常用机构(四连杆机构)

合集下载

铰链四杆机构的常用机构

铰链四杆机构的常用机构

第二章常用机构学习目标1.了解和掌握铰链四杆机构的组成、基本类型及其特点和应用2.了解和掌握凸轮机构的组成、特点、分类、应用及其从动件常用运动规律3.了解棘轮机构和槽轮机构的组成、分类、特点和应用无论是在生活中,还是在生产中,种各样的机构都在为人们的生活和作服务。

例如,门窗、天平秤、铲机、火车一、运动副使两构件直接接触而又能产生一定相对运动的连接,称为运动副。

在工程上,人们把运动副按其运动范围分为空间运动副和平面运动副两大类。

在一般机器中,经常遇到的是平面运动副。

平面运动副根据组成运动副的两构件的接触形式不同,可分为低副和高副。

1.低副低副是指两构件之间作面接触的运动副(图2—1),包括转动副、移动副和螺旋副。

图 2—1高副 2.高副是指两构件之间作点或线接触的运动副(图 2—2)二、平面连杆机构平面连杆机构的各构件是用销轴、滑道(低副)等方式连接起来的,各构件间的相对运动均在同一平面或互相平行的平面内。

最简单的平面连杆机构是由4个杆件组成的,简称平面四杆机构,其结构简单,易于制造,工作可靠,因此应用非常广泛。

图2—3所示2 图 2—口港重物连摇构中的双为机铲土了保证铲斗平行移动,防止泥土流出,采用了平面连杆机构3—图 2—§21 铰链四杆机构所示;在日常生—63铰链(即转动副)的形式很多,机械设备中铰链的一般形式如图 2活中,门和家具上用的合叶(图—)也是铰链联接的具体应用。

44图 2—铰链四杆机构在生活、生产和工作中广泛用于动力的传递或者改变运动的形式,例如)的运动等都是利用铰链四杆—62公共汽车车门的开闭(图2—5)、汽车前窗刮雨器(图机构来完成工作任务的。

公共汽车车门上安装了铰链四杆机构,通过杆件的联动,使两侧车门实现同时开启、同时关闭的运动。

5 图2—当有雨水或雾气聚集在汽车前挡玻璃上挡住驾驶员的视线时,开启汽车前窗刮雨器,雨刮在电动机的带动下就会左右摆动刮去雨水或雾气。

雨刮为什么能将电动机的旋转运动转变为来回的摆动?这也是铰链四杆机构的作用。

机械基础——常用四杆机构

机械基础——常用四杆机构

雷达天线俯仰角调整机构:天线固定在摇杆上,由 主动曲柄通过连杆使天线摆动以调整俯仰角度。
汽车前窗刮雨机构:主动曲柄AB回转时,从动摇杆作往复 摆动,利用摇杆的延长部分实现刮雨作用。
曲柄摇杆机构应 用 2)摆动变换为转动 缝纫机踏板机构
将摇杆的往复摆动转变为曲柄的整周转动。
破碎机
(二)双曲柄机构
铰链四杆机构按两连架杆的运动形式不同分 为三种基本形式:
曲柄摇杆机构 双曲柄机构 双摇杆机构
(一)曲柄摇杆机 构
两连架杆中一个为曲柄而另一个为摇杆的机构。 当曲柄为原动件 时,可将曲柄的连续转动转变为摇 杆的往复摆动。
曲柄摇杆机构应用 1)将转动变为摆动
搅拌机机构
黑色杆是什么? 红色杆是什么? 绿色杆是什么? 蓝色杆是什么?
曲柄导杆机构
的平面四杆 曲柄摇块机构
机构
移动导杆机构
二、铰链四杆机构的基本类型及应用
由四个杆状构件及四个转动副组成。
C B
A
D
A
D
在此机构中:AD固定不动,称为机架; AB、CD两构件与机架组成转动副,称为连架杆; BC称为连杆。 在连架杆中,能作整周回转的构件称为曲柄,而只能在一定角度 范围内摆动的构件称为摇杆。
(A) 一个; (B) 二个; (C) 三个; (D) 四个。 (2)平面机构中的高副所引入的约束数目为 A 。
(A) 一个; (B) 二个; (C) 三个; (D) 四个。 (3)平面机构中的低副所保留的自由度数目为 A 。
(A) 一个; (B) 二个; (C) 三个; (D) 四个。
复习提问
三、 问答题 (1)机器与机构的主要区别是什么?
复习提问
三、 问答题 (3)机构具确定运动的条件是什么?

