泵站设计计算书
(完整版)雨水提升泵站工艺设计说明计算书:城市雨水,8.5秒流量,立式轴流泵
排涝泵站计算:1.总说明①城市暴雨强度公式**市距南京仅45km,地理气象条件相似,本次雨水设计暴雨强度公式仍采用南京市暴雨强度公式,即:8.02989++=tlgP1(3.q13.0/()3.)671式中:q-暴雨强度(1/s ha)p-设计重现期(a)t-设计降雨历时(min)**市近20年的雨水工程规划及设计均采用以上公式。
从多年的实际使用效果看,此公式能较准确地反映本地区降雨特征,可作为本次雨水计算的基本依据。
根据城市性质、重要性以及汇水地区类型(广场、干道、厂区、居住区)特点和气候条件等因素确定。
根据《**市城市总体规划》(2002~2020)所确定的城市性质及本市的地形和气象特点,并参照周围相近城市所采用的标准,本次整治范围内设计重现期取1年。
②径流系数根据《城市排水工程规划》,城市排水工程规划宜采用城市综合径流系数,即按规划建筑密度将城市用地分为城市中心区、一般规划区和市政绿地等,由不同的区域,分别确定不同的径流系数。
综合考虑**市现状绿化率较高和总体规划发展目标等因素,雨水综合径流系数见表1.1。
表1.1 **市城市雨水综合径流系数③地面集水时间(t1)地面集水时间受距离长短、地形坡度和地面铺盖等因素影响,结合**市实际和国内相似城市的采用数值,本次选用t 1=15min 。
2.同意**泵站(1) 流量确定汇水面积 2.01km 2,按照市政雨水泵站规模进行计算,集流距离最长为L=2.28km 。
其中管道长度L=380m ,明渠长度L=1900m ,根据《**市城市排水工程规划》中的设计水力要素,径流系数取0.5,管道流速取0.7v =(m/s ),折减系数取2,明渠流速取0.86v =(m/s ),折减系数取1.2。
则集流时间121529.05 1.236.877.26min t t mt =+=+⨯+⨯= 重现期为P=2计算的情况下:0.80.82989.3(10.671)2989.3(10.6712)97.5(/)(13.3)(78.3413.3)lgP lg q l s ha t ++===•++则对应的雨水流量为:330.597.5 2.01100109.8(/)Q qF m s ψ-==⨯⨯⨯⨯=根据排水规划中西塘水系的水力要素,同意二水系的水力计算表格为:考虑新建同意**泵站具有调蓄条件,根据《给水排水设计手册》(第五册P33)中对雨水调蓄计算,调蓄池的作用是高峰流量入池调蓄,低流量是脱过,通过调蓄后的进入泵站的脱过流量如下:()V f W α=(m3)1.20.150.650.50.215()[(1.1]lg(0.3)]0.2b f a n n nατ=-+++++ 式中:,,;Q Q Q Qαα''-=脱过系数既是脱过流量与池前管渠设计流量之比();f αα-的函数式3,(m );W Q W Q ττ-=池前管渠的设计流量与相应集流时间的乘积,;b n -暴雨公式参数,b=13.3,n=0.8,(min);τ-管渠在进入调蓄池前的断面汇流历时不计延缓系数调蓄水体面积S=10500m 2,根据相关资料,调蓄水深为0.4m ,因此调蓄容积为:310500*0.44200V m ==39.8(9.0536.8)*6026959.8()W Q m τ==*+=()0.1558f α=通过公式推导, 0.7758Q Qα'== 39.8*0.77587.60()Q Q m α'===因此,泵站流量为7.60m 3/s同意**泵站初拟设三台水泵,单台流量2.84m 3/s 。
泵站计算书
污水泵站计算书1、设计流量根据计算得污水总量为125m3/h,晴天污水量Q=28.3m3/h,雨天流量Q=96.7m3/h泵站共设二台潜污泵,两用一备(冷备),单泵流量为65m3/h=18.1 L/s。
2、集水池容积本工程水泵运行控制采用自动控制,根据室外排水规范,集水池有效容积取不小于最大1台水泵5min的出水量,暂取1台水泵6min的出水量:V=18.1 L/s×6×60s÷1000=6.516m3自动控制的水泵每小时开动次数不得超过6次,即单泵一次最小工作时间为10min,根据集水池来水和每台水泵抽水之间的规律推算有效容积的基本公式:Vmin= TminQ/4,得出Vmin=10×60×18.1/4÷1000=2.715m3(仅为单台水泵)。
由上可得,整个集水池的最小有效容积应为6.516m3。
设计集水池尺寸定为:有效水深1.0m,宽度4.5m,长度采用3.2m。
(3.8m×4.5m×1.0m=14.4m2≥6.516m2)3、计算泵房相关深度标高格栅前水面标高/m=来水管管内底标高+管内水深=2.110+0.3*0.55=2.275格栅后水面标高/m=集水池最高水位标高-格栅压力损失=2.275-0.3=1.975 污水流经格栅的压力损失按0.3mH2O估算,集水池有效水深取1.0m,则集水池最低水位标高/m=1.975-1.0=0.975水泵静扬程/m=出水井水面标高-集水池最低水位标高=5.730-0.975=4.755水泵吸压水管路(含至出水井管路)的总压力损失估算为3.524 mH2O因此,水泵扬程H/m=4.755+3.524+2=10.279m所以预选WQ2210-416型水泵。
泵站计算书(样例)Word版
计算书工程(项目)编号 12622S002 勘察设计阶段施工图工程名称中新生态城(滨海旅游区范围)7号雨水泵站单体名称专业给排水计算内容泵房尺寸、标高、设备选型等(共 14页)封面1页,计算部分13页计算日期校核日期审核日期7号雨水泵站计算书符号:1、设计水量p Q —雨水泵站设计流量,y p Q Q %120=; y Q —排水系统设计雨水流量。
