人教版初中数学图形认识初步知识点总结及例题解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多姿多彩的图形
几何图形
①把实物中抽象出的各种图形统称为几何图形。
②几何图形的各部分不都在同一平面内,是立体图形。
③有些几何图形的各部分都在同一平面内,它们是平面图形。
④常常用从不同方向看到的平面图形来表示立体图形。(主视图,俯视图,,左视图)。
在右图的几何体中,它的左视图是( B )
如图所示的几何体是由4个相同的小正方体组成.其主视图为( D )
A.B.C. D.
已知某几何体的一个视图(如图),则此几何体是( C )
A.正三棱柱 B.三棱锥 C.圆锥 D.圆柱
如图所示,下列水平放置的几何体中,俯视图是矩形的是( A )
⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
如图,是一个正方体的平面展开图,原正方体中“祝”的对面是(C )
A.考B.试C.顺D.利
点,线,面,体
①几何体也简称体。
②包围着体的是面。面有平的面和曲的面两种。
③面和面相交的地方形成线。(线有直线和曲线)
④线和线相交的地方是点。(点无大小之分)
⑤点动成线,线动成面,面动成体。
⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。
⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。
直线,射线,线
①经过两点有一条直线,并且只有一条直线。
②两点确定一条直线。
③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。
④射线和线段都是直线的一部分。
⑤把线段分成相等的两部分的点叫做中点。
⑥两点的所有连线中,线段最短。(两点之间,线段最短)
⑦连接两点间的线段的长度,叫做这两点的距离。
下列四个有关生活、生产中的现象:①用两个钉子就可以把一根木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③
从地到地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( D )
A. ①②
B. ①③
C. ②
④ D. ③④
角
角
①角也是一种基本的几何图形。
②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。角可以看作由一条射线绕着它的端点旋转而形成的图形。③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。
⑤以度,分,秒为单位的角的度量制,叫做角度制。
如图,∠AOB=∠COD=90°,∠AOD=30°,则∠BOC等于( C )
A.60°B.90°C.150° D.180°
角的比较与运算
①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
已知∠ABC=300,BD是∠ABC的平分线,则∠
余角和补角
①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。
②两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。
③等角的补角相等。
④等角的余角相等。
∠A的补角为125°12
角的补角等于度.
°角的余角是( B )
A.30°角 B.60°角 C.90°角D.150°角
已知∠α小于90°,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值等于( C )
°°°°
第五章相交线与平行线
概念定义及性质公理:
1、在平面内,不重合的两条直线的位置关系只有两种:相交与平行。
直线为空间内的两条直线,它们的位置关系是( D )
A、平行
B、相交
C、异面
D、平行、相交或异面
2、互为邻补角:
(1)定义:如果两个角有一条公共边且有一个公共顶点,它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角。
(2)性质:从位置看:互为邻角;
从数量看:互为补角;
3、互为对顶角:
(1)定义:如果两个角有有一个公共顶点且它们的两边互为反向延长线,具有这种关系的两个角互为对顶角。
(2)性质:对顶角相等
已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠
4、垂直:
(1)定义:垂直是相交的一种特殊情形。当两条直线相交所形成的四个角中有一个角是直角,那么这两条直线互相垂直。它们交点叫做垂足。其中的一条直线叫做另一条直线的垂线。
(2)性质:过一点有且只有一条直线和已知直线垂直。
(3)表示方法:用符号“⊥”表示垂直。
5、任何一个“定义”既可以做判定,又可以做性质。
6、垂线是一条直线,垂线段是垂线的一部分。
7、垂线段的性质:连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
8、区分:点到直线的距离:直线外一点到这条直线的垂线段的长度。
两点间的距离:连接两点间的线段的长度。
“两点间的距离”和“点到直线的距离”是两个不同的概念,但是“点到直线的距离”是“两点间的距离”的一种特殊情况。
9、内错角的定义:两个角都在截线的两侧,都在被截直线之间。这样的两个角叫做内错角。
10、同位角的定义:两个角都在截线的同侧,都在被截直线的同一方。这样的两个角叫做同位角。
11、同旁内角的定义:两个角都在截线的同侧,都在被截直线之间。这样的两个角叫做同旁内角。
如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( B ).
A.∠1 B.∠2 C.∠4 D.∠5
如图,已知∠1=∠2,∠3=80O,则∠4=( A )
B. 70O
C. 60O
D. 50O
如图1,若,,则130 .
已知,如下图,∠1 =∠2 =∠3 = 55°,则∠4的度数等于( C ).