必修4两角和与差的正切函数练习题(含解析)

必修4两角和与差的正切函数练习题(含解析)
必修4两角和与差的正切函数练习题(含解析)

课时跟踪检测(二十五) 两角和与差的正切函数

一、基本能力达标

1.若tan 28°·tan 32°=m ,则tan 28°+tan 32°= ( )

A.3m

B.3(1-m )

C.3(m -1)

D.3(m +1)

解析:选B tan 28°+tan 32°=tan(28°+32°)·(1-tan 28°tan 32°)=3(1-m ). 2.已知1-tan α1+tan α=2+3,则tan ? ??

??π4+α等于 ( )

A .2+ 3

B .1

C .2- 3 D. 3

解析:选C tan ? ????π4+α=

1+tan α1-tan α=12+3

=2- 3. 3.已知tan(α+β)=25,tan ? ????β-π4=14,则tan ? ????α+π4等于( )

A.13

18 B.1322 C.322

D.318

解析:选C ∵tan(α+β)=25,tan ?

????β-π4=14, ∴tan ? ????α+π4=tan ??????(α+β)-? ????β-π4=tan (α+β)-tan ? ????β-π4

1+tan (α+β)tan ?

????β-π4=25-

141+25×

14=322.

4.若α=20°,β=25°,则(1+tan α)(1+tan β)的值为 ( )

A .1

B .2

C .1+ 2

D .1+ 3

解析:选B ∵tan 45°=tan(20°+25°)=tan 20°+tan 25°

1-tan 20°tan 25°=1,

∴tan 20°+tan 25°=1-tan 20°tan 25°,

∴(1+tan α)(1+tan β)=1+tan 20°+tan 25°+tan 20°·tan 25°=1+1-tan 20°tan 25°+tan 20°tan 25°=2. 5.(2019·全国卷Ⅰ)tan 255°=( ) A .-2- 3 B .-2+ 3 C .2- 3

D .2+ 3

解析:选D tan 255°=tan(180°+75°)=tan 75°=tan(45°+30°)=

tan 45°+tan 30°

1-tan 45°tan 30°=1+

33

1-

3

3

=2+ 3.

6.已知tan α=-2,tan(α+β)=1

7,则tan β的值为________.

解析:tan β=tan[(α+β)-α]=tan (α+β)-tan α

1+tan (α+β)tan α=1

7-(-2)1+1

7×(-2)=3.

答案:3

7.tan π9+tan 2π9+3tan π9·tan 2π

9

的值为________.

解析:tan π9+tan 2π9+3tan π9·tan 2π9

=tan ? ????π9+2π9? ????1-tan π9·ta n 2π9+3tan π9tan 2π9 =3? ????1-tan π9·ta n 2π9+3tan π9·tan 2π9= 3. 答案: 3

8.已知α,β均为锐角,且tan β=cos α-sin α

cos α+sin α

,则tan(α+β)=________.

解析:tan β=cos α-sin αcos α+sin α=1-tan α1+tan α=tan ? ????π4-α, ∵

π4-α,β∈? ????-π2,π2且y =tan x 在? ????-π2,π2上是单调函数,∴β=π4-α,∴

α+β=π4

∴tan(α+β)=tan π

4=1.

答案:1

9.已知sin(π+θ)=-35,tan φ=1

2

,并且θ是第二象限角,求tan(θ-φ)的值.

解:∵sin(π+θ)=-sin θ=-3

5,

∴sin θ=3

5

.又θ是第二象限角,

∴cos θ=- 1-sin 2

θ=-45,

∴tan θ=sin θcos θ=-34.又tan φ=1

2

∴tan(θ-φ)=tan θ-tan φ

1+tan θtan φ=-34-1

21+? ????-34×

12

=-2.

10.已知tan α,tan β是方程6x 2

-5x +1=0的两根,且0<α<π2,π<β<3π2,

求tan(α+β)及α+β的值.

解:∵tan α,tan β是方程6x 2

-5x +1=0的两根, ∴tan α+tan β=56,tan αtan β=1

6,

tan(α+β)=tan α+tan β

1-tan αtan β=

56

1-16

=1. ∵0<α<π2,π<β<3π

2,

∴π<α+β<2π,∴α+β=5π

4

.

二、综合能力提升

1.在△ABC 中,若tan A tan B >1,则△ABC 的形状是 ( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不能确定

解析:选A 由tan A tan B >1,知tan A >0,tan B >0,从而A ,B 均为锐角. 又tan(A +B )=tan A +tan B

1-tan A tan B <0,即tan C =-tan(A +B )>0,∴C 为锐角,故△ABC 为

锐角三角形.

2.已知tan α=12,则tan ? ??

??π4+α-1

1+tan ? ??

?

?π4+α的值是 ( )

A .2 B.1

2

C .-1

D .-3

解析:选B 法一:因为tan α=12,所以tan ? ??