2、扬程计算d Z —进泵站处管道(箱涵)内底标高;H Z —泵房栅后最高水位(全流量),过栅损失总管-+=D Z Z d H ;L Z —泵房栅后最低水位(一台水泵流量),过栅损失总管-+=3/D Z Z d L ;有效h —泵站有效水深,LH Z Z h -=有效;M Z —排涝泵房栅后平均水位,过栅损失总管-+=D Z Z d M 21;吸水h —从水泵吸水管~出水拍门的水头损失,拍门立管转弯吸水h gL g h ++=2v 2v 22ξ出水h —出水管路水头损失;总水头损失=出水吸水h h +M H —设计扬程,出水吸水(常水位)h h Z Z H M cM ++-=;max H —设计最高扬程,max H =最高水位-L Z +总水头损失;min H —设计最低扬程,min H =最低水位-H Z +总水头损失;3、格栅井计算1Z —格栅平台标高,一般按低于泵站进水管内底标高0.5m 考虑,即5.01-=d Z Z ;2Z —泵房顶板顶标高,一般按高于室外地坪0.2m 考虑,即2.02+=室外Z Z ;1)格栅井长度计算格栅井L —格栅井长度,∑==41i i L L 格栅井L 1—格栅底部前端距井壁距离,取1.50m ; L 2—格栅厚度,取0.6m ;L 3—格栅水平投影长度,安装角度按75°考虑 75)(123ctg Z Z L -=; L 4—格栅后段长度,取1.50m ; 2)格栅井宽度计算格栅v —过栅流速; 格栅h —格栅有效工作高度,总管总管格栅栅前最低水位栅前最高水位D Z D Z h d d =-+=-= 格栅b —栅条净间距;格栅S —栅条宽度; n —栅条间隙数,格栅格栅格栅v h b Q n p αsin =格栅B —格栅总宽度,n 1-n 格栅格栅格栅)(b S B +=一.工程概况本工程为滨海旅游区规划7号雨水泵站,服务系统为规划7号雨水系统。
取水泵站计算书
设计供水水量Q=4000m3/d自由水系数 1.05设计规模Q=4200m3/d175m3/h一取水泵房计算1设计扬程取水泵房输水至净水厂时的水泵扬程H为H=H1+H2+h1+h2H1-水源最低水位与水泵基准面的几何高度mH2-水泵基准面与净水构筑物的几何高度mh1-吸水管路水头损失mh2-输水管路水头损失m富裕水头1~2m水源最低水位:4586.5m水泵基准面高度:4586.5m净水构筑物高度:4621.3mH1=0mH2=34.8m2吸水管路水头损失单管道流量Q=87.5m3/h吸水管径d200mm流速v=0.77m/s吸水管路长度L= 4.5m1000i 5.92沿程水头损失 h沿= 0.02664m局部水头损失最不利管段主要配件如下:配件数量局部阻力系数总系数流速(m/s)DN125-200异径管10.170.17 1.98DN200碟阀10.240.240.77DN200伸缩节10.210.210.77总和h1=h沿+h局=3压水管路水头损失单管道流量Q=87.5m3/h压水管总管径d300mm流速v=0.69m/s压水总管长度L=800m1000i 2.7压水管管径d200mm流速v=0.77m/s压水总管长度L=6m1000i 5.92沿程水头损失 h沿= 2.20m局部水头损失最不利管段主要配件如下:配件数量局部阻力系数总系数流速(m/s)DN125-200异径管10.170.17 1.98DN200碟阀20.240.480.77DN200伸缩节10.210.210.77总和H压=h沿+h局=h2=h吸+h压=取水头部水头富余水头故水泵总扬程H=H=H1+H2+h1+h2+富余水头=取2选泵本工程取水泵房选用3台(2用1备)单台水泵流量Q=87.5m3/h扬程H=42m效率η=0.6轴功率N=ρgQH/η=16.673611KW局部阻力(m)0.030.010.010.050.07m局部阻力(m)0.030.010.010.062.25m2.33m2.00m2m41.20m42.00m。
泵站设计计算书
泵站设计计算书1、流量与扬程确定给水系统中自身用水系数β=1.01=1.5×10000×1.01×1.41÷24=890m3/h 近期最高日最高时流量Q1=1.01×10000×1.5÷24=631.3 m3/h 近期最高日平均时流量Q2远期设计最高日最高时流量Q=2.5×10000×1.01×1.41÷24=1483 m3/h3=2.5×10000×1.01÷24=1052.1 m3/h 远期最高日平均是流量Q4预留安全水头h1=2m泵站内各部分水头损失h2=2m设计总扬程为H=h+ h1+ h2=42m2、机组选型=0.7*890=623 当一个泵检修时,另一个泵应通过70%的近期设计流量,即Q‘1=0.7*1483=1038 m3/h,以保证供水能力。
m3/h,Q'2水泵性能数据使用方案:近期采用2用一备,远期采用3用一备的方案查厂家提供的水泵样本可知底板为方形,长宽均为600mm,底座螺孔间距均为550mm,底座螺孔的直径φ22。
由于采用的是立式泵,基础仅需考虑泵底板尺寸即可。
根据规范要求:基础长度L=底座长度L 1+(0.15~0.20)m=600+200=800mm 基础宽度B=底座螺孔间距b 1+(0.15~0.20)m=550+200=750mm于是计算出基础平面尺寸为800mm*750mm , 机组总重量W=1550*9.8=15190N, 基础深度为H=**0.3B L W=3m式中 L ——基础长度,L=0.800m ; B ——基础宽度,B=0.750m ;γ——基础所用材料的容重,对于混凝土基础,γ=23520N/m 33,吸水管和压水管路的确定吸水管采用钢铁管 v=1.36m/s 1000i=6.39 DN=400mm 压水管采用钢铁管 v=2. 4m/s 1000i=29.1 DN=300mm 4,吸水管和压水管的水头损失 吸水管中水头损失∑h=∑h s +∑h l∑h l =1.5*6.39÷1000=0.0096m∑h s =(ζ1+ζ2+ζ3)*v 2/2g+ζ4*v 21/2g=(0.1+0.9+0.2)*1.362/2*9.8+0. 18*2.42/2*9.8=0.166mζ1:吸水口局部阻力系数ζ2:标准钢铁400mm900弯头局部阻力系数 ζ3:蝶阀局部阻力系数ζ4:DN400*300偏心渐缩管的局部阻力系数 ∑h=0.0096+0.166=0.1756m 压水管路德局部损失∑h=∑h s +∑h l∑h l =2.5*29.1÷1000=0.07m∑h s =(ζ5+ζ6+ζ7)*v 2/2g=(3.5+0.2+0.2)*2.4/2*9.8=0.478m ζ5:止回阀局部阻力系数 ζ6:蝶阀局部阻力系数ζ7:蝶阀局部阻力系数∑h=0.07 +0.478=0.548m因为泵内总损失H=0. 548+0.1756=0.7236m所以所选的泵是适合的。
雨水泵站计算书
