噬菌体展示技术及

合集下载

噬菌体展示技术和其应用ppt课件

噬菌体展示技术和其应用ppt课件

2024/3/30
25
应用举例:
部分做过的工作
2024/3/30
26
一、半合成噬菌体抗体库的构建
构建一个半合成抗体库,不经免疫制备人源抗Tie2 Fab抗体。通过RT-PCR方法,从人脐带血淋巴细胞总 RNA 扩增轻链基因及重链VH段基因,将轻链基因插 入pCOMb3载体中,得人轻链质粒库;从乙肝表面抗 体(HBsAb)的Fd段基因制备含有不同长度随机化 CDR3的FR3-CDR3-J-CH1片段,然后将VH段基因与随 机化的CDR3融合,得到Fd基因片段,再将其插入轻链 质粒库中,得半合成人Fab质粒库。
成3节段
2024/3/30
17
M13噬菌体
丝 状 噬 菌 体
λ噬菌体、T4噬菌体、T7噬菌体
蝌 蚪 形 噬 菌 体
2024/3/30
18
T7与M13相比优势明显
T7Select的优势 解释
是在细胞质中表 达的裂解性噬菌 体
C-端融合
与M13不同,T7是裂解性的,其展示的蛋白无需分泌。
插入序列被克隆到T7Select载体基因10 的C-端,可以使带有终止密码子的 插入子得以表达和展示。
2024/3/30
34人源噬菌体Fab抗体半合成的构建将酶切纯化的重链重叠PCR产M13的超感染 下,繁殖出表算出κ+Fd(包括CDR3-5个菌落,涂格,过夜培养后菌落PCR: 其中6个克隆中有轻链也有重链。双链插入率 为60%左右。
κ 链 文 库 的 容 量 为 5.03×106,λ 链 文 库 的 容 量 为 6.8×106(多次建库混合后的库容量)。
从平板上随机挑取10个菌落,涂为70%。
载体克隆容量大 T7载体比M13克隆容量大,而任何克隆到M13上大于1 kbp的片段都不稳定。

噬菌体展示技术

噬菌体展示技术

噬菌体展示技术第一篇:噬菌体展示技术介绍噬菌体作为一种针对细菌的病毒,与我们生活息息相关。

除了作为抗生素的发现者,噬菌体还可以被利用于噬菌体展示技术。

这种技术利用噬菌体表面展示的蛋白质,实现对目标蛋白质的快速筛选和鉴定。

本文将介绍噬菌体展示技术的原理、优缺点,以及在生命科学研究和工业生产中的应用。

一、原理噬菌体展示技术是将目的蛋白或肽插入噬菌体表面的一种方法。

噬菌体表面组分主要有三种:1)编码质粒的pIII蛋白质;2)编码细胞毒素E的pVIII蛋白质;3)编码专一结合的pV蛋白质。

它们在噬菌体的组成和结构上有不同的作用。

其中,pIII和pVIII蛋白质被广泛地应用于蛋白质展示,pV 蛋白质则被用于病毒特异性分离。

噬菌体展示技术的基本步骤为:首先,在噬菌体pIII或pVIII蛋白质基因的外侧区域中插入目的蛋白的DNA序列;然后使用这些噬菌体感染大肠杆菌。

噬菌体在感染过程中就会将目的蛋白展示在其表面。

最后,可使用具有亲和力的配体或抗体选择目的蛋白并纯化。

二、优缺点噬菌体展示技术的优点主要集中在以下几个方面:1)大容量:噬菌体可以在感染过程中表达众多的外表面蛋白,其中每个蛋白均可成为一个展示物,针对多种噬菌体展示技术。

