多元统计分析期末试题及答案

合集下载

(完整版)多元统计分析试题及答案

(完整版)多元统计分析试题及答案

2009学年第2学期 考试科目:多元统计分析 考试类型:(闭卷) 考试时间:100 分钟学号 姓名 年级专业一、填空题(5×6=30)22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

二、计算题(5×11=50)(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

应用多元统计分析试题及答案(1)

应用多元统计分析试题及答案(1)

应用多元统计分析试题及答案(1)多元统计分析是现代统计学中不可或缺的一部分,它是用于对不同数据进行相关分析的高级统计方法。

对于需要进行多因素分析的问题,多元统计分析是必须掌握的技能。

以下是一些应用多元统计分析的试题及答案。

试题1:假设你要进行一项研究,以评估学生在学期末考试成绩与他们的就业情况之间是否存在关联。

你将分析什么类型的多元统计分析?答案:此问题需要进行一种二元多元回归分析。

此方法可以用于探索学期末考试成绩和就业情况之间的相关性。

通过回归分析,我们可以计算出两个变量之间的相关系数以及建立一个数学模型来预测就业成功与否的可能性。

试题2:你是一家旅游公司的行销经理,你想了解你们的财务状况、品牌信誉和市场定位之间的关系。

采用哪种多元统计分析来解决这个问题?答案:这个问题需要进行一种因子分析。

因子分析是一种常用的多元统计技术,可用于探索大量变量之间的共性或相似性。

因此,行销经理可以使用因子分析来探究这三个因素之间的关系,以帮助公司更好地了解市场需求、推广策略和产品定位。

试题3:你是一名医学研究员,你需要研究新型药物的效果以及它是否与特定人群的特征相关。

哪种多元统计分析可用于研究?答案:这个问题需要使用一种路径分析方法。

路径分析是一种分层回归分析技术,可用于探索变量间的直接和间接影响关系。

因此,研究人员可以使用路径分析来研究新型药物的效果以及与特定人群特征的相关性,以便更好地理解治疗效果的影响因素。

试题4:你是一名市场分析师,你需要研究不同年龄、性别和教育水平的人群之间的消费习惯。

采用哪种多元统计分析来解决这个问题?答案:这个问题需要使用一种聚类分析方法。

聚类分析是一种将成为节点的相似对象分组的过程。

因此,市场分析师可以使用聚类分析来将相似的人群以及他们的共同消费习惯分成几个类别,以便更好地了解不同年龄、性别和教育水平背景下的人群之间的消费习惯和偏好。

结论:多元统计分析是一种有用的技术,可以用于探索大量不同变量之间的关系,对于需要分析多个变量之间关系的问题,多元统计分析是必须学习的基本技能。

(完整版)多元统计分析试题及答案

(完整版)多元统计分析试题及答案

2009学年第2学期 考试科目:多元统计分析 考试类型:(闭卷) 考试时间:100 分钟学号 姓名 年级专业一、填空题(5×6=30)22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

二、计算题(5×11=50)(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

(完整word版)多元统计分析期末试题及答案

(完整word版)多元统计分析期末试题及答案

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑L 、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

多元统计分析期末试题

多元统计分析期末试题

一、填空题(20分)1、若),2,1(),,(~)(n N X p =∑αμα 且相互独立,则样本均值向量X2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。

3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。

4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。

5、设样品),2,1(,),,('21n i X X X X ip i i i ==,总体),(~∑μp N X ,对样品进行分类常用的距离有:明氏距离,马氏距离2()ijd M =)()(1j i j i x x x x -∑'--,兰氏距离()ij d L=6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。

7、一元回归的数学模型是:εββ++=x y 10,多元回归的数学模型是:εββββ++++=p p x x x y 22110。

8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。

9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。

二、计算题(60分)1、设三维随机向量),(~3∑μN X ,其中⎪⎪⎪⎭⎫⎝⎛=∑200031014,问1X 与2X 是否独立?),(21'X X 和3X 是否独立?为什么?解: 因为1),cov(21=X X ,所以1X 与2X 不独立。

