SPSS实验-二项Logistic回归分析(精品)

合集下载

利用SPSS进行logistic回归分析(二元、多项)

利用SPSS进行logistic回归分析(二元、多项)

线性回归是很重要的一种回归方法,但是线性回归只适用于因变量为连续型变量的情况,那如果因变量为分类变量呢比方说我们想预测某个病人会不会痊愈,顾客会不会购买产品,等等,这时候我们就要用到logistic回归分析了。

Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。

还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。

二值logistic回归:选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。

有没有很奇怪什么叫做协变量在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。

把你的自变量选到协变量的框框里边。

细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。

我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。

那么我们为了模型的准确,就把这个交互效应也选到模型里去。

我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。

然后在下边有一个方法的下拉菜单。

默认的是进入,就是强迫所有选择的变量都进入到模型里边。

除去进入法以外,还有三种向前法,三种向后法。

一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。

再下边的选择变量则是用来选择你的个案的。

SPSS实验8-二项Logistic回归分析

SPSS实验8-二项Logistic回归分析

SPSS作业8:二项Logistic回归分析为研究和预测某商品消费特点和趋势,收集到以往胡消费数据.数据项包括是否购买,性别,年龄和收入水平。

这里采用Logistic回归的方法,是否购买作为被解释变量(0/1二值变量),其余各变量为解释变量,且其中性别和收入水平为品质变量,年龄为定距变量。

变量选择采用Enter方法,性别以男为参照类,收入以低收入为参照类。

(一)基本操作:(1)选择菜单Analyz e-Regression-Binary Logistic;(2)选择是否购买作为被解释变量到Dependent框中,选其余各变量为解释变量到Covariates框中,采用Enter方法,结果如下:消费的二项Logistic分析结果(一)(强制进入策略)Categorical Variables CodingsFrequency Parameter coding (1) (2)收入低收入132 .000 .000中收入144 1.000 。

000高收入155 。

000 1。

000性别男191 。

000女240 1.000分析:上表显示了对品质变量产生虚拟变量的情况,产生的虚拟变量命名为原变量名(编码)。

可以看到,对收入生成了两个虚拟变量名为Income(1)和Income(2),分别表示是否中收入和是否高收入,两变量均为0时表示低收入;对性别生成了一个虚拟变量名为Gedder(1),表示是否女,取值为0时表示为男。

消费的二项Logistic 分析结果(二)(强制进入策略)Block 0: Beginning BlockClassification Table a,bObserved Predicted是否购买 Percentage Correct不购买购买Step 0是否购买不购买 269 0 100。

购买162。

0 Overall Percentage62。

4a 。

Constant is included in the model 。

利用SPSS进行logistic回归分析(二元、多项)

利用SPSS进行logistic回归分析(二元、多项)

线性回归是很重要的一种回归方法,但是线性回归只适用于因变量为连续型变量的情况,那如果因变量为分类变量呢?比方说我们想预测某个病人会不会痊愈,顾客会不会购买产品,等等,这时候我们就要用到logistic回归分析了.Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。

还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。

二值logistic回归:选择分析-—回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。

有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。

把你的自变量选到协变量的框框里边。

细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。

我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。

那么我们为了模型的准确,就把这个交互效应也选到模型里去。

我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。

然后在下边有一个方法的下拉菜单。

默认的是进入,就是强迫所有选择的变量都进入到模型里边。

除去进入法以外,还有三种向前法,三种向后法.一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。

再下边的选择变量则是用来选择你的个案的。

spss二元logistic回归分析结果解读

spss二元logistic回归分析结果解读

spss二元logistic回归分析结果解读二元logistic回归分析是一种被广泛应用于多元研究中的统计分析方法,它可以帮助研究者了解因变量与自变量之间的关系,探索如何调节自变量,以达到改变因变量的目的。

本文主要就二元logistic回归分析结果如何解释进行讨论,旨在帮助读者更好地理解并解读此类分析结果。

一、二元logistic回归分析概述二元logistic回归分析是一种常见的回归分析模型,它可以用来预测一个特定的结果,或者说一个事件的发生可能性,以及它的发生概率有多大。

它比较适合于研究两个变量之间的关系,一个变量是被解释变量,另一个变量是解释变量,被解释变量只有两种可能的结果,比如两个不同的类别。

二元logistic回归分析的基本思想是利用自变量来预测因变量,它通过计算自变量之间的相关性,来预测因变量的发生可能性,比如我们可以利用自变量,如性别、年龄等,来预测一个人是否会患上某种疾病。