2)直接鉴定:在已知多肽的情况下,可以使用特定的抗体直接鉴定噬菌体表面的展示蛋白。

3)高灵敏度:噬菌体展示技术对目标蛋白的识别灵敏,并且可以使用大量病毒颗粒进行检测。

4)高效率:噬菌体展示技术可将展示蛋白直接表达在噬菌体的表面,无需进行分离提纯,从而加快了蛋白纯化过程。

噬菌体展示技术的缺点主要有以下几方面:1)分子大小限制:目前仅适用于直径小于1/3噬菌体直径的蛋白分子。

2)生物安全:组装成噬菌体后,展示蛋白无法及时得到更新,可能会导致噬菌体的生物安全风险。

3)抗原性:由于目的蛋白常常被表达在噬菌体的表面,因此它们可能会被视为异物而引起免疫反应。

三、应用由于噬菌体表面蛋白质的展示,噬菌体展示技术已经被广泛应用于生物医学研究和工业生产中。

噬菌体展示技术的原理和方法

噬菌体展示技术的原理和方法

噬菌体展示技术的原理和方法噬菌体展示技术是一种利用噬菌体表面展示特定肽段或蛋白的技术。

这项技术自20世纪80年代问世以来,已在许多领域显示出广阔的应用前景,包括药物研发、疫苗设计、蛋白质相互作用研究等。

本文将详细介绍噬菌体展示技术的原理和方法,并探讨其优缺点和发展趋势。

噬菌体展示技术利用的是噬菌体的特性,噬菌体是一种病毒,专门感染细菌等微生物。

它们由蛋白质外壳和内部遗传物质组成,其中蛋白质外壳又由多个蛋白亚基组成。

噬菌体展示技术利用噬菌体表面展示特定的肽段或蛋白,这些肽段或蛋白可以来自天然蛋白质,也可以是人工合成的。

展示在噬菌体表面的这些肽段或蛋白能够与特异性受体结合,从而实现表面展示的功能。

噬菌体展示技术的关键之一是选择合适的展示载体。

载体通常是一种丝状噬菌体,其基因组可以容纳较小的外源基因片段。

常用的载体包括M filamentous phage等。

这些载体具有一些共同的特性,如对外源蛋白质的容纳能力较强,能在体内和体外环境中稳定存在等。

在噬菌体展示技术中,需要筛选出能感染特定细菌的噬菌体。

这些噬菌体可以是自生的,也可以是通过基因工程改造得到的。

在筛选过程中,可以利用不同细菌的特性,如受体类型、细胞壁结构等,来选择合适的噬菌体。

还需要考虑噬菌体的毒性、繁殖能力等因素。

在噬菌体展示过程中,需要反复感染以积累足够数量的展示肽段或蛋白。

这个过程中,通常需要使用超滤或凝胶过滤等手段对噬菌体进行纯化,以确保得到的展示肽段或蛋白的纯度和浓度。

反复感染的过程不仅可以增加展示肽段或蛋白的数量,还能帮助排除展示过程中可能产生的突变。

克隆选择是噬菌体展示技术的另一个关键步骤。

这个过程中,通过将展示肽段或蛋白与特定配体结合,筛选出能够与配体结合的克隆。

这些克隆可以进一步扩增和纯化,从而获得高亲和力和高特异性的克隆。

噬菌体展示技术的优点在于其能够将蛋白质或多肽特异性与噬菌体的生物学特性相结合,从而实现表面展示的功能。

噬菌体展示

噬菌体展示

噬菌体展示
简介
噬菌体是一种能够感染细菌并在其中繁殖的病毒。

它被广泛用于生物学研究和生物技术应用中,特别是在基因工程和基因治疗领域。

噬菌体展示技术是一种将特定蛋白质或肽段展示在噬菌体表面的方法。

通过选择与目标蛋白质相互作用的噬菌体克隆,可以筛选出具有特定功能的蛋白质或肽段。

本文将介绍噬菌体展示技术的原理、应用和优点。

原理
噬菌体展示技术依赖于噬菌体基因组中的一个外源基因,该基因编码目标蛋白质或肽段。

这个外源基因通常被插入到噬菌体的毒力因子基因中,例如毒力因子III基因。

插入后,目标蛋白质或肽段会与细菌细胞的表面结合。

噬菌体携带的基因信息会导致细菌细胞表面展示目标蛋白质或肽段。

通过这种方式,科研人员可以通过筛选和选择的方法找到与目标蛋白质或肽段相互作用的噬菌体克隆。

应用
噬菌体展示技术在生物学研究和生物技术应用中有广泛的应用。

以下是一些常见的应用领域:
抗体库筛选
噬菌体展示技术可用于抗体库筛选,以寻找与特定抗原相互作用的抗体。

通过将抗原展示在噬菌体表面,科研人员可以筛选出具有高亲和力和特异性的抗体,用于治疗和诊断应用。

肽库筛选
噬菌体展示技术也可用于肽库筛选,以寻找具有特定功能的肽段。

通过将肽段展示在噬菌体表面,科研人员可以筛选出与特定靶点相互作用的肽段,用于药物开发和治疗应用。

蛋白质互作网络研究
噬菌体展示技术可以用于研究蛋白质互作网络。

通过将一种蛋白质展示在噬菌体表面,并将其用作识别其他与其相互作用的蛋白质的。

噬菌体展示技术的原理及应用

噬菌体展示技术的原理及应用

02 噬菌体展示技术 原理
噬菌体结构与功能
噬菌体基本结构
由蛋白质外壳和内部遗传物质组 成,具有识别和感染宿主细胞的 能力。
噬菌体功能
通过感染宿主细胞,将自身遗传 物质注入细胞内,并利用宿主细 胞的资源进行复制和增殖。
展示原理及过程
展示原理
利用噬菌体感染宿主细胞的特点,将外源蛋白或多肽与噬菌体表面蛋白融合表达 ,从而展示在噬菌体表面。
发展历程
自20世纪80年代初期噬菌体展示技术 被首次提出以来,随着分子生物学和 基因工程技术的不断发展,该技术得 到了迅速发展和广泛应用。
技术特点及优势
技术特点
噬菌体展示技术通过将外源基因插入到噬菌体的基因组中,使得外源蛋白或多 肽能够在噬菌体表面表达,从而实现了对外源蛋白的高通量筛选和鉴定。
优势
等。
实验操作步骤
转化宿主菌
将构建好的噬菌体展示载体转化 到宿主菌中。
噬菌体繁殖和蛋白表达
在适当的条件下培养宿主菌,使 噬菌体繁殖并表达目标蛋白。
噬菌体收集和纯化
收集宿主菌培养物,通过离心、 过滤等方法纯化噬菌体。
构建噬菌体展示载体
将目标蛋白基因克隆到噬菌体载 体中,构建成噬菌体展示载体。
噬菌体展示验证
通过ELISA、Western blot等方 法验证目标蛋白是否在噬菌体表 面展示。
结果分析与解读
噬菌体滴度测定
通过测定噬菌体的滴度来评估实验的 可靠性和重复性。
目标蛋白表达量分析
通过SDS-PAGE等方法分析目标蛋白 的表达量,以评估展示效果。
展示特异性验证
通过与其他非特异性蛋白的对比,验 证目标蛋白在噬菌体表面的展示特异 性。
安全性问题
噬菌体作为病毒的一种, 存在潜在的安全风险,如 污染实验室、感染工作人 员等。