下列关于四杆机构曲柄存在的条件及其推论中

下列关于四杆机构曲柄存在的条件及其推论中

四杆机构是机械制造中常用的一种机构,它由四根连接件组成,可以实现旋转或者直线运动。

其中,曲柄是四杆机构中的重要组成部分,它具有一定的特殊性。

下面我们将对四杆机构中曲柄存在的条件及其推论进行介绍和分析。

一、曲柄存在的条件在四连杆机构中,曲柄的存在有一定的条件限制,以下为曲柄存在的条件:1. 曲柄机构的参数满足Grashof条件。

Grashof条件是四连杆机构的一种特殊情况,它要求四个杆件中至少有一个杆件的长度小于其他三个杆件的长度之和,并且满足这一条件的四杆机构中必定存在曲柄。

2. 四杆机构的对角杆之和大于另外两杆之和。

即对角杆之和大于两边杆之和,这是曲柄存在的另一种条件,满足这一条件的四杆机构就可以保证存在曲柄。

二、曲柄存在的推论曲柄存在的条件决定了曲柄在四杆机构中的作用和特性,下面是曲柄存在时的一些推论:1. 曲柄机构能够实现双转动。

由于曲柄存在的特殊性,使得四杆机构的曲柄具有双转动的特点,即曲柄能够实现两种不同的旋转运动方式。

2. 曲柄机构可以用于传动系统。

曲柄机构在传动系统中具有重要作用,它可以通过曲柄和连杆的转动实现对其他机械部件的传动和控制。

三、结论通过以上对四杆机构曲柄存在的条件及其推论的介绍和分析,我们可以看出曲柄在四杆机构中具有重要作用,同时也需要满足一定的条件限制。

曲柄的存在不仅能够实现双转动,还可以用于传动系统中,对于机械制造和应用中具有一定的实际意义和价值。

在设计和应用四杆机构时,需要充分考虑曲柄的存在条件及其推论,以保证机构的正常运行和性能表现。

以上就是关于四杆机构曲柄存在的条件及其推论的介绍,希望可以对您有所帮助。

很高兴您对四杆机构曲柄存在的条件及其推论感兴趣,接下来我们将进一步扩展这个话题,探讨曲柄在机械制造和应用中的更多实际意义和价值。

四、曲柄的作用曲柄在四杆机构中有着重要的作用,它不仅可以实现双转动,还可以通过传动系统影响机械装置的运行。

1. 实现双转动曲柄在四杆机构中的存在使得机构具有了双转动的特点。

第八章 打纬第一节打纬机构

第八章  打纬第一节打纬机构

第八章打纬第一节打纬机构打纬机构沿织机前后摆动,而引纬沿织机的左右运动,这就要求打纬与引纬协调配合,打纬机构的摆动应为引纬运动留有足够的空间和时间。

常用的打纬机构按其结构型式的不同,可分为连杆式打纬机构、共轭凸轮打纬机构及圆筘片打纬机构。

打纬机构还可按其打纬动程变化与否分为恒定动程的打纬机构、变化动程的打纬机构。

目前常用的主要有连杆式打纬机构和共轭凸轮打纬机构,圆筘片打纬机构主要用于多梭口织机。

恒定动程的打纬机构主要用于普通织机,变化动程的打纬机构主要用于毛巾织机上。

一、连杆式打纬机构连杆式打纬机构是织机上使用最为广泛的打纬机构,常用的有四连杆打纬机构和六连杆打纬机构两种类型。

(一)四连杆打纬机构1.四连杆打纬机构作用原理图9-2所示为国产GA615型有梭织机使用的四连杆打纬机构。

织机主轴1为一根曲轴,其上有两只曲柄2。

连杆(也称牵手)3一端通过剖分式结构的轴瓦与曲柄2连接,另一端通过牵手栓4与筘座脚5相连接,筘座脚固定在摇轴9上,而筘座8固装在两只筘座脚上。

钢筘7通过筘帽6安装在筘座8上。

织机主轴和摇轴均安装于墙板上。

随着织机主轴回转,筘座脚5以摇轴9为中心作前后方向的往复摆动,当筘座脚5向机前摆动时,由钢筘7将纬纱推向织口。

完成打纬运动(请参见本书所附光盘)。

图9-2 GA611型有梭织机的四连杆打纬机构1-织机主轴2-曲柄3-连杆4-牵手栓5-筘座脚6-筘帽7-钢筘8-筘座9-摇轴2.四连杆打纬机构的分类四连杆打纬机构是目前织机上应用最广泛的打纬机构,其运动性能取决于连杆长度(包括结构尺寸)和轴向偏度,四连杆打纬机构可按以下特征来分类:轴向打纬与非轴向打纬。

筘座脚摆动至最前、最后位置时,相应位置上牵手栓中心的连线若通过曲轴中心,则该打纬机构被称为轴向打纬机构。

轴向打纬机构具有筘座脚向前摆动和向后摆动各占织机主轴180度,即平均速度相等的特性。

若筘座脚摆动至最前、最后位置时,相应位置上牵手栓中心的连线不通过曲轴中心,则该打纬机构被称为非轴向打纬机构。

常用机构(机械传动)

常用机构(机械传动)
.
平面连杆机构能够实现多种运动轨迹和运动规 律,广泛应用于各种机械于仪表中。
主要有:四杆机构、六杆 机构、多杆机构等。 平面连杆机构的组成: 机架——固定不动的构件; 连架杆——与机架相联的构件; 连杆——连接两连架杆且作
平面运动的构件; 曲柄——作整周定轴回转的构件; 摇杆——作定轴摆动的构件。
(5)工作可靠和寿命长 缺点: (1)对制造和安装精度要求较高,成本高 (2)精度↓时 → 噪声和振动↑ (3)不宜用于中心距较大的传动
.
齿轮机构的分类 1.平面齿轮机构 — 用于传递两平行轴之间的运
动和动力。 * 根据轮齿的排列位置可分为:内齿轮、外齿轮和 齿条;
.
* 根据轮齿的方向可分为:直齿轮、斜齿轮和人字齿 轮。
应用:节省回程时间,提高生产率
.
平面连杆机构的死点 对于曲柄摇杆机构,当摇杆为主动件时,在
连杆与曲柄两次共线的位置,机构均不能运动。 机构的这种位置称为“死点”(机构的死点位置 ) 在“死点”位置,机构的传动角 γ=0。 “死点”位置应用:
飞机起落架、钻夹具等 “死点”位置的过渡:
依靠飞轮的惯性(如内燃机、 缝纫机等)、两组机构错开
.
①计算 θ=180°(K-1)/(K+1);
②作C1 C2= H ;
③作射线C2M,
使∠C1C2M=90°-θ,
作射线C1N垂直于C1C2
b
两条射线交于P点 ;
a
④以C2P为直径作圆;
⑤作与C1 C2平行且偏距为
e的直线,交圆于A或A’,即为所求。
AC2 AB2 B2C2
AC1 B2C2 AB2
等。
分类:
平面连杆机构 空间连杆机构
.