二元logistic回归分析结果分析二元logistic回归分析的结果可以分为三类,分别是系数、截距和拟合指数。

1、系数系数指的是每个自变量变化时,因变量变化的程度,系数的正负可以表示因变量变化的方向,正数表示因变量随自变量变化而增大,负数表示因变量随自变量变化而减小。

系数的大小可以表示因变量变化的幅度,数值越大,表明因变量变化的越明显。

2、截距截距表示自变量为0时因变量的值,即任何自变量都不存在的情况下,因变量的值。

它的大小可以反映因变量变化的数量级,它的正负可以表示因变量变化的方向,正数表示因变量变化而增大,负数表示因变量变化而减小。

3、拟合指数拟合指数是一种衡量模型准确度的指标,其数值越大,表明模型越准确。

一般来说,当拟合指数大于0.6时,可以认为模型较准确。

三、典型二元logistic回归分析结果解读1、系数如果某个自变量的系数为正,表示随着自变量增加,因变量也随之增加;如果系数为负,表示随着自变量增加,因变量会减小。

SPSS专题2 回归分析(线性回归、Logistic回归、对数线性模型)

SPSS专题2 回归分析(线性回归、Logistic回归、对数线性模型)

19
Correlation s lif e_ expectanc y _ f emale(y ear) .503** .000 164 1.000 . 192 .676**
cleanwateraccess_rura... life_expectancy_femal... Die before 5 per 1000
Model 1 2
R .930
a
R Square .866 .879
Model 1
df 1 54 55 2 53 55
Regres sion Residual Total Regres sion Residual Total
Mean Square 54229.658 155.861 27534.985 142.946
2
回归分析 • 一旦建立了回归模型 • 可以对各种变量的关系有了进一步的定量理解 • 还可以利用该模型(函数)通过自变量对因变量做 预测。 • 这里所说的预测,是用已知的自变量的值通过模型 对未知的因变量值进行估计;它并不一定涉及时间 先后的概念。
3
例1 有50个从初中升到高中的学生.为了比较初三的成绩是否和高中的成绩 相关,得到了他们在初三和高一的各科平均成绩(数据:highschool.sav)
50名同学初三和高一成绩的散点图
100
90
80
70
60
高 一成 绩
50
40 40
从这张图可以看出什么呢?
50 60 70 80 90 100 110
4
初三成绩
还有定性变量 • 该数据中,除了初三和高一的成绩之外,还有 一个定性变量 • 它是学生在高一时的家庭收入状况;它有三个 水平:低、中、高,分别在数据中用1、2、3 表示。

手把手教你SPSS二分类Logistic回归分析

手把手教你SPSS二分类Logistic回归分析

手把手教你SPSS二分类Logistic回归分析木教程手把手教您用SPSS做Logistic回归分析,目录如下:一、数据格式二、对数据的分析理解三、S PSS做Logistic回归分析操作步骤3. 1线性关系检验假设3.2多重共线检验假设3.3离群值、杠杆点和强影响点的识别3. 4 Logistic回归分析四、S PSS计算结果的解释五、结果结论的撰写一、数据格式某研究者想了解年龄、性别、BMI和总胆固醇(TC)预测患心脏病(CVD)的能力,招募了100例研究对象,记录了年龄(age)、性别(gender)、BMI,测量血中总胆固醇水平(TC),并评估研究对象目前是否患有心脏病(CVD)o部分数据如图1。

二、对问题分析使用Logistic模型前,需判断是否满足以下7项假设。

假设1:因变量(结局)是二分类变量。

假设2:有至少1个自变量,自变量可以是连续变量,也可以是分类变量。

假设3:每条观测间相互独立。

分类变量(包括因变量和自变量)的分类必须全而且每一个分类间互斥。

假设4:最小样本量要求为自变量数目的15倍,但一些研究者认为样木量应达到自变量数目的50倍。

假设5:连续的自变量与因变量的logit转换值之间存在线性关系。

假设6:自变量之间无多重共线性。

假设7:没有明显的离群点、杠杆点和强影响点。

假设1-4取决于研究设计和数据类型,本研究数据满足假设1- 4o 那么应该如何检验假设5-7,并进行Logistic回归呢?三、SPSS操作3. 1检验假设5:连续的自变量与因变量的logit转换值之间存在线性关系。

