精细有机合成原理
《精细有机合成原理》课程教学探讨

《 精细有机合成化学原理》课程所采用 的教材 是唐培垄 、 冯亚青 主编的《 细有机合成化学及工 精 艺学》 。课 程 内容 涉及 精 细有 机 合成 的理 论及 工 艺 学基础 、3 1 种单元反应的特点、反应机理 、影响因 素、 生产 实例 等 , 知识体 系非 常零 散且 庞 。 对 于每 一种 单 元反 应 , 习方法 应 该 从 以下 几 学 个 方 面考 虑 : 反应 历 程 ; 应 特 点 ; 响 因素 和生 产 反 影 实例 。 对 每 一 个 单 元 反 应 ,首 先 要 了解 该 反 应 的历 程, 是属于亲电取代还是亲核置换反应 等等 , 否则 在 分 析其 反 应 的影 响 因素上 理 不清 思 路 ; 后应 该 然 1 从 学生 出发 , 实际 出发 从 了解 这 个 反 应 的特 点 表 现 在 哪些 ,包 括 优 点 和缺 才 广 西 民族 师范 学 院是 刚 升 本 的 民族 、 边疆 地 方 点 。 因为学 生 只有 了解 了该 类 反 应特 点 , 能 在进 行 合 成 设 计 路 线及 工 艺 设 置 上 更 好 的 把 握 住 关 键 院校 , 据 学 生 对 基 础 知识 的掌 握 程 度 , 根 在对 原 理 就是要搞清楚有哪些因素或者说条件可 的理解 、 操作 的规范等方面要有针对性 。所以, 在进 点 。再者 , 行教学中要根据学生的具体实际情况 , 合理安排上 以影响到这个反应 。否则在进行合成过程 中, 会忽 略掉某些 因素 , 从而遇到多副产物 , 低转化率 , 产物 课 内容及其 上课 的方 式 。 后续分离 比较 困难等 问题 。最后 , 需要给学生讲述 个典型的生产实例 , 把反应历程及其特点体现出 2 从课 程设 置上进 行考 虑 来, 使学生更好的理解所讲述 的理论知识。 该课 程 的基 础是 有 机 化学 , 是 有 机化 学 安 排 但
精细有机合成原理

1.浓硝酸作为硝化剂时,参加硝化反应的活性质点是NO2+,稀硝酸作为硝化剂时,参加硝化反应的活性质点是NO+。
是(邻对位)定位基;-COOH是(间位)定位基。
2.在芳香族的亲电取代反应中,苯环上的-OCH33.(间歇操作)是将各种反应原料按一定的顺序加到反应器中,并在一定的温度、压力下经过一定时间完成特定的反应,然后将反应好的物料从反应器中放出。
4.在连续操作的反应器中,有两种极限的流动模型是(理想混合型和理想置换型)10% 的发烟硫酸换算成硫酸的浓度是。
5.按照原料单体的种类和数目不同,缩聚反应可以分为(均缩聚、异缩聚、共缩聚)三类。
6.一氯苯的生产工艺经过了三个阶段的变革即(单锅间歇生产工艺、多锅连续生产工艺、塔式沸腾连续生产工艺)。
7.芳环的取代卤化属于亲电反应,在这个反应中,卤素做亲电试剂。
8.(芳伯胺)化合物转变成重氮化合物的反应称为重氮化反应。
9.在铁屑还原法还原硝基时,铁屑的高纯度对反应利。
10.羟基是第 1 类定位基。
三1以季铵盐为例,简述相转移催化的原理,并画出示意图在互不相溶的两相体系中,亲核试剂M+Nu-只溶于水相而不溶于有机相,而有机反应物R-X+只溶于有机溶剂而不溶于水相。
两者不易相互靠拢而发生化学反应。
在上述体系中加入季铵盐Q+X-,它的季铵盐正离子Q+具有亲油性,因此季铵盐既能溶于水相又能溶于有机相。
当季铵盐与水相中的亲核试剂M+Nu-接触时,亲核试剂中的负离子Nu-可以同季铵盐中的负离子X-进行交换生成Q+Nu-离子对。
这个离子对可以从水相转移到有机相,并且与有机相中的反映物R-X发生亲核取代反应而生成目的产物R+Nu-,在反应中生成的Q+X-离子对又可以从有机相转移到水相,从而完成相转移催化的催化循环,使上述的亲核取代反应顺利完成。
2.在进行芳香族重氮化反应时,往往加入亚硝酸钠,然后再用淀粉-碘化钾试纸鉴定有过量的亚硝基存在时,再加入脲,把过量的亚硝基除去,才进行下一步的反应。
精细有机合成化学及工艺学