把协差矩阵写成分块矩阵⎪⎪⎭⎫⎝⎛∑∑∑∑=∑22211211,),(21'X X 的协差矩阵为11∑因为12321),),cov((∑='X X X ,而012=∑,所以),(21'X X 和3X 是不相关的,而正态分布不相关与相互独立是等价的,所以),(21'X X 和3X 是独立的。

2、设抽了五个样品,每个样品只测了一个指标,它们分别是1 ,2 ,4.5 ,6 ,8。

多元统计期末考试试题

多元统计期末考试试题

多元统计期末考试试题一、选择题(每题2分,共20分)1. 以下哪项不是多元统计分析中常用的数据预处理方法?- A. 标准化- B. 归一化- C. 特征选择- D. 数据清洗2. 多元回归分析中,当自变量之间存在高度相关性时,我们通常称之为:- A. 多重共线性- B. 正态性- C. 同方差性- D. 独立性3. 以下哪项不是主成分分析(PCA)的目的?- A. 降维- B. 特征选择- C. 变量解释- D. 增加数据的维度4. 聚类分析中,若要衡量聚类效果,常用的指标不包括:- A. 轮廓系数- B. 熵- C. 戴维斯-库尔丁指数- D. 距离方差5. 因子分析中,因子载荷矩阵的元素表示:- A. 观测变量的均值- B. 因子的方差- C. 观测变量与因子之间的关系- D. 因子之间的相关性二、简答题(每题10分,共30分)1. 请简述多元线性回归分析的基本假设,并说明违反这些假设可能带来的问题。

2. 描述主成分分析(PCA)的基本步骤,并说明其在数据降维中的应用。

3. 聚类分析与分类分析有何不同?请举例说明。

三、计算题(每题25分,共50分)1. 假设有一组数据,包含三个变量X1、X2和Y,数据如下:| X1 | X2 | Y ||-|-|-|| 1 | 2 | 3 || 2 | 4 | 6 || 3 | 6 | 9 || 4 | 8 | 12 |请计算多元线性回归模型的参数,并检验模型的显著性。

2. 给定以下数据集,进行K-means聚类分析,选择K=3,并计算聚类中心。

| 变量1 | 变量2 | 变量3 ||--|-|-|| 1.2 | 2.3 | 3.4 || 1.5 | 2.5 | 3.6 || 4.1 | 5.2 | 6.3 || 4.4 | 5.6 | 6.8 || 7.1 | 8.2 | 9.3 || 7.4 | 8.6 | 9.9 |四、论述题(每题30分,共30分)1. 论述因子分析与主成分分析的异同,并讨论它们在实际应用中可能遇到的问题及解决方案。

多元统计期末考试题及答案

多元统计期末考试题及答案

多元统计期末考试题及答案一、选择题(每题2分,共20分)1. 在多元线性回归中,如果一个变量的系数为0,这意味着什么?A. 该变量对因变量没有影响B. 该变量与因变量完全相关C. 该变量与因变量无关D. 该变量是多余的2. 主成分分析(PCA)的主要目的是什么?A. 减少数据的维度B. 增加数据的维度C. 找到数据的均值D. 找到数据的中位数3. 以下哪个不是聚类分析的优点?A. 可以揭示数据的内在结构B. 可以用于分类C. 可以减少数据的维度D. 可以找到数据的异常值4. 在因子分析中,如果一个因子的方差贡献率很低,这通常意味着什么?A. 该因子对数据的解释能力很强B. 该因子对数据的解释能力很弱C. 该因子是多余的D. 该因子是重要的5. 以下哪个是多元统计分析中常用的距离度量?A. 欧氏距离B. 曼哈顿距离C. 切比雪夫距离D. 所有以上选项二、简答题(每题10分,共30分)6. 解释什么是多元线性回归,并简述其在实际问题中的应用。