连续的自变量与因变量的logit转换值之间是否存在线性关系,可以通过多种方法检验。

这里主要介绍Box-Tidwell方法, 即将连续自变量与其自然对数值的交互项纳入回归方程。

本研究中,连续的自变量包括age、BMI、TCo使用Box-Tidwell 方法时,需要先计算age、BMI、TC的自然对数值,并命名为ln_age> ln_BMI> ln_TCo(1)计算连续自变量的自然对数值以age 为例,计算age 的自然对数值ln_age 的SPSS 操作如下。

spss二元logistic回归分析结果解读

spss二元logistic回归分析结果解读

spss的二元logistic回归
SPSS(Statistical Product and Service Solutions)是一款数据统计与分析软件。

SPSS软件可以提供全面高级的统计分析,方便易用可快速操作,可缩小数据科学与数据理解之间的差距;在具体的应用方向方面,SPSS提供了高级统计分析、大量机器学习算法、文本分析等功能,具备开源可扩展性,可与大数据的集成,并能够无缝部署到应用程序中。

Logistic回归:主要用于因变量为分类变量(如疾病的缓解、不缓解,评比中的好、中、差等)的回归分析,自变量可以为分类变量,也可以为连续变量。

变量为二分类的称为二项logistic回归,因变量为多分类的称为多元logistic回归。

Odds:称为比值、比数,是指某事件发生的可能性(概率)与不发生的可能性(概率)之比。

OR(OddsRatio):比值比,优势比。

二元logistic回归是研究二分类反应变量和多个解释变量间回归关系的统计学分析方法。

SPSS二项Logistic回归综述

SPSS二项Logistic回归综述

b. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.
从上表中可知,-2倍的对上似然函数值较高;Cox & Snell R2和 Nagelkerke R2的值均接近0,说明模型的拟合优度较低。
➢ 基本操作:
选择分析(analyze)--回归(regression)--二元Logistic回归
被解释变量的选择
解释变量的选择
选择解释变量的筛选策略
条件变量的选择,只有满足条件变量 值的样本才参与回归分析
选择解释变量的筛选策略 (1)进入(enter):表示解释 变量全部强行进入模型; (2)向前:条件(forward: conditional)表示向前筛选变量 且变量进入模型的依据是比分检 验统计量,剔除出模型的依据是 条件参数估计原则下的似然率卡 方(首选选择使变化量变化最小 的解释变量剔除出模型); (3)向前:LR(forward: LR) 表示向前筛选变量且变量进入模 型的依据是比分检验统计量,剔 除出模型的依据是极大似然估计 原则下的似然比卡方; (4)向后:条件(backward: conditional)表示向后筛选变量 且变量剔除出模型的依据是条件 参数估计原则下的似然比卡方; (5)向后:LR( backward : LR) 表示向后筛选变量且变量剔除出 模型的依据是极大似然估计原则 下的似然比卡方; (6)向后:Wald( backward : Wald)表示向后筛选变量且变量 剔除出模型的依据是wald统计量;
➢上表中step行是本步与前一步相比的似然比卡方;Block行是本块与前一块相 比的似然比卡方;Model行是本模型与前一模型相比的似然比卡方。 ➢本例中没有设置解释变量块且解释变量是一次性强制进入,所以三行结果相同。 ➢模型显著性检验的零假设:各回归系数同时为0,解释变量全体与logit P的线 性关系不显著;备择假设:·······。如果显著性水平为0.05,因为概率P值0.001 小于0.05,应拒绝零假设,认为‘所有回归系数不同时为0,解释变量全体与 Logit P之间的关系显著,采用该模型是合理的’。

如何用SPSS做logistic回归分析

如何用SPSS做logistic回归分析

如何用SPSS做logistic回归分析
如何用进行二元和多元回归分析
一、二元回归分析
二元回归分析的前提为因变量是可以转化为、的二分变量,如:死亡或者生存,男性或者女性,有或无,或,是或否的情况。

下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元回归分析。

(一)数据准备和选项设置
第一步,原始数据的转化:如图所示,其中脑梗塞可以分为、和三种,但现在我们仅考虑性别和年龄与的关系,因此将分组数据、和转化为、分类,是赋值为,否赋值为。

年龄为数值变量,可直接输入到中,而性别需要转化为(、)分类变量输入到当中,假设男性为,女性为,但在后续分析中系统会将,置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“”,女性为“”。