铰链四连杆机构说课PPT课件

铰链四连杆机构说课PPT课件

04
铰链四连杆机构的运动学分析
平面运动学
平面运动学研究四连杆机构在平面内的运动,包括连杆的长度、角度、速度和加速 度等参数。
平面运动学主要通过解析几何和向量运算等方法进行分析,建立数学模型,描述四 连杆机构的运动规律。
平面运动学分析有助于理解四连杆机构的运动特性,为优化设计提供理论依据。
空间运动学
铰链四连杆机构说课ppt 课件
• 引言 • 铰链四连杆机构概述 • 铰链四连杆机构的结构分析 • 铰链四连杆机构的运动学分析 • 铰链四连杆机构的设计与优化 • 铰链四连杆机构的实践与应用 • 总结与展望
01
引言
主题介绍
铰链四连杆机构的定义
铰链四连杆机构的重要性
铰链四连杆机构是一种由四个杆件通 过铰链连接而成的机械机构,常用于 实现某些特定的运动轨迹或运动规律。
空间运动学研究四连杆机构在三 维空间中的运动,考虑了机构的
旋转和平移等自由度。
空间运动学需要利用三维坐标系 和向量运算进行建模,分析机构 的位置、姿态、速度和加速度等
参数。
空间运动学分析能够全面揭示四 连杆机构的运动特性,为复杂运 动要求的机构设计提供支持。
运动仿真与分析
运动仿真与分析通过计算机模拟技术, 对四连杆机构的运动过程进行实时模 拟和分析。
提出了一种新的铰链四连杆机构设计理念 ,通过优化算法提高了其性能,为相关领 域提供了新的解决方案。ຫໍສະໝຸດ 未来研究方向与展望研究方向
深入研究铰链四连杆机构的动 态特性、优化算法和新型应用
领域。
技术发展
随着科技的进步,探索铰链四 连杆机构与其他先进技术的结 合,如人工智能、大数据等。
实际应用
加强与企业的合作,将铰链四 连杆机构应用于更多工程领域 ,推动其产业化进程。