噬菌体展示实验步骤及总结

噬菌体展示实验步骤及总结

噬菌体展示实验步骤及总结噬菌体展示技术(Phage Display)是一种利用噬菌体(phage)作为载体表达、展示外源蛋白质或肽段的技术。

该技术可以通过体外筛选方式寻找与特定生物分子相互作用的肽段或蛋白质,并在医学、农业、环境科学等多个领域应用广泛。

本文将介绍噬菌体展示实验的步骤及总结。

一、噬菌体展示实验步骤1.分离噬菌体基因组首先需要从所需噬菌体中提取其基因组DNA,进行适当的酶切、纯化、修饰和扩增等操作,以获得高质量的DNA样品。

2.插入外源DNA将需要展示的外源肽段或蛋白质基因克隆到噬菌体基因组中的特定区域(通常是其Capsid蛋白的的N末端),使其与噬菌体基因组融合。

插入操作可采用PCR扩增、克隆或基因合成等方法进行。

3.包装噬菌体将重组噬菌体基因组与一定的病毒包装反应液混合,经过一定的反应时间,使其封装成噬菌体颗粒。

包装操作可在细菌宿主中进行,也可采用体外装配法,将噬菌体基因组与其他组件(例如,在非细菌宿主中回收的Capsid蛋白)进行反应,实现噬菌体的包装。

4.筛选目标配体将噬菌体颗粒通过筛选池,如固体支持物、细胞表面或溶液相应用目标体分别进行生物学或化学实验等。

通过筛选,得到与目标体有特异性、较高亲合力的噬菌体颗粒。

随后将噬菌体提取、扩增等操作,得到一系列具体的孤儿噬菌体(orphan phage)或配体噬菌体。

5.注意事项在实验过程中需注意的一些问题:(1)噬菌体的主要结构是头部和尾部,根据实验需要可对其进行不同的修饰(例如添加标签、调整展示方向等),以增加其展示效率和特异性等。

(2)外源蛋白的表达量、保持稳定性通常受到噬菌体载体、连接方式、插入位置、转化水平等因素的影响,实验中需对其进行合理设计。

(3)噬菌体筛选应选择样品的适当浓度、筛选反应时间等,以保证准确、高效地获得目标配体。

二、噬菌体展示实验总结噬菌体展示技术是一种非常有前景的生物技术,逐渐成为体外筛选的重要手段之一。

噬菌体展示技术

噬菌体展示技术

In phage display, a heterologous peptide or protein is displayed on the surface of the phage through transcriptional fusion with a coat-protein gene ,producing novel phage particles that have a variety of potential uses. Foreign proteins can usually be displayed on more than one phage coat protein and in varying amounts. Generally, the smaller the foreign protein or peptide the more copies can be displayed, although this also depends on the phage used, the coat protein and the antigen displayed.
噬菌体展示技术(Phage Display techniques,PDT)起源于1985年,是一 种用于筛选和改造功能性多肽,蛋白质 强有力的生物技术,广泛应用于蛋白组 学,基因克隆等多个分子生物学领域.
目前噬菌体展示技术的研究进展非 常迅速,在抗原决定簇的定位,蛋白质 相互作用位点的确定,特异调节分子的 分离和人工抗体和疫苗的制备,诊断技 术,酶抑制剂的研究开发,多肽药物的 研制等生物技术研究的不同领域得到了 应用,并对这些领域产生了深远的影响.
1985年Smith首次通过基因工程的手段,将 外源基因插入丝状噬菌体基因组中,从而使表 达的外源肽或蛋白与噬菌体外壳蛋白一起展示 在噬菌体表面,由此建立了噬菌体展示技术.