??π4+α=tan π

4+tan α

1-tan π4·tan α

=1+tan α1-tan α=

3,

所以tan ? ??

??π4+α-1

1+tan ? ??

??π4+α=3-11+3=12.故选B.

法二:tan ? ??

??π4+α-11+tan ? ????π4+α=tan ? ????π4+α-tan π41+tan ? ??

??π4+α·ta n

π4

=tan ??????? ????π4

+α-π4

=tan α=1

2.故选B.

3.(1+tan 21°)(1+tan 22°)(1+tan 23°)(1+tan 24°)的值为 ( )

A .16

B .8

C .4

D .2

解析:选C 由于21°+24°=45°,23°+22°=45°,利用两角和的正切公式及其变形可得(1+tan 21°)(1+tan 24°)=2,(1+tan 22°)(1+tan 23°)=2, 故(1+tan 21°)(1+tan 22°)(1+tan 23°)(1+tan 24°)=4.

4.已知tan θ和tan ? ??

??π4-θ 是方程x 2

+px +q =0的两根,则p ,q 间的关系是 ( )

A .p +q +1=0

B .p -q -1=0

C .p +q -1=0

D .p -q +1=0

解析:选D 由题意得tan θ+tan ? ??

??π4-θ =-p ,

tan θtan ? ????π4-θ=q ,而tan π4=tan ??????θ+? ????π4-θ=tan θ+tan ? ????π4-θ1-tan θtan ? ??

?

?π4-θ,从而1-q =-p ,即p -q +1=0.

5.已知点P ? ????sin 34π,cos 34π落在角θ的终边上,则tan ?

????θ+π3的值为________.

解析:依题意,tan θ=cos

3π4

sin

3π4

=-1.

∴tan ?

????θ+π3=tan θ+tan

π

31-tan θtan

π3=-1+31+3=2- 3.

答案:2- 3

6.若sin(θ+24°)=cos(24°-θ),则tan(θ+60°)=________.

解析:由已知得:

sin θcos 24°+cos θsin 24°=cos 24°cos θ+sin θsin 24° ?(sin θ-cos θ)(cos 24°-sin 24°)=0 ?sin θ=cos θ?tan θ=1, ∴tan(θ+60°)=1+3

1-3=-2- 3.

答案:-2- 3

7.已知cos α=45,α∈(0,π),tan(α-β)=1

2

,求tan β及tan(2α-β).

解:∵cos α=4

5

>0,α∈(0,π),

∴α∈?

????0,π2,sin α>0.

∴sin α= 1-cos 2

α= 1-? ????452=35

, ∴tan α=sin αcos α=3545

=3

4

.

∴tan β=tan[α-(α-β)]=tan α-tan (α-β)

1+tan α·tan (α-β)

=34-121+34×12

=211,

tan(2α-β)=tan[α+(α-β)]=tan α+tan (α-β)

1-tan α·tan (α-β)=34+121-34×1

2

=2.

8.是否存在锐角α,β,使得①α+2β=2π3,②tan α

2

tan β=2-3同时成立?若存在,

求出锐角α,β的值;若不存在,说明理由.

解:假设存在锐角α,β,使得①α+2β=2π3,②tan α

2

·tan β=2-3同时成立.

由(1)得α2+β=π

3

所以tan ? ??

??α

2+β =tan α

2

+tan β

1-tan α

2

tan β

= 3.

又tan α

2tan β=2-3,所以tan α

2

+tan β=3-3,

因此tan α

2

,tan β可以看成是方程x 2

-(3-3)x +2-3=0的两个根.解得: x 1=1,x 2=2- 3.

若tan α2=1,则α=π

2

,这与α为锐角矛盾.

所以tan α

2=2-3,tan β=1, 所以α=π6,β=π

4

.

所以满足条件的α,β存在,且α=π6,β=π

4

.

必修4三角函数的图像和性质专题练习

三角函数图像及性质练习题 1.已知4k <-,则函数cos 2(cos 1)y x k x =+-的最小值是( ) A.1 B.1- C.21k + D.21k -+ 2.已知f (x )的图象关于y 轴对称,且它在[0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A.( 10 1 ,1) B.(0, 101)∪(1,+∞) C.( 10 1,10) D.(0,1)∪(10,+∞) 3.定义在R 上的函数f (x )既是偶函数又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,2π ] 时,f (x )=sin x ,则f ( 3 π 5)的值为( ) A.- 21 B.2 1 C.-23 D.23 4.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则( ) A.f (sin 6π)<f (cos 6π ) B.f (sin1)>f (cos1) C.f (cos 3π2)<f (sin 3 π2) D.f (cos2)>f (sin2) 5.关于函数f (x )=sin 2x -( 32)|x |+21 ,有下面四个结论,其中正确结论的个数为 ( ) . ①()f x 是奇函数 ②当x >2003时,1 ()2 f x > 恒成立 ③()f x 的最大值是23 ④f (x )的最小值是12- A.1 B.2 C.3 D.4 6.使)tan lg(cos θθ?有意义的角θ是( ) A.第一象限的角 B.第二象限的角 C.第一、二象限的角 D.第一、二象限或y 轴的非负半轴上的角 7 函数lg(2cos y x =的单调递增区间为 ( ) . A .(2,22)()k k k Z ππππ++∈ B .11 (2,2)()6 k k k Z ππππ++ ∈ C .(2,2)()6 k k k Z π ππ- ∈ D .(2,2)()6 k k k Z π ππ+∈ 8.已知函数()sin()(0,)f x x x R ωφω=+>∈,对定义域内任意的x ,都满足条件(6)()f x f x +=,若 sin(3),sin(3)A x B x ωφωωφω=++=+-,则有 ( ) . A. A>B B. A=B C.A