机械设计中的机构与齿轮传动分析

机械设计中的机构与齿轮传动分析

机械设计中的机构与齿轮传动分析在机械设计中,机构与齿轮传动是常见的机械元件,用于实现机械装置的运动和传动。

本文将对机构与齿轮传动进行分析与讨论。

一、机构的概念及分类机构是由相互连接的零部件组成,可以实现特定运动的结构。

在机械设计中,常见的机构包括平面机构、空间机构和连杆机构等。

这些机构可以用于实现直线运动、旋转运动以及复杂的路径运动。

1. 平面机构平面机构是指零件在同一平面内运动的机构。

常见的平面机构有四连杆机构、曲柄滑块机构等。

这些机构广泛应用于各种机械装置中,如发动机、工具机等。

2. 空间机构空间机构是指零件在三维空间内运动的机构。

与平面机构相比,空间机构更加复杂,具有更多的自由度。

常见的空间机构有球面机构、球柱机构等,用于实现复杂的运动路径。

3. 连杆机构连杆机构是指由连杆组成的机构,常用于实现直线或往复运动。

连杆机构分为单自由度连杆机构和多自由度连杆机构,其中四连杆机构是最常见的单自由度连杆机构。

二、齿轮传动的原理及应用齿轮传动是一种常见的动力传输方式,通过啮合的齿轮进行传动。

齿轮传动具有传动效率高、传动比稳定等特点,广泛应用于各种机械设备中。

1. 齿轮传动的原理齿轮传动是利用齿轮之间的啮合来实现转矩和速度的传递。

齿轮传动可以通过改变齿轮的尺寸、齿数和模数等参数来实现不同的传动比,以满足不同的传动要求。

2. 齿轮传动的应用齿轮传动广泛应用于各种机械装置中,如汽车变速箱、工业机械、船舶、飞机等。

齿轮传动可以将高速低转矩的动力转换为低速高转矩的动力,实现机械设备的正常运行。

三、机构与齿轮传动的分析方法在机械设计中,对于机构与齿轮传动的分析,常用的方法包括运动分析、力学分析和强度分析等。

1. 运动分析运动分析是对机构与齿轮传动的运动进行分析与计算。

通过运动分析可以确定机构的运动规律、速度和加速度等参数,进而对机械系统进行优化设计和性能评估。

2. 力学分析力学分析是对机构与齿轮传动的受力情况进行分析与计算。

四连杆机构原理

四连杆机构原理

四连杆机构原理1. 引言四连杆机构是一种常用的机械传动装置,由四个连杆构成,通过连接副将输入和输出转动运动传递给工作机构。

四连杆机构广泛应用于各种机械设备中,如发动机、汽车悬挂系统、摇臂式切割机等。

本文将详细解释四连杆机构的基本原理及其相关概念。

2. 基本概念在了解四连杆机构的原理之前,我们先来了解一些基本概念:•连杆:连接两个点的刚性杆件。

•转动副:两个连杆通过一个转动点连接而成的副。

•连接副:将两个转动副连接起来的装置。

•固定点:在运动过程中不发生位移和转动的点。

•输入连杆:与驱动源相连接的连杆。

•输出连杆:与工作机构相连接的连杆。

•运动学分析:研究物体位置、速度和加速度等运动特性的学科。

3. 四连杆机构结构四连杆机构由四个连杆和若干个转动副组成。

其中,一个连杆被固定在某个点上,称为固定连杆;另外一个连杆由输入源驱动,称为输入连杆;剩下的两个连杆连接在一起,并通过连接副与输入连杆和输出连杆相连接,称为连接连杆。

四连杆机构主要包括以下几个部分:•输入连杆:由输入源驱动,提供动力。

•输出连杆:与工作机构相连接,传递运动。

•连接连杆:将输入和输出连杆连接起来。

•转动副:连接各个连杆的转动点。

4. 四连杆机构的运动学分析四连杆机构的运动学分析是研究其位置、速度和加速度等运动特性的过程。

通过运动学分析可以确定机构的工作性能、优化设计以及预测机构的故障。

4.1 位置分析位置分析是研究机构各个部件在运动过程中的位置关系。

对于四连杆机构而言,我们需要确定各个转动副之间的相对位置关系。

在进行位置分析时,我们可以利用几何方法或向量方法。

其中,几何方法主要通过绘制示意图、利用三角函数等来求解;向量方法则利用向量运算来求解。

4.2 速度分析速度分析是研究机构各个部件在运动过程中的速度关系。

对于四连杆机构而言,我们需要确定各个转动副之间的相对速度关系。

在进行速度分析时,我们可以利用几何方法或向量方法。

其中,几何方法主要通过绘制示意图、利用三角函数等来求解;向量方法则利用向量运算来求解。

机械原理四连杆机构全解

机械原理四连杆机构全解
曲柄摇杆机构 双曲柄机构
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天效的回转力矩, 显然Pt越大越好。而P在垂直于vc方向的 分力Pn=Psin则为无效分力,它不仅无 助于从动件的转动,反而增加了从动件 转动时的摩擦阻力矩。因此,希望Pn越 小越好。由此可知,压力角越小,机 构的传力性能越好,理想情况是=0, 所以压力角是反映机构传力效果好坏的 一个重要参数。一般设计机构时都必须 注意控制最大压力角不超过许用值。
死点会使机构的从动件出现卡死或 运动不确定的现象。可以利用回转机构 的惯性或添加辅助机构来克服。如家用 缝纫机中的脚踏机构,图4-3a。 有时死点来实现工作,如图4-6所示 工件夹紧装置,就是利用连杆BC与摇杆 CD形成的死点,这时工件经杆1、杆2传 给杆3的力,通过杆3的传动中心D。此力 不能驱使杆3转动。故当撤去主动外力F 后,工件依然被可靠地夹紧。
图4-3a所示为缝纫机的踏板机构, 图b为其机构运动简图。摇杆3(原动 件)往复摆动,通过连杆2驱动曲柄1 (从动件)做整周转动,再经过带传 动使机头主轴转动。
图4-3 缝纫机的踏板机构
曲柄摇杆机构的主要特性有。
急回 压力与传动角 死点
1.急回运动
如图4-4所示为一曲柄摇杆机构, 其曲柄AB在转动一周的过程中,有两 次与连杆BC共线。在这两个位置,铰 链中心A与C之间的距离AC1和AC2分别 为最短和最长,因而摇杆CD的位置C1D 和C2D分别为其两个极限位置。摇杆在 两极限位置间的夹角称为摇杆的摆角。

四连杆死点原理-概述说明以及解释

四连杆死点原理-概述说明以及解释

四连杆死点原理-概述说明以及解释1.引言1.1 概述四连杆是一种机械构造,在工程学和机械设计中被广泛应用。

它由四条连杆组成,每个连杆通过转轴连接,形成一个闭合的结构。

四连杆具有许多重要的特性和应用,其中之一就是死点。

死点是指在四连杆运动过程中某些特定位置处,连杆之间的相对运动停止或速度为零。

在这些位置上,四连杆无法继续平稳运动,会出现停滞或无法启动的情况。

死点的存在会给四连杆带来一些不利影响。

首先,死点会导致运动过程中的能量损失,因为在死点附近,连杆之间的相对运动较慢,导致能量转化效率降低。

其次,死点会限制四连杆的运动自由度,使得其运动范围受限。

这可能会限制了四连杆在一些特定应用中的灵活性和适用性。

了解四连杆死点原理对于机械设计师和工程师来说非常重要。

通过研究死点的发生原因、位置和影响,可以有针对性地进行优化和改进,减少死点对系统性能的影响。

此外,对死点原理的深入理解还能够引导我们合理规划和设计工作机构,确保系统的可靠性和稳定性。

在本文中,我们将详细解释四连杆死点原理的背后机制并探讨其重要性。

首先我们将介绍四连杆的概念和构造,为读者提供一个基本的认知。

然后我们将定义和解释死点的概念,探讨死点对于四连杆运动的影响。

最后,我们将阐述四连杆死点原理的解释,并总结其在实际工程中的重要性。

通过本文的阅读,读者将能够深入了解四连杆死点原理,并了解如何应用这一知识来进行机械设计和优化。

1.2 文章结构文章结构部分的内容应包括对整篇文章的组成部分的简要介绍。

文章结构可以分为以下几个部分:1. 引言:在引言部分,会对四连杆死点原理的背景和重要性进行概述,并阐明文章的目的。

2. 正文:正文部分主要分为三个小节,分别是四连杆的概念和构造、死点的定义和影响,以及四连杆死点原理的解释。

在这些小节中,会对四连杆的构造和工作原理进行详细介绍,并解释死点的概念及其对四连杆运动的影响,最后会给出对四连杆死点原理的解释。

3. 结论:结论部分总结了四连杆死点原理的重要性,并展望了对该原理的应用前景。

最新常用机构(机械传动)