噬菌体展示技术的概念

噬菌体展示技术的概念

噬菌体(bacteriophage)是一种寄生于细菌的病毒,它可以感染并破坏细菌。

噬菌体展示技术是一种利用噬菌体来展示外源蛋白或肽的方法,使研究人员能够研究和利用噬菌体的寄生性质,以及利用其表面展示的能力。

噬菌体展示技术的概念包括以下几个方面:
1. 噬菌体结构:噬菌体的结构由头部、尾部和尾纤毛组成。

头部包含基因组,尾部用于附着并注入基因组到宿主细菌中。

噬菌体展示技术通过利用这些结构,使其能够在噬菌体表面展示外源蛋白或肽。

2. 插入式展示:这是一种常见的噬菌体展示技术,其中外源蛋白或肽的基因序列被插入到噬菌体的基因组中,通常是在噬菌体的尾部或头部。

这样,当噬菌体感染宿主细菌时,它会在其表面展示外源蛋白或肽。

3. 表面展示:通过噬菌体的表面展示外源蛋白或肽,研究人员可以利用这些病毒来模拟和研究宿主细菌的亲和性、结合性等特性。

这对于蛋白质工程、药物筛选、疫苗研发等方面具有潜在的应用。

4. 生物材料筛选:利用噬菌体展示技术,研究人员可以将噬菌体库用于生物材料的高通量筛选。

这可以加速对特定蛋白质、肽段或化合物的研究。

5. 疫苗研发:噬菌体展示技术还可应用于疫苗研发。

通过在噬菌体表面展示特定的抗原蛋白,可以激发免疫系统产生特异性抗体,从而产生免疫应答。

总的来说,噬菌体展示技术提供了一种独特的方法,可以利用噬菌体的自然寄生性质,将外源蛋白或肽有效地展示在噬菌体表面,从而用于各种生物学研究和应用领域。

噬菌体展示技术的原理及应用

噬菌体展示技术的原理及应用

噬菌体展示技术的原理及应用噬菌体展示技术是一种利用噬菌体作为载体来展示特定蛋白质的方法。

噬菌体是一种只依赖于宿主细胞进行复制的病毒,它具有高度的遗传稳定性和生物安全性,因此成为了生物学研究中常用的工具之一、噬菌体展示技术是通过基因工程手段将目标蛋白的编码序列与噬菌体的外壳蛋白基因连接,从而使得噬菌体表面展示目标蛋白,进而实现其在生物学研究和应用领域的应用。

噬菌体展示技术的原理主要包括四个步骤:构建融合基因、转化宿主细胞、筛选目标蛋白、验证和表征目标蛋白。

首先,需要将目标蛋白的编码序列与噬菌体的外壳蛋白基因连接,形成融合基因。

这一步可以通过PCR技术、DNA重组技术或化学合成等方法完成。

然后,将构建好的融合基因导入到宿主细胞中,使其表达出融合蛋白。

这一步通常通过将噬菌体感染宿主细胞实现。

接下来,通过适当的筛选方法,筛选出表达目标蛋白的噬菌体颗粒。

最后,对得到的目标蛋白进行验证和表征,确认其正确展示在噬菌体表面。

噬菌体展示技术具有广泛的应用。

首先,在蛋白质功能研究方面,噬菌体展示技术可以用来筛选和鉴定蛋白质的结合配体、寻找蛋白质的受体等。

其次,在疫苗研制和药物研发方面,噬菌体展示技术可用于筛选具有特定抗原性的肽段和蛋白质,寻找一些新的抗菌药物和肿瘤治疗靶点。

此外,噬菌体展示技术还能用于表位鉴定、抗体库构建、酶工程等领域。

噬菌体展示技术相对于其他展示技术具有许多优势。

首先,噬菌体是一种非常安全的病毒,不会感染人类和其他动物细胞,具有很高的生物安全性。

其次,噬菌体展示技术可以在宿主细胞内直接进行筛选,与体外筛选相比较省时间和成本,并且能够获得更多的样本选择,增加筛选成功率。

此外,噬菌体展示技术还具有高度的遗传稳定性,可以在不同的生理条件下保持构建好的目标蛋白的稳定表达。

总之,噬菌体展示技术是一种重要的蛋白质展示技术,通过利用噬菌体作为载体,可以实现目标蛋白在噬菌体表面的展示,并在生物学研究和药物研发领域中得到广泛应用。

噬菌体展示技术

噬菌体展示技术

噬菌体展示技术-泰克生物一.噬菌体展示技术的原理噬菌体展示技术是将多肽或蛋白质的编码基因或目的基因片段克隆入噬菌体外壳蛋白结构基因的适当位置,在阅读框正确且不影响其他外壳蛋白正常功能的情况下,使外源多肽或蛋白与外壳蛋白融合表达,融合蛋白随子代噬菌体的重新组装而展示在噬菌体表面。

被展示的多肽或蛋白可以保持相对独立的空间结构和生物活性,以利于靶分子的识别和结合。

肽库与固相上的靶蛋白分子经过一定时间孵育后,洗去未结合的游离噬菌体,然后以竞争受体或酸洗脱下与靶分子结合吸附的噬菌体,洗脱的噬菌体感染宿主细胞后经繁殖扩增,进行下一轮洗脱,经过3轮-5轮的“吸附-洗脱-扩增”后,与靶分子特异结合的噬菌体得到高度富集。

所得的噬菌体制剂可用来做进一步富集有期望结合特性的目标噬菌体。

二.常用的噬菌体展示系统-单链丝状噬菌体展示系统(1)PIII展示系统丝状噬菌体是单链DNA病毒,PI是病毒的次要外壳蛋白,位于病毒颗粒的尾端,是噬菌体感染大肠埃希菌所必须的。

每个病毒颗粒都有3个-5个拷贝PI蛋白,其在结构上可分为N1、N2和CT 3个功能区域,这3个功能区域由两段富含甘氨酸的连接肽G1和G2连接。

其中,N1和N2与噬菌体吸附大肠埃希菌菌毛及穿透细胞膜有关,而CT构成噬菌体外壳蛋白结构的一部分,并将整个PI蛋白的C端结构域锚定于噬菌体的一端。

PII有2个位点可供外源序列插入,当外源的多肽或蛋白质融合于PI蛋白的信号肽(SgII)和N1之间时,该系统保留了完整的PI蛋白,噬菌体仍有感染性;但若外源多肽或蛋白直接与PI蛋白的CT结构域相连,则噬菌体丧失感染性,这时重组噬菌体的感染性由辅助噬菌体表达的完整PI蛋白来提供。