编号:宁波市规划设计研究院设计计算书设计:校对:审核:日期:2012.11建设单位:苍松路改造工程(柳汀街-甬水桥路)工程名称:苍松路雨水泵站工程号:专业名称:电气一.防雷计算书1)苍松路雨水泵站建筑物年预计雷击次数按下式确定:N = k x Ng x Ae = 1.0x4x0.0074=0.0294式中N──建筑物预计雷击次数(次/a);k──校正系数,在一般情况下取1;在下列情况下取相应数值:位于旷野孤立的建筑物取2,金属屋面的砖木电阻率较小处,地下水露头处,土山顶部,山谷风口等处的建筑物,以及特别潮湿的建筑物取1.5这里取k=1.0Ng──建筑物所处地区雷击大地的年平均密度[次/(km2.a)]按下式确定:Ng=0.1xTd=4式中Td──年平均雷暴日,根据当地气象台,站资料确定(d/a).Ae──建筑物等效面积应为其实际平面积(km2)向外扩大后的面积.其计算方法应符合下列规定:当建筑物的高H小于100m时:Ae=[LW+2(L+W)sqrH(200-H)+πH(200-H)]0.000001:当建筑物的高H等于或大于100m时:Ae=[LW+2(L+W)H+πHH]0.000001:因为H=7.2小于100,取上式Ae=0.0074根据《建筑物防雷设计规范》 GB 50057-2010,本建筑物为三类防雷建筑物。
二.照度计算(1)配电室1.房间参数房间类别:,照度要求值:200.00LX,功率密度不超过8.00W/m2房间名称:房间长度L: 10.80 m房间宽度B: 4.20 m计算高度H: 2.25 m顶棚反射比(%):墙反射比(%):地面反射比(%):室形系数RI: 0.672.灯具参数:型号:TLD36W/827单灯具光源数:2个灯具光通量: 3350lm灯具光源功率:64.00W镇流器类型:TLD标准型镇流器功率:9.003.其它参数:利用系数: 0.60维护系数: 0.70照度要求: 200.00LX功率密度要求: 8.00W/m24.计算结果:E = NΦUK / AN = EA / (ΦUK)其中:Φ-- 光通量lmN -- 光源数量U -- 利用系数A -- 工作面面积m2K -- 灯具维护系数计算结果:建议灯具数: 4计算照度: 186.11LX实际安装功率 = 灯具数× (总光源功率 + 镇流器功率) = 219.00W 实际功率密度: 4.83W/m2折算功率密度: 5.19W/m25.校验结果:要求平均照度:200.00LX实际计算平均照度:186.11LX符合规范照度要求!要求功率密度:8.00W/m2实际功率密度:5.19W/m2符合规范节能要求!。
泵站设计计算书
泵站设计计算书一、流量确定考虑到输水管漏渗和净化站本身用水,取自用水系数α=1.5,则近期设计流量:Q=1.05×100000÷3600÷24=1.215 m³/s远期设计流量:Q=1.05×1.5×100000÷3600÷24=1.823 m³/s二、设计扬程(1)水泵扬程:H=HST+Σh式中HST 为水泵静扬程.Σh 包括压水管水头损失、吸水管路水头损失和泵站内部水头损失采用灵菱型式取水头部。
在最不利情况下的水头损失,即一条虹吸自流管检修时要求另一条自流管通过75%最大设计流量,取水头部到吸水间的全部水头损失为1米,则吸水间最高水面标高为4.36-1=39.36 米,最低水位标高为32.26-1=31.26 米。
正常情况时,Q=1.215/2=0.608 m³/s,一般不会淤泥,所以设计最小静扬程:HST=42.50-39.36=3.14 m设计最大静扬程:HST=42.50-31.26=11.24 m(2)输水管中的水头损失Σh设采用两条φ900 铸铁管,由徽城给水工程总平面图可知,泵站到净水输水管干线全长1000m,当一条输水管检修时,另一条输水管应通过75%设计流量,即:Q=0.75×1.823=1.367 m³/s,查水力计算表得管内流速v=2.16 m/s, 1000i=5.7m ,所以Σh=1.1×5.7×1000/1000=6.27m (式中1.1 系包括局部水头损失而加大的系数)。
(3)泵站内管路中的水头损失hp其值粗估为2 m(4)安全工作水头hp其值粗估为2 m综上可知,则水泵的扬程为:设计高水位时:Hmax=11.24+1+6.27+2+2=21.51 m设计低水位时:Hmin=3.14+1+6.27+2+2=13.41 m三、机组选型及方案比较:水泵选型有以下二种方案:方案一方案二水泵型号20sh-19 20sh-19A流量范围450─650L/s 36─560L/s扬程范围15─27m 14─23m轴功率148─137KW 108KW允许吸上真空高度4m 4m泵重量1950Kg 2000Kg电动机重量1530Kg 1380Kg功率190KW 135KW配带电动机型号JR-126─6 JS-126─6方案一: 一台20sh-19 型水泵(Q=450~650 l/s,H=15~27m, N=148~137KW),近期4 台,3 台工作,一台备用,远期增加一台,4 台工作,一台备用。
泵与泵站设计计算书
目录1 吸水井 (2)1.1 吸水井设计水位 (2)1.2 吸水井标高 (2)1.3 吸水井布置 (3)1.4 吸水井长度 (3)2 水泵选择 (3)2.1 供水流量计算 (4)2.2 供水曲线及分级供水 (4)2.3 水泵扬程计算 (5)2.4 水泵选择 (6)2.5 吸水管和出水管管径 (7)2.6 水泵基础计算 (8)3 二级泵房平面布置 (9)3.1 水泵基础布置 (9)3.2 水泵基础布置 (9)4 二级泵房高程布置 (10)4.1 水泵安装高度 (10)4.2 水泵及管线相关标高 (11)4.3 起重设备及泵房高度 (11)5 真空泵设计计算 (13)5.1 抽气量 (13)5.2 最大真空值H (13)rmax6 排水泵设计计算 (14)7 消防校核 (14)泵房设计计算说明书1 吸水井二级泵房前设吸水井,以调节水量,使水位稳定。
1.1 吸水井设计水位吸水井设计最高水位为清水池最高水位,即42.3m ,设计最低水位按照最不利情况考虑,即设计最低水位为清水池池底标高减去清水池至二级泵房吸水井的水头损失。
清水池设一根出水管,出水管管径取为DN900,管内流速为1.10m/s 。
查水力计算表可得,输水管水力坡降为i=0.15%。