最新常用机构(机械传动)

平面连杆机构能够实现多种运动轨迹和运动规 律,广泛应用于各种机械于仪表中。
主要有:四杆机构、六杆 机构、多杆机构等。 平面连杆机构的组成: 机架——固定不动的构件; 连架杆——与机架相联的构件; 连杆——连接两连架杆且作
平面运动的构件; 曲柄——作整周定轴回转的构件; 摇杆——作定轴摆动的构件。
平面四连杆机构的类型: 曲柄摇杆机构 特征:曲柄+摇杆 作用:将曲柄的整周回转转变为摇杆的往复摆动。
1-2.机构设计的原则 原则:利用机构组成原理进行机构设计时,在满 足相同工作要求的条件下,机构的结构越简单、杆组 的级别越低、构件数和运动副数越少越好。 合理的机构设计是机器平稳实用的基础。机器特 定运动的实现,都是通过机构的协调运动来完成的。 一部较复杂的机器一般是由很多常用机构组成的,如 :连杆机构、轮系机构、凸轮机构、间隙机构和其它 机构,它们之间的相互组合,为实现不同的运动方案 提供了基础 ,而这使机械设计更加丰富与更富有挑,K值越大,机构的急回性质越明显。
平面机构具有急回特性的条件: (1)原动件等角速整周转动; (2)输出件具有正、反行程的往复运动; (3)极位夹角Ө>0。
应用:节省回程时间,提高生产率
平面连杆机构的死点 对于曲柄摇杆机构,当摇杆为主动件时,在
连杆与曲柄两次共线的位置,机构均不能运动。 机构的这种位置称为“死点”(机构的死点位置 ) 在“死点”位置,机构的传动角 γ=0。 “死点”位置应用:
平面连杆机构的压力角与传动角 压力角:作用在从动件上的驱动力F与力作用点
绝对速度之间所夹锐角α。 传动角( γ ):压力角的余角
切向分力 Ft= Fcosα = Fsinγ 法向分力 Fn=Fcosγ
γ↑ Ft↑ 对传 动有利,常用γ的大小 来表示机构传力性能的 好坏(越大越好)

机械原理四连杆机构分析

机械原理四连杆机构分析

图4-6 利用死点夹紧工件的夹具
二、双曲柄机构
两连架杆均为曲柄的铰链四杆机构称 为双曲柄机构。
图4-7 插床双曲柄机构
BD2=l22+l32-2l2l3cosBCD 由此可得
l l l l 2l1l 4 cos cosBCD 2l 2 l3
2 2 2 3 2 1 2 4
当=0和180时,cos=+1和-1, BCD分别最小和最大(见图4-4)。 当BCD为锐角时,传动角=BCD, 是传动角的最小值,也即BCD(min) ;
曲柄摇杆机构 双曲柄机构
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天线俯仰角调整机构
第四章 连杆机构
平面连杆机构是将各构件用转动 副或移动副联接而成的平面机构。
最简单的平面连杆机构是由四个 构件组成的,简称平面四杆机构。它 的应用非常广泛,而且是组成多杆机 构的基础。
§4-1 铰链四杆机构的基本形式 和特性
全部用回转副组成的平面四杆机构 称为铰链四杆机构,如图4-1所示。
连杆
机架
连 架 杆
图4-1 铰链四杆机构
图中,机构的固定件4称为机架;与 机架用回转副相联接的杆1和杆3称为连 架杆;不与机架直接联接的杆2称为连杆。 另外,能做整周转动的连架杆,称为曲 柄。仅能在某一角度摆动的连架杆,称 为摇杆。
Байду номын сангаас
对于铰链四杆机构来说,机架和连杆 总是存在的,因此可按照连架杆是曲柄还 是摇杆,将铰链四杆机构分为三种基本型 式:

§14—2常用机构的类型、特点和选用

§14—2常用机构的类型、特点和选用

表14-2列举了摩擦传动和啮合传动机构常用的圆周速 度和减速比范围,以及现已达到的最大传动功率,供选型 时参考。 表14-2
传动机构 平型带 类型 V带 摩擦轮
≤15~25 ≤7~10 150~250
齿轮
≤15~120 ≤4~8(30) 50000
蜗杆
≤15~35 ≤80 550