高中数学必修4三角函数教案

任意角的三角函数 一、教学目标 1、知识目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切) 的定义,根据定义探讨出三角函数值在各个象限的符号,掌握同一个角的不同三角函数之间的关系。 2、能力目标:能应用任意角的三角函数定义求任意角的三角函数值。 3、情感目标:培养数形结合的思想。 二、教材分析 1、教学重点:理解任意角三角函数(正弦、余弦、正切)的定义。 2、教学难点:从函数角度理解三角函数。 3、教学关键:利用数形结合的思想。 三、教学形式:讲练结合法 四、课时计划:2节课 五、教具:圆规、尺子 六、教学过程 (一)引入 我们已经学过锐角三角函数,知道他们都是以锐角为自变量,以比值 为函数值的函数,你能用直角坐标系中的终边上点的坐标来表示锐角 三角函数吗? 设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它 的终边在第一象限,在α的终边上任取一点P (a,b ),它与原点的距离 r=22b a +>0.根据初中学过的三角函数定义,我们有αsin =r b , r a αcos =

a b αtan =,取r=1,则a b tan αa,cos αb,αsin ===,引入单位圆概念。 (二)新课 1、设α是以任意角,它的终边与单位圆交于P (x,y ),那么: (1) y 叫做α的正弦,记作αsin , 即y αsin =; (2) x 叫做α的余弦,记作αcos ,即x αcos =; (3) x y 叫做α的正切,记作αtan ,即x y αtan =)0(≠x . 注:用单位圆定义的好处就在于r=1,点的横坐标表示余弦值,纵坐标 表示正弦值。 2、根据任意角的三角函数定义,得到三种函数值在各象限的符号。 通过观察发现:第一象限全为正,第二象限只有正弦为正,第三象限只有正切为正,第四象限只有余弦为正。总结出一条法则:一全正,二正弦,三正切,四余弦。 注:这有利于培养学生观察和思考的能力,以方便记忆。 3、利用勾股定理可以推出:1cos sin 22=+αα,根据三角函数定义,当)(2z k k ∈+≠π πα时,有αα αtan cos sin =。这就是说同一个角α的正弦、余弦的平方和等于1,商等于角α的正切。 4、例题 例1求 3 5π的正弦、余弦和正切值。 解:在直角坐标系中,作3π5=∠AOB ,易知AOB ∠的终边与单位圆的交点 坐标为)2 3,21 (-,所以

高一数学_必修4_三角函数测试卷(含答案)

高一数学必修4 第一章三角函数测试卷 一、选择题(每小题5分,共50分) 1.下列各组角中,终边相同的角是 ( ) A . π2k 与)(2 Z k k ∈+ππ B .)(3 k 3Z k k ∈± ππ π与 C .ππ)14()12(±+k k 与)(Z k ∈ D .)(6 6 Z k k k ∈± + π ππ π与 2.已知角α的终边过点()m m P 34, -,()0≠m ,则ααcos sin 2+的值是( ) A .1或-1 B . 52或 52- C .1或5 2 - D .-1或52 3.一个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积为 ( ) A . 2)1cos 1sin 2(2 1 R ?- B . 1cos 1sin 2 12 ?R C . 2 2 1R D .221cos 1sin R R ??- 4.已知αα αα αtan ,5cos 5sin 3cos 2sin 那么-=+-的值为 ( ) A .-2 B .2 C .16 23 D .- 16 23 5.1sin 、1cos 、1tan 的大小关系为 ( ) A .1tan 1cos 1sin >> B .1cos 1tan 1sin >> C .1cos 1sin 1tan >> D .1sin 1cos 1tan >> 6.为得到函数)3 2sin(π -=x y 的图象,只需将函数)6 2sin(π + =x y 的图像( ) A .向左平移 4π个单位长度 B .向右平移4π 个单位长度 C .向左平移2π个单位长度 D .向右平移2π 个单位长度 7.函数sin(2)3 y x π =+图像的对称轴方程可能是( ) A .6x π=- B .12 x π =- C .6x π=D .12x π=8.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( ) A .5 B .-5 C .6 D .-6 9.函数)4 sin(π +=x y 在下列哪个闭区间上为增函数 ( ) A .]4 , 4 3 [π π- B .]0,[π- C .]4 3 ,4[ππ- D .]2 ,2[π π-