7. 描述主成分分析(PCA)的基本原理,并举例说明其在数据分析中的作用。

8. 简述聚类分析的过程,并讨论其在商业数据分析中的应用。

三、计算题(每题25分,共50分)9. 假设有以下数据集,包含两个变量X和Y,以及它们的观测值:| 观测 | X | Y |||||| 1 | 2 | 3 || 2 | 3 | 4 || 3 | 4 | 5 || 4 | 5 | 6 |请计算X和Y的协方差,并解释其意义。

10. 给定以下数据集,进行聚类分析,并解释聚类结果:| 观测 | 变量1 | 变量2 |||-|-|| 1 | 1.5 | 2.5 || 2 | 2.0 | 3.0 || 3 | 3.5 | 4.5 || 4 | 4.0 | 5.0 |多元统计期末考试题答案一、选择题1. A2. A3. C4. B5. D二、简答题6. 多元线性回归是一种统计方法,用于分析两个或两个以上的自变量(解释变量)与一个因变量之间的关系。

多元统计分析试题及答案

多元统计分析试题及答案

多元统计分析试题及答案华南农业⼤学期末试卷(A 卷)2006学年第2学期考试科⽬:多元统计分析考试类型:(闭卷)考试时间:120 分钟⼀、填空题(5×6=30)22121212121~(,),(,),(,),,1X N X x x x x x x ρµµµµσρ∑==∑=+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________iiii XN i W XXµµµ='∑=--∑ 、设则=服从。

()1234433,492,3216___________________X x x x R -?? ?'==-- ? ?-?=∑、设随机向量且协⽅差矩阵则它的相关矩阵________________。

(),123设X=xx x 的相关系数矩阵通过因⼦分析分解为211X h =的共性⽅差111X σ=的⽅差21X g =1公因⼦f 对的贡献121330.9340.1280.9340.4170.8351100.4170.8940.027 0.8940.44730.8350.4470.1032013R ?-?-=-=-+5,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N TX A X µµµµ-=∑∑'=-- 、设是来⾃多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

⼆、计算题(5×11=50)12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x µµ-??'=∑=-∑=-- --??+、设其中试判断与是否独⽴?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.62103.17237.14.5X S µ--'=-?? ?==-- ? 0、对某地区农村的名周岁男婴的⾝⾼、胸围、上半臂围进⾏测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

多元统计分析期末试题及答案.doc

多元统计分析期末试题及答案.doc

4、设 X=(X|X 2xj 的相关系数矩阵通过因子分析分解为_13 2<3(0.934 0、 ‘0.934 -0.417 0.835、<0.128 、 -0.417 0.89+ 0.027、0 0.894 0.447、0.835 0.44 Z、0.103X 的共性方差叶0.872(0.934八2) 的方差o H = 1_ (0.128+0.934*0.934)1、设X =(兀[宀心)~弘(“上),其中〃 =(1,0厂2)'工'16 -42、-44 -1 ,<2 -1 4丿试判断禹+2无3与是否独立?1、设X ~ “2(“◎),其中X =(“ 宀)=(“1,“2),工=, VP 1丿 贝l 」CoV (尢]+ x 2,x ( - x 2)二 •102、设 X j 〜N 、mn= 1,…,10,则 w 二工(X, -J = 1服从 。

‘4-4 3、 3、设随机向量X =(x, x 2兀3)‘,且协方差矩阵-49 -2U-2 16丿则它的相关矩阵R=_公W J'lj 对X 的贝献篦=_ (0.934人2+0.417人2+0.835人) ______ °5、设XJ = 1,…,16是来自多元正态总体竹(“上),乂和A 分别为正态总体Np (“Q )的样木均值和样木离差矩阵,则厂=15[4(乂-“)"“[4(乂-“)]〜 ________ o〔4]而其先验概率分别为彳=% =0.5,误判的代价C(2|l) = /33、设已知有两正态总体5与11“试用Bd)疚判别法确定样本X属于哪一个总体?4、W=(X,,X 2,X 3,X 4)r ((),£),协方差阵工二(1P P¥<1 1)J 9丿,C(1|2) yp p p 1丿2、对某地区农村的6名2周岁男婴的身高、胸围、上半臂围进行测量, 得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的 均值他= (90,58,1 6)',现欲在多元正态性的假定下检验该地区农村男婴是 否与城市男婴有相同的均值。