≤15~40 ≤6~10 3250
2、往复摆动:曲柄摇杆、摆动导杆、摆动推杆凸轮机构、 、往复摆动: 组合机构等。 四、实现再现轨迹的机构 四连杆机构:一般只能近似实现预期的轨迹。结构简单、 制造容易。 多杆机构或齿轮—连杆组合机构:能实现预期的轨迹。制 造困难、成本高。 凸轮—连杆组合机构:几乎可完全准确实现任意的轨迹。 制造凸轮成本高。
142常用机构的类型特点和选用在初步拟定出机械传动系统的方案后为了使传动方案逐步具体化必然要涉及到机构类型的选择问题
常用机构的类型、 §14—2 常用机构的类型、特点和选用
在初步拟定出机械传动系统的方案后,为了使传动方 案逐步具体化,必然要涉及到机构类型的选择问题。下面 我们就来对各种常用机构的工作特点、性能和适用场合等 作一简略的归纳、比较。 一、传递回转运动的机构 1、摩擦传动机构:带传动、摩擦轮传动等。 优点: 优点:构造简单、传动平稳、易实现无级变速、有过载保护作用。 缺点: 缺点:传动比不准确、传递功率小、传动效率低等。 2、啮合传动机构:齿轮、蜗杆、链传动等。链传动常用 在对精度要求不高而工作条件恶劣的地方。 3、连杆传动机构:双曲柄机构、平行四边形机构等。用 于有特殊需要的地方。
圆周速度 5~25(30) 5~30 (m/s) 减速比
≤5 ≤8~15 750~1200
最大功率 2000 (KW)

常用机构(四连杆机构)

常用机构(四连杆机构)
偏心轮用在: 曲柄销承受较大冲击载荷、曲柄长度 较短及需要装在直轴中部的机器之中 的机构中.
三、平面四杆机构的传动特性
急回特性 死点位置 压力角和传动角
急回特征
当回程所用时间小于工作行程所用时间时,称该机构具有急回特征
极位夹角: 对应从动杆的两个极限位置, 主动件两相应位置所夹锐
角.
急回特性分析: 1 = C 1 = 1 t1 =1800 + 2 = 1 t2 =1800 -
慢 快
(3) 传力特性
压力角和传动角
压力角 从动杆(运动输出件)受力点的力作用线与该点 速度方位线所夹锐角. (不考虑摩擦)
传动角
压力角的余角.(连杆轴线与从动杆轴线所夹锐角)
F
d
V
d
d
1800 d
传动不利,设计时规定 4050 通常,机构在运动过程中传动角是变化的,最小值在哪?
设计
已知活动铰点B、C中心位置,求固定铰链A、D 中心位置。
B1
C1
B2
A●
●D
C2
四杆机构 AB1C1D 为所求.
实现连杆给定的三个位置
C1 C2
B1 B2
B3 C3
D
A
四杆机构 AB1C1D 为所求.
2.具有急回特性的机构
按给定的 K 值,设计曲柄摇杆机构
1) 给定 K、y、LCD
① 分析.
(1) 曲柄存在条件
(以曲柄摇杆机构为例)
设 AB 为曲柄, 且 a<d . 由 △BCD :
b+c>f 、 b+f >c 、 c+f >b 以 fmax = a + d , fmin = d - a 代入并整理得:

三、常用机构解读

三、常用机构解读
B
曲柄 曲柄
连杆
C
A
机架
D
双曲柄机构
常见双曲柄机构类型
不 等 长 双 曲 柄 机 构
平 行 双 曲 柄 机 构
反 向 双 曲 柄 机 构
1)、不等长双曲柄机构
惯性筛中,ABCD为双曲柄机构,工作时以曲柄AB 为主动件,并作等速转动,通过连杆BC带动从动曲柄 CD,作周期性的变速运动,再通过E点的联接,使筛子 作变速往复运动。惯性筛就是利用从动曲柄的变速转 动,使筛子具有一定的加速度,筛面上的物料由于惯 性来回抖动,达到筛分物料的目的。
从铰链四杆机构的三种基本形式可知,它们的根本区别在于连架杆是否 为曲柄。而连架杆能否成为曲柄,则取决于机构中各杆的长度关系和选择哪 个构件为机架有关。即要使连架杆成为能整周转动的曲柄,各杆必须满足一 定的长度条件,这就是所谓的曲柄存在的条件。 下图所示的曲柄摇杆机构,其中AB为曲柄,BC为连杆,CD为摇杆,AD为 机架,它们的长度分别用a、b、c、d来表示,在AB转动一周中,曲柄AB与机 架AD两次共线。借助这两个位置,可找出一些铰链四杆机构的几何关系。 当连杆在B1点时,形成△AC1D。根据三角形两 边之和必大于第三边的定理, 得b-a+c>d 即b+c>d+a ① d+b-a>c即 d+b>c+a ② c b 当连杆在B2点时,形成△AC2D, 得 d+c>b+a ③ 考虑到四杆位于同一直线时, a 则①②③可写成如下形式 d b+c≥d+a ④ d+c≥b+a ⑤ d+b≥c+a ⑥ 曲柄摇杆机构 将式④、⑤、⑥分别两两相加,则得c≥a,b≥a, d≥a,即AB杆为最短杆。 曲柄存在的条件是最短杆长加最长杆之和必须小于或等于其余两杆之和。