PI蛋白很容易被蛋白水解酶水解,所以有辅助噬菌体超感染时,可以使每个噬菌体平均展示不到一个融合蛋白,即所谓“单价”噬菌体。

(2)PVIII展示系统PVI是丝状噬菌体的主要外壳蛋白,位于噬菌体外侧,C端与DNA结合,N端伸出噬菌体外,每个病毒颗粒有2700个左右PV拷贝。

简述噬菌体展示的基本原理和方法

简述噬菌体展示的基本原理和方法

噬菌体展示技术原理
噬菌体展示技术(phage display)是将外源编码多肽或蛋白质的基因通过基因工程技术插入到噬菌体外壳蛋白结构基因的适当位置,在阅读框能正确表达,使外源多肽或蛋白在噬菌体的衣壳蛋白上形成融合蛋白,随子代噬菌体的重新组装呈现在噬菌体表面,可以保持相对的空间结构和生物活性。

然后利用靶分子,采用合适的淘洗方法,洗去未特异性结合的噬菌体。

再用酸碱或者竞争的分子洗脱下结合的噬菌体,中和后的噬菌体感染大肠杆菌扩增,经过3-5轮的富集,逐步提高可以特异性识别靶分子的噬菌体比例,最终获得识别靶分子的多肽或者蛋白。

下图展示了噬菌体抗体库制备的简单过程:
噬菌体展示肽库的构建的方法:
目前主要有两种:一是有机合成法,二是基因合成法。

前者是直接用固相肽合成技术,合成含有各种可能序列的短肽。

基因工程方法是将编码
各种序列特定长度短肽7的目的基因克隆进表达载体,与噬菌体的外壳蛋白基因融合表达,使得一个噬菌体上含有一种序列的肽。

噬菌体展示技术

噬菌体展示技术

噬菌体展示技术噬菌体展示技术是一种用来展示噬菌体和揭示其结构与功能的方法。

它可以帮助科学家们更好地了解噬菌体的特性,并为相关研究提供技术支持。

本文将详细介绍噬菌体展示技术的原理、应用以及未来的发展趋势。

噬菌体是一种寄生于细菌的病毒,具有特异性感染宿主细菌的能力。

噬菌体展示技术利用噬菌体的这一特性,将外源蛋白质或多肽片段连接到其表面结构上,从而使噬菌体表面显示出被展示物。

这样,科研人员可以通过研究噬菌体表面展示的蛋白质或多肽片段的结构与功能,来了解其它生物分子如何与宿主细菌进行相互作用。

噬菌体展示技术的原理主要包括三个步骤:插入、表达和展示。

首先,需要将目标蛋白质或多肽片段的编码序列导入噬菌体基因组中,形成噬菌体展示质粒。

接下来,通过转染等方式将该质粒导入宿主细菌中,并在合适的培养条件下进行表达。

最后,噬菌体表面展示质粒编码的蛋白质或多肽片段,并形成可供研究的噬菌体展示复合体。

噬菌体展示技术具有广泛的应用领域。

一方面,它可以用于抗原表位鉴定,帮助寻找新的病原体相关抗原。

另一方面,噬菌体展示技术可用于蛋白质工程和抗体库筛选等研究中。

此外,噬菌体展示技术还可以用于药物开发,如靶向肿瘤治疗等方面。

它能够为科学家们提供有力的工具和方法,从而更好地进行相关研究。

尽管噬菌体展示技术在许多领域都表现出巨大的应用潜力,但它仍然面临一些挑战和限制。

首先,噬菌体展示的蛋白质或多肽片段需要能够与宿主细菌成功表达并显示在噬菌体表面,这对于一些大型复杂蛋白质来说可能存在困难。

其次,噬菌体展示的蛋白质或多肽片段需要具有良好的稳定性和可溶性,以保证其展示效果和研究可行性。

此外,噬菌体展示技术在开发过程中需要耗费大量的时间和资源,对于科研人员来说也是一项具有挑战性的工作。

未来,随着科学技术的不断发展和进步,噬菌体展示技术有望得到进一步改进和优化。

研究人员可以利用基因编辑技术、合成生物学和高通量筛选等方法,提高噬菌体展示的效率和可行性。

噬菌体展示技术和其通用实验技术简介精编版

噬菌体展示技术和其通用实验技术简介精编版
噬菌粒载体可以方便克隆,提高遗传的稳定性。
相比噬菌体载体噬菌粒具有以下优点:
1.双链DNA既稳定又高产,具有常规质粒的特征; 2.免除了将外缘DNA片段从质粒亚克隆于噬菌体载体这一
繁琐又费时的步骤; 3.由于载体足够小,故可得到长达10kb的外源DNA区段的
单链。
pCANTAB5e噬菌体质粒图谱
1.1噬菌体展示技术的发展
Smith 在 1985 年首次证实外源 DNA 可以插入 丝状噬 菌体基因 III 中,并与 pIII 蛋白融合展示。
Smith GP. Science 1985; 228:1315-7
1985 第一次发表噬菌体展示技术;展示多肽 Smith GP. Science.1985; 228:1315-7 1988 噬菌质粒系统 1990 e two-hybrid’技术 1996 首次体内in vivo 淘选试验 1998 噬菌体展示载体作为基因导入载体 1999 Combination of phage display with high-density arrays 2001 Automated phage display selection
报告人:王东方
噬菌体展示 Phage display
1.什么是噬菌体展示 2.噬菌体展示技术的原理 3. 常用的噬菌体展示系统 4.单链丝状噬体展示在重组抗体制备中的应用 5.菌噬体菌展体示展技示术技在术其应它用与展望
1.什么是噬菌体展示技术?
噬菌体展示技术(Phage Display Techniques ,PDT) 是一项筛选技术,将外源多肽或蛋白与噬菌体的衣壳 蛋白融合表 达,融合蛋白展示在病毒颗粒的表面,而 编码该融合子的 DNA则位于病毒粒子内。使大量多肽 与其DNA编码序列之间、表型与基因型之间建立了直接 联系,使各种靶分子(抗体、酶、细胞表面受体等) 的多肽配体通过淘选得以快速鉴定。