羰基可与亲核试剂发生缩合反应,生成醇、醚或酯类化合物;也可与亲电试剂发生加成反 应,生成烯烃或卤代烃类化合物。
羰基的α-卤代与α-氨基化
在羰基α位引入卤素或氨基,可生成α-卤代酮或α-氨基酮类化合物。常用的卤化剂有卤素、 N-卤代酰胺等,氨基化试剂有氨、胺类化合物等。
氨基官能团转化与合成策略
其他领域
此外,精细有机合成还在染料、香料、 涂料、食品添加剂等领域有着广泛的 应用。
02
基本原理与方法
有机合成反应类型及机理
亲电取代反应
亲电试剂进攻有机分子中的电 子云密度较大的部位,发生取 代反应。
消除反应
有机化合物在特定条件下失去 小分子,形成不饱和键。
亲核取代反应
涉及亲核试剂对有机化合物中 的离去基团进行攻击,形成新 的化学键。
大环化合物合成技术
01
线性合成策略
通过逐步增长碳链的方法合成大环化合物,如酰胺化、酯化等缩合反应
构建大环。
02
模板合成法
利用模板效应控制分子内成环反应,实现大环化合物的合成,如分子内
Diels-Alder反应、分子内Michael加成等。
03
片段连接法
将预先制备好的片段通过高效连接反应组合成大环化合物,如Suzuki偶
初始阶段
早期的有机合成主要依赖于天然产物的提取和分离,合成方法相对 简单。
发展阶段
随着有机化学理论的不断发展和合成方法的不断创新,精细有机合 成逐渐成为一个独立的学科领域。
成熟阶段
现代精细有机合成已经发展成为一个高度成熟的领域,合成方法和技 术不断更新和完善,能够合成出各种复杂结构和功能的有机化合物。
未来研究方向和挑战
复杂天然产物的全合成
精细有机合成与设计PPTPPT课件

$number {01}
目 录
• 引言 • 精细有机合成基础知识 • 有机合成设计原理 • 常见有机合成反应 • 有机合成中的选择性控制 • 有机合成设计实践 • 有机合成中的绿色化学与可持续
发展
01 引言
课程背景
01
精细有机合成是化学领 域的重要分支,涉及复 杂有机化合物的合成和
固相合成
02
通过固相载体将有机分子连接起来,实现连续 化、高效的合成,减少溶剂使用和废物产生。
光化学合成
04
利用光化学反应进行有机合成,具有条件温和、 选择性高等优点,可以用于一些难以通过传统
方法合成的有机分子。
有机合成中的可持续发展策略与实践
优化合成路线
通过优化有机合成的路 线和方法,降低能耗、 减少废物产生,提高合
详细描述
取代反应是有机合成中常见的一类反应,通过将有机物分子中的某一基团替换为 另一基团,以改变有机物的结构。常见的取代反应包括烷烃的取代、芳烃的取代 、卤代烃的取代等。
加成反应
总结词
通过加成的方式将两个或多个有机物 结合在一起,生成新的有机物的反应。
详细描述
加成反应是有机合成中常用的反应类 型,通过将两个或多个有机物分子结 合在一起,生成新的有机物。常见的 加成反应包括烯烃的加成、炔烃的加 成、醛酮的加成等。
类型烷基化产物的选择性合成。
氧化还原反应中的选择性控制
02
在氧化还原反应中,可以通过选择合适的氧化剂或还原剂以及
反应条件,实现选择性控制。
环化反应中的选择性控制
03
通过选择合适的反应条件和催化剂,可以实现不同类型环化产
物的选择性合成。
06
精细有机合成的名词解释