第二步:打开“二值回归分析”对话框:
沿着主菜单的“分析()→回归()→二元()”的路径(图)打开二值回归分析选项框(图)。

如图左侧对话框中有许多变量,但在单因素方差分析中与显著相关的为性别、年龄、有无高血压,有无糖尿病等(<),因此我们这里选择以性别和年龄为例进行分析。

SPSS学习笔记之——二项Logistic回归分析

SPSS学习笔记之——二项Logistic回归分析

SPSS学习笔记之——二项Logistic回归分析一、概述Logistic回归主要用于因变量为分类变量(如疾病的缓解、不缓解,评比中的好、中、差等)的回归分析,自变量可以为分类变量,也可以为连续变量。

他可以从多个自变量中选出对因变量有影响的自变量,并可以给出预测公式用于预测。

因变量为二分类的称为二项logistic回归,因变量为多分类的称为多元logistic回归。

下面学习一下Odds、OR、RR的概念:在病例对照研究中,可以画出下列的四格表:------------------------------------------------------暴露因素病例对照-----------------------------------------------------暴露 a b非暴露 c d-----------------------------------------------Odds:称为比值、比数,是指某事件发生的可能性(概率)与不发生的可能性(概率)之比。

在病例对照研究中病例组的暴露比值为:odds1 = (a/(a+c))/(c(a+c)) = a/c,对照组的暴露比值为:odds2 = (b/(b+d))/(d/(b+d)) = b/dOR:比值比,为:病例组的暴露比值(odds1)/对照组的暴露比值(odds2) = ad/bc换一种角度,暴露组的疾病发生比值:odds1 = (a/(a+b))/(b(a+b)) = a/b非暴露组的疾病发生比值:odds2 = (c/(c+d))/(d/(c+d)) = c/dOR = odds1/odds2 = ad/bc与之前的结果一致。

OR的含义与相对危险度相同,指暴露组的疾病危险性为非暴露组的多少倍。

OR>1说明疾病的危险度因暴露而增加,暴露与疾病之间为“正”关联;OR<1说明疾病的危险度因暴露而减少,暴露与疾病之间为“负”关联。

用SPSS做logistic回归分析解读

用SPSS做logistic回归分析解读

如何用SPSS做logistic回归分析解读————————————————————————————————作者:————————————————————————————————日期:如何用进行二元和多元logistic回归分析一、二元logistic回归分析二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。

下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。

(一)数据准备和SPSS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。

年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。

图 1-1第二步:打开“二值Logistic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic(Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。

如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<),因此我们这里选择以性别和年龄为例进行分析。

在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。

(仅供参考)二分类Logistic回归的详细SPSS操作

(仅供参考)二分类Logistic回归的详细SPSS操作

SPSS操作:二分类Logistic回归作者:张耀文1、问题与数据某呼吸内科医生拟探讨吸烟与肺癌发生之间的关系,开展了一项成组设计的病例对照研究。

选择该科室内肺癌患者为病例组,选择医院内其它科室的非肺癌患者为对照组。

通过查阅病历、问卷调查的方式收集了病例组和对照组的以下信息:性别、年龄、BMI、COPD病史和是否吸烟。

变量的赋值和部分原始数据见表1和表2。

该医生应该如何分析?表1. 肺癌危险因素分析研究的变量与赋值表2. 部分原始数据ID gender age BMI COPD smoke cancer1 0 34 0 1 1 02 1 32 0 1 0 13 0 27 0 1 1 14 1 28 0 1 1 05 1 29 0 1 0 06 0 60 0 2 0 07 1 29 0 0 1 18 1 29 1 1 1 19 1 37 0 1 0 010 0 17 0 0 0 011 0 20 0 0 1 112 1 35 0 0 0 013 0 17 1 0 1 1…………………2、对数据结构的分析该设计中,因变量为二分类,自变量(病例对照研究中称为暴露因素)有二分类变量(性别、BMI和是否吸烟)、连续变量(年龄)和有序多分类变量(COPD 病史)。

要探讨二分类因变量与自变量之间的关系,应采用二分类Logistic回归模型进行分析。

在进行二分类Logistic回归(包括其它Logistic回归)分析前,如果样本不多而变量较多,建议先通过单变量分析(t检验、卡方检验等)考察所有自变量与因变量之间的关系,筛掉一些可能无意义的变量,再进行多因素分析,这样可以保证结果更加可靠。