噬菌体展示技术的原理及其应用

噬菌体展示技术的原理及其应用

噬菌体展示技术的原理及其应用噬菌体展示技术(phage display technology)是一种重要的蛋白质工程技术,通过利用噬菌体颗粒表面显示多肽、蛋白质域或蛋白质片段,实现了蛋白质和肽段的大规模筛选与优化。

该技术以其广泛的应用领域和高效的功能改造成为生命科学研究的重要手段之一噬菌体是一种病毒,可以感染大肠杆菌等细菌。

噬菌体分为体外和体内表面展示两种形式。

体外展示通过将目标序列与噬菌体表面的一些外膜蛋白基因融合,使其在噬菌体的外膜上显示;体内展示则在噬菌体内部将目标序列与噬菌体结构蛋白基因融合,使其随着噬菌体结构蛋白的表达而自然显示在噬菌体表面。

噬菌体展示技术的原理是基于噬菌体的基因工程技术。

一般来说,噬菌体展示系统由基因插入、包装和扩增等部分构成。

在基因插入部分,需要构建融合蛋白质或多肽序列与噬菌体的表面或结构蛋白融合。

然后,该融合基因由质粒转化到细菌中,在细菌体内表达形成融合蛋白质或多肽与噬菌体结构蛋白的复合物。

该複合物装配成完整的噬菌体骨架,并在细菌体内繁殖增殖。

使用适当的分离方法,如蓝白斑筛选、免疫选择等,可获取目标蛋白质或多肽。

1.抗体工程:通过噬菌体展示技术,可以筛选出具有高亲和力和特异性的抗体。

通过适当的选择、改造和优化,可以用于疾病的诊断和治疗,以及靶向药物的研发。

2.药物筛选:噬菌体展示技术可以快速筛选出与特定靶标相互作用的多肽、蛋白质,用于药物筛选和发现。

通过融合目标肽段或蛋白质,可以在噬菌体库中筛选出具有特定活性的融合蛋白质,用于筛选新药物或开发新的药物靶标。

3.蛋白质结构与功能研究:噬菌体展示技术可以用于鉴定蛋白质的功能区域、反应底物和相互作用结构。

通过在噬菌体表面显示目标蛋白的不同片段或结构域,可以研究其功能和结构,并探究蛋白质间相互作用及其调控机制。

4.疫苗和诊断试剂开发:噬菌体展示技术可用于筛选出具有免疫原性的多肽、蛋白质,用于疫苗开发和诊断试剂的研制。

通过融合目标蛋白序列,可以获得具有特异性与免疫原性的融合蛋白质,从而用于预防一些疾病。

噬菌体展示技术

噬菌体展示技术
16
第二步:磁珠生物素化抗原复合物与抗体库结合
17
第三步:洗涤—洗去非特异和弱结合旳噬菌体
18
第四步:洗脱—将特异性结合旳噬菌体洗脱下来
19
第五步:扩增—将洗脱旳噬菌体扩增 扩增产物进行下一轮筛选
背面旳筛选逐渐加大筛选压力
多克隆和单克隆噬菌体ELISA
ELISA阳性克隆测序,最终得 到特异性结合旳克隆序列
噬菌体展示系统 Phage on display 1
噬菌体展示系统 Phage on display
•噬菌体展示原理 –噬菌体展示定义、分类
–简介噬菌体及淘选过程
•噬菌体展示应用 •淘选过程中常见问题及处理方案
2
什么是噬菌体表面展示技术
Smith在1985年首次证明外源DNA能够插入丝状噬菌体基 因III中,并与pIII蛋白融合展示。
• 有供筛选旳抗生素标识基因。
• Helper phage:提供噬菌体质粒复制、合成ssDNA和 病毒包装所需要旳全部蛋白和酶。
13
筛选旳措施-亲和淘选
直接包被淘选法: 直接将靶分子包被在固相表面 优点:简朴直接。 缺陷:偶尔会造成配体结合位点难以进入 可能是因为分子旳立体封阻 或者是靶分子表面旳部分变性而引起 液相淘选法: 将靶蛋白与噬菌体抗体库先结合,之后再亲和捕获靶分子-噬菌体 复合物。 优点:克服直接包被旳出现旳问题 缺陷:轻易筛到与亲和素(或者链酶亲和素)结合旳克隆。
23
谢谢
24
6. 感染后1小时内平均每个细胞 分泌1000个噬菌体
6
次要外壳蛋白 pIII
1. 406 aa 构成,5个拷贝,位于噬菌 体旳尾部。
2. 由三个功能区构成: • N1 穿膜区:作用于E.coli细胞膜上

噬菌体展示技术比较与总结

噬菌体展示技术比较与总结

噬菌体展示技术比较与总结噬菌体展示技术是一种基于病毒和细胞表面展示蛋白质、多肽或其他类感受体的高效方法,近年来受到越来越多的关注和研究。

它在疫苗和药物研发、基因工程、蛋白质功能研究等领域中具有广泛应用。

本文将对噬菌体展示技术进行比较与结,探讨其优劣势及未来发展方向。

1.噬菌体展示技术的分类噬菌体展示技术大致可以分为两类:一类是基于基因工程的展示技术,通过将目标蛋白质或多肽基因插入噬菌体的表面蛋白基因中,实现目标蛋白质或多肽的表面展示;另一类是基于晶体学方法的展示技术,该方法通过将目标蛋白质结晶,并在晶体表面进行展示。