精细有机合成的名词解释在化学领域中,精细有机合成是指通过化学反应路线和手工操作,以及精细的控制条件,将简单的有机化合物转化为复杂的目标分子的过程。
这项技术的发展为物质的合成提供了重要的方法和手段,有着广泛的应用领域,包括医药、材料科学和农业等。
精细有机合成的核心思想是通过选择适当的试剂和反应条件,将化合物中的特定功能团进行转化。
这种转化过程通常需要高度纯度的试剂和催化剂,以及准确的反应控制,其中包括反应的时间、温度、压力等因素。
通过仔细的设计和实验过程,可以保证反应的高收率和高选择性,从而实现目标分子的合成。
在精细有机合成中,有几个关键概念需要注意。
首先是催化剂的选择和设计。
催化剂可以加速反应速率,并且可以提高反应的选择性。
合理选择催化剂不仅可以降低反应温度和压力,还可以减少副反应的产生。
其次是原料的选择和制备。
高纯度的原料可以提高反应的效率和选择性。
因此,在合成过程中,我们需要选择高纯度的起始材料,并对其进行适当的处理和纯化。
最后是反应的优化和控制。
通过对反应条件的优化和调控,可以达到最佳的反应效果。
精细有机合成在医药领域扮演着重要的角色。
现代医药中的许多活性分子和药物都需要通过精细有机合成来合成。
例如,抗癌药物、抗生素以及多种抗病毒药物等都是通过这种方法得到的。
通过对具有特定生物活性的分子结构进行合成,可以为研发新药提供重要的基础。
此外,精细有机合成还在材料科学领域有着广泛的应用。
通过这种方法,可以合成各种有机材料,如染料、涂料、高分子材料和液晶显示器等。
这种技术的发展不仅可以满足不同应用领域对材料的需求,还可以为环境友好型材料的合成提供新思路。
在农业领域,精细有机合成也发挥着重要作用。
通过合成特定结构的化合物,可以用作农药和植物生长调节剂等。
这些化合物可以帮助农民提高作物产量,减少病虫害的侵害,从而促进农业的发展。
总之,精细有机合成是一项重要的化学技术,通过合理的试剂选择、反应条件优化和催化剂设计等手段,可以将简单的有机化合物转化为具有复杂结构和特定功能的目标分子。
精细有机合成知识点总结

精细有机合成知识点总结一、有机合成基础知识1. 有机化合物的结构特点:有机化合物以碳为主要元素,通常含有氢、氧、氮、硫等元素,具有复杂的结构和多样的性质。
有机化合物的结构特点对于合成时的反应条件和合成路径具有重要的影响。
2. 有机合成的基本原理:有机合成是指通过将简单的有机化合物经过一系列的反应转化成目标化合物的过程。
合成的基本原理包括合成途径的选择、反应条件的控制、反应机理的理解等方面。
3. 有机合成的分类:有机合成可以根据合成途径、合成目标、合成方法等多个方面进行分类。
常见的分类包括:官能团化合成、碳碳键形成、环化反应、取代反应等。
二、精细有机合成的理论基础1. 反应机理:在精细有机合成中,对于反应的机理的理解是非常重要的。
包括反应物的选择、反应条件的控制、中间体的形成等方面的理论基础。
2. 功能团保护和去保护:在有机合成过程中,有时需要对特定的官能团进行保护,以防止其在反应过程中发生不必要的改变。
同时,也需要在合成的适当时机去除这些保护基团,以获得目标产物。
3. 立体化学:有机合成中的立体化学是一个重要的理论基础。
包括立体化学的理论基础、手性分子的制备和合成、手性识别和手性分离等方面的知识。
4. 共价键断裂和形成:在有机合成中,共价键的断裂和形成是非常常见的反应过程。
了解这些反应的机理和条件对于合成路径的选择和优化具有重要的意义。
三、精细有机合成的实验技术1. 反应条件的控制:在实际合成过程中,对反应条件的控制是非常重要的。
包括温度、压力、溶剂的选择等方面的实验技术。
2. 操作技术:精细有机合成涉及到很多精细的操作技术,包括溶剂的蒸馏、试剂的使用、产物的提取和纯化等。
3. 合成路径的选择和优化:在精细有机合成中,选择合适的合成路径对于提高产物收率和纯度都具有重要的意义。
需要根据反应物的结构特点和反应机理进行合适的路径设计和优化。
四、精细有机合成的应用1. 药物合成:精细有机合成在药物合成领域有着广泛的应用。
精细有机合成技术

第二节 酯化反应基本原理
③反应温度。羧酸与醇在液相中进行酯化时几乎不 吸收或放出热,所以平衡常数与温度基本无关,但在气 相中进行旳酯化反应,为放热反应,此时平衡常数与温 度有一定旳关系,如制取乙酸乙酯时,150℃旳平衡常数 为30,而在300℃下降为9;当用酰氯或酸酐作酰化剂时, 也是放热反应,温度对平衡常数一样有影响。
酯化反应也可不用催化剂,但为了加速反应旳进行, 必须采用200~300℃旳高温。若工艺过程对产品纯度要 求极高,而采用催化剂时又分离不净,则宜采用高温无 催化剂酯化工艺。
第一节 概述
(2)酸酐法 羧酸酐是比羧酸强旳酰化剂,合用于 较难反应旳酚类化合物及空间阻碍较大旳叔羟基衍生物 旳直接酯化,此法也是酯类旳主要合成措施之一,其反 应过程为:
第二节 酯化反应基本原理
常用旳有机酸催化剂有:甲磺酸、苯磺酸、对甲苯 磺酸等。它们较硫酸旳活性低,但无氧化性,其中对甲 苯磺酸最为常用。对甲苯磺酸具有浓硫酸旳一切优点, 而且无氧化性,碳化作用较弱,但价格较高。常用于反 应温度较高及浓硫酸不能使用旳场合,如长碳链脂肪酸 和芳香酸旳酯化。
硫酸盐也可作为酯化催化剂。如用硫酸锆为催化剂 合成丁酸乙酯。硫酸氢盐与硫酸盐有相同旳催化性能, 但能使产品旳色泽变浅。
醇与酰氯酯化时,其平衡常数很大,一般可视为不 可逆反应。
第二节 酯化反应基本原理
(2)影响酯化平衡常数旳原因 反应物构造和反应 条件对酯化反应平衡有主要影响。
①醇或酚旳构造。醇或酚旳构造对酯化平衡常数旳 影响较为明显。表13-1乙酸与多种醇旳反应转化率及平 衡常数,由表中数据能够表白,伯醇旳酯化平衡常数最 大,反应速度也最快,其中又以甲醇为最;仲醇、烯丙 醇以及苯甲醇旳平衡常多次之,反应速度也较慢;叔醇 和酚旳平衡常数最小,反应速度最慢。
精细有机合成