高中数学必修4三角函数测试题

高一数学同步测试(1)—角的概念·弧度制 一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A ∩C B .B ∪C=C C .A ?C D .A=B=C 2.下列各组角中,终边相同的角是 ( ) A . π2 k 与)(2Z k k ∈+ π π B .)(3k 3Z k k ∈± ππ π与 C .ππ)14()12(±+k k 与 )(Z k ∈ D .)(6 6Z k k k ∈± + π πππ与 3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( ) A .2 B . 1 sin 2 C .1sin 2 D .2sin 4.设α角的终边上一点P 的坐标是)5 sin ,5(cos π π ,则α等于 ( ) A . 5 π B .5 cot π C .)(10 32Z k k ∈+ππ D .)(5 92Z k k ∈- ππ 5.将分针拨慢10分钟,则分钟转过的弧度数是 ( ) A . 3 π B .- 3 π C . 6 π D .-6 π 6.设角α和β的终边关于y 轴对称,则有 ( ) A .)(2 Z k ∈-= βπ α B .)()2 1 2(Z k k ∈-+ =βπα C .)(2Z k ∈-=βπα D .)()12(Z k k ∈-+=βπα 7.集合A={}, 32 2|{},2|Z n n Z n n ∈±=?∈= ππααπαα, B={}, 2 1 |{},3 2|Z n n Z n n ∈+=?∈=ππββπ ββ, 则A 、B 之间关系为 ( ) A .A B ? B .B A ? C .B ?A D .A ?B 8.某扇形的面积为12 cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( ) A .2° B .2 C .4° D .4 9.下列说法正确的是 ( ) A .1弧度角的大小与圆的半径无关 B .大圆中1弧度角比小圆中1弧度角大 ≠ ≠ ≠

人教版数学必修四三角函数复习讲义

人教版数学必修四三角函数 复习讲义 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

第一讲 任意角与三角函数诱导公式 1. 知识要点 角的概念的推广: 平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 象限角的概念: 在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 终边相同的角的表示: α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z 。 注意:相等的角的终边一定相同,终边相同的角不一定相等. α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2 k k Z π απ=+∈; α终边在坐标轴上的角可表示为:,2 k k Z π α= ∈. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. α与2 α的终边关系: 任意角的三角函数的定义: 设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点), 它与原点的距离是0r =>,那么sin ,cos y x r r αα==,

()tan ,0y x x α= ≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 三角函数线的特征:正弦线MP“站在x 轴上(起点在x 轴上)”、余弦线 OM“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )” 同角三角函数的基本关系式: 1. 平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= 2. 倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, 3. 商数关系:sin cos tan ,cot cos sin αα αααα = = 注意:1.角α的任意性。 2.同角才可使用。 3.熟悉公式的变形形 式。 三角函数诱导公式:“ (2 k πα+)”记忆口诀: “奇变偶不变,符号看象限” 典型例题 例1.求下列三角函数值: (1)cos210o; (2)sin 4 5π 例2.求下列各式的值: (1)sin(-3 4π ); (2)cos(-60o)-sin(-210o) 例3.化简 ) 180sin()180cos() 1080cos()1440sin(?--?-?-?-?+?αααα 例4.已知cos(π+α)=-2 1,2 3π<α<2π,则sin(2π-α)的值是( ).

高中数学必修4三角函数综合测试题

必修4三角函数综合测试题及答案详解 一、选择题 1.下列说法中,正确的是( ) A .第二象限的角是钝角 B .第三象限的角必大于第二象限的角 C .-831°是第二象限角 D .-95°20′,984°40′,264°40′是终边相同的角 2.若点(a,9)在函数y =3x 的图象上,则tan a π 6的值为( ) A .0 B.3 3 C .1 D. 3 3.若|cos θ|=cos θ,|tan θ|=-tan θ,则θ 2的终边在( ) A .第一、三象限 B .第二、四象限 C .第一、三象限或x 轴上 D .第二、四象限或x 轴上 4.如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期是T ,且当x =2时取得最大值,那么( ) A .T =2,θ=π 2 B .T =1,θ=π C .T =2,θ=π D .T =1,θ=π 2 5.若sin ? ???? π2-x =-32,且π

7.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位长度后,得到y =sin ? ?? ?? x -π6的图象,则φ=( ) A.π6 B.5π6 C.7π6 D.11π6 8.若tan θ=2,则2sin θ-cos θ sin θ+2cos θ的值为( ) A .0 B .1 C.34 D.54 9.函数f (x )=tan x 1+cos x 的奇偶性是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .既不是奇函数也不是偶函数 10.函数f (x )=x -cos x 在(0,+∞)内( ) A .没有零点 B .有且仅有一个零点 C .有且仅有两个零点 D .有无穷多个零点