取清水池到二级泵房吸水井之间管道总长为50m ,则输水管没程水头损失为i h i l 0.15%500.075m=⨯=⨯=局部水头损失计算如下:表1-1 吸水井前管道局部水头损失计算表配件名称 数量 规格 局部阻力系数90度弯头 1 DN900 1.1 蝶阀 2 DN900 0.4 进出口2 DN900 2 ∑ξ3.5由上表计算可得,局部水头损失为:22f v 1.10h 3.50.216m 2g 29.81=ξ=⨯=⨯则总水头损失为:i f h h h 0.0750.2160.291m =+=+=清水池最低水位为40.2m ,则吸水井最低水位为39.91m 。
供水泵站计算书
一、项目区基本情况××水库取水及输水工程土建工程服务对象为××公司生产线及配套的辅助生产设施、公用工程设施和生活福利与服务性设施。
××公司位于××经济技术开发区,与××水库直线距离约为 2.3km。
根据××公司出具的书面证明,确定××水库取水及输水工程设计引水流量为1.12 m3/s。
项目区所在地属暖温带大陆性干旱气候,干旱炎热,蒸发强烈,多年平均降水量50.7mm,多年平均蒸发量为2775mm,年平均气温为11.3℃,绝对最高气温为40℃,决对最低温度为-30.9℃,最大冻土深度为63cm。
项目区盛行东北风,年平均风速为3m/s,多年平均最大风速为21m/s。
二、工程设计总体设计依据项目业主提供的资料进行,××水库取水及输水工程设计总流量为1.12m3/s(2×0.56m3/s),另有一台机组(1×0.56m3/s)备用,配套电机总装机功率为555KW (3×185KW),工程规模为Ⅳ等小(1)型工程,主要建筑物等级为4级,次要及临时建筑物等级均为5级。
本项目主要工程有:(1)、引水明渠约2100m,底宽2m,边坡为1:3,其中30m为C20砼衬砌,边坡厚度为20cm,底板厚度为40cm,其余均为土渠;(2)、进水池1座,混凝土结构,长13.2m,边墙扩散角为20度,首端宽2.00m,末端宽11.6m;(3)、泵房一座,泵房分为三层,分为水泵层、结构层及操作层,均为钢筋混凝土结构,墙厚均为0.45m;(4)、安装500S22单级双吸离心泵及配套电机3套,安装配电柜及启动箱3套,安装DN500、0.6Mpa闸阀、伸缩接管及多功能控制阀;(5)、钢制压力管道约28m,公称直径为900mm,壁厚为14mm,均采用螺旋焊接钢管,并在适当位置设C25混凝土镇墩;(6)、夹砂玻璃钢管约2401m,压力等级为0.6MPa,公称直径为900mm,壁厚为10.5mm,承插口接头,并在适当位置设C25混凝土镇墩。
泵站设计计算书
泵站设计计算书泵站设计计算书第⼀章:泵站兴建缘由及概况1.兴建缘由:博斯腾湖位于我国新疆巴⾳郭楞蒙⾃治州境内。
其上游为开都河、下游为孔雀河。
故博斯腾湖既是开都河⽔系和焉耆盆地地⾯径流的归宿地,⼜是孔雀河的发源地。
多年以来孔雀河⽔道狭窄,芦苇丛⽣,博斯腾湖⽔出流不畅,沿岸湖宽⽔浅,湖⾯蒸发损失很⼤(年蒸发量约为10亿m3),因⽽造成孔雀河灌区农业⽤⽔不⾜,整个焉耆盆地地下⽔位升⾼,⼟壤盐渍化严重。
因此巴⾳郭楞蒙古⾃治州粮⾷产量⼀直较低。
每年均由国家调进粮⾷。
由于孔雀河枯⽔季节流量⼩,故不能满⾜下游两个⽔电站发电的需⽔量。
其中铁门关⽔电站5×8500kw 机,只能运⾏⼀台,⽯灰窑⽔电站2×3000+2×3200kw机也不能满⾜机组的发电量。
同时由于湖⾯蒸发损失的增加,近20年以来,博湖的⽔质也发⽣了很⼤的变化,湖⽔的矿化度1958年为0.383~0.390g/L,⽽1981年6~8⽉的平均矿化度为1.8g/L。
22年中平均每年增⾼0.064g/L博湖已由淡⽔湖变为微咸湖,⽔质变坏的趋势,近⼏年更为严重。
为此,决定在博湖的西南⾯,孔雀河⼝以东约两公⾥处建设泵站,⽬的在于:1.根据焉耆盆地治碱、排⽔,降低地下⽔位的要求,保证湖⽔位低于1046m⾼程;2.调节孔雀河流量,满⾜库尔勒和塔⾥⽊两灌区灌溉⽤⽔的需要;3.保证铁门关⽔电站和⽯灰窑电站枯⽔期的发电流量,满⾜负荷要求,冬季不要限电;4.促进湖⽔循环,防⽌湖⽔继续咸化,同时限制地下⽔位升⾼,减轻⼟壤盐渍化程度。
博湖泵站建成后,可兼收排⽔、灌溉、发电、保护⽔质四⽅⾯的效益,⼀举⽽数得。
2.基本资料的分析整理。
⼀)、地形资料博斯腾湖附近⽔系地形图(1/500)。
⼆)、地质资料泵站站址处:地表下0-2m,厚2m,亚砂⼟(⼲容重γ⼲=1.5t/m3);地表下2-12m厚10m细砂⼟(⼲容重γ⼲=1.55 t/m3);贯⼊10cm数达60次;地表下12-112m厚100m,亚砂⼟(⼲容重γ⼲=1.8t/m3),贯⼊3cm,击数为70次;地下⽔位1047.08-1047.78m,低于湖⽔位,由湖⽔补给。
(完整版)污水提升泵站工艺设计说明计算书:城市污水,3.00万吨每天,潜水排污泵
1、泵站工艺计算泵站设计分为两个泵组,其中一个用于抽排箱涵旱季污水。
另一个用于提升内湖水进行河道补水。
2、补水泵组(1)泵组规模:补水泵组规模::设计抽排规模为3.0万m3/d。
30000=24÷=÷÷Ls60Q/34760(2)泵站主要设计参数:设计最低运行水位:1m设计最高运行水位:2m设计水位:1.60m(F1内湖水位)出水管水面高程为:4m则最小提升高度=4-2=2m设计提升高度=4-1.6=2.4m最大提升高度=4-1=3m(3)泵组扬程设计计算估算安全水头0.5m ,站内管线水头损失2m,格栅水头损失0.2m ;根据Q 查水力计算表得,出水总管:DN=600mm ;V=0.8m/s ;1000i=1.37。
站外输水管直接接入通过压力PE 管(L=1562m )输送至补水点,则沿程损失:(H 3=(10.67 Q^1.852L)/(C^1.852 D^4.87)+ H 32H 3=3.11+0.36=3.47m局部损失:DN=600mm ;V=0.8m/s ;1000i=1.37。
DN600弯头(90°)8个(ξ=1.01),出口(ξ=0.3),三通1个(ξ=1.5) m g v H 36.08.928.088.102)5.13.0801.11(2223=⨯⨯=++⨯+= 则对应最低工作扬程=2+0.5+2+0.2+3.47=8.17m设计扬程=2.4+0.5+2+0.2+3.47=8.57m最高工作扬程=3+0.5+2+0.2+3.47=9.17m设计扬程选择H=11m 。
复核如下:泵站扬程H>H 1+H 2+H 3+H 4其中:H 1为站内管线水头损失,H 2为安全水头,H 3为站外管线水头损失,H 4为提升水头。