多元统计学多元统计分析试题(A卷)(答案)

多元统计学多元统计分析试题(A卷)(答案)

《多元统计分析》试卷题号 一 二 三 总分 分值 40 40 20 100 得分1、若),2,1(),,(~)(n N Xp =åa m a 且相互独立,则样本均值向量X 服从的分布为)1,(~ånN X p m 。

2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。

3、判别分析是判别样品、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。

4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。

进行聚类。

5、设样品),2,1(,),,('21n i X X X X ip i i i ==,总体),(~åm p N X ,对样品进行分类常用的距离有:明氏距离qpqjiij x x q d 11)||()(å=-=aa a ,马氏距离2()ijd M =)()(1j i j i x x x x -å¢--,兰氏距离()ij d L =å=+-pj i j i x x x x 1||a a a a a 。

6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。

7、一元回归的数学模型是:eb b ++=x y 1,多元回归的数学模型是:e b b b b ++++=ppxxxy22110。

8、对应分析是将、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。

结合起来进行的统计分析方法。

9、典型相关分析是研究两组变量之间、典型相关分析是研究两组变量之间相关关系相关关系的一种多元统计方法。

的一种多元统计方法。

得分 评卷人 一、填空题(每空2分,共40分)得分 评卷人 二、计算题(每小题10分,共40分)1、设三维随机向量),(~3åm N X ,其中÷÷÷øöçççèæ=å200031014,问1X 与2X 是否独立?),(21¢X X 和3X 是否独立?为什么?是否独立?为什么?解:解: 因为1),cov(21=X X ,所以1X 与2X 不独立。

多元统计期末试题及答案

多元统计期末试题及答案

多元统计期末试题及答案一、选择题1. 在多元统计中,什么是协方差矩阵?A. 描述两个变量之间的线性关系的矩阵B. 描述两个变量之间的非线性关系的矩阵C. 描述多个变量之间的线性关系的矩阵D. 描述多个变量之间的非线性关系的矩阵答案:C2. 多元方差分析适用于以下哪种情况?A. 只有一个自变量和一个因变量B. 有一个自变量和多个因变量C. 有多个自变量和一个因变量D. 有多个自变量和多个因变量答案:C3. 多元线性回归分析中的残差是指什么?A. 因变量的观测值与估计值之间的差异B. 自变量的观测值与估计值之间的差异C. 因变量的观测值与真实值之间的差异D. 自变量的观测值与真实值之间的差异答案:A4. 主成分分析的目标是什么?A. 减少变量的数量B. 识别主要影响因素C. 降低模型复杂度D. 提高预测准确率答案:A5. 判别分析的目标是什么?A. 最小化类内方差B. 最大化类间方差C. 最小化类间方差D. 最大化类内方差答案:B二、填空题1. 多元正态分布的概率密度函数用符号____表示。

答案:f(x)2. 多元统计分析中的数据通常以矩阵的形式表示,其中每行代表____,每列代表____。

答案:样本,变量三、计算题假设有一组学生数据,包括他们的数学成绩(变量X1)、英语成绩(变量X2)和科学成绩(变量X3)。

1. 计算变量X1和X2之间的协方差。

答案:可使用协方差公式计算:Cov(X1,X2) = Σ[(X1-μ1)(X2-μ2)] / (n-1)其中,Σ表示求和符号,μ1和μ2分别为X1和X2的均值,n为样本数量。