高中数学必修一求函数解析式解题方法大全及配套练习

高中数学必修一求函数解析式解题 方法大全及配套练习 一、 定义法: 根据函数的定义求解析式用定义法。 【例1】设23)1(2 +-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2 ++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 解:设x x x x x x f f ++=+++=++=11111 11 21)]([ x x f += ∴11)( 【例3】设3 3 22 1)1(,1)1(x x x x g x x x x f +=++ =+,求)]([x g f . 解:2)(2)1 (1)1(2222-=∴-+=+=+ x x f x x x x x x f 又x x x g x x x x x x x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([2 4 6 2 3 -+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 解:)2 ( 17cos )]2 [cos()(sin x x f x f -=-=π π x x x 17sin )172 cos()1728cos(=-=-+ =π π π.

二、 待定系数法:(主要用于二次函数) 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程, 从而求出函数解析式。 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴????? ?=-===32 1 2b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2 )1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ?? ?=++=+8 2 2b a b b a 解得 ?? ?==. 7, 1b a 故f (x )= x 2+7x. 【例3】已知1392)2(2 +-=-x x x f ,求)(x f . 解:显然,)(x f 是一个一元二次函数。设)0()(2 ≠++=a c bx ax x f 则c x b x a x f +-+-=-)2()2()2(2 )24()4(2c b a x a b ax +-+-+= 又1392)2(2 +-=-x x x f 比较系数得:?????=+--=-=1324942c b a a b a 解得:?? ???=-==312c b a 32)(2 +-=∴x x x f

必修四第一章三角函数测试题(含答案)

必修四第一章三角函数测试题 班别 姓名 分数 一、选择题 1.已知cos α=1 2 ,α∈(370°,520°),则α等于 ( ) A .390° B .420° C .450° D .480° 2.若sin x ·tan x <0,则角x 的终边位于 ( ) A .第一、二象限 B .第二、三象限 C .第二、四象限 D .第三、四象限 3.函数y =tan x 2 是 ( ) A .周期为2π的奇函数 B .周期为π 2的奇函数C .周期为π的偶函数D .周期为2π的偶函数 4.已知函数y =2sin(ωx +φ)(ω>0)在区间[0,2π]的图象如图,那么ω等于 ( ) A .1 B .2 C.12 D.13 5.函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ等于 ( ) A .-π2 B .2k π-π 2 (k ∈Z ) C .k π(k ∈Z ) D .k π+π 2(k ∈Z ) 6.若sin θ+cos θsin θ-cos θ =2,则sin θcos θ的值是 ( ) A .-310 B.310 C .±310 D.34 7.将函数y =sin x 的图象上所有的点向右平行移动π 10 个单位长度,再把所得各点的横坐标伸 长到原来的2倍(纵坐标不变),所得图象的函数解析式是 ( ) A .y =sin ? ???2x -π10 B .y =sin ????2x -π5 C .y =sin ????12x -π10 D .y =sin ??? ?12x -π 20 8.在同一平面直角坐标系中,函数y =cos ????x 2+3π2(x ∈[0,2π])的图象和直线y =1 2的交点个数是 ( ) A .0 B .1 C .2 D .4 9.已知集合M =???? ??x |x =k π2+π4,k ∈Z ,N ={x |x =k π4+π 2,k ∈Z }.则 ( ) A .M =N B .M N C .N M D .M ∩N =?

必修四三角函数的图象与性质讲义

1.4—1.5 三角函数的图象与性质 一、正弦函数的图象与性质 1、利用描点法作函数图象 (列表、描点、连线) 自变量x 2π- 32π- π- 2 π- 0 2π π 32 π 2π 函数值sin x 0 1 0 1- 0 1 1- 0 注意:(1)由于sin(2k π+α)=sin α,因此作正弦函数图象时,我们经常采用 “五点法”:......(0..,.0)..,.(.2 π ,.1)..,.(.π,.0)..,.(.23π ,-..1)..,.(2..π,.0)..;. 再通过向左、右平移(每次2π个单位),即可得正弦函数图象;(2)正弦函数自变量一般采用弧度制。 二、余弦函数的图象 1、余弦函数的图象:y =cosx =sin(x + 2π)可将正弦函数y =sinx 向左平移2 π 个单位得到。 2、“五点作图法”: (0..,.1.).,. (.2 π ,.0.).,. (.π,-..1.).,. (.23π ,.0.).,. (2..π,.1.). – – π 2 π 2 π - 2π 5π π- 2π- 5π- O x y 1 1-

三、正、余弦函数的性质 f(x)=sinx h(x)=cosx f(x)=sinx h(x)=cosx 定义域 R R 值域 [-1,1] 当x =2k π+ 2π 时,f(x)max =1 当x =2k π-2π 时,f(x)min =-1 [-1,1] 当x =2k π时,f(x)max =1 当x =2k π+π时,f(x)min =-1 单调区间 [2 k π-2π,2 k π+2 π ] 单增 [2 k π+2 π ,2 k π+23π] 单减 [2 k π,2 k π+π] 单减 [2 k π+π,2 k π+2π] 单增 对称轴 x =k π+2 π x =k π 对称中心 (k π,0) (k π+ 2 π ,0) 周期性 sin(2 k π+α)=sin α cos(2 k π+α)=cos α 最小正周期为2π 奇偶性 sin(-α)=-sin α 奇函数 cos(-α)=cos α 例1:求下列函数的定义域。 (1)f(x)=x sin (2)f(x)=2 1cos -x

(人教版)高二数学必修4第一章三角函数单元测试题(含答案)

y x 1 1 2 3 O (人教版)高二数学必修4第一章三角函数单元测试题(含答案) 一、选择题:本大题共12个小题,每小题5分,共 60分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1 . A B . C D 2.下列函数中,最小正周期为 的是 A . B . C . D . 3.已知 , ,则 A B C D . 4.函数 是周期为的偶函数,且当 A B C . D .2 5 A B 个单位 C 个单位 D .向右平 移 6 .函数的零点个数为 A .5 B .7 C .3 D .9 7 .函数 可取的一组值为 A B C D 8 .已知函数 的值可能是 A B C D . 9 ,则 这个多边形为 A .正六边形 B .梯形 C .矩形 D .正五边 形 10 .函数有3个零点,则 的值为 A .0 B .4 C .2 D .0,或2 11 .对于函数的一组值计 ,所得的结果可能是 A .0与1 B .1 C .101 D .与 12.给出下列3个命题:

①函数; ②函数 ③ A.0 B.1 C.2 D.3 二、填空题:本大题共4个小题,每小题5分,共20分.把正确答案填在题中横线上.13.角的终边过点,且,则的值为▲. 14.设,若函数在上单调递增,则的取值范围是▲. 15.已知,则▲. 16.函数个单位,所的函数为偶函数; 的最大值为▲. 三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分) 已知扇形的周长为4,那么当扇形的半径为何值时,它的面积最大,并求出最大面积,以及相应的圆心角. 18.(本小题满分12分) 已知函数时,取得最小值 (Ⅰ)求函数的最小正周期; (Ⅱ)求函数的解析式. 19.(本小题满分12分) 若,为第四象限角,求 20.(本小题满分12分) 求下列函数的值域 (Ⅰ) (Ⅱ). 21.(本小题满分12分) 已知函数.求的 (Ⅰ)定义域; (Ⅱ)单调递增区间; (Ⅲ)值域. 22.(本小题满分12分)

必修4三角函数所有知识点归纳归纳

《三角函数》【知识网络】 一、任意角的概念与弧度制 1、将沿x轴正向的射线,围绕原点旋转所形成的图形称作角.

逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈ x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈ 3、第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 第二象限角:{}()90360180360k k k Z αα??+<<+∈ 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈ 第四象限角: {}()270 360360360k k k Z αα??+<<+∈ 4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 锐角: {}090αα<< 小于90的角:{}90αα< 5、若α为第二象限角,那么 2 α 为第几象限角? ππαππ k k 222 +≤≤+ ππ α ππ k k +≤ ≤ +2 2 4 ,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 8、角度与弧度对应表: 9、弧长与面积计算公式

弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α 终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号 口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)

高中数学必修4三角函数测试题答案详解1

三角函数 一、选择题 1.已知 α 为第三象限角,则 2 α 所在的象限是( ). A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限 D .第二、四象限 3.sin 3π4cos 6π5tan ?? ? ??3π4-=( ). A .- 4 3 3 B . 4 3 3 C .- 4 3 D . 4 3 4.已知tan θ+θ tan 1 =2,则sin θ+cos θ等于( ). A .2 B .2 C .-2 D .±2 5.已知sin x +cos x =5 1(0≤x <π),则tan x 的值等于( ). A .-4 3 B .-3 4 C .4 3 D .3 4 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β 7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3 π 2,k ∈Z },C = {γ|γ=k π± 3 π 2,k ∈Z },则这三个集合之间的关系为( ). A .A ?B ?C B .B ?A ?C C .C ?A ?B