精细有机合成一、简述什么是精细有机合成。
精细有机合成是指利用有机反应将简单的有机物和无机物作为原料,创造新的、更复杂、更有价值的精细机化合物的过程。
人们通过精细机合成,不仅能制造出自然界已有的、甚至非常复杂的物质,而且能制造出自然界尚不存在的、具有各种特殊性能的物质,以适应人类生活、生产和科学研究的需要。
精细有机合成有两大任务:一是实现有价值的已知化合物的高效生产;二是创造新的有价值的物质与材料。
精细有机合成有两个基本目的。
一个是为了合成一些特殊的、新的有机化合物,探索一些新的合成路线或研究其他理论问题,即是实验室合成。
为这一目的所需要的量较少,但纯度常常要求较高,而成本在一定范围内不是主要问题。
另一个是为了工业上大量生产,即工业合成。
为了这一目的,成本问题是非常重要的,即使是收率上的极小变化,或工艺路线或设备的微小改进都会对成本发生很大的影响。
二、列举至少5种精细有机品。
硬脂酸钠、月桂醇聚环氧乙烷醚磷酸钠、十二烷基苯磺酸钠、失水山梨醇的脂肪酸钠、脂肪醇聚氧乙烯醚三、列举一种精细有机品的合成路线,合成方法不少于3步,并写出合成反应方程式(结构式),简述该产品的用途以及特性。
烷基苯磺酸钠合成路线煤油正构烷烃分子筛尿素络合脱氢氯化再脱HCL 正构烯烃石蜡乙烯α-烯烃丙烯四聚丙烯烷基苯氯化再烷基化烷基化烷基化烷基化发烟硫酸磺化SO3磺化中和烷基苯磺酸钠裂解齐格勒聚合三氧化硫磺化法:发烟硫酸磺化法:烷基苯磺酸钠的用途:易氧化,起泡力强,去污力高,易与各种助剂复配,成本较低,合成工艺成熟,应用领域广泛,是非常出色的易氧化,起泡力强,去污力高,易与各种助剂复配,成本较低,合成工艺成熟,应用领域广泛,是非常出色的阴离子表面活性剂。
烷基苯磺酸纳对颗粒污垢,蛋白污垢和油性污垢有显著的去污效果,对天然纤维上颗粒污垢的洗涤作用尤佳,去污力随洗涤温度的升高而增强,对蛋白污垢的作用高于非离子表面活性剂,且泡沫丰富。
但烷基苯磺酸钠存在两个缺点,一是耐硬水较差,去污性能可随水的硬度而降低,因此以其为主活性剂的洗涤剂必须与适量螯合剂配用;二是脱脂力较强,手洗时对皮肤有一定的刺激性,洗后衣服手感较差,宜用阳离子表面活性剂作柔软剂漂洗。
第二章精细有机合成基础