即使样本足够大,也不建议直接把所有的变量放入方程直接分析,一定要先弄清楚各个变量之间的相互关系,确定自变量进入方程的形式,这样才能有效的进行分析。

本例中单变量分析的结果见表3(常作为研究报告或论文中的表1)。

表3. 病例组和对照组暴露因素的单因素比较病例组(n=85)对照组(n=259) χ2 /t统计量P性别,男(%)56 (65.9) 126 (48.6) 7.629 <0.01年龄(岁),x± s40.3 ±14.0 38.6 ±12.4 1.081 0.28 BMI,n (%)正常48 (56.5) 137 (52.9) 0.329 0.57超重或肥胖37 (43.5) 122 (47.1)COPD病史,n (%)无21 (24.7) 114 (44.0) 14.123 <0.01轻中度24 (28.2) 75 (29.0)重度40 (47.1) 70 (27.0)是否吸烟,n(%)否18 (21.2) 106 (40.9) 10.829 <0.01是67 (78.8) 153 (59.1)单因素分析中,病例组和对照组之间的差异有统计学意义的自变量包括:性别、COPD病史和是否吸烟。

如何用spss17.0进行二元和多元logistic回归分析(汇编)

如何用spss17.0进行二元和多元logistic回归分析(汇编)

如何用spss17.0进行二元和多元logistic 回归分析一、二元logistic 回归分析二元logistic 回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes 或No ,是或否的情况。

下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic 回归分析。

(一)数据准备和SPSS 选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS 、ECAS 和NCAS 三种,但现在我们仅考虑性别和年龄与ICAS 的关系,因此将分组数据ICAS 、ECAS 和NCAS 转化为1、0分类,是ICAS 赋值为1,否赋值为0。

年龄为数值变量,可直接输入到spss 中,而性别需要转化为(1、0)分类变量输入到spss 当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。

第二步:打开“二值Logistic 回归分析”对话框:沿着主菜单的“分析(Analyze )→回归(Regression )→二元logistic (Binary Logistic )”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。

如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。

图 1-1在图1-3中,因为我们要分析性别和年龄与ICAS 的相关程度,因此将ICAS 选入因变量(Dependent )中,而将性别和年龄选入协变量(Covariates )框中,在协变量下方的“方法(Method )”一栏中,共有七个选项。

采用第一种方法,即系统默认的强迫回归方法(进入“Enter ”)。

接下来我们将对分类(Categorical ),保存(Save ),选项(Options )按照如图1-4、1-5、1-6中所示进行设置。

SPSS学习系列28 二元Logistic回归解读

SPSS学习系列28 二元Logistic回归解读

28. 二元Logistic回归二元或多元线性回归的因变量都是连续型变量,若因变量是分类变量(例如:患病与不患病;不重要、重要、非常重要),就需要用Logistic回归。

Logistic回归分析可以从统计意义上估计出在其它自变量固定不变的情况下,每个自变量对因变量取某个值的概率的数值影响大小。

Logistic回归模型有“条件”与“非条件”之分,前者适用于配对病例对照资料的分析,后者适用于队列研究或非配对的病例-对照研究成组资料的分析。

对于二分类因变量,y=1表示事件发生;y=0表示事件不发生。

事件发生的条件概率P{ y=1 | x i } 与x i之间是非线性关系,通常是单调的,即随着x i的增加/减少,P{ y=1 | x i } 也增加/减少。

,图形如下图所示:Logistic函数F(x)=11+e该函数值域在(0,1)之间,x趋于-∞时,F(x)趋于0;x趋于+∞时,F(x)趋于1. 正好适合描述概率P{ y=1 | x i }. 例如,某因素x导致患病与否:x 在某一水平段内变化时,对患病概率的影响较大;而在x 较低或较高时对患病概率影响都不大。

记事件发生的条件概率P{ y =1 | x i } = p i ,则p i =11+e −(α+βx i )=e α+βx i 1+e α+βx i记事件不发生的条件概率为1- p i =11+e α+βx i则在条件x i 下,事件发生概率与事件不发生概率之比为p i 1−p i= e α+βx i称为事件的发生比,简记为odds. 对odds 取自然对数得到ln (p ii )= α+βx i 上式左边(对数发生比)记为Logit(y), 称为y 的Logit 变换。