站内管线含DN250弯头一个(ξ=0.87),DN250×300异径管一个(ξ=0.05),DN300弯头一个(ξ=0.78),伸缩节一个(ξ=0.21),DN300蝶阀一个(ξ=0.30),DN300单向阀一个(ξ=3.5),,DN300电动阀一个(ξ=0.30),丁字管一个(ξ=2.02),V=2.68m/s ,1000i=36.1g h 220νξ∑= 则m g v H 30.38.9268.203.92)02.230.05.330.021.078.005.087.01(221=⨯⨯=++++++++=;DN300管沿程损失=6.87×36.1=0.25m取安全水头H 2=0.5m;出水管: H 3=3.43m提升高度H 4=4-1=3mH=3.30+0.5+3.47+3+0.25=10.52m所选水泵H=11m>10.52米,所选设计扬程合理。
泵站计算书
圆形水池设计(YSC-3)项目名称构件编号日期设计校对审核执行规范:《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138-2002), 本文简称《水池结构规程》钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; P - HRBF335; Q - HRBF400; R - HRBF500-----------------------------------------------------------------------1 设计资料1.1 基本信息圆形水池形式:有盖池内液体重度10.0kN/m3浮托力折减系数1.00裂缝宽度限值0.20mm抗浮安全系数1.10水池的几何尺寸如下图所示:1.2 荷载信息顶板活荷载:4.00kN/m2地面活荷载:10.00kN/m2活荷载组合系数:0.90荷载分项系数:自重 :1.20其它恒载:1.27地下水压:1.27其它活载:1.40荷载准永久值系数:顶板活荷载 :0.40地面堆积荷载:0.50地下水压 :1.00温(湿)度作用:1.00活载调整系数:其它活载:1.00不考虑温度作用1.3 混凝土与土信息土天然重度:18.00kN/m3土饱和重度:20.00kN/m3土内摩擦角ψ:30.0度地基承载力特征值fak=400.00kPa基础宽度和埋深的地基承载力修正系数ηb=1.00、ηd=1.00 混凝土等级:C40 纵筋级别:HRB400混凝土重度:25.00kN/m3配筋调整系数:1.20纵筋保护层厚度:2 计算内容(1)荷载标准值计算(2)抗浮验算(3)地基承载力计算(4)内力及配筋计算(5)抗裂度、裂缝计算(6)混凝土工程量计算3 荷载标准值计算顶板:恒荷载:顶板自重 :5.00kN/m2活荷载:顶板活荷载:4.00kN/m2底板:恒荷载:顶板自重+池壁自重: 45.23kN/m2覆土自重:24.09kN/m2活荷载:顶板活荷载:3.02kN/m2地面活荷载:2.45kN/m2地下水作用:15.29kN/m2池壁:恒荷载:池内水压力 :30.00kN/m2池外侧土压力(地下水位处):12.00kN/m2池外侧土压力(池底):32.83kN/m2活荷载:池外水压力(池底) :62.50kN/m2地面活荷载 :3.33kN/m24 地基承载力验算:计算基础底面的压力:池壁内壁圆面积:Aic=πR2 = 3.14×4.0002 = 50.27m2池壁外壁圆面积:A t=π(R+t)2=3.14×(4.000+0.65)2=67.93m2顶板自重Gt=γc×A t×t1=25.00×67.93×0.20=339.65kN池壁自重Gs=γc×A s×H=25.00×17.66×8.440=3727.02kN底板自重Gb=γc×A b×t2=25.00×89.92×0.85=1910.81kN水池自重Gp=Gt+Gs+Gb=339.65+3727.02+1910.81=5977.47kN挑出部分覆土重Gexs=γ土×(Ab-At)×Hw+(γ饱和-γ水)×(Ab-At)×(Hb-Hw-t2)=18.00×(89.92-67.93)×2.000+(20.00-10.00)×(89.92-67.93)×(9.100-2.000-0.85)=2166.13kN池内水自重Gw=p w×Aic=30.00×50.27=1507.96kN顶板活荷载Gq=qk×A t=4.00×67.93=271.72kN外挑部分活荷载Gqm=qm×(A b-A t)=10.00×(89.92-67.93)=219.91kN地下水荷载Giw=1374.45kN基础底面的压力p k=(Gp+Gw+Gexs+Gq+Gqm+Giw)/A b=11517.64/89.92=128.09kPa基础宽度大于3m或埋置深度大于0.5m,需修正承载力特征值计算地基承载力特征值修正值:f a=f ak+ηbγ(b-3)+ηdγm(d-0.5)水池底板底下的土的重度γ=γ饱和-γ水=20.00-10.00=10.00kN/m3水池底板底以上土的加权平均重度γm=[γ土×Hw+(γ饱和-γ水)×(Hb-Hw)]/Hb=[18.00×2.000+(20.00-10.00)×(9.100-2.000)]/9.100=11.76kN/m3f a=400.00+1.00×10.00×(6.000-3)+1.00×11.76×(9.100-0.5)=531.12kPap k=128.09kPa<f a=531.12kPa 地基承载力满足5 抗浮验算:水池自重Gp=5977.47kN挑出部分的覆土重Gexs=2166.13kN地下水作用荷载Giw=1374.45kN总自重W=Gp+Gexs+Giw=9518.04kN池体浸入水中高度h=7.10m水池底面积Ab=89.92m2浮托力折减系数ηfw=1.00总浮力F=ηfwγ水 h A b =1.00×10.00×7.10×89.92=6384.34kNW/F=1.49>Kf=1.10,抗浮验算满足。
泵站设计计算书
泵站设计计算书一、基本情况概述1、设计题目:M市给水厂二泵站初步设计2、给水管网供水量:最高日供水量近期为2.0万m³,远期为2.8万m³;时变化系数为1.35。
城市管网所需扬程为42m,该扬程未包括泵站内部所需扬程。
3、气象资料:年平均气温15.6℃,最高气温39.5℃,最低气温-8.6℃。
主导风向,夏季为东南风,冬季为东北风。
4、工程地质及水文地质:城市土壤类型为轻质压粘土,地下水位埋深为6.0m,冰冻线深度为1.m。
5、其它资料:地震等级:五级;地基承载力2.5Kg/ cm2;可保证二级负荷供电。
二、泵站流量扬程的确定1、流量的确定考虑给水系统自身用水,取自用水系数β=1.02,时变化系数α=1.35,则近期设计流量: Q=2.0×10000÷3600÷24×1.35×1.02=0.31875m³/s。
远期设计流量:Q=2.8×10000÷3600÷24×1.35×1.02=0.44625m³/s。
2、扬程的确定(1)水泵扬程:H=Hst+∑h式中Hst为水泵静扬程;∑h包括压水管水头损失、吸水管路水头损失和泵站内部水头损失;设计静扬程Hst:即供水管网所需扬程(包括服务水头)Hw=42.00加上泵站出水口与吸水井水面高差Hs,暂定为Hs=-2m。
(2)泵站内部水头损失∑h粗略估计为2m。
(3)安全工作水头hp,其值粗估为2m。
综上可知,水泵最大扬程H=42+2+2-2=44m。
三、泵站的形式采用合建式半地下泵房;吸水井水面标高高于泵轴2m;吸水井水位变化很小,不予考虑,水位低于地面0.5m。
四、水泵与电机的选择根据给水管网设计资料,采用两用一备的方式,选三个型号相同的水泵,水泵为单级双吸式离心泵,要求的单泵流量为Q=0.7×0.31875=0.223125m³∕s=223.125L∕s;单泵流量为水量的70%,以保证一台水泵事故时,基本满足用水需要。
水泵站课程设计说明书与计算书
水泵站课程设计说明书与计算书送水泵站工艺设计设计题目:送水泵站工艺设计学生姓名:专业名称: 环境工程班级名称:学号:指导教师:完成时间: 2013-7-52013年6月30日第一部分设计说明书 (2)1.设计概述 (2)1.1设计资料 (2)1.1.1工程概况 (2)2.设计目的 (2)3.基础设计 (2)3.1机组选择 (2)4.机组基本尺寸的确定 (1)5.吸水管和压水管径的确定 06.吸水井设计计算 07.各工艺标高的设计计算 (1)8.复核水泵机组 09.消防校核 010.泵房形式的选择及机械间布置 010.1阀门 011.机组和管道的布置 (1)11.1阐述对吸水管的设计要求 (1)11.2压水管的设计要求 012.水泵机组基础设计12.1基础的作用及要求 012.2卧式泵的块式基础的尺寸 013.高度校核 014.其他附属设备的选择及其布置14.1引水设备 (1)14.2计量设备 014.4排水设备 015.泵站平面布置 0第二部分计算书 (1)1.选泵参数的确定 (1)2.选择水泵 (1)3.机组基础尺寸的确定 (1)4.吸水管和压水管径的确定 05.吸水井设计计算 06.各工艺标高的设计计算 07.复核水泵机组 08.消防校核 09.其他附属设备的选择及其布置 (1)9.1引水设备 (1)第三部分实习体会 (2)1第一部分设计说明书1.设计概述:1.1设计资料:1.1.1工程概况:某送水泵站日最大设计流量Q=(98000+1100i)m3/d。
泵站分为二级工作,为某建筑物供水,该建筑物需要的自由水压H c=(16+i)m,输水管和给水管网总水头损失∑h1=(10+i)m,吸水井最低水位到设计最不利地面高差Z c=(13.4+i)m,吸水井到泵站距离为5m,该泵站室外的地面标高为290m,该地区冰冻深度为1.7m。
泵站一级工作从5点到22点,每小时水量占全天用水量的5.21%。
泵站二级工作从22点到5点,每小时水量占全天用水量的3.01%。
(完整版)配水提升泵站工艺设计说明计算书:城市生活给水,6.8万吨每天,中开式双吸离心泵
第1节 绪论1.1 泵站的设计水量为(6.8)万m 3/d 。
1.2给水管网设计的部分成果:1.2.1 根据用水曲线确定二泵站工作制度,分两级工作。
第一级,每小时占全天用水量的(2.7%)。
第二级,每小时占全天用水量的(5.48%)。
1.2.2 城市设计最不利点的地面标高为270m,建筑层数5层,自由水压为24m 。
1.2.3 给水管网平差得出的二泵站至最不利点的输水管和配水管网的总水头损失为24.1m 。
1.3 清水池所在地地面标高为264.6m ,清水池最低水位在地面以下3.8m 。
1.4 城市的最高温度为(36.9摄氏度)最低温度为(5.2摄氏度) 1.5 站所在地土壤良好,地下水位为(3.1m)。
1.6 泵站具备双电源条件。
第2节 水泵机组的初步选择2.1 泵站设计参数的确定 泵站一级工作时的设计工作流量泵站二级工作时的设计工作流量s L h m Q /./%..722254917622105334==⨯⨯=Ⅱ泵站一级工作时的设计扬程m ..h h H H c 55125132412Z 0==泵站内Ⅰ++++++=∑∑其中 c Z —地形高差(m );0H —自由水压(m);∑h —总水头损失(m);∑泵站内h—泵站内损失(初步估计为1.5m )。
2.2 选择水泵可用管路特性曲线进行选泵。
先求出管路特性曲线方程中的参数,因为m H ST 362412=+=,所以5222595123602513m /s ./.Q /h h S =+=+=∑∑)()(泵站内,因此225936Q SQ H H ST +=+=。
为了方便日后水泵的管理和维修,选择三台同样型号的水泵,互为备用,第一级工作时两台水泵并联工作,第二级工作时一台水泵单独工作。
列表1,管路特性曲线关系表。
表1:管路特性曲线关系表根据上述分析反复比较水泵特性曲线,有两个方案如下: 方案一:选择300S58型水泵并联时,工况点(见M 点)kW P ,.%.,m .H ,h /m .Q 300783384651818533====%=,总泵ηη单泵时,工况点(见N 点)kW P ,.%.,m .H ,h /m Q 16086868434211763====%=,总泵ηη方案二:选择12Sh9型水泵并联时,工况点(见M 点)kW P ,.%.,m .H ,h /m .Q 360379181951718703====%=,总泵ηη单泵时,工况点(见N 点)kW P ,.%.,m .H ,h /m .Q 175155881941911383====%=,总泵ηη两种方案的比较:在两者轴功率差不多的前提下,显然300S58效率更高,最终确定选择300S58型水泵三台,互为备用,工况点见上述。
