(自学)体外定点突变
采用重叠PCR进行定点突变
采用重叠PCR进行定点突变体外定点突变技术是研究蛋白质结构和功能之间的复杂关系的有力工具,也是我们在实验室中改造/优化基因常用的手段。
而采用重叠引物PCR介导的定点突变实验是一种快速有效的在基因中特定位点引入特定突变的有效技术。
该技术采用具有互补末端的引物,使PCR产物形成了重叠链, 从而在随后的扩增反应中通过重叠链的延伸,将不同来源的扩增片段重叠拼接起来。
此技术利用PCR技术能够在体外进行有效的基因重组,而且不需要内切酶消化和连接酶处理,可利用这一技术很快获得其它依靠限制性内切酶消化的方法难以得到的产物。
该技术主要包括以下几步:设计引物,PCR扩增基因两端,回收两端片段,两端片段退火延伸,扩增全长基因。
1. 引物设计重叠延伸PCR技术成功的关键是重叠互补引物的设计。
可以有三种方法来设计引物,具体如下图所示。
引物F及R为基因两端特异引物,其中Fm及Rm为中间引物。
其中引物Fm及Rm中间共享一段序列(至少10bp完全匹配,否则后续实验很难成功),突变点可以设计在Fm或Rm,也可以两条引物上都有突变点。
突变点最好是位于引物的5’端,尽量避免出现在3’端。
2. 分别用引物F和Rm及Fm和R进行配对进行PCR。
注意该步一定要用pfu酶,不要用Taq酶,因为Taq酶容易在PCR产物末端加A,从而可能会使产物移码突变。
3. 分别回收第2步所得两条PCR产物(一定要用胶回收,准确回收两条目的条带)。
4. 将第3步所得两份PCR产物进行混合使其互为模板及引物,加入dNTP及Pfu或Taq酶进行PCR。
进行PCR约5-10轮即可。
5. 取第4步PCR产物做为模板,加入引物F及R进行PCR扩增出具有突变的全基因。
定点突变技术的原理和步骤
定点突变技术的原理和步骤嘿,咱今儿来聊聊定点突变技术呀!这玩意儿可神奇了呢!你想啊,就好像是一个特别厉害的魔法,能让基因按照我们的想法来变一变。
那定点突变技术的原理是啥呢?简单来说,就是要精准地在基因的特定位置上搞点小改动。
这就好比是在一个庞大的基因拼图里,准确地找到那一块我们想要动的小拼图,然后给它换个模样。
这可不是随随便便就能做到的哦,得有非常精细的操作和技巧才行呢。
那具体咋操作呢?这步骤可不能马虎。
首先呢,得设计好要突变的那个点,这就像是给要走的路先规划好方向,可不能瞎走。
然后,要准备好各种工具和材料,这就跟出门得带好钥匙、钱包一样重要。
接下来,就是真正开始动手啦!就像一个精巧的工匠,小心翼翼地对基因进行操作。
把原来的那块小拼图取出来,再把我们准备好的新的放进去。
这过程可得特别仔细,不能有一点差错,不然可就前功尽弃啦!做完这些还不算完哦,还得检查检查,看看变的对不对,效果好不好。
这就像我们做完作业得检查一遍一样,可不能马马虎虎的。
你说这定点突变技术是不是很神奇?它能让我们对基因进行精确的改造,为很多领域带来了巨大的帮助。
比如说在医学上,能帮助我们研究疾病的发生机制,找到更好的治疗方法。
在农业上呢,能让农作物变得更优秀,产量更高,品质更好。
想象一下,如果没有定点突变技术,我们对基因的了解和利用会少多少啊!那得是多大的损失呀!所以说,这项技术真的是太重要啦!总之呢,定点突变技术就是这样一个既有趣又有用的东西。
它让我们对基因的操控变得更加精准和有效。
我们要好好利用它,让它为我们的生活带来更多的好处和惊喜。
你说是不是呀?。
名词解释体外突变的概念
名词解释体外突变的概念体外突变是指基因组的一处或多处发生变异且不会被遗传给后代的现象。
这种变异可以由环境因子引起,例如辐射、化学物质或病毒感染等。
体外突变在细胞或个体层面发生,可以导致某些细胞的突变,但不会被遗传给下一代。
体外突变与生物个体的遗传物质(DNA)相关,DNA分子是构成生命的遗传信息的基本单位。
它由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成的链状结构,编码了生物体所需的蛋白质合成信息。
然而,由于各种原因,例如自然辐射、化学物质暴露和病毒感染,DNA分子可能会发生变异。
体外突变是指这些DNA分子的基因组中发生的变异,但不会被纳入生物个体的遗传基因库中。
在细胞层面,体外突变可能会导致突发性突变,即DNA链断裂、碱基对插入或删除等。
这些突变可能会干扰基因的正常功能,导致细胞生命周期的异常或导致细胞死亡。
在个体层面,体外突变可能会导致一些可见的身体突变。
例如,辐射暴露可导致皮肤患者发生烧伤、灼伤或其他组织损伤;化学物质暴露可导致毒性反应,如过敏、溃疡或器官损伤。
虽然这些身体突变可能在短期内有明显影响,但它们通常不会被纳入生物个体的遗传信息中,因此不会被传给后代。
细胞或个体受到突变的影响通常是暂时的。
当细胞或个体受到突变的刺激后,大多数细胞会试图修复受损的DNA分子,以维持正常的基因组。
一些修复机制,如DNA修复酶,可以寻找和修复受损的DNA分子。
这种修复机制对于保护细胞免受严重的DNA突变和损伤非常重要。
然而,即使有修复机制的存在,体外突变仍然可能在细胞或个体中造成一些不可逆转的损害。
一些细胞可能无法进行修复,导致其死亡或不正常功能。
在个体层面,体外突变可能导致细胞的死亡,组织损伤或一些疾病的发展。
尽管体外突变在遗传学中的作用有限,但它仍然是生物学研究中一个重要的现象。