可见变换之后的Logit(y)就可以用线性回归,计算出回归系数α和β值。

若分类因变量y 与多个自变量x i 有关,则变换后Logit(y)可由多元线性回归:11logit()ln()1k k pp x x p αββ==++-或 111()1(1|,,)1k k k x x p y x x e αββ-++==+一、简单的二元Logistic 回归出现某种结果的概率与不出现的概率之比,称为优势比OR. 问题1:研究“低体重出生儿”与“孕妇是否吸烟”之间的关系 有数据文件:因变量low:是否“低体重出生儿”(0=正常,1=低体重);自变量smoke:是否吸烟(0=不吸烟,1=吸烟)【分析】——【回归】——【二元Logistic】,打开“Logistic回归”窗口,将变量“low”选入【因变量】框,变量“smoke”选入【协变量】框;点【确定】,得到因变量编码初始值内部值正常0低出生体重 1块 0: 起始块若模型只含常数项,预测正确率为68.8%(=130/189);方程中的变量B S.E, Wals df Sig. Exp (B)步骤 0 常量-.790 .157 25.327 1 .000 .454 B=-0.79为模型常数项估计值,S.E为B的标准误;Wals为Wald卡方检验,原假设H0:回归系数=0;Exp(B)=0.454(表示患病率与未患病率之比:(1-68.8%)/68.8%);引入变量后的得分,以及该变量的回归系数是否为0的检验,原假设H0:回归系数=0;(主要针对逐步引进多个变量时的变量筛选)块 1: 方法 = 输入似然比卡方值,上一模型(常数项模型)与当前模型似然比值之差,检验两个模型有无差异,原假设H0:无差异。

手把手教你SPSS二分类Logistic回归分析

手把手教你SPSS二分类Logistic回归分析

手把手教你SPSS二分类Logistic回归分析本教程手把手教您用SPSS做Logistic回归分析,目录如下:一、数据格式二、对数据的分析理解三、SPSS做Logistic回归分析操作步骤3.1 线性关系检验假设3.2 多重共线检验假设3.3 离群值、杠杆点和强影响点的识别3.4 Logistic回归分析四、SPSS计算结果的解释五、结果结论的撰写一、数据格式某研究者想了解年龄、性别、BMI和总胆固醇(TC)预测患心脏病(CVD)的能力,招募了100例研究对象,记录了年龄(age)、性别(gender)、BMI,测量血中总胆固醇水平(TC),并评估研究对象目前是否患有心脏病(CVD)。

部分数据如图1。

二、对问题分析使用Logistic模型前,需判断是否满足以下7项假设。

假设1:因变量(结局)是二分类变量。

假设2:有至少1个自变量,自变量可以是连续变量,也可以是分类变量。

假设3:每条观测间相互独立。

分类变量(包括因变量和自变量)的分类必须全面且每一个分类间互斥。

假设4:最小样本量要求为自变量数目的15倍,但一些研究者认为样本量应达到自变量数目的50倍。

假设5:连续的自变量与因变量的logit转换值之间存在线性关系。

假设6:自变量之间无多重共线性。

假设7:没有明显的离群点、杠杆点和强影响点。

假设1-4取决于研究设计和数据类型,本研究数据满足假设1-4。

那么应该如何检验假设5-7,并进行Logistic回归呢?三、SPSS操作3.1 检验假设5:连续的自变量与因变量的logit转换值之间存在线性关系。

连续的自变量与因变量的logit转换值之间是否存在线性关系,可以通过多种方法检验。

这里主要介绍Box-Tidwell方法,即将连续自变量与其自然对数值的交互项纳入回归方程。

本研究中,连续的自变量包括age、BMI、TC。

使用Box-Tidwell 方法时,需要先计算age、BMI、TC的自然对数值,并命名为ln_age、ln_BMI、ln_TC。

SPSS实用教程:二元Logistic回归

SPSS实用教程:二元Logistic回归

SPSS实用教程:二元Logistic回归
模型数据,拟研究APACHE2评分与ICU预后的关系,需要校正一些变量,其中血小板计数,红细胞压积,SOFA评分以及APACHE2为定量变量。

菜单选择
参数设置,将因变量选入,自变量选入,选择变量进入方法为输入,点击分类,将分类变量进行定义,即分类变量进行哑变量化。

点击保存
点击选项
最后点击确定
首先是对变量的总体描述,以及应变量的编码规则
然后就是分类变量如何进行编码,也就是如何哑变量
结果1,分析模型的拟合优度
结果2分类结果,以及分类的准确性
最后就是放在文章里面的逻辑回归表格。