2. 假设已经进行了主成分分析,计算数据的前两个主成分和对应的方差解释比例。

答案:主成分分析会得到一组主成分,可以通过对应的特征值来计算方差解释比例。

假设前两个特征值为λ1和λ2,总特征值和为Σλi。

则前两个主成分的方差解释比例为:(λ1 + λ2) / Σλi四、简答题1. 解释多元统计分析中的共线性问题。

(完整)多元统计分析期末试题及答案,推荐文档.docx

(完整)多元统计分析期末试题及答案,推荐文档.docx

1 、设 X ~ N2 ( ,), 其中 X( x1 , x 2 ),( 1 ,212 ),,1则 Cov( x1x 2 , x1x 2 )=____.102、设X i ~N 3 (,), i 1, L,10,则 W =( X i)( X i)i 1服从_________。

4433、设随机向量X x1x2x3, 且协方差矩阵 4 9 2 ,3 2 16则它的相关矩阵R___________________4、设 X= x1x2x3,的相关系数矩阵通过因子分析分解为112330.93400.1280.4171R100.4170.9340.83530.8940.8940.027 0.83500.4472010.4470.10332__________,__________,X1的共性方差 h1X1的方差11公因子 f 1对 X的贡献 g12________________。

5、设 X i , i 1,L ,16 是来自多元正态总体N p (, ), X 和 A分别为正态总体N p ( ,)的样本均值和样本离差矩阵 , 则T 215[4( X)] A 1[4( X)] ~ ___________。

1642、设( x1 , x2 , x3) ~ N3(, ),其中(1,0, 2) ,44 1 ,1X214试判断 x12 x3与x2x3是否独立?x12、对某地区农村的 6 名 2 周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下 , 根据以往资料 , 该地区城市 2周岁男婴的这三个指标的均值0(90,58,16), 现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

82.0 4.310714.62108.9464其中 X60.2 ,(5 S ) 1( 115.6924)114.6210 3.17237. 376014.58.946437.376035.5936 (0.01,F 0.01 (3, 2)99.2, F 0.01 (3,3)29.5,F0.01 (3, 4)16.7)、设已知有两正态总体G与 G,且12,24,1211,3126219而其先验概率分别为q1q20.5,误判的代价C (2 1)4;e ,C(1 2)e试用判别法确定样本X 3属于哪一个总体?Bayes514、设X( X1 , X2 , X3 , X4 )T,协方差阵1~ N (0, ),0111(1)试从Σ出发求 X 的第一总体主成分;(2)试问当取多大时才能使第一主成分的贡献率达95%以上。

多元统计分析期末试题及答案

多元统计分析期末试题及答案

. z4、 __________, __________, ________________。

(1) 试从Σ出发求*的第一总体主成分;(2) 试问当 取多大时才能使第一主成分的奉献率达95%以上。

1、0 2、W 3〔10,∑〕 3、211342113611146R ⎛⎫-⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪- ⎪⎝⎭4、0.872 1 1.7435、T 2〔15,p 〕或〔15p/(16-p)〕F 〔p ,n-p 〕一、填空题:1、多元统计分析是运用 数理统计 方法来研究解决 多指标 问题的理论和方法.2、回归参数显著性检验是检验 解释变量 对 被解释变量 的影响是否著.3、聚类分析就是分析如何对样品〔或变量〕进展量化分类的问题。

通常聚类分析分为 Q 型 聚类和 R 型 聚类。

4、相应分析的主要目的是寻求列联表 行因素A 和 列因素B 的根本分析特征和它们的最优联立表示。

5、因子分析把每个原始变量分解为两局部因素:一局部为 公共因子 ,另一局部为 特殊因子 。

6、假设()(,),P x N αμα∑=1,2,3….n 且相互独立,则样本均值向量x 服从的分布为_x ~N(μ,Σ/n)_。

二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的根本思想。

在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。

选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。

被选ρ(),123设X=xx x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差. z出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。

