公钥密码系统及RSA公钥算法

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公钥密码系统及RSA公钥算法

摘要:

本文简单介绍了公开密钥密码系统的思想和特点,并具体介绍了RSA算法的理论基础,工作原理和具体实现过程,并通过一个简单例子说明了该算法是如何实现。在本文的最后,概括说明了RSA算法目前存在的一些缺点和解决方法。

关键词:公钥密码体制,公钥,私钥, RSA

中图分类号:TP309.7

§1引言

随着计算机联网的逐步实现,Internet前景越来越美好,全球经济发展正在进入信息经济时代,知识经济初见端倪。计算机信息的保密问题显得越来越重要,无论是个人信息通信还是电子商务发展,都迫切需要保证Internet网上信息传输的安全,需要保证信息安全。信息安全技术是一门综合学科,它涉及信息论、计算机科学和密码学等多方面知识,它的主要任务是研究计算机系统和通信网络内信息的保护方法以实现系统内信息的安全、保密、真实和完整。其中,信息安全的核心是密码技术。密码技术是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。它不仅能够保证机密性信息的加密,而且能够实现数字签名、身份验证、系统安全等功能。是现代化发展的重要科学之一。本文将对公钥密码系统及该系统中目前最广泛流行的RSA 算法做一些简单介绍。

§2公钥密码系统

要说明公钥密码系统,首先来了解一下不同的加密算法:目前的加密算法按密钥方式可分为单钥密码算法和公钥密码算法。

2.1. 单钥密码

又称对称式密码,是一种比较传统的加密方式,其加密运算、解密运算使用的是同样的密钥,信息的发送者和信息的接收者在进行信息的传输与处理时,必须共同持有该密码(称为对称密码)。因此,通信双方都必须获得这把钥匙,并保持钥匙的秘密。

单钥密码系统的安全性依赖于以下两个因素:第一,加密算法必须是足够强的,仅仅基于密文本身去解密信息在实践上是不可能的;第二,加密方法的安全性依赖于密钥的秘密性,而不是算法的秘密性,因此,我们没有必要确保算法的秘密性(事实上,现实中使用的很多单钥密码系统的算法都是公开的),但是我们一定要保证密钥的秘密性。

从单钥密码的这些特点我们容易看出它的主要问题有两点:第一,密钥量问题。在单钥密码系统中,每一对通信者就需要一对密钥,当用户增加时,必然会带来密钥量的成倍增长,因此在网络通信中,大量密钥的产生﹑存放和分配将是一个难以解决的问题。第二,密钥分发问题。单钥密码系统中,加密的安全性完

全依赖于对密钥的保护,但是由于通信双方使用的是相同的密钥,人们又不得不相互交流密钥,所以为了保证安全,人们必须使用一些另外的安全信道来分发密钥,例如用专门的信使来传送密钥,这种做法的代价是相当大的,甚至可以说是非常不现实的,尤其在计算机网络环境下,人们使用网络传送加密的文件,却需要另外的安全信道来分发密钥,显而易见,这是非常不智是甚至是荒谬可笑的。

2.2 公钥密码

正因为单钥密码系统存在如此难以解决的缺点,发展一种新的﹑更有效﹑更先进的密码体制显得更为迫切和必要。在这种情况下,出现了一种新的公钥密码体制,它突破性地解决了困扰着无数科学家的密钥分发问题,事实上,在这种体制中,人们甚至不用分发需要严格保密的密钥,这次突破同时也被认为是密码史上两千年来自单码替代密码发明以后最伟大的成就。

这一全新的思想是本世纪70年代,美国斯坦福大学的两名学者Diffie和Hellman提出的,该体制与单钥密码最大的不同是:

在公钥密码系统中,加密和解密使用的是不同的密钥(相对于对称密钥,人们把它叫做非对称密钥),这两个密钥之间存在着相互依存关系:即用其中任一个密钥加密的信息只能用另一个密钥进行解密。这使得通信双方无需事先交换密钥就可进行保密通信。其中加密密钥和算法是对外公开的,人人都可以通过这个密钥加密文件然后发给收信者,这个加密密钥又称为公钥;而收信者收到加密文件后,它可以使用他的解密密钥解密,这个密钥是由他自己私人掌管的,并不需要分发,因此又成称为私钥,这就解决了密钥分发的问题。

为了说明这一思想,我们可以考虑如下的类比:

两个在不安全信道中通信的人,假设为Alice(收信者)和Bob(发信者),他们希望能够安全的通信而不被他们的敌手Oscar破坏。Alice 想到了一种办法,她使用了一种锁(相当于公钥),这种锁任何人只要轻轻一按就可以锁上,但是只有Alice的钥匙(相当于私钥)才能够打开。然后Alice 对外发送无数把这样的锁,任何人比如Bob想给她寄信时,只需找到一个箱子,然后用一把Alice的锁将其锁上再寄给Alice,这时候任何人(包括Bob自己)除了拥有钥匙的Alice,都不能再打开箱子,这样即使Oscar能找到Alice 的锁,即使Oscar能在通信过程中截获这个箱子,没有Alice的钥匙他也不可能打开箱子,而Alice的钥匙并不需要分发,这样Oscar也就无法得到这把“私人密钥”。

从以上的介绍可以看出,公钥密码体制的思想并不复杂,而实现它的关键问题是如何确定公钥和私钥及加/解密的算法,也就是说如何找到“Alic e的锁和钥匙”的问题。我们假设在这种体制中, PK是公开信息,用作加密密钥,而SK需要由用户自己保密,用作解密密钥。加密算法E和解密算法D也都是公开的。虽然SK与PK是成对出现,但却不能根据PK计算出SK。它们须满足条件:

①加密密钥PK对明文X加密后,再用解密密钥SK解密,即可恢复出明文,或写为:DSK(EPK(X))=X

②加密密钥不能用来解密,即DPK(EPK(X))≠X

③在计算机上可以容易地产生成对的PK和SK。

④从已知的PK实际上不可能推导出SK。

⑤加密和解密的运算可以对调,即:EPK(DSK(X))=X

从上述条件可看出,公开密钥密码体制下,加密密钥不等于解密密钥。加密密钥可对外公开,使任何用户都可将传送给此用户的信息用公开密钥加密发送,而该用户唯一保存的私人密钥是保密的,也只有它能将密文复原、解密。虽然解密密钥理论上可由加密密钥推算出来,但这种算法设计在实际上是不可能的,或者虽然能够推算出,但要花费很长的时间而成为不可行的。所以将加密密钥公开也不会危害密钥的安全。

这种体制思想是简单的,但是,如何找到一个适合的算法来实现这个系统却是一个真正困扰密码学家们的难题,因为既然Pk和SK是一对存在着相互关系的密钥,那么从其中一个推导出另一个就是很有可能的,如果敌手Oscar能够从PK推导出SK,那么这个系统就不再安全了。因此如何找到一个合适的算法生成合适的Pk和SK,并且使得从PK不可能推导出SK,正是迫切需要密码学家们解决的一道难题。这个难题甚至使得公钥密码系统的发展停滞了很长一段时间。

为了解决这个问题,密码学家们考虑了数学上的陷门单向函数,下面,我们可以给出它的非正式定义:

Alice的公开加密函数应该是容易计算的,而计算其逆函数(即解密函数)应该是困难的(对于除Alice以外的人)。许多形式为Y=f(x)的函数,对于给定的自变量x值,很容易计算出函数Y的值;而由给定的Y值,在很多情况下依照函数关系f (x)计算x值十分困难。这样容易计算但难于求逆的函数,通常称为单向函数。在加密过程中,我们希望加密函数E为一个单项的单射函数,以便可以解密。虽然目前还没有一个函数能被证明是单向的,但是有很多单射函数被认为是单向的。

例如,有如下一个函数被认为是单向的,假定n为两个大素数p和q的乘积,b为一个正整数,那么定义f :

f (x )= x b mod n

(如果gcd(b,φ(n))=1,那么事实上这就是我们以下要说的RSA加密函数)

如果我们要构造一个公钥密码体制,仅给出一个单向的单射函数是不够的。从Alice的观点来看,并不需要E是单向的,因为它需要用有效的方式解密所收到的信息。因此,Alice应该拥有一个陷门,其中包含容易求出E的你函数的秘密信息。也就是说,Alice可以有效解密,因为它有额外的秘密知识,即SK,能够提供给你解密函数D。因此,我们称一个函数为一个陷门单向函数,如果它是一个单向函数,并在具有特定陷门的知识后容易求出其逆。

考虑上面的函数 f (x) = xb mod n 。我们能够知道其逆函数f -1有类似的形式 f (x ) = xa mod n,对于合适的取值a。陷门就是利用n的因子分解,有效的算出正确的指数a(对于给定的b)。

为方便起见,我们把特定的某类陷门单向函数计为Ғ。那么随机选取一个函数f 属于Ғ,作为公开加密函数;其逆函数f -1是秘密解密函数。那么公钥密码体制就能够实现了。

根据以上关于陷门单向函数的思想,学者们提出了许多种公钥加密的方法,它们的安全性都是基于复杂的数学难题。根据所基于的数学难题,至少有以下三类系统目前被认为是安全和有效的:大整数因子分解系统(代表性的有RSA)、椭园曲线离散对数系统(ECC)和离散对数系统(代表性的有DSA)。

§3 RSA算法

3.1 简介

相关文档
最新文档