机械原理四连杆机构

机械原理四连杆机构

播种机排种器
四连杆机构用于播种机排种器,通过调节连杆长度和角 度,实现排种量的精确控制。
工业机械中的应用
数控机床
四连杆机构用于数控机床的进给系统,实现高精度、 高效率的加工。
工业机器人
四连杆机构用于工业机器人的关节部位,实现机器人 的灵活运动和精确控制。
航空航天中的应用
飞机起落架
四连杆机构用于飞机起落架的收放系统,通过调节连 杆长度和角度,实现起落架的快速、稳定收放。
实验方法与步骤
1
3. 设定输入杆的长度和角度,启动实验,观察输 出杆的运动情况,记录相关数据。
2
4. 重复实验,改变输入杆的长度和角度,获取多 组数据。
3
5. 对实验数据进行整理和分析,得出结论。
实验结果与分析
实验结果
通过实验获取了四连杆机构在不同输入条件 下的运动数据,包括角度和速度的变化规律 。
机械原理四连杆机构
汇报人: 2023-12-27
目录
• 四连杆机构的概述 • 四连杆机构的工作原理 • 四连杆机构的类型与特点 • 四连杆机构的优化设计 • 四连杆机构的实验研究 • 四连杆机构的应用实例
01
四连杆机构的概述
定义与特点
定义
四连杆机构是一种由四个杆件相互连接组成的平面连杆机构,通过不同杆件的 相对运动实现特定的运动轨迹。
四连杆机构模型、测角仪、测速仪、数据采 集系统等。
实验方法与步骤
• 实验方法:采用控制变量法,通过改变输入杆的 长度和角度,观察输出杆的运动规律,并记录相 关数据。
实验方Байду номын сангаас与步骤
实验步骤 1. 搭建四连杆机构模型,确保各杆件安装正确,无卡滞现象。

机械基础——常用机构教学教案01(高教版)(中职教育).docx

机械基础——常用机构教学教案01(高教版)(中职教育).docx

常用机构——平面连杆机构【课程名称】平面连杆机构【教材版本】李世维主编,中等职业教育国家规划教材一一机械基础(机械类)。

第2版。

北京:高等教育出版社,2006o【教学目标与要求】一.知识目标1.了解运动副的含义,较链四杆机构的组成和三种基本型式的运动特性与应用。

2.熟悉曲柄存在的条件的判别方法。

—.能力目的1 •能够判断四杆机构是否存在曲柄?并根据已知条件确定四杆机构的具体型式。

2.熟悉三种基木型式的运动特性及应用场合。

三.素质目标1 • 了解四杆机构的运动是将连续匀速的转动转变成变速的摇动或其他型式的运动机构,实现运动型式的转化。

2.熟悉三种常见的四连杆运动的基本型式的特点。

3.能够根据曲柄存在条件及取不同构件作为机架來判断出不同的四杆机构。

四.教学要求1・熟悉高低副接触的运动特点和四杆机构的组成条件。

2.能够判断四杆机构是否存在崩柄和该机构的基本型式。

棠握三种机构的应用场合。

【教学重点】1.四杆机构曲柄存在条件的判别及四杆型式的确定。

2.熟悉三种基本型式的运动特点及应用场合。

【难点分析】1.高低运动副的区分和四杆机构基木型式的判断。

2.同向与反向双曲柄机构的运动特点。

【教学方法】讲授为主,配合教具课件演示,最后归纳总结。

【学生分析】从机械零件的静止运动转变到常用机构的教学内容,是一个rti静向动的变化过程,耍从运动的角度出发来启发学生学习本章的内容就比较容易。

同时要从具体的构件抽象出简图來研究运动特点,这也是要改变学生思路的方式。

在讲课时,一定要把这些特点先告诉学生,以便更快地适应新的教学内容。

【教学资源】1.机械基础网络课程。

北京:高等教育出版社,2006o2.吴联兴主编。

机械基础练习册。

北京:高等教育岀版社,2006o【教学安排】2学时•(90分钟)【教学过程】一.开始常用机构一章的学习,机构的特点是运动的,所以要从运动的角度出发来研究和分析机构,这样就比较容易理解掌握。

耍习惯于机构简图的表示内涵及它表示的构件运动特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摆动导杆机构:
BC<AB 导杆在小于360º范围内摆动。
(牛头刨床的主传动机构)


4
连 杆 机 构
3 C
3 C
33 3 C
C3 C3
242 2 22 242
3C C3
C3
4224 B
4224
3C
4 2 21 22 2 4
C3 4
4
3 C
A CC
C3
4 3C
3 C
4
4
4
4
3 3 C3
C3 C3
C
2 2 C
• 行程速比系数K
B
1
1
A
1
v1

v2 j
B2
4
D

B
2
1
K

v2 v1

C1C2 / t2 C1C2 / t1

t1 t2
1 2
1800 1800
180 K 1
K 1
• K=1, 无急回特性
急回特性的应用例:牛头刨工作要求
慢 快
↑K↑急回特征越显著

连 杆 机
提高偏心轴的强度和 刚度、简化结构

• 偏心轮机构



计 基 础
还如: 脚踏砂轮机构
颚式破碎机。






偏心轮用在:
曲柄销承受较大冲击载荷、曲柄长度
较短及需要装在直轴中部的机器之中
的机构中.
三、平面四杆机构的传动特性
机 械 设 计 基 础
急回特性

面 连
死点位置


压力角和传动角
b+c >a+d 、 b+d >a+c 、 c+d >a+b
B
a
A
并可得: a<b 、 a<c 、 a<d .
b f
d
C
c
D
曲柄存在的条件: (1)最短杆与最长杆长度之和小于或等于其余两杆长度和。 (2)曲柄是最短杆。
机 曲柄存在的条件:
械 设
(1)最短杆与最长杆长度之和小于或等于其余两杆长度之和

急回特征
机 械
• 当回程所用时间小于工作行程所用时间时,称该机构具有急回特征
设 • 极位夹角: 对应从动杆的两个极限位置, 主动件两相应位置所夹

锐角.