通过了解和研究体外突变,科学家们可以更好地理解生物体如何对不同环境因素做出响应,并制定相应的防护措施。
此外,研究体外突变还可以帮助人们更好地了解细胞和基因组的功能和调控机制,从而推动生物医学和药物研发领域的进步。
定点突变原理
定点突变原理定点突变原理是指生物体基因组中某个特定位置的碱基序列发生突变的现象。
这种突变可以是单个碱基的替换、插入或缺失,也可以是更大范围的基因片段的改变。
定点突变可以导致生物体的遗传信息发生改变,从而影响其表型特征和遗传特性。
定点突变的发生通常是由于DNA复制过程中的错误或外部环境因素的影响。
在DNA复制过程中,酶类会不时出现错误,导致新合成的DNA链上出现错误的碱基。
此外,环境因素如辐射、化学物质等也会对DNA分子产生损害,导致定点突变的发生。
定点突变可以分为两种类型,点突变和插入/缺失突变。
点突变是指单个碱基的改变,包括错义突变、无义突变和无框移码突变。
错义突变是指由于碱基替换导致对应的氨基酸发生改变,从而影响蛋白质的结构和功能;无义突变是指由于碱基替换导致对应的密码子变成终止密码子,导致蛋白质合成过程中提前终止;无框移码突变是指由于碱基插入或缺失导致密码子的读框发生改变,从而影响蛋白质合成过程中的氨基酸序列。
插入/缺失突变则是指在基因组中插入或缺失一段碱基序列,导致基因的框架发生改变,进而影响蛋白质的合成。
定点突变的发生对生物体的遗传特性和表型特征都会产生影响。
在遗传学研究中,定点突变被认为是生物体进化过程中的重要驱动力之一。
一些有利于生物体适应环境的定点突变可以被自然选择所保留,从而在种群中逐渐普及。
而一些不利于生物体适应环境的定点突变则可能被淘汰。
因此,定点突变在生物体的进化过程中扮演着重要的角色。
定点突变也是许多遗传性疾病发生的原因之一。
一些致病基因中的定点突变会导致蛋白质结构和功能的改变,从而引发一系列遗传性疾病。
对定点突变的研究有助于我们更好地理解遗传疾病的发病机制,并为相关疾病的治疗提供理论基础。
总之,定点突变是生物体遗传信息发生变化的重要方式,它对生物体的遗传特性、进化过程以及遗传性疾病的发生都具有重要影响。
对定点突变的深入研究不仅有助于我们更好地理解生物体的遗传特性,也为相关领域的研究提供了重要理论基础。
定点突变的步骤
定点突变的步骤定点突变是一种在基因研究中超级酷的技术呢。
咱就先来说说最开始要做的事儿吧。
得先确定好你要突变的那个基因序列。
这就像是在一大串密码里,找到你想搞点小把戏的那一小段密码一样。
这个基因序列的选择可不能马虎,得是对整个研究或者实验有重要意义的部分哦。
接着呀,就得设计突变引物啦。
这引物就像是一把特殊的小钥匙,能精准地找到你想要突变的地方。
设计引物的时候可讲究了,要考虑好多因素,什么碱基互补啦,长度合适啦之类的。
就像你搭配衣服,得考虑颜色搭不搭,款式合不合适一样。
有了引物之后呢,就是进行PCR反应啦。
这PCR反应就像是一个小小的基因复印机,不过呢,它可是按照你设计的引物来工作的。
它会把包含你要突变位置的那一段基因大量地复制出来,而且在这个过程中,因为有引物的引导,就会在复制的时候产生你想要的突变。
这个过程就像是一场小小的基因魔法秀,在分子的小世界里悄悄地改变着基因的模样。
PCR反应完了之后,还得对产物进行验证呢。
这就好比做完了一件艺术品,你得检查检查有没有瑕疵。
验证的方法有不少,像是测序之类的。
测序就像是给基因拍个高清照片,然后仔细看看每个碱基是不是都在正确的位置,有没有按照我们想要的突变发生了改变。
要是验证通过了,那就可以把这个突变后的基因放到细胞或者生物体里啦。
这就像是把一个新的小零件装到一个大机器里,然后看看这个新零件会给大机器带来什么样的变化。
也许会产生一些意想不到的效果,也许会按照我们预想的那样改变细胞或者生物体的某些特性。
定点突变虽然听起来很复杂,但就像做一道超级复杂的菜一样。
只要一步一步按照正确的步骤来,精心准备每一个材料,用心操作每一个步骤,最后就能做出一道让自己满意的“基因大餐”啦。
这过程中虽然可能会遇到不少小麻烦,就像做菜的时候盐放多了或者火候没掌握好,但只要不断调整,总会得到想要的结果的。
而且每一次成功的定点突变,都像是打开了一扇通往新知识新发现的小窗户,让人特别有成就感呢。
定点突变讲解学习
1.1.1 基因定点突变简介(INTRODUCTION )定点突变(site-directed mutagenesis )是指通过聚合酶链式反应(PCR )等方法向目的DNA 片段(可以是基因组,也可以是质粒)中引入所需变化,包括碱基的添加、删除、点突变(单点/多点)等。
定点突变能迅速、高效的提高DNA 所表达的目的蛋白的性状及表征,是基因研究工作中一种非常有用的手段。
原理上分两种:1. 搭桥法(重叠PCR )2. 一步法(全质粒PCR ) ► 搭桥法(重叠PCR )定点突变搭桥法共需要两对引物(两端引物,中间引物),三次PCR ,其中前两次PCR 可同时完成,原理如图一所示:两次PCR 的产物回收,作为模板加上两端引物primer F 和primer R 进行PCR3。
PCR1:以primer F 和primer Rm 为引物对扩增PCR2:以primer R 和primer Fm 为引物对扩增实验步骤(PROCEDURE )1. 两对引物的Tm 值都应相当。
两端PCR 引物参照普通引物设计并无特殊要求。