两者的原理虽然不同,但均具有较高的展示效率和覆盖面积。

2.基因工程展示技术噬菌体展示技术最主要的应用领域在于蛋白质工程及抗体库筛选等。

基于基因工程的展示技术可以通过将目标蛋白质的基因整合到噬菌体表面蛋白基因中,使得目标蛋白质在噬菌体的表面上得以展示。

噬菌体的生物活性及制备工艺已经得到广泛的研究,提高了蛋白质工程与抗体库的制备效率。

同时,插入基因的过程中,可以将目标蛋白质的结构域进行更改或优化,提高其生物活性与稳定性。

此外,噬菌体插入基因非常容易,只需要简单的操作便可完成,从而提高了实验的可重复性和可拓展性。

3.晶体学方法另一种噬菌体展示技术是基于晶体学方法的展示技术。

该方法主要通过噬菌体溶液或噬菌体核酸复合物的晶体结晶,在晶体表面展示目标蛋白质或多肽。

该方法在克隆目标蛋白质的同时,保护目标蛋白质的原始结构,能够更好地保持蛋白质在晶体结晶过程中的自然构象。

同时,晶体学技术减少了基因工程展示技术中“扭曲”和“失效”现象的产生,增强了对蛋白质结构的保护,提高了研究和发现新型感受体的效率。

4.比较与总结从展示效率角度来看,基于基因工程的噬菌体展示技术能够在同一时间内展示大量的蛋白质或多肽。

而基于晶体学方法的展示技术则更适合在分子结构研究方面进行更为准确的展示。

此外,基于基因工程的噬菌体展示技术相对成本低廉,而基于晶体学方法的展示技术则对可用的技术和设备有更高的要求。

生物制药技术中的噬菌体展示技术介绍

生物制药技术中的噬菌体展示技术介绍

生物制药技术中的噬菌体展示技术介绍噬菌体展示技术是一种利用噬菌体(phage)作为载体展示融合蛋白的技术。

噬菌体是一种只能感染细菌的病毒,它可以通过感染细菌并复制自身来完成生命周期。

利用噬菌体展示技术,可以将外源蛋白基因插入噬菌体基因组中,使噬菌体表面显示出这种融合蛋白。

这种技术广泛应用于生物制药领域,用于抗体工程、新药发现和治疗等方面。

噬菌体展示技术有两种常用的展示系统:噬菌体颗粒展示系统和噬菌体整合展示系统。

在噬菌体颗粒展示系统中,外源蛋白被融合到表面结构蛋白的N端或C 端,通过改变表面结构蛋白的选择性、亲和力和可变区域来展示所需的融合蛋白。

而在噬菌体整合展示系统中,外源蛋白被噬菌体感染细菌后融合到噬菌体颗粒的外被,使其显示在噬菌体表面。

噬菌体展示技术具有许多优势。

首先,噬菌体具有高复制率和高效感染细菌的特性,因此可以快速、高效地展示融合蛋白。

其次,噬菌体展示的融合蛋白可以直接进行高通量、高亲和力的筛选,从而提高筛选效率。

此外,噬菌体展示技术具有灵活性,可以在不同的宿主细菌中进行展示,并可以通过染色和序列分析等方法进行定量和质量控制。

在生物制药领域,噬菌体展示技术被广泛应用于抗体工程。

通过将单链抗体基因插入噬菌体基因组中,并展示在噬菌体表面,可以利用噬菌体展示技术进行大规模抗原筛选。

此外,噬菌体展示技术还可以用于发现新的药物靶点和新药开发。

通过在噬菌体上展示小分子化合物库或肽库,可以进行高通量筛选,识别具有抗血清素、抗炎症、抗肿瘤等生物活性的分子。

噬菌体展示技术还可以用于癌症治疗,通过将抗肿瘤抗原在噬菌体上展示,可以诱导免疫细胞的抗肿瘤免疫应答。

尽管噬菌体展示技术在生物制药领域有许多应用,但也存在一些挑战和限制。

首先,噬菌体展示技术对于融合蛋白的约束性较强,对于大分子蛋白的展示效果不如其他技术。

其次,噬菌体展示技术在体内生物稳定性和免疫原性方面面临一些风险。

此外,噬菌体展示技术的高通量筛选过程中存在一定的误差和假阳性问题,需要进一步优化和改进。

噬菌体展示技术的原理及应用

噬菌体展示技术的原理及应用

二、噬菌体展示技术旳应用现状
抗体: 抗狂犬病毒旳单链抗体, 抗HIV-1囊膜糖蛋白旳单链抗体,此抗体可专一性杀死被HIV-1感染并体现有gp120旳淋巴细胞, 中和响尾蛇毒素旳单链抗, 等等。
疫苗: 展示在噬菌体表面旳HIV-1 旳gp120-V3 环 可象天然抗原一样引起明显旳免疫应答, 等等。
噬菌体抗体库旳构建
Antibody IgG structure
Antibody IgG structure
C
L
V
L
V
H
C
H
1
V
L
C
L
V
H
C
H
1
C
H
2
C
H
2
C
H
3
C
H
3
Antibody IgG structure
Hinge
(Fab’)2
Fab
Fc
MembraneExtension
Antibody IgG structure
选择措施: 淘选(Panning)而不是 筛选(Screening)
非展示系统 展示系统
Solid phase selection with immunotubes