C

C
C2
• 急回特性分析:
2
1
3
平 面 连
• 1 = C • 1 = 1 t1 =1800 +
杆 机 构
• 2 = 1 t2 =1800 - • t1 > t2 , v2 > v1

础 • 实例: 汽车前轮转向机构
平 面 连 杆 机 构
3 铰链四杆机构类型的判别:
机 械
(1) 曲柄存在条件
设 计
(以曲柄摇杆机构为例)

础 设 AB 为曲柄, 且 a<d .
平 由 △BCD :
面 连
b+c>f 、 b+f >c 、 c+f >b
杆 机 构
以 fmax = a + d , fmin = d - a 代入并整理得:
(3) 传力特性
机 (2)选不同构件作机架



基 础Biblioteka • 导杆机构变更机架• 曲柄摇块机构
平 面
• 移动导杆机构

(定块机构)



• 曲柄滑块机构 导杆机构 例
曲柄滑块机构 例
曲柄摇块机构 移动导杆机构
导杆机构

将曲柄滑块机构中的曲柄作 为机架,既变为导杆机构。

设 转动导杆机构:
计 基
BC>AB
础 导杆可作360º回转
机构演化方法

平 改变杆件长度,用移动副取代回转副
面 连 杆
扩大回转副 变更机架等


连架杆 B
连杆 2
C 连架杆
3
1
A
4
D
机 (1)改变杆件长度 —— 曲柄滑块机构

设 计
曲线导轨曲柄滑块机构

C

C

2


B
杆1 机
构A
4
对CD杆等效转化
B2
3
1
转动副变成移动副 A
4 D
lCD
A
4
D
摇杆:不能作整周转动的连架杆
机架
按连架杆不同运动形式分:

械 设
(1) 曲柄摇杆机构
连架杆 B
计 基
(2) 双曲柄机构
1

(3) 双摇杆机构
A






连杆 2
C 连架杆
3
4
D
2 3
231作作机机架架 1
A
4
D
曲柄摇杆机构
22 33
1
A
4
D
曲双柄摇曲摇杆柄杆机机构构
(1) 曲柄摇杆机构

3 D
e
B
1
2
C3
A 4
对心式曲柄滑块机构
B
2
C3
e0 1
A 4
偏置式曲柄滑块机构
机 械 设 计 基 础


连 杆 机
e ——偏心距 e =0 为曲柄滑块机构
构 e≠0 为偏置曲柄滑块
运动特点: 曲柄的回转运动变换为滑块的往复直线运动(如空压机)
或将滑块的往复直线运动变换为回转运动(如内燃机)。
械 设
• 结构特点:连架杆1为曲柄,3为摇杆 2
计 基
• 举例:搅拌器机构

1
3
4

雷达天线机构






用途:改变运动形式 回转——遥感摆动 摇杆摆动——回转
(2) 双曲柄机构
机 械 设 计 基 础 平 面 连 杆 机 构
• 结构特点:二连架杆均为曲柄 • 举例:振动筛机构 变速
特殊双曲柄机构:
计 (2)曲柄是最短杆。


平 铰链四杆机构类型的判别:
面 连
当Lmax+LminL(其余两杆长度之和)时
杆 机
–最短杆是连架杆之一——曲柄摇杆机构

–最短杆是机架
——双曲柄机构
–最短杆是连杆
——双摇杆机构
当Lmax+Lmin>L(其余两杆长度之和)时
——双摇杆机构
二、铰链四杆机构的演化



计 基
3
2 3
22 2
B2
22
2 22
C 3
C 3
C
3
3
C
43 C44 4
4C4 4 44C
4 14 4
A
(3)扩大回转副 ——偏心轮机构

械 设 计
曲柄摇杆机构中,将曲柄上的 转动副B的半径扩大至超过曲柄
基 础
的长度,曲柄变成一个几何中 心与回转中心不重合的圆盘,
• 曲柄滑块机构 (扩大回转副)
平 称为偏心轮。
机 械 设 计 基 础 平 面 连 杆 机 构
• 平行四边形机构 特点:二曲柄等速
运动不确定问题 • 反平行四边形机构 结构特点:二曲柄转向相反
车门开闭机构
(3) 双摇杆机构

械 • 结构特点:二连架杆均为摇杆
设 计
• 举例: 鹤式起重机


平 面 连 杆 机 构
机 特殊机构
械 设
计 • 等腰梯形机构






内容
平 面
• 平面四杆机构的基本类型
连 杆
• 平面四杆机构的演化
机 构
• 平面四杆机构的特点及设计
了解常用四杆机构的基本类型和应用。 对急回特性、传动角、压力角、死点位置等有明确概念。
机 械
一、铰链四杆机构










铰链四杆机构
• 平面连杆机构的基本型式是铰链四杆机构 • 其余四杆机构均是由铰链四杆机构演化而成的
机 械
• 结构特点:四个运动副均为转动副
设 计
• 组成:机架、连杆、连架杆
C

2

B
3
平 面
曲柄 摇杆(摆杆)
1
连 杆
(周转副) (摆转副)
A
机 构
机架:固定不动的构件——AD
连架杆:直接与机架相连的构件
——AB、CD
连架杆 B
连杆:不与机架相连的构件—BC
1
4
D
连杆 2
C 连架杆
3
曲柄:能作整周转动的连架杆
相关文档
最新文档