2、简述相应分析的根本思想。

相应分析,是指对两个定性变量的多种水平进展分析。

设有两组因素A 和B ,其中因素A 包含r 个水平,因素B 包含c 个水平。

对这两组因素作随机抽样调查,得到一个rc 的二维列联表,记为 。

应用多元统计分析试题及答案

应用多元统计分析试题及答案

一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。

通常聚类分析分为 Q型聚类和R型聚类。

4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。

5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。

6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。

二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。

在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。

选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。

被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。

2、简述相应分析的基本思想。

相应分析,是指对两个定性变量的多种水平进行分析。

设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。

对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。

要寻求列联表列因素A和行因素B 的基本分析特征和最优列联表示。

相应分析即是通过列联表的转换,使得因素A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。

把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A 、B 的联系。

3、简述费希尔判别法的基本思想。

从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数 系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。

将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。

多元统计分析期末试题(卷)与答案解析

多元统计分析期末试题(卷)与答案解析

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

(),123设X=x xx 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

山东财经大学《多元统计分析》期末复习题参考

山东财经大学《多元统计分析》期末复习题参考

多元统计分析期末复习题参考1、设其中,设,求 3(,)X N μ∑:2 1 1 13, 1 3 21 1 2 2μ⎛⎫⎛⎫ ⎪ ⎪=-∑= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(-1 2 3)a =1);(')(')E a X D a X 及2) 求。

123123(|,)(|,)E X X X D X X X 及2、已知,为来自X 的两个样品观测得其观21 1 0.9,10.9 1X N ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭:12,X X 测值为:,求12,x x 的马氏距离。

1221,12x x ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭3、设抽了5个样品,每个样品只测了一个指标,它们分别是1, 2, 4.5, 6, 8, 若样品间距离用欧氏距离来度量,试用最短距离法对其进行聚类,要求画出聚类图。

4、设抽了5个有序样品,每个样品只测了一个指标,它们分别是1, 2, 3.5, 6, 8, 试用最优分割法对该5个样品分为3类。

5、设有两个总体的分布分别为:12, G G 221018 122020 -7,, ,,1512 3225-7 5N N ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭试问样品分别按以下两种准则各应判归哪一类? (1)(2)2015,2020X X ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭1)按距离判别准则;2)按贝叶斯判别准则(取)。

121=,(2|1)10,(1|2)752q q C C ===先验概率误判损失为6、在某中学随机抽取某年级30名学生,测量其身高(X1),体重(X2),胸围(X3)和坐高(X4)四个指标,这四个变量的相关系数矩阵的特征根及单位特征向量分别为:113.541, (0.497, 0.5146, 0.4809, 0.5069)u λ'==220.3133, (0.5432, 0.2102, 0.7246, 0.3683)u λ'==--330.0794, (0.4496, 0.4623, 0.1752, 0.7439)u λ'==--440.0661, (0.5057, 0.6908, 0.4615, 0.2323)u λ'==--1) 写出四个主成分的表达式;2) 计算每个主成分的方差贡献率,并结合碎石图适当选取主成分个数;3) 主成分分析有哪些应用?7、对纽约股票市场上的五种股票的周回升率X1,X2,X3,X4,X5进行了因子分析,其中X1,X2,X3分别表示三个化学工业公司的股票回升率,X4,X5表示两个石油公司的股票回升率,试这5个变量的相关系数矩阵的前两个特征根和对应的单位特征向量为112.857, (0.464,0.457,0.47,0.421,0.421)u λ'==221.024, (0.24,0.509,0.26,0.526,0.582)u λ'==--1) 取公共因子个数为2,求因子载荷阵A ;2) 用F1,F2表示选取的公共因子,表示特殊因子,写出因子模型;12,εε3) 说明因子载荷矩阵中元素的统计意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、设 X 〜N 2(, ),其中X(X 1,X 2),(1,2),2 11 ,则 Cov( X 1 X 2, X 1X 2)=2、设 X i ~"3(,),i 1,L,10,则 W = 10=(X i)( X ii 1)服从 。