雨水泵站计算书——潜水轴流泵计算书
雨水泵站计算书——潜水轴流泵计算书1.潜水轴流泵的选型根据实际应用需求和现场情况,我们选择了潜水轴流泵来进行雨水泵站设计。
2.泵站流量计算根据雨水泵站的需求以及相关设计标准,我们计算出了泵站的流量。
流量的计算可以通过下式进行:Q=A×V其中,Q为流量,A为泵站颚(喉)截面积,V为喉部流速。
3.泵站扬程计算我们计算了泵站的提升高度,用来确定泵站的扬程。
泵站扬程的计算可以通过下式进行:H = h1 + h2 + hl + Δh其中,H为泵站扬程,h1为吸水孔到轴心的垂直距离,h2为吸水孔到排水管底部的垂直距离,hl为液体所需提升的高度,Δh为液体在管道中流动时所产生的动压高度。
4.泵站功率计算根据流量和扬程的计算结果,我们可以计算泵站所需的功率。
泵站功率的计算可以通过下式进行:P=(Q×H×ρ)/η其中,P为泵站功率,Q为流量,H为扬程,ρ为液体的密度,η为泵的效率。
5.电机功率计算根据泵站功率的计算结果,我们可以计算出所需的电机功率。
电机功率的计算可以通过下式进行:Pm=(1.1×P)/k其中,Pm为电机功率,P为泵站功率,k为电机效率。
6.泵站选型根据计算结果,我们可以选择合适的潜水轴流泵型号。
在选择时需要考虑泵的流量、扬程、功率等参数,同时还要与现场实际条件相匹配,如泵站净空尺寸、出水管道直径等。
7.泵站运行参数根据泵站的选型,可以确定泵站的运行参数,如电机额定转速、泵的额定转速、电源电压等。
8.泵站材料选择根据实际运行环境和液体介质的特性,我们选择适用的泵壳、叶轮、轴承等材料,以确保泵站的长期稳定运行。
这是一个简单的潜水轴流泵计算书,涵盖了泵站的流量计算、扬程计算、功率计算、电机功率计算、选型、运行参数和材料选择等方面,在实际设计过程中需要根据具体情况进行修正和完善。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泵站设计计算书第一章:泵站兴建缘由及概况1.兴建缘由:博斯腾湖位于我国新疆巴音郭楞蒙自治州境内。
其上游为开都河、下游为孔雀河。
故博斯腾湖既是开都河水系和焉耆盆地地面径流的归宿地,又是孔雀河的发源地。
多年以来孔雀河水道狭窄,芦苇丛生,博斯腾湖水出流不畅,沿岸湖宽水浅,湖面蒸发损失很大(年蒸发量约为10亿m3),因而造成孔雀河灌区农业用水不足,整个焉耆盆地地下水位升高,土壤盐渍化严重。
因此巴音郭楞蒙古自治州粮食产量一直较低。
每年均由国家调进粮食。
由于孔雀河枯水季节流量小,故不能满足下游两个水电站发电的需水量。
其中铁门关水电站5×8500kw 机,只能运行一台,石灰窑水电站2×3000+2×3200kw机也不能满足机组的发电量。
同时由于湖面蒸发损失的增加,近20年以来,博湖的水质也发生了很大的变化,湖水的矿化度1958年为0.383~0.390g/L,而1981年6~8月的平均矿化度为1.8g/L。
22年中平均每年增高0.064g/L博湖已由淡水湖变为微咸湖,水质变坏的趋势,近几年更为严重。
为此,决定在博湖的西南面,孔雀河口以东约两公里处建设泵站,目的在于:1.根据焉耆盆地治碱、排水,降低地下水位的要求,保证湖水位低于1046m高程;2.调节孔雀河流量,满足库尔勒和塔里木两灌区灌溉用水的需要;3.保证铁门关水电站和石灰窑电站枯水期的发电流量,满足负荷要求,冬季不要限电;4.促进湖水循环,防止湖水继续咸化,同时限制地下水位升高,减轻土壤盐渍化程度。
博湖泵站建成后,可兼收排水、灌溉、发电、保护水质四方面的效益,一举而数得。
2.基本资料的分析整理。
一)、地形资料博斯腾湖附近水系地形图(1/500)。
二)、地质资料泵站站址处:地表下0-2m,厚2m,亚砂土(干容重γ干=1.5t/m3);地表下2-12m厚10m细砂土(干容重γ干=1.55 t/m3);贯入10cm数达60次;地表下12-112m厚100m,亚砂土(干容重γ干=1.8t/m3),贯入3cm,击数为70次;地下水位1047.08-1047.78m,低于湖水位,由湖水补给。
细砂渗透系数K=4.08-10.00m/昼夜,地下水矿化度高达24.25-26.037g/L,并含有侵蚀性CO2,CO2含量为10.75-161.75mg/L,对普通水泥有侵蚀性。
博湖水矿化度如前所述,不含CO2。
三)、气象资料1.山间盆地与峡谷区:海拔3000-4500m,气候严寒,年平均气温-5.1℃,年最低气温-40.5℃(发生在一月)。
雨量多,年降水量300mm,集中于6、7、8三个月。
冬季长5个月,最大动土深4.4m,最大风速20m/s,多为西北风。
2.焉耆盆地:海拔1048-1200m,气候冰爽,年平均气温8.6℃,年最高气温38.8℃(发生在八月),最低气温-35.2℃(发生在一月),无霜期平均为145天,日照时树平均为3174小时,年降水量66mm,年蒸发量1983mm,最大风速20m/s,多为西北风,积雪期31天,冻土深1.05 m,不宜种冬麦。
3.库尔勒平原:海拔800-950m,受塔里木沙漠气候影响,大陆性气候显著,冬寒夏热,年平均气温10.7℃,年最高气温43.1℃(发生在八月),年最低气温-32.7℃(发生在一月)。
年降水量61.2mm,年蒸发量2668.3mm,日照时数为3001小时,无霜期长,平均为195天,适宜种植棉花及复种玉米。
最大风速16m/s,多为西北风,并有来自沙漠的旱风,出现在4-5月份,积雪期32天,冻土深0.65m。
四)、水文资料1.水位资料(1)泵站最高下水位 1048.0m;(2)泵站设计下水位 1043.0m;(3)泵站最低下水位 1043.0m;(4)出水池校核水位 1050.2m;(5)出水池设计水位 1050.0m;(6)出水池最低水位 1047.4m。
2.流量资料设计流量为40m3/s。
五)、建筑物等级博湖泵站是铁门关、石灰窑两级电站的水源泵站,并兼负降低博斯腾湖水位、灌溉库尔勒地区农田的任务,参照铁门关水电站那个主体建筑物等级(Ⅱ级),据此确定本泵站主体建筑物按Ⅱ级建筑设计,其它附属建筑物按Ⅲ级设计。
六)、其他资料1.地震烈度:已建的铁门关水电站采用8度,博斯腾湖泵站工程也按8度设计。
2.能源:泵站用电由铁门关水电站供给,在铁门关水电站的110kV 升压站接网,用53公里110kV架空输电线路输送至本站。
3.交通、建材:本地交通方便,陆路可通汽车,水路可通船舶;建筑材料可以保证供应,砂石料更可就地取材。