例如丙烯分子中,甲基上的氢原子比丙烷中的甲基氢原子活 泼得多。
第一节 精细有机合成基础知识
C—H键的电子云也可离域到相邻的空p-轨道或仅有单 个电子的p-轨道上,形成σ-p超共轭效应,使电荷分散, 体系稳定性增加。例如:
第二类取代基的主要有:—N(+)R3、—CF3、—NO2、—CN、—
SO3H、—COOH、—CHO、—COOR、—COR、—CONR2、—
N(+)H3和—CCl3等。
• 有+I,无T: 如-C2H5 (1)使σ-配合物稳定,活化苯环; (2)使邻、对位取代产物更稳定; (3)为邻、对位定位基。
• 有-I,无T: 如-N+(CH3)3,-CF3,-CCl3等 (1)使σ-配合物均不稳定,使苯环钝化; (2)使邻、对位取代产物更不稳定; (3)为间位定位基。
第一节 精细有机合成基础知识
(2)共轭效应 ①共轭效应
单双键交替排列或具有未共用电子对的原子与双键直 接相连的体系。
电子离域
第一节 精细有机合成基础知识
共轭效应也分为静态(以Ts表示)和动态(以Td表示) 两种类型,其中又可细分为给电子效应的正共轭效应(+Ts, +Td)和吸电子效应的负共轭效应(-Ts,-Td);
(b)同周期元素与碳原子形成p-π共轭时,+T效应随原子序数 的增加而变小;与碳原子形成π-π共轭时,-T效应随原子序数的增 加而变大。 +T: —NR2>—OR>—F
(c)带正电荷的取代基具有相对更强的-T效应,带负电荷的取 代基具有相对更强的+T效应:
精细有机合成与工艺介绍课件

目录
01. 精细有机合成概述 02. 精细有机合成的基本原理 03. 精细有机合成的工艺流程 04. 精细有机合成的案例分析
精细有机合成的定义
STEP1
STEP2
STEP3
STEP4
精细有机合成是 指通过化学反应 将简单的有机化 合物转化为复杂 的有机化合物的 过程。
精细有机合成的 目标是生产具有 特定结构和性能 的有机化合物, 如药物、农药、 香料等。
反应釜的加热方式:根据 反应条件选择合适的加热 方式,如电加热、蒸汽加
热等。
反应釜的安全措施:设置 安全阀、压力表等安全装 置,以确保反应的安全进
行。
反应温度与压力的控制
反应温度:影 响反应速率和 产物选择性, 需要精确控制
反应压力:影 响反应速率和 产物收率,需 要精确控制
温度和压力的 调整:根据反 应类型和条件 进行优化
品的稳定性和功效。
实际生产案例
案例一:某制 药公司生产抗 肿瘤药物
案例二:某化 工公司生产高 性能有机材料
案例三:某食 品公司生产天 然色素
案例四:某化 妆品公司生产 高端护肤品
案例五:某生 物技术公司生 产生物制药
案例六:某环 保公司生产生 物降解材料
反应釜的选择与设计
反应釜的材质:根据反应 物的性质选择合适的材质, 如不锈钢、搪瓷、玻璃等。
反应釜的容量:根据反应 物的量选择合适的容选择合适的压力,以
保证反应顺利进行。
反应釜的搅拌方式:根据 反应物的性质和反应条件 选择合适的搅拌方式,如 机械搅拌、磁力搅拌等。
精细有机合 成可以提高 产品的质量 和性能,降 低生产成本, 提高企业的 竞争力。
精细有机合 成可以促进 环境保护, 减少污染, 实现可持续 发展。
精细有机合成技术:C-酰化反应原理

黄锋-酰化反应原理
1
C-酰化反应历程
1
一、C-酰化反应原理 1.C-酰化反应历程 当用酰氯作酰化剂时,以无水三氯化铝为催化剂,反
应历程大致如下:
首先酰氯与无水三氯化铝作用生成各种正碳离子活性中间体 (a)、(b)、(c)。
这些活性中间体在溶液中呈平衡状态,进攻芳环的 中间体可能是(b)或(c),它们与芳环作用生成芳酮 与三氯化铝的络合物。例如:
芳酮与三氯化铝的络合物经水解即可得到芳酮。 当用酸酐作酰化剂时,它首先与AlCl3作用生成酰氯。
如果只有一个酰基参加酰化反应,每摩尔酸酐至少需要 2mol三氯化铝。这个反应的总方程式可简单表示如下: 上式中的RCOOAlCl2在AlCl3存在下也可以转变为酰氯,即
感谢观看
精细有机合成技术之羟醛缩合介绍课件