利用SPSS进行logistic回归分析(二元、多项)

利用SPSS进行logistic回归分析(二元、多项)

线性回归是很重要的一种回归方法,但是线性回归只适用于因变量为连续型变量的情况,那如果因变量为分类变量呢?比方说我们想预测某个病人会不会痊愈,顾客会不会购买产品,等等,这时候我们就要用到logistic回归分析了。

Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。

还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。

二值logistic回归:选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。

有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。

把你的自变量选到协变量的框框里边。

细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。

我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。

那么我们为了模型的准确,就把这个交互效应也选到模型里去。

我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。

然后在下边有一个方法的下拉菜单。

默认的是进入,就是强迫所有选择的变量都进入到模型里边。

除去进入法以外,还有三种向前法,三种向后法。

一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。

再下边的选择变量则是用来选择你的个案的。

SPSS-二元Logistic回归案例分析

SPSS-二元Logistic回归案例分析

二元Logistic回归案例分析二元Logistic,从字面上其实就可以理解大概是什么意思,Logistic中文意思为“逻辑”但是这里,并不是逻辑的意思,而是通过logit变换来命名的,二元一般指“两种可能性”就好比逻辑中的“是”或者“否”一样,Logistic 回归模型的假设检验——常用的检验方法有似然比检验(likelihood ratio test)和 Wald检验)似然比检验的具体步骤如下:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL02:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InL13: 最后比较两个对数似然函数值的差异,若两个模型分别包含l个自变量和P个自变量,记似然比统计量G的计算公式为 G=2(InLP - InLl). 在零假设成立的条件下,当样本含量n较大时,G统计量近似服从自由度为 V = P-l 的 x平方分布,如果只是对一个回归系数(或一个自变量)进行检验,则 v=1.wald 检验,用u检验或者X平方检验,推断各参数βj是否为0,其中u= bj / Sbj, X的平方=(bj / Sbj), Sbj 为回归系数的标准误这里的“二元”主要针对“因变量”所以跟“曲线估计”里面的Logistic曲线模型不一样,二元logistic回归是指因变量为二分类变量是的回归分析,对于这种回归模型,目标概率的取值会在(0-1),但是回归方程的因变量取值却落在实数集当中,这个是不能够接受的,所以,可以先将目标概率做 Logit变换,这样它的取值区间变成了整个实数集,再做回归分析就不会有问题了,采用这种处理方法的回归分析,就是Logistic回归设因变量为y, 其中“1” 代表事件发生,“0”代表事件未发生,影响y的 n个自变量分别为 x1, x2 ,x3 xn 等等记事件发生的条件概率为 P那么P= 事件未发生的概理为 1-P事件发生跟”未发生的概率比为( p / 1-p ) 事件发生比,记住Odds将Odds做对数转换,即可得到Logistic回归模型的线性模型:还是以教程“blankloan.sav"数据为例,研究银行客户贷款是否违约(拖欠)的问题,数据如下所示:上面的数据是大约700个申请贷款的客户,我们需要进行随机抽样,来进行二元Logistic回归分析,上图中的“0”表示没有拖欠贷款,“1”表示拖欠贷款,接下来,步骤如下:1:设置随机抽样的随机种子,如下图所示:选择“设置起点”选择“固定值”即可,本人感觉200万的容量已经足够了,就采用的默认值,点击确定,返回原界面、2:进行“转换”—计算变量“生成一个变量(validate),进入如下界面:在数字表达式中,输入公式:rv.bernoulli(0.7),这个表达式的意思为:返回概率为0.7的bernoulli分布随机值如果在0.7的概率下能够成功,那么就为1,失败的话,就为"0"为了保持数据分析的有效性,对于样本中“违约”变量取缺失值的部分,validate变量也取缺失值,所以,需要设置一个“选择条件”点击“如果”按钮,进入如下界面:如果“违约”变量中,确实存在缺失值,那么当使用"missing”函数的时候,它的返回值应该为“1”或者为“true",为了剔除”缺失值“所以,结果必须等于“0“也就是不存在缺失值的现象点击”继续“按钮,返回原界面,如下所示:将是“是否曾经违约”作为“因变量”拖入因变量选框,分别将其他8个变量拖入“协变量”选框内,在方法中,选择:forward.LR方法将生成的新变量“validate" 拖入"选择变量“框内,并点击”规则“设置相应的规则内容,如下所示:设置validate 值为1,此处我们只将取值为1的记录纳入模型建立过程,其它值(例如:0)将用来做结论的验证或者预测分析,当然你可以反推,采用0作为取值记录点击继续,返回,再点击“分类”按钮,进入如下页面在所有的8个自变量中,只有“教育水平”这个变量能够作为“分类协变量” 因为其它变量都没有做分类,本例中,教育水平分为:初中,高中,大专,本科,研究生等等, 参考类别选择:“最后一个”在对比中选择“指示符”点击继续按钮,返回再点击—“保存”按钮,进入界面:在“预测值"中选择”概率,在“影响”中选择“Cook距离” 在“残差”中选择“学生化”点击继续,返回,再点击“选项”按钮,进入如下界面:点击继续,再点击确定,可以得出分析结果了分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为 1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为 489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为-1.026,标准误差为:0.103那么wald =( B/S.E)²=(-1.026/0.103)² = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1, sig为0.000,非常显著1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了一个平方)下面来举例说明这个计算过程:(“年龄”自变量的得分为例)从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为 129,选定案例总和为489那么: y¯ = 129/489 = 0.2638036809816x¯ = 16951 / 489 = 34.664621676892所以:∑(Xi-x¯)² = 30074.9979y¯(1-y¯)=0.2638036809816 *(1-0.2638036809816 )则:y¯(1-y¯)* ∑(Xi-x则:[∑Xi(yi - y¯)]^2 = 43570.8所以:=43570.8 / 5 840.9044060372 = 7.4595982010876 = 7.46 (四舍五入)计算过程采用的是在 EXCEL 里面计算出来的,截图如下所示:从“不在方程的变量中”可以看出,年龄的“得分”为7.46,刚好跟计算结果吻合!!答案得到验证~!!!!1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,根据设定的显著性值和自由度,可以算出卡方临界值,公式为:=CHIINV(显著性值,自由度) ,放入excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR方和 Nagelkerke R方拟合效果都不太理想,最终理想模型也才:0.305 和 0.446,最大似然平方的对数值都比较大,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR方的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含自变量的检验)再根据公式:即可算出:Cox&SnellR方的值!提示:将Hosmer 和 Lemeshow 检验和“随机性表” 结合一起来分析1:从 Hosmer 和 Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:11.919,而临界值为:CHINV(0.05,8) = 15.507卡方统计量< 临界值,从SIG 角度来看: 0.155 > 0.05 , 说明模型能够很好的拟合整体,不存在显著的差异。