D .B ?C ?A 8.已知cos (α+β)=1,sin α=3 1,则sin β 的值是( ). A .3 1 B .-3 1 C . 3 2 2 D .- 3 2 2 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ). A .??? ??2π , 4π∪??? ??4π5 ,π B .?? ? ??π , 4 π C .?? ? ??4π5 ,4π D .??? ??π , 4 π∪?? ? ??23π ,4π5 10.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的2 1 倍(纵坐标不变),得到的图象所表示的函数是( ). A .y =sin ?? ? ? ?3π - 2x ,x ∈R B .y =sin ??? ??6π + 2x ,x ∈R C .y =sin ??? ? ?3π + 2x ,x ∈R D .y =sin ??? ? ? 32π + 2x ,x ∈R 二、填空题 11.函数f (x )=sin 2 x +3tan x 在区间??? ???3π 4π ,上的最大值是 . 12.已知sin α= 552,2 π ≤α≤π,则tan α= . 13.若sin ??? ??α + 2π=53,则sin ?? ? ??α - 2π= . 14.若将函数y =tan ??? ? ? 4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函 数y =tan ?? ? ??6π + x ω的图象重合,则ω的最小值为 . 15.已知函数f (x )=21(sin x +cos x )-2 1 |sin x -cos x |,则f (x )的值域是 . 16.关于函数f (x )=4sin ?? ? ? ?3π + 2x ,x ∈R ,有下列命题: ①函数 y = f (x )的表达式可改写为y = 4cos ?? ? ? ?6π - 2x ; ②函数 y = f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(- 6 π ,0)对称;

高一人教版必修一 数学函数定义域、值域、解析式题型

高一函数定义域、值域、解析式题型 一、 具体函数的定义域问题 1 求下列函数的定义域 (1 )1 y = (2 )y = (2)(3) 若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m <<(B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 二、 抽象函数的定义问题 (一)已知函数()f x 的定义域,求函数[()]f g x 的定义域 2. 已知函数()f x 的定义域为[0,1],求函数2(2)f x 的定义域。 (二)已知函数[()]f g x 的定义域,求函数()f x 的定义域 3. 已知函数(21)f x +的定义域为[1,2],求函数()f x 的定义域。 (三)已知函数[()]f g x 的定义域,求函数[()]f h x 的定义域 4. 已知函数2(1)f x -的定义域为(2,5),求函数1()f x 的定义域。 5.已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

(一) 配凑法 5 .已知22113(1)x f x x x ++=+,求()f x 的解析式。 (二) 换元法 6.已知(12f x +=+()f x 的解析式。 (三) 特殊值法 7 .已知对一切,x y R ∈,关系式()()(21)f x y f x x y y -=--+且(0)1f =,求()f x 。 待定系数法 8.已知()f x 是二次函数,且2(1)(1)244f x f x x x ++-=-+,求()f x 。 (四) 转化法 9. 设()f x 是定义在(,)-∞+∞上的函数,对一切x R ∈,均有()(2)0f x f x ++=,当11x -≤≤时,()21f x x =-,求当13x <≤时,函数()f x 的解析式。 (五) 消去法 11.已知函数()f x 21()()x f x x -=,求()f x (六) 分段求解法 12. 已知函数2,()21,()1,0x x o f x x g x x ?≥=-=?-

人教版数学必修四三角函数复习讲义

第一讲 任意角与三角函数诱导公式 1. 知识要点 角的概念的推广: 平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 象限角的概念: 在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 终边相同的角的表示: α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z 。 注意:相等的角的终边一定相同,终边相同的角不一定相等. α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2 k k Z π απ=+∈; α终边在坐标轴上的角可表示为:,2 k k Z π α= ∈. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. α与2 α的终边关系: 任意角的三角函数的定义: 设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),

它与原点的距离是0r =>,那么sin ,cos y x r r αα==, ()tan ,0y x x α= ≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 三角函数线的特征:正弦线MP“站在x 轴上(起点在x 轴上)”、余弦线OM“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )” 同角三角函数的基本关系式: 1. 平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= 2. 倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, 3. 商数关系:sin cos tan ,cot cos sin αα αααα = = 注意:1.角α的任意性。 2.同角才可使用。 3.熟悉公式的变 形形式。 三角函数诱导公式:“ (2 k πα+)”记忆口诀: “奇变偶不变,符号看象限” 典型例题 例1.求下列三角函数值: (1)cos210o; (2)sin 4 5π 例2.求下列各式的值: (1)sin(-3 4π ); (2)cos(-60o)-sin(-210o) 例3.化简 ) 180sin()180cos() 1080cos()1440sin(?--?-?-?-?+?αααα

必修4三角函数单元测试题(含答案)

三角函数 单元测试 一、选择题 1.sin 210=o ( ) A . B . C .12 D .12 - 2.下列各组角中,终边相同的角是 ( ) A .π2k 或()2k k Z π π+∈ B . (21)k π+或(41)k π± )(Z k ∈ C .3 k π π± 或k ()3 k Z π ∈ D .6 k π π+ 或()6 k k Z π π± ∈ 3.已知cos tan 0θθ?<,那么角θ是( ) A .第一或第二象限角 B .第二或第三象限角 C .第三或第四象限角 D .第一或第四象限角 4.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( ) A .2 B . 1sin 2 C .1sin 2 D .2sin 5.为了得到函数2sin(),36 x y x R π =+∈的图像,只需把函数2sin ,y x x R =∈的图 像上所有的点( ) A .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的3 1 倍(纵坐标不变) B .向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的3 1 倍(纵坐标不变) C .向左平移6 π 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) D .向右平移6 π 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) 6.设函数()sin ()3f x x x π? ?=+∈ ?? ?R ,则()f x ( ) A .在区间2736ππ?? ? ??? ,上是增函数 B .在区间2π? ? -π-??? ?,上是减函数