44 3 3、设随机向量 XX 1X 2X 3 ,且协方差矩阵4 9232 16则它的相关矩阵R4设X=X i X 2 X 3,的相关系数矩阵通过因子分析分解为1 1 23 30.9340.9340.417 0.8350.128R11 0 0.417 0.8940.02730 0.894 0.44720.8350.4470.10313X i 的共性方差h i 2----------------------■勺方差 11 ----------------------------------公因子匚对X 的贡献g1。

),X 和A 分别为正态总体 N p (,))]A 1[4( X )] ~ 。

1、设X (X 1,X 2,X 3)~N 3(,),其中 (1,0, 2),试判断X 1 2x 3与X2 X 3是否独立? X 15、设X i ,i 1,L ,16是来自多元正态总体 N p ( 的样本均值和样本离差矩阵,则 T 215[4( X164 2 4 412、对某地区农村的 6名2周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的 均值 0(90,58,16),现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

82.04.3107 14.6210 8.9464 其中 X 60.2 ,(5 S) 1( 115.6924)114.6210 3.172 37. 376014.58.9464 37.376035.5936( 0.01, F 0.01 (3, 2) 99.2, F 0.01 (3,3) 29.5, F 0.01 (3, 4)16.7)3、设已知有两正态总体 G 与G ,且1而其先验概率分别为q q 2 0.5,误判的代价C(2|1) e 4,C(1|2) e; 3试用Bayes 判别法确定样本X属于哪一个总体?111 ,01(1)试从工出发求X 的第一总体主成分; (2)试问当取多大时才能使第一主成分的贡献率达95%以上5、设X (X 1,X 2)T ,Y (Y ,X 2)T 为标准化向量,令Z求其第一对典型相关变量和它们的典型相关系数? 1、设随机向量X 的均值向量、协方差矩阵分别为 试证:E(XX )4、设X (X 1,X 2,X 3,X 4)T~ N 4(0,),协方差阵 ,且其协方差阵V(Z)1000 0 111210.95 021 220 0.95 1 00 0 0 1002、设随机向量X~N P (,),又设Y=A p X+b r1, 试证:丫~ N r (A b,A A ')。

1、0 2 、W (10,E)2 3 1 41 4 1 64、0.872 1.7435、T 2 (15, 卩)或(15p/(16-p)) F ( p ,1、令y X 2 X 3 2x 3,则X 1X 2 X 3 0 1 -1 Xy 1 1 0 0 y 2X 1X 2 X 1 2X 3 1 0 2 X 3E % 0 1 - 1 1 21 0 0 0 1y 21 02 2 30 1 - 1 16 4 2 0 1 -1 V y11 0 1 0 4 41 10 0 y21 0 :2 2 1 4 10 210 6 166 16 2016 i 20 402 10616故y 1, y 2的联合分布为2( 1 , 6 16 20 ) 316 20 40故不独立。

n-p )X8.0 经计算可得:X 02.2 1.54.310714.6210 8.9464 S 1 (23.13848) 1 14.62103.172 37.3760 8.946437.3760 35.5936构造检验统计量: T 2 n(X 0)S 1(X 0)6 70.0741 420.445由题目已知F °.01(3,3) 29.5,由是3 5-^.01 (3,3) 147.5所以在显著性水平 0.01下,拒绝原设即认为农村和城市的2周岁男婴上述三个 指标的均值有显著性差异3、由Bayes 判别知2、假设检验问题:H 。

:, H i:W(x) f 1(X ) f 2(x) exp[( x1(2)] exp(4 x 1 2x 2 4)其中,一 i( 1 1 ,(%%)qC1_2 qC(2|1) 3e ,W(x 3 5)exp(2)G 2T D .01H 0114、 (1)由2 3 41解1所对应的方程得!所对应的单位特征向量为 1- 1 12 2 2 2 1111故得第一主成分Z 丄乂!丄乂2丄乂32 2 2 2(2)第一个主成分的贡献率为95%120.9025, : 0 1 0.95 TT T 的单位正交化特征向量0 00 0.9025e 0.9025e1,1 11 1 22 21 11 1 0 0 0.95 01 0.95 0 0.1 01V 1 X 2,W 0.54第0.95 4 130.933由题得10.1 0 -15—2 一11 一2一0 111 TTT —211112 22212 110.1 0 0 0 1 0 00 1 0.95 0 0 0.010 求E 的特征值’得1 0 0 0.10.95 0.1 0 0 0 010.902520.9025为第一典型相关变量,且(V 1 ,w )0.95为一对典型相关系数。