所需引入突变包含在中间引物互补区域内 (需要在两条引物上均引入点突变),请勿将突变位点置于引物3’ 末端且突变位点距离3’ 端最少要有15个碱基,因为有非匹配碱基的存在,太短会导致引物与模板无法结合。
2. 对于一对中间引物的设计,如左图所示(高亮处是突变碱基),两引物间可以是完全互补,也可是部分互补。
但两引物间互补部分的Tm 值不能太低(太低导致PCR3无法配对延伸)。
搭桥法定点突变3.PCR:PCR1:以primer F 和primer Rm 为引物对扩增;PCR2:以primer R 和primer Fm 为引物对扩增。
两次PCR的产物回收,作为模板加上两端引物primer F和primer R 进行PCR3。
(注意前两次不能使用taq聚合酶,因为taq在产物3’ 端多加一个A,导致后续的PCR3出现移码突变)4.克隆:回收PCR3产物,酶切,连接,转化。
定点突变技巧:从单点突变到多点突变[指南]
定点突变技术:从单点突变到多点突变体外定点突变技术是研究蛋白质结构和功能之间的复杂关系的有力工具,也是我们在实验室中改造/优化基因常用的手段。
蛋白质的结构决定其功能,二者之间的关系是蛋白质组研究的重点之一。
对某个已知基因的特定碱基进行定点改变、缺失或者插入,可以改变对应的氨基酸序列和蛋白质…体外定点突变技术是研究蛋白质结构和功能之间的复杂关系的有力工具,也是我们在实验室中改造/优化基因常用的手段。
蛋白质的结构决定其功能,二者之间的关系是蛋白质组研究的重点之一。
对某个已知基因的特定碱基进行定点改变、缺失或者插入,可以改变对应的氨基酸序列和蛋白质结构,对突变基因的表达产物进行研究有助于我们了解蛋白质结构和功能的关系,探讨蛋白质的结构/结构域。
而利用定点突变技术改造基因,相信大家也非常熟悉:比如野生型的绿色荧光蛋白(wtGFP)是在紫外光激发下能够发出微弱的绿色荧光,经过对其发光结构域的特定氨基酸定点改造,现在的GFP能在可见光的波长范围被激发(吸收区红移),而且发光强度比原来强上百倍,甚至还出现了黄色荧光蛋白,蓝色荧光蛋白等等。
定点突变技术的潜在应用领域很广,比如研究蛋白质相互作用位点的结构、改造酶的不同活性或者动力学特性,改造启动子或者DNA作用元件,提高蛋白的抗原性或者是稳定性、活性、研究蛋白的晶体结构,以及药物研发、基因治疗等等方面。
对于单点突变,Stratagene公司的QuikChange Site-directed Mutagenesis kit是不错的选择,通过巧妙设计,将质粒定点突变技术变得简单有效。
准备突变的质粒必须是从常规E.coli中经纯化试剂盒(Miniprep)或者氯化铯纯化抽提的质粒。
设计一对包含突变位点的引物(正、反向),和模版质粒退火后用PfuTurbo聚合酶“循环延伸”,(所谓的循环延伸是指聚合酶按照模版延伸引物,一圈后回到引物5’端终止,再经过反复加热褪火延伸的循环,这个反应区别于滚环扩增,不会形成多个串联拷贝。
基因定点突变全攻略
基因定点突变全攻略一、定点突变得目得把目得基因上面得一个碱基换成另外一个碱基.二、定点突变得原理定点突变就是指通过聚合酶链式反应(PCR)等方法向目得DNA片段(可以就是基因组,也可以就是质粒)中引入所需变化(通常就是表征有利方向得变化),包括碱基得添加、删除、点突变等。
定点突变能迅速、高效得提高DNA所表达得目得蛋白得性状及表征,就是基因研究工作中一种非常有用得手段。
体外定点突变技术就是研究蛋白质结构与功能之间得复杂关系得有力工具,也就是实验室中改造/优化基因常用得手段。
蛋白质得结构决定其功能,二者之间得关系就是蛋白质组研究得重点之一。
对某个已知基因得特定碱基进行定点改变、缺失或者插入,可以改变对应得氨基酸序列与蛋白质结构,对突变基因得表达产物进行研究有助于人类了解蛋白质结构与功能得关系,探讨蛋白质得结构/结构域。
而利用定点突变技术改造基因:比如野生型得绿色荧光蛋白(wtGFP)就是在紫外光激发下能够发出微弱得绿色荧光,经过对其发光结构域得特定氨基酸定点改造,现在得GFP能在可见光得波长范围被激发(吸收区红移),而且发光强度比原来强上百倍,甚至还出现了黄色荧光蛋白,蓝色荧光蛋白等等。
定点突变技术得潜在应用领域很广,比如研究蛋白质相互作用位点得结构、改造酶得不同活性或者动力学特性,改造启动子或者DNA作用元件,提高蛋白得抗原性或者就是稳定性、活性、研究蛋白得晶体结构,以及药物研发、基因治疗等等方面.通过设计引物,并利用PCR将模板扩增出来,然后去掉模板,剩下来得就就是我们得PCR 产物,在PCR产物上就已经把这个点变过来了,然后再转化,筛选阳性克隆,再测序确定就行了.三、引物设计原则引物设计得一般原则不再重复.突变引物设计得特殊原则:(1)通常引物长度为25~45 bp,我们建议引物长度为30~35 bp。
一般都就是以要突变得碱基为中心,加上两边得一段序列,两边长度至少为11—12 bp。
若两边引物太短了,很可能会造成突变实验失败,因为引物至少要11-12个bp才能与模板搭上,而这种突变PCR要求两边都能与引物搭上,所以两边最好各设至少12个bp,并且合成多一条反向互补得引物。
体外定点突变PCR法构建abl T315I突变的重组质粒标准品