C .在区间84ππ?? ????,上是增函数 D .在区间536ππ?? ???? ,上是减函数 7.函数sin()(0,,)2 y A x x R π ω?ω?=+>< ∈的部分图象如图所示, 则函数表达( ) A .)48sin(4π+π-=x y B .)48sin(4π -π=x y C .)48sin(4π-π-=x y D .)4 8sin(4π +π=x y 8. 函数sin(3)4 y x π =-的图象是中心对称图形,其中它的一个对称中心是 ( ) A .,012π??- ??? B . 7,012π??- ??? C . 7,012π?? ??? D . 11,012π?? ??? 9.已知()21cos cos f x x +=,则 ()f x 的图象是下图的 ( ) A B C D 10.定义在R 上的偶函数()f x 满足()()2f x f x =+,当[]3,4x ∈时,()2f x x =-,则 ( ) A .11sin cos 22f f ??? ?< ? ???? ? B . sin cos 33f f ππ??? ?> ? ???? ? C .()()sin1cos1f f < D .33sin cos 22f f ??? ?> ? ???? ? 二、填空题 11.若2cos 3 α=,α是第四象限角,则sin(2)sin(3)cos(3)απαπαπ-+---=___ 12.若tan 2α=,则22sin 2sin cos 3cos αααα++=___________ 13.已知3sin 4πα??+= ???,则3sin 4πα?? - ??? 值为 14.设()f x 是定义域为R ,最小正周期为 32 π 的周期函数,若

人教版高中数学必修一函数解析式的求法大盘点

函数解析式的求法大盘点 函数解析式的求解方法较多,在此,我归纳了几类供大家学习,希望对大家有所帮助。 一. 方程组法 型型和此法主要适用(x) )()()()()(c tx bf x af x c x t bf x af =+=+。 。即函数的解析式为得:替换为解析:把。 联立方程组,即可解出替换为分析:把的解析式。 ,求满足函数例3)(3)(-)(2)-()(2)(,)(,)()(2)()(.1x x f x x f x x f x f x x f x f x x x f x x x f x x f x f x f ==????=-=----=-- 。即函数的解析式为得:替换为解析:把。联立方程组,即可解出替换为分析:把的解析式。,求满足函数例)2(31)()2(31)(1 )(2)1()1(2)(,1)(,1)()1(2)()(.2x x x f x x x f x x f x f x x f x f x x x f x x x f x x f x f x f +--=+--=???? ????-=--=----=-- 点评:方程组法求函数解析式关键是根据所给表达式列出方程组。 )()()()()()()()()()(x f x t c x bf x t af x c x t bf x af x t x x c x t bf x af 即可解出,即替换为型需把???????=+=+=+, ).()()()()()()((x) )()(x f tx c x bf tx af x c tx bf x af tx x c tx bf x af 即可解出,即替换为型需把???=+=+=+

(完整版)必修4第一章三角函数单元基础测试题及答案

三角函数数学试卷 一、 选择题1、ο 600sin 的值是( ) )(A ;21 )(B ;23 )(C ;23- )(D ; 21 - 2、),3(y P 为α终边上一点, 53 cos = α,则=αtan ( ) )(A 43- )(B 34 )(C 43± )(D 34± 3、已知cos θ=cos30°,则θ等于( ) A. 30° B. k ·360°+30°(k ∈Z) C. k ·360°±30°(k ∈Z) D. k ·180°+30°(k ∈Z) 4、若θθθ则角且,02sin ,0cos <>的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限( ) 5、函数 的递增区间是( ) 6、函数) 62sin(5π +=x y 图象的一条对称轴方程是( ) ) (A ;12π - =x )(B ;0=x ) (C ;6π = x ) (D ; 3π = x 7、函数的图象向左平移个单位,再将图象上各点的横坐标 压缩为原来的,那么所得图象的函数表达式为( ) 8、函数|x tan |)x (f =的周期为( ) A. π2 B. π C. 2π D. 4π

9、锐角α,β满足 41sin sin - =-βα,43 cos cos = -βα,则=-)cos(βα( ) A.1611- B.85 C.85- D.1611 10、已知tan(α+β)=2 5,tan(α+4π)=322, 那么tan(β-4π)的值是( ) A .15 B .1 4 C .1318 D .1322 11.sin1,cos1,tan1的大小关系是( ) A.tan1>sin1>cos1 B.tan1>cos1>sin1 C.cos1>sin1>tan1 D.sin1>cos1>tan1 12.已知函数f (x )=f (π-x ),且当)2 ,2(ππ-∈x 时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则( ) A.a

相关文档
最新文档