第二章:工程布置1.站值的确定:根据本地区具体条件,选择站的面积小,拆迁房屋较少,工程造价低。
考虑到水流顺直,地基稳定,防洪安全,交通便利,施工方便等要求,站址确定如图所示,在该区域地形开阔、岸坡适宜、有利于工程布置,并且地质良好,能满足正面进水和正面出水的要求。
2.设计流量及设计扬程的确定:一、设计扬程1.实际扬程实际最大扬程:H max=▽出max-▽进min=1050.2-1043.0=7.2 m实际设计扬程:H设= ▽出设-▽进设=1050.0-1043.0=7.0 m实际最小扬程:H min=▽出设-▽进max=1048.0-1047.4=0.6 m2.初估扬程H=(1+K)H实(k在最大扬程时取0.3,设计扬程及最小扬程取0.2)设计扬程计算如下:H max=(1+0.2)×7.2=8.64 mH设=(1+0.2)×7.0=8.4 mH min=(1+0.2)×0.6=0.72m二、设计流量Q设=40 m3/s3.主机组选型及台数确定一、主水泵1.水泵选型博斯滕湖水泵站属于低扬程、大流量的情况,且扬程变化较大,故初步选用全调节轴流泵。
根据设计扬程选择水泵型号。
方案的比较:对于方案三机组台数较多不经济,而且流量与设计流量相差超过5%故舍弃,对于方案一虽然台数流量基本满足条件但台数是偶数台不利于对称开启,综合考虑选择第二种方案的泵型。
配套电机的选择:TL800-20/2150型电动机。
第三章枢纽建筑物设计1.泵房的型式:泵房结构型式多样,常采用的有分基型、干室型、湿室型和块基型。
其中块基型适用于大中型水泵站,该泵房结构整体性好,可以适应各种地基条件,最适合博斯腾湖泵站的设计情况。
块基型泵房按其是否直接挡水及与堤坊的连接关系可分为堤身式和堤后式两种。
堤身式出水流道短,建筑物等级高,一般与防洪标准一致,扬程较小时采用此形式比较经济,因此将其作为首选方案。
堤身式泵房又因其出水流道的不同而分为堤身虹吸式和堤身直管式和堤身屈膝式。
堤身虹吸式泵房虽然断面复杂,施工较为困难,但运行可靠,检修容易,为确保安全可靠采用该方案比较合适。
2.进水流道的设计:1)转轮中心线至底板的距离H与转轮直径D的比值H/D越大则进口流速分布越均匀,同时相应增加工程难度与造价故暂定H/D=22)进口流速宜取0.8—1.0m/s初步确定为1m/s3)流道进口至机组轴线水平长度(进口段长度)L较长,则进水流态较稳定,能得到较高的水力效率但较长的L会使泵房宽度增加。
从而增加工程投资。
4)进水流道底板一般未平底,但往往将流道进口段底板向上翘起,其上翘角为5°--12°,一般多采用8°--10°5)进水流道顶板的仰角一般根据进水池最低水位高程确定,要求顶板上缘淹没在最低水位,国内泵站多采用肘形进水流道,其α角多为20°左右。
6)进水流道进口段出口断面高度hk不宜过大,以免引起脱流通常取值范围以(0.8—1.1)D为宜。
7)中部弯曲段的内外侧一般分为不同心圆弧构成。
弯曲段内外侧的曲率半径不宜太小,外侧半径RO以大致等于D为宜,内侧半径R2以(0.35—0.45)D为宜。
H/D=2.0 H=2900mm L/D=3.5 L=5075mm B/D=2.0 B=2900mm R0/D=1.0 R0=1160mm R2/D=0.35 R2=507.5mm α取20°β取0°(一般为平底,故取0°)其中D由水泵直径确定为1450mm 进水流道的图如图所示:校核情况如下表所示:3.出水流道的设计:一)流道类型出水流道分为虹吸式、直管式、屈膝式、猫背式以及双向出水等几种。
其中虹吸式和直管式较为常用。
直管式出水流道设计施工简单,但由于其断流采用拍门或快速闸门,水流速度大,导致水力损失也较大,而且拍门受工艺限制常有事故发生,运行不如虹吸式可靠。
虹吸式出水流道水头损失小,断流方式简单可靠,维修操作工作量小。
适用于出水池水位变幅不大的立式或斜式低扬程泵站,综合考虑以上因素,决定采用虹吸式出水流道。
二)尺寸确定出水流道采用虹吸式出水流道一般由扩散段出水弯管,上升段,驼峰段,下降段,出口段等部分组成,分别确定各部分的形状和尺寸。
1.驼峰段驼峰断面平均流速V=2.4 (取值范围在2.0 ~ 2.5 m/s 内)驼峰底部高程▽底= ▽高+ δ= 1050.2 + 0.2 =1050.4 m其中:▽高是出水池最高水位,为1050.2米;δ为安全超高,一般在0.1 ~ 0.3m之间,这里选取为0.2米)驼峰断面面积A =Q/V=(7.6/2.4)=3.2m2驼峰断面高度h=0.6D=0.6*160=96cm (h在出水弯管出口直径的驼峰断面顶部高程▽顶= ▽底 + h = 1050.4 + 0.96= 1051.4m 驼峰断面宽度B = h A = 3.2/0.96 = 3.33 m驼峰处的曲率半径R=1.5D=240cm2.上升段首先确定水泵安装高程安装高程▽安=1043.0m-1.5m=1041.5m式中: ∇下低 :进水池最低水位 ;h :淹没深度 。
上升角α=30o上升段平面长度L2根据教科书上所给公式计算得10m3.下降段下降段宽度不变,呈不扩散型。
下降段倾角β=40o ~70o 取β=60o4.出口段出口流速V3= 1.5m/s出口段面面积F =1V Q = 7.6/1.5=5.1 m 2 出口段高度H=BF = 5.1/3.33=1.53cm 出口顶部高程▽3 = ▽池低-h 淹其中:h 淹=(4 ~5)gV 223= 4.5×81.925.12⨯=52cm >30cm ▽3 = ▽池低-h 淹 = 1047.4 – 0.52 = 1046.88 m三、驼峰顶部真空值的校核驼峰顶部实际的真空值:H2=▽顶-▽池低+gV V ⨯-22322 -h 损 =1051.36-1047.4+((2.4^2)-(1.5^2))/(2*9.8)-损=4.336 m驼峰顶部的最大允许真空值:900∇---=δγγkP Pa H 允 式中: Pa :当地海拔高程的大气压力 ;Pk :为临界汽化压力δ:真空脉动值▽:计算点的位置高程=⨯⨯=⨯=81.925.20.12220g v βδ0.032H 允 = 10.33 - 0.24 - 89.8032.09004.1050=- m H 允最大为7.5m,故H 允=7.5mH 实=4.336m < H 允=7.5m满足要求,驼峰处不会发生汽蚀,虹吸式出水流道可以正常工作。