B
B
B
B
B
B
Immunotubecoated withantigen
诊疗 被动免疫 抗体 蛋白质构造分析 药物导航 蛋白质纯化
Wash to remove unbound phage particles.
Elute bound phage
Amplify eluted phageRepeat selectionAnalyze a) ELISA b) Specificity c) Sequencing d) Affinity e) Activity
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ph.D.生物淘洗程序示意图
包被靶分子并加入肽库,肽库特异 性吸附靶分子 洗去未结合的噬菌体 洗得特异性结合的噬菌体
于ER2738扩增后进行下一轮淘洗
用Ph.D.-12肽库测定 抗原决定簇。用抗®内结 合序列与®-内啡肽的 前12个氨基酸残基序 列比较列于上图内, 共有序列元件用方框 示出。
M13噬菌体展示系统
Ph.D.-12TM噬菌体展示肽 库试剂盒将随机十二肽 融合到M13噬菌体次G or T; M = A or C
随机十二肽-gⅢ融合蛋白的N末端序0种氨基酸。 这使单密码子氨基酸的出现频率相对较高,同时Gln抑制。
Ph.D.的应用前景
近几年来,噬菌体展示技术在应用研究方面显 示出极大的实用性,一些极具应用前景的产品 如TPO、抗病毒多肽疫苗、肿瘤相关抗原p53 等正处于国际知名公司和研究机构的研究开发 之中。 可以预测噬菌体表面展示技术及蛋白质三级结 构预测、分子模拟技术的融合,将推进重组抗 体、模拟表位、受体作用、酶学机制以及生物 疫苗等动物病毒学领域的进程。
噬菌体
噬菌体是感染细菌、支原体、螺旋体、放线菌 以及蓝细菌等的一类病毒,亦称细菌病毒。 噬菌体的结构简单,基因数较少,已成为分子 生物学研究的重要工具;另外,因其还可作基 因的载体,故又被广泛应用于遗传工程的研究。
噬菌体

噬菌体展示技 术
Ph.D.由来
1985年,Smith首次将外源基因插入丝状噬菌体f1的基 因Ⅲ,使目的基因编码的多肽以融合蛋白的形式展示 在噬菌体表面,从而创建了该技术。 1988年Parmley发现已知抗原决定簇与PⅢ的N端融合在 噬菌体表面后,可特异性地被抗体选中,因此提出了 通过构建随机肽库了解抗体识别的抗原表位的设想。 1990年Scott将噬菌体随机多肽库成功应用于筛选抗原 表位,之后国内外学者进行了大量的相关研究,有力 地推动了病毒抗原表位的研究进程。
Ph.D.筛选抗原表位的优点
在抗原表位的研究中,使用噬菌体肽库作为筛选工具的 优点: 1. 可以呈现出“靶分子—模拟位”反应的自然态。小型 外源肽的定向插入对噬菌体正常的生活周期影响甚微, 这有利于表位潜力基因的顺利表达和保持天然的构象。 2. 高通量筛选。噬菌体肽库的库容一般可达109~1012, 足以将靶分子的配体从中挑选出来。 3. 易于纯化。由于M13噬菌体是非裂解噬菌体,成熟 的噬菌体分泌到培养上清中,可通过沉淀剂将绝大部分 噬菌体粒子沉淀下来,从而获得富集的阳性噬菌体克隆。
Ph.D.系统类型
根据所用噬菌体类型的不同,又可以分为丝状 噬菌体(M13,fd,f1)展示系统、λ 噬菌体展示 系统、T4噬菌体展示系统、T7噬菌体展示系统、 噬菌粒展示系统等。
λ 噬 菌 体 展 示 系 统
T4噬菌体展示系统
1.T4噬菌体病毒颗粒是在宿 主细胞内组装,被组装的 融合蛋白无需通过质膜, 不需要通过分泌途径,因 而其表面展示多肽和蛋白 的范围广。同时噬菌体还 能在体外组装,这对构建 表面展示噬菌体十分方便。 2. T4噬菌体展示周期在基于 T4生命的非必需衣壳蛋 白SOC和HOC。
谢谢!
Ph.D.概念
噬菌体展示:将外源肽或蛋白与特定噬菌体衣 壳蛋白融合并展示于噬菌体表面,进而通过筛 选表达有目的肽或蛋白质的噬菌体,得到大量 富集,然后外源基因模式图
因此,噬菌体展示技术堪称表型与基因型的统 一。外源蛋白或多肽的表型和基因型被统一在 了同一噬菌体颗粒内,通过表型筛选就可以获 得其编码基因。
Ph.D.技术的局限性
作为一种应用工具,噬菌体展示技术也有自己的局限 性,主要表现在: 1.该技术始终需要借助于其它的分析系统,如表位预测、 蛋白分析、原核表达等辅助性系统以及其他各种设计 合理的实验性平台,共同完成抗原表位的精确定位。 2.在该系统中细胞毒性分子和真核生物蛋白难以表达和 展示;构象型表位由于不具备线性表位的“一体性” 结构,所以研究难度相对增大,即使采用富含loops 的肽库遴选表位模拟物,与天然的蛋白构象之间仍然 会存在些许偏差。
相关文档
最新文档