体外定点突变PCR法构建abl T315I突变的重组质粒标准品石淙;张长林;简正伟;江梅;闻芳;万腊根【期刊名称】《实验与检验医学》【年(卷),期】2013(031)002【摘要】目的利用聚合酶链反应(PCR)定点突变技术构建含人类abl基因第6号外显子片段的野生型及含T315I突变型重组质粒,作为检测abl T315I基因突变的阳性对照和阴性对照标准品.方法先设计包括突变位点的两对引物,以健康人外周血基因组DNA为模板,扩增获得野生型和突变型abl基因第6号外显子片段,将其插入pSG5M-flag载体质粒中,并将所获重组质粒分别进行酶切与测序鉴定,通过紫外分光光度计检测标本的浓度和纯度.结果 DNA测序表明在预期位点上发生突变,abl 基因第315位氨基酸密码子由苏氨酸(Thr)残基突变为异亮氨酸(Ile)残基,所构建abl基因野生型和突变型质粒,经酶切和测序鉴定与目的片段完全一致.结论 PCR技术诱导定点突变准确、高效.所构建含野生型和T315I突变的abl基因重组质粒,可为检测abl基因T315I突变提供阴性和阳性对照以及质控品,同时也为T315I突变的相关研究奠定了基础.【总页数】4页(P111-114)【作者】石淙;张长林;简正伟;江梅;闻芳;万腊根【作者单位】南昌大学第一附属医院检验科,江西南昌330006;南昌大学第一附属医院检验科,江西南昌330006;南昌大学第一附属医院检验科,江西南昌330006;南昌大学第一附属医院检验科,江西南昌330006;南昌大学第一附属医院检验科,江西南昌330006;南昌大学第一附属医院检验科,江西南昌330006【正文语种】中文【中图分类】R733.72;Q343.1+3【相关文献】1.PCR定点突变法构建人抗菌肽FALL-39基因突变体及其功能的研究 [J], 杨云霞;熊文碧;冯云;王伯瑶2.采用定点突变PCR构建c-kit D816V突变的重组质粒标准品 [J], 徐芬;张长林;简正伟;江梅;万腊根3.用PCR体外定点突变技术诱导霍乱毒素A亚基突变体的构建 [J], 司艺玲;苏堤;李付广4.利用PCR介导的基因定点突变技术构建L.plantarum P-8亚油酸异构酶突变体[J], 贾丽;赵国芬;李晨曦;张和平;包秋华5.利用PCR介导的基因定点突变技术构建L.plantarum P-8亚油酸异构酶突变体[J], 贾丽;赵国芬;李晨曦;张和平;包秋华因版权原因,仅展示原文概要,查看原文内容请购买。
基因定点突变
PCR介导的定点突变
人工合成 具有突变 序列的 DNA片段
野生型基因
盒式诱变
应用:SOD酶化学修饰研究:
天然的SOD 稳定性较差,具有免疫原性,功能相 对单一,而限制了其应用,化学修饰可以增强酶稳 定性,降低免疫原性。 2003 年,赵数进,尹亮等用相对分子量为 2000~20000的PEG 修饰SOD,发现相对分 子量为6000 的PEG 修饰效果好 1986 年,袁勤生等用高碘酸钠氧化右旋糖酐成 二醛修饰SOD, 实验表明,修饰酶不仅完全保留了 天然酶的活性,而且在耐热性、耐酸性,抗胃蛋白 酶水解的能力等方面明显优于天然酶。
结果
定点突变后3个质粒测序结果及突变前后序 列对比3个质粒的测序结果有2种,分别和文 献的Cu,Zn-SOD序列对比: 其中1个质粒测序结果和Cu,Zn-SOD基因 序列完全一致,说明突变未成功; 另外2个质粒分别有2个碱基和Cu,Zn-SOD 因序列不同,也就是Cys的密码子TGC变成 了Ala的密码子GCC,其他序列与Cu,ZnSOD基因一致,符合预期要求。
PCR定点突变
整个反应体系为50μl,其中含无菌去离 子水41μl,10×Pfu Polymerase Buffer(含Mg2+)5μl,20μmol/L P1、 P2引物各1μl,pESOD质粒1μl(约 100ng),Pfu DNA聚合酶1μl(5U);反应 条件为:94℃预变性3min;然后94℃变性 1min,65℃ 30s,72℃延伸7min,25个 循环;最后72℃延伸7min,4℃保存。
定点突变的原理和应用
定点突变的原理和应用1. 定点突变的定义定点突变是指在DNA序列中发生的局部突变,导致该位置的碱基序列发生改变。
这种突变只发生在特定的位点上,不会影响其他的DNA区域。
2. 定点突变的原理定点突变通常是通过基因编辑技术实现的,最常用的技术是CRISPR/Cas9系统。
以下是定点突变的原理步骤:•选择目标基因:首先需要选择一个或多个目标基因进行突变。
•设计RNA引导序列:设计一个RNA引导序列,使其能够与目标基因的特定区域配对。
•制备Cas9蛋白:将Cas9蛋白在实验室中通过重组技术制备出来。
•激活CRISPR/Cas9系统:给细胞提供Cas9蛋白和RNA引导序列,激活CRISPR/Cas9系统。
•RNA引导序列与目标基因配对:激活后的Cas9蛋白会与RNA引导序列形成复合物,引导该复合物与目标基因的特定区域配对。
•Cas9蛋白的剪切活性:一旦Cas9蛋白与目标基因配对成功,其剪切活性会被激活,导致目标基因的突变。
3. 定点突变的应用定点突变技术在生命科学研究和生物工程领域有广泛的应用。
下面列举了一些常见的应用领域:3.1 疾病研究通过定点突变技术,可以模拟、研究多种遗传性疾病。
通过突变引入到实验动物模型中,可以深入了解疾病的发生机制、病理过程和潜在治疗方法。
3.2 基因治疗定点突变技术可以用于基因治疗,通过修复特定基因的突变来治疗某些遗传性疾病。
例如,修复CFTR基因的突变可以治疗囊性纤维化。