羟醛缩合反应可以制备具有特定生物活性的
04
材料,如药物、生物传感器等。
3
羟醛缩合反应 的挑战与优化
反应选择性
反应选择性
1 是羟醛缩合 反应的关键
反应选择性
3 可以通过优 化反应条件 来提高
反应选择性
2 决定了产物 的纯度和质 量
反应选择性的
4 提高有助于提 高反应效率和 减少副产物
反应效率
选择性:提高反 应选择性,减少 不必要的副反应
应用领域的拓展
01
医药领域:开发新型药物, 提高药物疗效
02
材料领域:制备新型材料, 提高材料性能
03
食品领域:开发新型食品添 加剂,提高食品品质
04
环保领域:开发新型环保材 料,减少环境污染
05
能源领域:开发新型能源材 料,提高能源利用效率
06
生物技术领域:开发新型生 物技术,提高生物技术水平
谢谢
随着研究的深入,未来可能会发现更多新型羟醛 缩合反应,为有机合成提供更多的可能性。
新反应的发现和应用将有助于提高有机合成的效 率和环保性,推动有机合成技术的发展。
反应机理的深入研究
D 羟醛缩合反应机理与绿色化学的关联
C
羟醛缩合反应机理在合成中的应用
B
羟醛缩合反应机理的优化与改进
A
羟醛缩合反应机理的研究进展
04 发展趋势:随着有机合成技术的不断发展,羟醛缩合反 应在药物合成中的应用将更加广泛和深入。
材料合成
羟醛缩合反应在材料合成中的应用广泛,如
01
聚合物、有机半导体、药物等。
羟醛缩合反应可以制备具有特定结构和性能的
02
材料,如高分子量聚合物、液晶材料等。
精细有机合成化学及工艺学课件

基于数据的有机合成优化与预测模型
数据驱动的模型构建 利用大数据技术,整合大量的实验数据,构建基于数据的有机 合成优化与预测模型。
模型验证与应用 对构建的模型进行验证,确保其准确性和可靠性,并将其应用 于实际的有机合成中。
数据挖掘与洞察 通过对实验数据的挖掘与分析,发现新的反应规律和优化策略, 推动有机合成技术的发展。
有机废弃物的处理与资源化利用
要点一
总结词
要点二
详细描述
有机废弃物的处理与资源化利用是实现有机合成可持 续发展的重要环节。
有机废弃物主要包括反应剩余物、副产物、废催化剂 等。这些废弃物往往难以处理,对环境造成污染。因 此,开发有效的废弃物处理和资源化利用技术对于实 现有机合成的可持续发展至关重要。例如,可以通过 催化剂的回收和再利用,反应剩余物的转化,以及副 产物的综合利用等方式,将有机废弃物转化为有价值 的资源。
05
有机合成中的计算化学与 人工智能技术
计算化学在有机合成中的应用
分子模型与模 拟
利用量子化学、分子力学等方法,构建目标 分子的模型,预测其性质、反应性等。
反应机理研究
通过计算化学手段揭示化学反应的微观过程,理解 反应的速率和选择性,优化反应条件和催化剂设计。
药物设计与筛选
通过计算化学方法,模拟药物与靶标分子的 相互作用,预测药物的活性与副作用,进行 新药设计与筛选。
还原反应
选择合适的还原剂和溶剂,控制反应 温度和时间,确保还原产物稳定且易 于分离。
酰胺化反应
选择合适的酸和胺,控制反应温度和 时间,优化催化剂的种类和用量,提 高产物的收率和纯度。
工艺优化与放大生产
小试工艺优化
在小规模反应条件下,对合成工艺进行优化,提高目 标产物的收率和纯度。
精细有机合成 总结

第1章 绪论/1、精细化工及相关行业的概念初始原料:煤、石油、天然气、生物有机质(农林副产) 基础有机原料:乙烯、丙烯、丁二烯、苯、(甲苯)、二甲苯、(乙炔、萘)、合成气(CO + H2)等。
2.2 亲电取代反应→ 2.2.3 芳香族亲电取代定位规律→(1)影响定位的主要因素 2.2.3 芳香族亲电取代定位规律 (1) 影响定位的主要因素■ 已有取代基的性质: ①极性效应 ②空间效应■ 亲电试剂的性质——也包括: ①极性效应 ②空间效应 ■ 反应条件:主要-温度、催化剂和溶剂。
上述因素中,最重要的是已有取代基的极性效应。
芳香取代反应中,苯系亲电取代反应研究的最多,也最重要。
2.2 亲电取代反应→ 2.2.3 芳香族亲电取代定位规律→(2)两类定位基 (2)两类定位基已有取代基 Z 对新取代基 E 的定位作用有两种:■第一类定位基 邻、对位定位基:-O-、-N(CH3)3、-NH2、-OH 、-OCH3、-NHCOCH3、-OCOCH3、-F 、-Cl 、-Br 、 -I 、 -CH3、-CH2Cl 、-CH2COOH 、-CH2F 等。
■第二类定位基间位定位基:-N+(CH3)3、-CF3、 -NO2、-C≡N 、 -SO3H 、-COOH 、-CHO 、-COOCH3、-COCH3、-CONH2、-N+H3、-CCl3。
上节回顾 2.2 亲电取代反应芳香族亲电取代反应历程大多数亲电取代反应是按照经过σ配合物中间产物的两步历程进行的。
其通式如下:2.3 亲核取代反应→ 2.3.2 反应影响因素→(4)溶剂的影响 (4)溶剂的影响SN1反应的第1步是一个中性的化合物离解为两个带有不同电荷的离子,因此极性溶剂有利于反应的进行。
SN2反应中,因为极性溶剂与亲核试剂可以形成氢键,亲核试剂与反应物形成过渡态时,必须首先消耗能量破坏氢键,所以反应在不形成氢键的溶剂中进行,反应速度较快。
2.4 消除反应→ 2.4.3 影响消除反应的因素→(2)反应条件的影响■ 温度的影响:提高温度有利于消除反应。
精细有机合成技术:电解有机合成技术