0得特征根为1X X 2 X 3 X 41 11 e0.1 0 0 0 112、证明:由题可知Y 服从正态分布,EX)] E(Y) E(AX b) AE(X) bA bV(Y) V(AX b) AV(X)A A A故 Y~N r (A b,AA ')。

一、填空题:1、多元统计分析是运用 数理统计方法来研究解决多指标 问题的理论和方法•2、 回归参数显著性检验是检验 解释变量 对 被解释变量的影响是否著. 3、 聚类分析就是分析如何对样品(或变量)进行量化分类的问题。

通常聚类分 析分为Q 型聚类和R 型聚类。

4、 相应分析的主要目的是寻求列联表 行因素A 和 列因素B 的基本分析特 征和它们的最优联立表示。

5、 因子分析把每个原始变量分解为两部分因素:一部分为 公共因子 ,另一部分为特殊因子 。

6若x ( ) : N P ( , ), =1,2,3….n 且相互独立,则样本均值向量x 服从的分布为 _x ~N(卩,工 /n)_ o 二、简答1、 简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。

在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关 系数。

选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取 相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。

被选 出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。

2、 简述相应分析的基本思想。

相应分析,是指对两个定性变量的多种水平进行分析。

设有两组因素A 和B ,其中因素A 包含r 个水平,因素B 包含c 个水平。

对这两组因素作随机抽样调查, 得到一个rc 的二维列联表,记为 。

要寻求列联表列因素 A 和行因素B 的基 本分析特征和最优列联表示。

相应分析即是通过列联表的转换,使得因素 A 和因素B 具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。

把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而 得到因素A 、B 的联系。

3、简述费希尔判别法的基本思想1、证明: 二V(X) E[(X EX)(XE(XX ) (EX )(EX) E(XX )故E(XX )从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造 个线性判别函数 系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。

将新样 品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就 可以判别新的样品属于哪个总体。

5、简述多元统计分析中协差阵检验的步骤 第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定 域; 第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判 假设做出决策(拒绝或接受) 协差阵的检验 检验艺艺06在进行系统聚类分析时,不同的类间距离计算方法有何区别?请举例说明 设d j 表示样品X 与X 之间距离,用D 表示类G 与G 之间的距离。

(1).最短距离法H o :艺 I pexp1trSn/2enp/2I Pexp-trS 2* n/2np/2统计量n p/2nS ii 1n i /2S n/2kpn i /2口i 1D jX im X jd .. G j djD krX im^. G % min{D kp , Dkq } k j r(2) 最长距离法D pq卷maxGq%(3) DkrX i max G k ,X j G r% maxg pDq }中间距离法21 2 1 2Dkr2% 2D"D :q(4)重心法(6)可变类平均法D jr (1)(匹 D kp 出 D jq ) D ;qn rn r其中是可变的且<1(7)可变法D k ; +(D kpD jq ) D ;q其中是可变的且<1nt__(8)离差平方和法 S t(X it X t ) (X it X t )t 17、比较主成分分析与因子分析的异同点。

相同点 :①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、 特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步 便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是 将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止, 突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过 程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

9、进行相应分析时在对因素 A 和因素B 进行相应分析之前没有必要进行独立性检验?为什 么?有必要,如果因素A 和因素B 独立,则没有必要进行相应分析; 如果因素A 和因素B 不独立, 可以进一步通过相应分析考察两因素各个水平之间的相关关系。

相关文档
最新文档