3.3 遗传改良定点突变技术可用于改良作物品种,使其具有更好的品质、更高的产量或更强的抗逆能力。
3.4 新药开发定点突变技术可以用于研究药物的作用机制和副作用,以及筛选潜在的药物靶点。
3.5 细胞工程通过定点突变技术,可以对细胞进行工程改造,从而使其具有特定的功能或性状,广泛应用于医药、能源和材料等领域。
4. 定点突变技术的优势和挑战定点突变技术相比传统的突变技术具有以下优势:•准确性:定点突变技术可以实现特定位点的精确突变,避免了无关的突变。
定点突变步骤
定点突变步骤嘿,咱今儿就来唠唠定点突变这档子事儿!你想啊,这定点突变就像是给基因这个大拼图来个精准改造。
那这第一步呢,就像是个侦察兵,得先找到咱要下手的那个确切位置。
这可不是随便找找就行的,得瞪大眼睛,仔仔细细,不能有半点马虎呀!不然弄错了地方,那不就白折腾啦!然后呢,咱就得设计出专门对付这个位置的武器啦,也就是所谓的引物。
这引物就像是一把钥匙,得和咱要突变的地方严丝合缝对上才行呢!这可得花点心思,好好琢磨琢磨,可不能马大哈似的随便搞搞。
接下来,就该让这钥匙发挥作用啦!把它和咱的基因模板放一块儿,让它们相互作用。
这过程就好像一场奇妙的化学反应,充满了未知和惊喜呢!等它们反应得差不多了,就得进行扩增啦!这扩增就好比是把小树苗培养成参天大树,让突变的部分不断壮大,变得越来越明显。
扩增完了可不算完事儿哦,还得把得到的产物进行筛选和鉴定呢!这就像是从一堆沙子里找出金子,得有耐心,还得有好眼力。
你说这定点突变是不是很神奇呀?就这么一步步的,就可以把基因按照我们的想法给变一变。
这要是放在以前,那简直是想都不敢想的事儿呢!咱再回过头来想想,这每一步都不容易呀!找位置要准,设计引物要精,反应要恰到好处,扩增要适度,筛选鉴定要仔细。
这就跟盖房子似的,哪一个环节出了问题,这房子都盖不结实呀!所以啊,搞定点突变可不能掉以轻心,得打起十二分的精神来。
不然一个不小心,就可能前功尽弃啦!你说这多可惜呀!总之呢,定点突变就是这么一个神奇又充满挑战的过程。
需要我们有足够的耐心、细心和智慧。
这可不是随便谁都能玩得转的哟!只有真正热爱这一行,愿意钻研的人,才能在这个领域闯出一片天来呢!你准备好迎接这个挑战了吗?。
定点突变——精选推荐
定点突变基因定点突变⼀、定点突变的⽬的把⽬的基因上⾯的⼀个碱基换成另外⼀个碱基。
⼆、定点突变的原理通过设计引物,并利⽤PCR将模板扩增出来,然后去掉模板,剩下来的就是我们的PCR 产物,在PCR产物上就已经把这个点变过来了,然后再转化,筛选阳性克隆,再测序确定就⾏了。
三、引物设计原则引物设计的⼀般原则不再重复。
突变引物设计的特殊原则:(1)通常引物长度为25~45 bp,我们建议引物长度为30~35 bp。
⼀般都是以要突变的碱基为中⼼,加上两边的⼀段序列,两边长度⾄少为11-12 bp。
若两边引物太短了,很可能会造成突变实验失败,因为引物⾄少要11-12个bp才能与模板搭上,⽽这种突变PCR要求两边都能与引物搭上,所以两边最好各设⾄少12个bp,并且合成多⼀条反向互补的引物。
(2)如果设定的引物长度为30 bp,接下来需要计算引物的Tm值,看是否达到78℃(GC含量应⼤于40%)。
(3)如果Tm值低于78℃,则适当改变引物的长度以使其Tm值达到78℃(GC含量应⼤于40%)。
(4)设计上下游引物时确保突变点在引物的中央位置。
(5)最好使⽤经过纯化的引物。
Tm值计算公式:Tm=0.41×(% of GC)–675/L+81.5注:L:引物碱基数;% of GC:引物GC含量。
四、引物设计实例以G CG→A CG为例:5’-CCTCCTTCAGTA TGTAG G CGACTTACTTA TTGCGG-3’(1)⾸先设计30 bp长的上下游引物,并将A (T)设计在引物的中央位置。
Primer #1: 5’-CCTTCAGTATGTAG A CGACTTACTTATTGC-3’Primer #2: 5’-GCAATAAGTAAGTCG T CTACATACTGAAGG-3’(2)引物GC含量为40%,L为30,将这两个数值带⼊Tm值计算公式,得到其Tm=75.5(Tm=0.41×40-675/30+81.5)。
定点突变的原理及应用
定点突变的原理及应用1. 简介定点突变(Site-directed mutagenesis)是一种通过有意诱导改变DNA的特定位置的技术。
通过改变DNA序列,可以产生新的突变型,并用于研究基因功能、蛋白质结构与功能关系、以及药物设计等领域。
本文将介绍定点突变的原理及应用。
2. 原理定点突变技术主要有两种方法:化学法和分子生物学法。
以下是两种方法的原理说明:2.1 化学法化学法主要通过碱基修饰剂来改变DNA序列。
常用的方法是使用化学修饰剂N-methyl-N-nitro-N-nitrosoguanidine (MNNG) 或nitrous acid (HNO2)处理DNA,使其发生碱基突变。
这些碱基修饰剂会引起DNA中的碱基发生氧化、甲基化、烷基化等修饰,导致DNA序列的变化。
2.2 分子生物学法分子生物学法是目前应用较广泛的定点突变方法。
主要有以下几个步骤: 1)设计引物:根据目标突变位点的上下游序列,设计引物。
2)PCR扩增:使用设计的引物进行PCR扩增,得到含有突变位点的DNA片段。
3)点突变:使用特定的酶和突变体模板进行点突变反应,使目标位点发生突变。
4)验证突变:通过测序或其他技术手段验证突变是否成功。
3. 应用定点突变技术在许多领域都有广泛的应用,包括但不限于以下几个方面:3.1 研究基因功能定点突变可以用于研究基因功能和调控机制。
通过引入特定的突变体,可以观察到基因功能的变化,进而研究基因在生物体内的作用机制。
3.2 蛋白质结构与功能关系研究蛋白质的结构与功能之间具有密切的关系。
定点突变可以通过改变蛋白质的氨基酸序列,研究蛋白质结构与功能之间的关系。
通过观察突变体的结构和功能变化,可以揭示蛋白质的结构与功能之间的关联。
3.3 药物设计与筛选定点突变技术在药物设计与筛选中也有重要应用。
通过针对特定的基因位点进行突变,可以筛选出与目标药物相互作用的突变体,从而为药物设计和筛选提供理论依据。
定点突变技术
操作:设计引物,分别PCR,前两次PCR 反应产物经琼脂糖凝胶电泳鉴定后无需 纯化,直接将胶条切下置于EP管中, 80℃冷冻10min,然后将胶条离心后分 别取上清液作为模板进行第三次PCR,以 获得全长的突变目的基因
PCR介导的定点突变法其优点是操作较简 单,突变的成功率可达100%。但它亦 有两个缺点:①后续工作较复杂,PCR扩 增产物通常需要连接到载体分子上,然
寡核有酸引物介导的定点突变 法其优点是保真度比PCR突变法 高,经过改进后使该方法突变少 成功率大大提高,缺点是操作过 程环节复杂制。
盒式突变法具有简单易行、突变效率高 等优点,还可以在一对限制酶切位点内 一次突变多个位点。缺点是合成多条引 物的成本较高。另外,在一般情况下, 在靶DNA片段的两侧往往难以满足存在 一对限制性酶切位点的要求,限 制了该 方法的广泛应用。然而一旦具备了这样 的条件该方法则为首选。
定点突变技术
刘微
基因的定点突变技术
点突变的技术有很多种,常见的有: ㈠寡核苷酸介导的定点突变技术
(M13噬菌体法) ㈡ 盒式诱变 ㈢PCR点突变技术
1.引物PCR定点诱变法 2.重组PCR定点诱变法 3.重叠延伸PCR技术
寡核苷酸引物诱变技术 (M13噬菌体)
噬菌体M13的生活周期有二个阶段,在噬菌体 粒子中其基因组为单链,侵入宿主细胞以后, 通过复制以双链形式存在。将待研究的基因 插入载体M13,制得单链模板,人工合成一 段寡核苷酸(其中含一个或几个非配对碱基) 作为引物,合成相应的互补链,用T4连接酶 连接成闭环双链分子。经转染大肠杆菌,双 链分子在胞内分别复制,因此就得到两种类 型的噬菌斑,含错配碱基的就为突变型。
重组PCR定点诱变2
操作:设计引物,分别PCR, 从两个PCR反 应管中各取出3μl PCR反应产物,混匀后用 CaCl2转化法转化至感受态大肠杆菌中。涂 平板后,从转化的细菌菌落中随机挑选若干,筛 选。
(自学)体外定点突变
corresponding wt DNA sequence
第13页,共52页。
deselect for wild type strand Transform and screen
Isolate DNA and sequence to verify
第14页,共52页。
1. Clone insert into plasmid vector
2. Denature and anneal mutagenic oligonucleotides
位点特异性突变
定点突变
随机突变
第8页,共52页。
位点特异性突变的类型
寡核苷酸介导的基因突变指用含有突变碱基的寡聚 核苷酸片断作为引物,在聚合酶的作用下启动DNA分 子进行复制。
盒式突变是利用一段人工合成的含基因突变序列 的寡核苷酸片段,取代野生型基因中的相应序列。
PCR介导的基因突变
第9页,共52页。
May be far more complicated including insertions, deletions and compound substitutions
Minimum length of oligo determined by complexity of mutation
Simple single base mutations use ~25 nt oligos More complicated mutations may require oligos
定点突变
周赞虎等人采用快速PCR定点突变方法成功地对 hCu,Zn-SOD进行了基因改良,即将hCu,Zn-SOD 基因中非活性中心的Cys111密码子突变为Ala密码 子,以提高其稳定性。 朱大兴等人对该试剂盒试验规程进行了改良, 利用实验室的常规试剂进行定点突变,并指出PCR 突变反应产物能被琼脂糖电泳检测到是非常重要的, 因为这样有利于分析试验成败的原因。 周兴等人以定点突变方法对325RLDRD32基序 的带电荷氨基酸进行突变,并构建R325D、R328A、 R328D、R328Q和D329N五个突变体。
1988年,ein首次将其用于植物转基因研究,克服了当时农杆菌 介导的转基因方法的受体种类和基因型的限制,开创了植物转基 因方法的新领域。McCabeetal利用基因枪法转化大豆幼胚和成 熟胚的下胚轴获得了转基因再生植株。 1990年,From示etal利用基因枪法成功转化T玉米胚性愈伤组织 。同年Fine:andMcmullen(1990)用陆地棉柯字310的胚性悬浮系 进行的基因枪转化。获得了10个再生植株,较农杆菌介导的遗传 转化,所用的再生时间较短(5个月)。其后,MeCabeandM inell 报道T基因型独立的基因枪转化方法。 1994年,Hieital通过使用农杆菌侵染诱导剂乙酞丁香酮(AS)以及 构建巧rG和巧rB高效表达的超双元载体,高效成功地转化了水稻 。利用该转基因系统,Ishidaetal(1996)、Tingayetal(1997)和 Chengetal(1997)相继获得了玉米、大麦和小麦的转基因植株。
八、参考文献
1.定点突变技术的研究进展
2.植物基因定点突变与定点置换技术及其在植物遗传改良中的应用
3,基因定点突变技术简介
谢谢观赏
七、应用前景
定点突变技术ppt课件
位点特异性突变的类型
• 寡核苷酸介导的基因突变指用含有突变碱
基的寡聚核苷酸片断作为引物,在聚合酶的作 用下启动DNA分子进行复制。
• 盒式突变是利用一段人工合成的含基因突变
序列的寡核苷酸片段,取代野生型基因中的相 应序列。
• PCR介导的基因突变
Kunkel 法
原理
在E. coli中
dUTP
dUMP
优点:几乎没有特殊限制,而且成功率高, 因此运用非常广泛
同时利用重叠延伸PCR机设可以对基因中 心区段进行取代、插入、缺失的突变
各种方法的比较
寡聚核苷酸介导的突变 盒式突变
PCR介导的突变
优 点
保真度高
缺 操作复杂 点 周期长
简单易行 突变效率高
合成多条引物成本 高 受到酶切位点的限 制
操作简单 突变成功率高
后续工作复杂 TapDNA聚合酶 保真性偏低
应用
• 一步反向PCR法 • Stratagen 公 司 的
Quickchange试剂盒
一种简便快速的定点突变的方法
• Stratagen 公 司 研 制 的 Quickchange 试 剂 盒,可以双链DNA质粒为模板,只需一对 引物,进行一次PCR,在1~2d内即可完 成点突变过程。
Oligo诱导突变的改进方法
• 武汉大学的叶林柏等人对Oligo诱导 突变方法进行了改进。2-3个核苷酸 替换的突变频率可达80%-85%,即使 是需要有道连续4个氨基酸缺失,突 变频率也高达40%-50%。
原Kunkel 法
DNA聚合酶和T4 连接 酶同步加入 直ຫໍສະໝຸດ 用反应混合物转 染 转染效率:3个空斑
改进后的方法
分级退火,冰浴稳固异 源双链再加T4 连接酶 经酚-仿抽提后再进行 转染 转染效率:78个空斑
基因的定点突变
六、定位突变用途
• 定点突变法的应用不仅广泛用于基因工程技术领域,还可 用于农业培育抗虫、抗病的良种,用于医学矫正遗传病、 治疗癌症等病。 • 定点突变技术的潜在应用领域很广,比如研究蛋白质相互 作用位点的结构、改造酶的不同活性或者动力学特性,改 造启动子或者DNA作用元件,引入新的酶切位点,提高蛋白 的抗原性或者是稳定性、活性、研究蛋白的晶体结构,以 及药物研发、基因治疗等等方面。
• 有的时候研究可能需要多个位点的定点突变,比如改造酶的活性或 者动力学特性,研究蛋白之间的相互作用位点等,单点突变不能满 足实验的需要,重复进行单点突变也非常浪费时间。因而 Stratagene公司又推出了QuikChange Multi Site-Directed Mutagenesis kit。最多一次实验可以引入5个定点突变。这个试剂盒的原理和 Clontech的相似,就是准备多个带突变的引物(同方向,对同一单 链模版),退火后全部突变引物(不超过5个)都结合在同一环状 单链模版,PfuTurbo聚合酶延伸,碰到下一个引物就停止,各片断 经连接成环,和单链模版组成杂和环,DpnI消化双链模版,也消化 杂和环中的模版,只留下新合成的带多个突变的单链环(mutant ssDNA),得以转化E.coli,形成双链质粒。
1988年,ein首次将其用于植物转基因研究,克服了当时农杆菌介导 的转基因方法的受体种类和基因型的限制,开创了植物转基因方法的 新领域。McCabeetal利用基因枪法转化大豆幼胚和成熟胚的下胚轴获 得了转基因再生植株。 1990年,From示etal利用基因枪法成功转化T玉米胚性愈伤组织。同 年Fine:andMcmullen(1990)用陆地棉柯字310的胚性悬浮系进行的基因 枪转化。获得了10个再生植株,较农杆菌介导的遗传转化,所用的再 生时间较短(5个月)。其后,MeCabeandM inell报道T基因型独立的基 因枪转化方法。 1994年,Hieital通过使用农杆菌侵染诱导剂乙酞丁香酮(AS)以及构建 巧rG和巧rB高效表达的超双元载体,高效成功地转化了水稻。利用该 转基因系统,Ishidaetal(1996)、Tingayetal(1997)和Chengetal(1997)相继 获得了玉米、大麦和小麦的转基因植株。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. Clone insert into plasmid vector
2. Denature and anneal mutagenic oligonucleotides
3. Extend using DNA polymerase; Ligate using T4 DNA ligase
4. Select mutant strand; Retransform into final host
How?
GENETIC SCREEN… Seቤተ መጻሕፍቲ ባይዱect PHENOTYPE – determine GENOTYPE or
REVERSE GENETICS… Create GENOTYPE – determine PHENOTYPE i.e., translate sequence into function
DOMINANT NEGATIVE MUTATION: dominant-acting
SUPPRESSOR MUTATION: suppresses phenotypic
effect of another mutation, so double mutant seems normal:
In Vitro Mutagenesis(体外基因突变)
LOSS-OF-FUNCTION MUTATION: either reduces or
Types of Mutation (3)
NULL MUTATION: loss-of-function mutation completely
abolishing activity of gene
GAIN-OF-FUNCTION MUTATION: increases activity of
gene or makes it active in inappropriate circumstances; usually dominant mutation blocking gene activity, causes loss-of-function phenotype even in presence of normal copy of gene. Occurs when mutant gene product interferes with function of normal gene product
体外基因突变(In Vitro Mutagenesis) 包括:
单个碱基或片断的替换 基因片断的插入 基因片断的删除
根据其特点可将体外基因突变技术分为两大类:
位点特异性突变 随机突变
定点突变
位点特异性突变的类型
寡核苷酸介导的基因突变指用含有突变碱基的
寡聚核苷酸片断作为引物,在聚合酶的作用下 启动DNA分子进行复制。
盒式突变是利用一段人工合成的含基因突变序
列的寡核苷酸片段,取代野生型基因中的相应 序列。
PCR介导的基因突变
Design of Mutagenic Oligonucleotides
Crucial step in site-directed mutagenesis is design of
Traditional general procedure
Generate ssDNA (M13) Anneal mutagenic oligo Extend with DNA polymerase
and dNTP Seal nicks with DNA ligase Select for mutant strand or deselect for wild type strand Transform and screen Isolate DNA and sequence to verify
Classical Site-Directed Mutagenesis
Protocols for site-directed mutagenesis involve; Design and synthesis of mutagenic
oligonucleotides Hybridization of mutagenic oligo to ssDNA target cloned into bacteriophage vector (usually M13) – eliminates competition between mutagenic oligo and complementary DNA strand Extension of hybridized oligo by DNA polymerase with all 4 dNTPs Formation of closed circular DNA by ligation with DNA ligase Transfection of susceptible bacteria Screening for mutant clones by hybridization (e.g., using oligo) – sequence confirmation Recovery of mutated DNA fragment Substitution of mutagenized fragment for corresponding wt DNA sequence
to find out what happens when it is missing or mutated
Study mutants that lack gene/protein or express altered
version of it - determine which biological processes are altered in mutants Change solubility, stability, structure, function of a protein Change enzyme activity or substrate specificity
At its most simplistic, in vitro mutagenesis allows us
to change the base sequence of a DNA segment or gene Mutations can be localized or general, random or targeted; Less specific methods of mutagenesis used to analyze regulatory regions of genes More specific methods of mutagenesis used to understand contribution of individual amino acids, or groups of amino acids, to structure and function of target protein Both methods generate mutants in vitro, without phenotypic selection
Types of Mutation (2)
LETHAL MUTATION: causes developing organism to die
prematurely
CONDITIONAL MUTATION: produces its phenotypic
effect only under certain conditions, called the restrictive conditions. Under other conditions—the permissive conditions—the effect is not seen. For a temperature-sensitive mutation, the restrictive condition typically is high temperature, while the permissive condition is low temperature abolishes the activity of the gene. This is the most common class of mutation. Loss-of-function mutations are usually recessive—the organism can usually function normally as long as it retains at least one normal copy of the affected gene
INVERSION MUTATION: inverts segment of
DELETION: deletes segment of chromosome TRANSLOCATION: breaks off segment from one
chromosome and attaches it to another
Types of Mutation (1)
POINT MUTATION: maps to single site in genome,
corresponding to single nucleotide pair or very small part of single gene
chromosome
体外定点突变
Why?
Want to determine how DNA and/or encoded proteins
function in intact entity (virus, bacterium, cell, animal etc.)
Most direct way to find out what a gene or protein does is