感谢观看
精细有机合成技术 邹静
电解有机合成技术
目
反应原理
Contents
录
1
2
3
电解反应全过程 电解反应的应用
Hale Waihona Puke 解有机合成技术• 1834年,法国化学家法拉第在实验室进行了首次有机电 合成反应——电解乙酸钠溶液制取乙烷。
• 20世纪60年代,现代有机电合成工业开始发展——以电 合成己二腈和四乙基铅的工业化为标志。
电解反应是由电化学过程、物理过程和化学过程等许 多步骤组成的。例如,图2-13是丙烯腈电解加氢二聚制己 二腈的全过程。 (1)底物S(CH2= CHCN)在电解液中通过扩散和泳动 到达阴极表面; (2)在阴极表面发生吸附形成S吸;
(3)S吸与电极之间产生电子转移,生成Ⅰ ’吸(即 C(·)H2— C(··)HCN),属电化学过程;
• 电解有机合成,也称有机电化学合成,它是用电化学技 术和方法研究有机化合物合成的一门新型学科。
1.反应原理
➢电解有机合成可分为直接法、间接法和成对法三种 类型。 ➢直接法是直接利用电解槽中的阳极或阴极完成特定 的有机反应。 ➢间接法是由可变价金属离子盐的水溶液电解得到所 需的氧化剂或还原剂,在另一反应器中完成底物的氧 化或还原反应,用过的无机盐水溶液送回电解槽使又 转化成氧化剂或还原剂。
➢ 成对法则是将阳极和阴极同时利用起来。例如,苯先 在阳极被氧化成对苯醌,再在阴极还原为对苯二酚。
单极性电解槽
隔膜:离子选择透过性膜、非选择透过性膜
双极性电解槽
➢从理论上讲,任何一种可用化学试剂完成的氧化或还原 反应,都可以用电解方法实现。在电解槽的阳极进行氧化 过程。绝大多数有机化合物并不能电离,因此,氧化剂主 要来源于水中的OH-,它在阳极失去一个电子形成·OH, 然后进一步形成过氧化氢或是释出原子氧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶剂分解反应,主要是水解反应,占溶剂分解反应的77%,可以合成醇
酸化反应,是药物合成中常用的对碱性药物的成盐修饰反应,可以提高
药物的水溶性,改善剂型加工性能以及药物的转运和代谢过程,提高生物 利用度。主要使用盐酸、硫酸、酒石酸、抗坏血酸等。
CH2CH2CH2NHNH2 N Cl HCl / CH3CH2OH S (药物:盐酸氯丙嗪) CH2CH2CH2NHNH2 HCl N Cl
%,硫化物还原占8%。
O Et ph O N
加氢还原反应,催化加氢占45%,电子还原占29%,氢负离子还原占17
O Zn / HCl Et ph N N
S N
O (药物:扑米酮)
第一章
医药工业常用化学反应:
概 论
• 精细化工中的常用的化学反应:
(酚)、醛、羧酸等,同时羟基OH、氨基NH2、羰基CO的去保护也通过 溶剂分解反应来实现。来自 精细化工的加工方法:
(1)物理方法:
萃取、精馏、蒸馏、重结晶、浸取、升华、溶解、混配、包埋(膜)
(2)化学方法
各种化学反应
精细化工的产品形式:
精细化学品工业很注重产品的剂型加工,其产品形式很多。可 以直接以化学品面市、也可以以各种剂型的终端产品面市。
第一章
医药工业常用化学反应:
反应类型 烷基化 溶剂解 使用频率 22.3 12.3 反应类型 酯化 氧化
基化使用频率最高。
烷基化反应 C- 使用频率 20.6
概 论
• 精细化工中的常用的化学反应:
烷基化反应,主要有C-、N-、O-、S-烷基化反应,其中以N-烷
N- 54.3 O- 16.5 S- 8.6
酰化反应,和烷基化反应一样,同样是N-酰化反应使用频率最高
酰化反应 使用频率 C- 23.8 N- 76.5
精细化工:
概 论
研究、开发、生产精细化学品的工业,是基础化工的升华与提 高,是化学工业发展趋势
精细化工的内涵:
包括除基础化学工业以外的所有化学工业。比如生物化工、医药化工、 香料工业、材料化工、染料化工、颜料化工、催化剂工业、油墨与涂料、 功能材料、环境化学、轻工与食品工业、农用化学品工业、化学助剂、油 脂化工、化妆与保健品工业、日用化工等等。 精细化工加工的产品已经渗透到人们生活的各个领域。
