数的函数值,因此高精度的运算需要较多的迭代次数。
因此虽然硬件消耗量较少,但是很难满足较高吞吐率的运算。
具体方法的选择需要考虑实际情况来决定。
六、实验步骤
将设计好的FM调制器代码下载到演示板,调制信号由FPGA内部产生,设
置调参数,包括载波频率,调制信号频率,调制波形及最大频偏。
用示波器观察DAC输出的已调载波的时域波形,并利用Signal_tap尽可能多的记录送给DAC 的数据,并绘出频谱图。
将设计好的FM解调器代码下载到演示板,利用函数信号发生器产生已调的FM调制信号,并设定好各项参数。
用示波器观察DAC输出端的解调时域波形,并利用Signal_tap记录送给DAC的数据,并绘出频谱图。
逐步减小输入波形幅度,观察解调结果,找出解调器工作的门限电平并记录。
利用按键或者通信接口改变调制器和解调器的工作参数并通过观察记录输出波形验证参数改变的正确性。
七、实验结果
FM调制信号
FM调制信号Signal Tap截图
FM调制信号示波器时域波形图
F M调制信号示波器频域波形图
FM解调信号Signal Tap截图
FM解调信号示波器时域波形
1.位宽的选择
在FM解调过程中,在进行采样信号的正交下变频时,进行的是14位数的乘法运算,所得结果位宽应为28位。
而最终的DAC输出只有14位,所以需要对数据进行截位操作。
但是对截位的选取需要慎重考虑,若高位保留过多,可能造成重复的符号位,导致实际输出信号赋值很小;若保留过少,可能造成符号位丢失,输出数据错误。
一般应借助Signal Tap工具抓取数据后进行分析,取无变化的最高位处进行截取,向后截取14位。
2.偏移码与补码
数据在FPGA内计算是以补码的形式存在,而在ADC和DAC中是以偏移码的形式存在,所以在进行AD/DA操作的时候应注意偏移码和补码的转换操作。
八、总结
经过这次实验,我明白了FM信号调制解调的基本原理,了解了基于FPGA 的实现过程,锻炼了我的动手能力,并且学会了解决问题的方法。
由于我基础知识不够踏实,遇到了很多问题,例如软件操作不熟练,程序编写不规范等,最终在助教以及同学的帮助下得到了解决。
总之,通过这次实验,我们受益匪浅。