SPSS—二元Logistic回归结果分析

SPSS—二元Logistic回归结果分析

SPSS—二元Logistic回归结果分析2011-12-02 16:48身心疲惫,睡意连连,头不断往下掉,拿出耳机,听下歌曲,缓解我这严重的睡意吧!今天来分析二元Logistic回归的结果分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为 1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为,标准误差为:那么wald =( B/²=² = , 跟表中的“几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^ = , 其中自由度为1, sig为,非常显著1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了一个平方)下面来举例说明这个计算过程:(“年龄”自变量的得分为例)从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为 129,选定案例总和为489那么: y¯ = 129/489 =x¯ = 16951 / 489 =所以:∑(Xi-x¯)² =y¯(1-y¯)= *()=则:y¯(1-y¯)* ∑(Xi-x¯)² = * = 5则:[∑Xi(yi - y¯)]^2 =所以:= / 5 = = (四舍五入)计算过程采用的是在 EXCEL 里面计算出来的,截图如下所示:从“不在方程的变量中”可以看出,年龄的“得分”为,刚好跟计算结果吻合!!答案得到验证~!!!!1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,根据设定的显著性值和自由度,可以算出卡方临界值,公式为:=CHIINV(显著性值,自由度) ,放入excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR方和 Nagelkerke R方拟合效果都不太理想,最终理想模型也才:和,最大似然平方的对数值都比较大,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR方的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含自变量的检验)再根据公式:即可算出:Cox&SnellR 方的值!提示:将Hosmer 和 Lemeshow 检验和“随机性表” 结合一起来分析1:从Hosmer 和 Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:,而临界值为:CHINV,8) =卡方统计量< 临界值,从SIG 角度来看: > , 说明模型能够很好的拟合整体,不存在显著的差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档