第一章
香料工业常用化学反应:
概 论
• 精细化工中的常用的化学反应:
氧化反应:主要有空气氧化、化学氧化、臭氧氧化三种。 缩合反应:主要有克莱森缩合、帕金缩合、傅克缩合反应;另外
格氏反应应用频率也很高。 还原反应:以金属还原反应使用频率最高、其次是醇钠及氨基钠 还原、再其次是催化氢化。 氧化反应:以使用频率顺序排列为化学氧化、空气氧化、臭氧氧 化,催化脱氢等
精细有机合成原理
四川大学化工学院精细化工研究室 蒋文伟 博士
主要内容提要
• 概述 • 单元反应及其特点
氧化反应及其特点 加氢还原反应及其特点 烷基化反应及其特点 酰化反应及其特点 成环与碳链增长反应及其特点
• 单元反应的应用
第一章
体系不同:
概 论
• 本课程与其它有机合成课程的区别
原有机合成课程以物质类别为主线,介绍其物化性质;本课程以单元反应 为线索,介绍反应的特点
精细化工的重要性:
精细化工是化学工业发展的总趋势,是衡量一个国家或地区经 济发展的重要指标,是保护资源与环境、坚持可持续发展的重要 的发展策略。
第一章
精细化工的原料:
概 论
• 精细化工的原料及加工方法:
(1)基础化工产品:石油化工产品、天然气化工产品、化学矿 加工产品 (2)动植物资源及加工产品
第一章
医药工业常用化学反应:
OCH2CH2Br Me2NH N-烷基化反应 OCH2CH2NMe2 C12H25Br
概 论
CH3 OCH2CH2N+C12H25BrCH3 (药物:席米酚)
N N O
• 精细化工中的常用的化学反应:
季胺化反应
Cl
NH2
Cl HCOH N-烷基化闭环反应 H2NO2S O
H2NO2S
SO2NH2
S
(利尿药:氢氯噻嗪)
第一章
医药工业常用化学反应:
概 论
• 精细化工中的常用的化学反应:
中臵换卤化最常用,使用频率为56%,取代卤化为37%,加成卤化为7%。
卤化反应,有三种方式,即臵换卤化、取代卤化、加成卤化。药物合成
SO2Cl O CH2OH 臵换卤化反应 O CH2Cl
概 论
• 精细化工中的常用的化学反应:
使用频率 5.3 5.3 反应类型 硝化 脱羧 使用频率 1.6 1.5
缩合 卤化
酰化 加氢与还原
11.3 10.9
9.6 9.0
酸化 重氮化
重排 磺化
4.1 1.9
1.7 1.6
消除
1.5
注:表中数据是根据近300中药物合成中涉及化学反应统计得出的。
第一章
医药工业常用化学反应:
深度不同:
原课程仅限于介绍基础知识,本课程内容是在有机化学的基础上进一步的 归纳总结
重点不同:
本课程的重点在于对单元反应进行归纳、总结,得出一般的规律, 并强调单元反应的应用
• 本课程的学习方法与目的
多看、多想、多总结 掌握典型的有机合成的一般规律及其应用方法
第一章
• 精细化工及内涵:
S
第一章
香料工业常用化学反应:
合成香料的原料
概 论
• 精细化工中的常用的化学反应:
林产化学品:主要是植物精油及加工产品 煤化工产品:如苯酚、萘酚 石油化工产品:各种醇、醛、烯烃等
合成香料常用的化学反应,主要有氧化、还原、缩合、酯化等。
化学反应 缩合反应 氧化反应 酯化反应 还原反应 C烷/酰基 使用频率 17.5 12.6 11.8 11.3 9.3 化学反应 成环反应 水解反应 O烷基化 硝化反应 消除反应 使用频率 7.73 4.38 4.12 4.03 3.35 化学反应 异构化 加成反应 卤化反应 脱羧反应 重排反应 使用频率 2.58 2.58 2.32 1.80 1.55
CHO 醛醛缩合反应 (桂醛) CH CHCHO
+
CH3CHO
第一章
香料工业常用化学反应:
CH2Cl Mg CH2MgCl
概
论
CH3 CH2 C CH3 OH
• 精细化工中的常用的化学反应:
CH3COCH3
O O 异黄樟油素 氧化反应
O O 洋茉莉醛
CHO
第一章
农药工业常用化学反应: