人教版初中数学图形认识初步知识点总结及例题解答

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多姿多彩的图形

几何图形

①把实物中抽象出的各种图形统称为几何图形。

②几何图形的各部分不都在同一平面内,是立体图形。

③有些几何图形的各部分都在同一平面内,它们是平面图形。

④常常用从不同方向看到的平面图形来表示立体图形。(主视图,俯视图,,左视图)。

在右图的几何体中,它的左视图是( B )

如图所示的几何体是由4个相同的小正方体组成.其主视图为( D )

A.B.C. D.

已知某几何体的一个视图(如图),则此几何体是( C )

A.正三棱柱 B.三棱锥 C.圆锥 D.圆柱

如图所示,下列水平放置的几何体中,俯视图是矩形的是( A )

⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

如图,是一个正方体的平面展开图,原正方体中“祝”的对面是(C )

A.考B.试C.顺D.利

点,线,面,体

①几何体也简称体。

②包围着体的是面。面有平的面和曲的面两种。

③面和面相交的地方形成线。(线有直线和曲线)

④线和线相交的地方是点。(点无大小之分)

⑤点动成线,线动成面,面动成体。

⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。

⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。

直线,射线,线

①经过两点有一条直线,并且只有一条直线。

②两点确定一条直线。

③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。

④射线和线段都是直线的一部分。

⑤把线段分成相等的两部分的点叫做中点。

⑥两点的所有连线中,线段最短。(两点之间,线段最短)

⑦连接两点间的线段的长度,叫做这两点的距离。

下列四个有关生活、生产中的现象:①用两个钉子就可以把一根木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③

从地到地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( D )

A. ①②

B. ①③

C. ②

④ D. ③④

①角也是一种基本的几何图形。

②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。角可以看作由一条射线绕着它的端点旋转而形成的图形。③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。

⑤以度,分,秒为单位的角的度量制,叫做角度制。

如图,∠AOB=∠COD=90°,∠AOD=30°,则∠BOC等于( C )

A.60°B.90°C.150° D.180°

角的比较与运算

①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

已知∠ABC=300,BD是∠ABC的平分线,则∠

余角和补角

①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。

②两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。

③等角的补角相等。

④等角的余角相等。

∠A的补角为125°12

角的补角等于度.

°角的余角是( B )

A.30°角 B.60°角 C.90°角D.150°角

已知∠α小于90°,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值等于( C )

°°°°

第五章相交线与平行线

概念定义及性质公理:

1、在平面内,不重合的两条直线的位置关系只有两种:相交与平行。

直线为空间内的两条直线,它们的位置关系是( D )

A、平行

B、相交

C、异面

D、平行、相交或异面

2、互为邻补角:

(1)定义:如果两个角有一条公共边且有一个公共顶点,它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角。

(2)性质:从位置看:互为邻角;

从数量看:互为补角;

3、互为对顶角:

(1)定义:如果两个角有有一个公共顶点且它们的两边互为反向延长线,具有这种关系的两个角互为对顶角。

(2)性质:对顶角相等

已知∠1与∠2是对顶角,∠1与∠3是邻补角,则∠2+∠

4、垂直:

(1)定义:垂直是相交的一种特殊情形。当两条直线相交所形成的四个角中有一个角是直角,那么这两条直线互相垂直。它们交点叫做垂足。其中的一条直线叫做另一条直线的垂线。

(2)性质:过一点有且只有一条直线和已知直线垂直。

(3)表示方法:用符号“⊥”表示垂直。

5、任何一个“定义”既可以做判定,又可以做性质。

6、垂线是一条直线,垂线段是垂线的一部分。

7、垂线段的性质:连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

8、区分:点到直线的距离:直线外一点到这条直线的垂线段的长度。

两点间的距离:连接两点间的线段的长度。

“两点间的距离”和“点到直线的距离”是两个不同的概念,但是“点到直线的距离”是“两点间的距离”的一种特殊情况。

9、内错角的定义:两个角都在截线的两侧,都在被截直线之间。这样的两个角叫做内错角。

10、同位角的定义:两个角都在截线的同侧,都在被截直线的同一方。这样的两个角叫做同位角。

11、同旁内角的定义:两个角都在截线的同侧,都在被截直线之间。这样的两个角叫做同旁内角。

如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( B ).

A.∠1 B.∠2 C.∠4 D.∠5

如图,已知∠1=∠2,∠3=80O,则∠4=( A )

B. 70O

C. 60O

D. 50O

如图1,若,,则130 .

已知,如下图,∠1 =∠2 =∠3 = 55°,则∠4的度数等于( C ).

相关文档
最新文档