高中生物遗传概率计算技巧-生物遗传概率计算口诀
高中生物遗传概率的计算技巧
高中生物遗传概率的计算技巧遗传学是生物学的重要分支之一,它研究的是生物个体遗传物质的传递和变异规律。
在高中生物课程中,遗传学是一个重要的内容,而遗传概率的计算则是遗传学中的关键知识点之一。
本文将介绍高中生物遗传概率的计算技巧,希望对学生们在学习遗传学时有所帮助。
1. 确定基因型在进行遗传概率的计算时,首先需要确定参与遗传的个体的基因型。
基因型是指个体携带的基因的种类和数量。
在遗传学中,通常用字母来表示基因,而大写字母表示显性基因,小写字母表示隐性基因。
某个体的基因型为Aa,代表其携带有一个显性基因A和一个隐性基因a。
2. 计算基因型的可能组合在确定了参与遗传的个体的基因型后,接下来需要计算基因型的可能组合。
对于单个基因的遗传概率计算,通常会用到乘法原理。
如果有两个个体,分别是Aa和Aa,则它们的后代基因型的可能组合有AA、Aa和aa,它们的比例分别为1:2:1。
3. 计算表型的可能组合除了计算基因型的可能组合外,还需要计算表型的可能组合。
表型是指个体的外在表现,它受到基因型的影响。
对于某一性状的表型,可能由不同的基因型所决定。
在遗传概率的计算中,需要根据不同的基因型计算相应的表型的可能组合。
4. 使用Punnett方格进行计算在进行遗传概率的计算时,可以使用Punnett方格来帮助进行计算。
Punnett方格是一种简单而有效的计算工具,可以快速得到不同基因型的组合和概率。
通过Punnett方格,可以清晰地展示不同基因型的组合情况,帮助学生们更好地理解遗传概率的计算过程。
5. 注意交叉和自交的区别在遗传概率的计算中,交叉和自交是两个重要的概念。
交叉是指两个不同个体之间的交配,而自交是指同一个个体内部的自我交配。
在不同情况下,交叉和自交会对遗传概率的计算产生不同的影响。
在进行遗传概率的计算时,需要根据具体的情况选择适当的计算方法。
6. 熟练掌握遗传概率的计算公式在进行遗传概率的计算时,需要熟练掌握相关的计算公式。
生物遗传概率计算法
1、隐性纯合突破法:①常染色体遗传显性基因式:A_(包括纯合体和杂合体)隐性基因型:aa(纯合体)如子代中有隐性个体,由于隐性个体是纯合体(aa),基因来自父母双方,即亲代基因型中必然都有一个a基因,由此根据亲代的表现型作进一步判断。
如A_×A_→aa,则亲本都为杂合体Aa。
②性染色体遗传显性:XB_,包括XBXB、XBXb、XBY隐性:XbXb、XbY若子代中有XbXb,则母亲为_Xb,父亲为XbY若子代中有XbY,则母亲为_Xb,父亲为_Y2、后代性状分离比推理法:①显性(A_)︰隐性(aa)=3︰1,则亲本一定为杂合体(Aa),即Aa×Aa→3A_︰1aa②显性(A_)︰隐性(aa)=1︰1,则双亲为测交类型,即Aa×aa→1Aa︰1aa③后代全为显性(A_),则双亲至少一方为显性纯合,即AA×AA(Aa、aa)→A_(全为显性)如豚鼠的黑毛(C)对白毛(c)是显性,毛粗糙(R)对光滑(r)是显性。
试写出黑粗×白光→10黑粗︰8黑光︰6白粗︰9白光杂交组合的亲本基因型。
依题写出亲本基因式:C_R_×ccrr,后代中黑︰白=(10+8)︰(6+9),粗︰光=(10+6)︰(8+9),都接近1︰1,都相当于测交实验,所以亲本为CcRr×ccrr。
3、分枝分析法:将两对或两对以上相对性状的遗传问题,分解为两个或两个以上的一对相对性状遗传问题,按基因的分离规律逐一解决每一性状的遗传问题。
如小麦高杆(D)对矮杆(d)是显性,抗锈病(T)对不抗锈病(t)是显性。
现有两个亲本杂交,后代表现型及比例如下,试求亲本的基因型。
高杆抗锈病(180),高杆不抗锈病(60),矮杆抗锈病(179),矮杆不抗锈病(62)。
将两对性状拆开分别分析:高杆(180+60)︰矮杆(179+62)≈1︰1,则双亲基因型分别是Dd和dd;抗锈病(180+179)︰不抗锈病(60+62)≈3︰1,则双亲基因型分别是Tt和Tt。
高中生物遗传概率的计算技巧
高中生物遗传概率的计算技巧遗传概率是描述某个性状在后代中出现的可能性的统计学方法。
在高中生物中,遗传概率的计算涉及到基因型和表型的概率计算。
下面将介绍一些高中生物遗传概率计算的基本技巧。
一、基因型的概率计算基因型是指个体的基因组成,由基因座上的等位基因决定。
一般情况下,基因座上有两种等位基因,分别用大写和小写字母表示。
1. 单基因的遗传概率计算对于单基因的遗传,可以通过用P和Q表示等位基因的频率来计算基因型的概率。
假设红花是完全显性的,白花是纯合隐性的,红花和白花的基因频率分别为p和q,那么红花的基因型可能为PP或Pp,白花的基因型为pp。
红花的基因型为PP的概率为p × p = p²(红花基因型为PP的概率为红花基因频率的平方);红花的基因型为Pp的概率为2 × p × q(红花基因型为Pp的概率为红花基因频率与白花基因频率的乘积的2倍);白花的基因型为pp的概率为q × q = q²(白花基因型为pp的概率为白花基因频率的平方)。
2. 多基因的遗传概率计算对于多基因的遗传,基本原理仍然适用,只是需要将每个基因座上的概率相乘。
假设一个基因座上有AB两个等位基因,且它们的频率分别为p和q,另一个基因座上有CD两个等位基因,它们的频率分别为m和n。
那么,个体的基因型可能有AC、AD、BC 和BD四种。
个体的基因型为AC的概率为p × m;个体的基因型为AD的概率为p × n;个体的基因型为BC的概率为q × m;个体的基因型为BD的概率为q × n。
二、表型的概率计算表型是指个体在外表上观察到的性状。
表型的概率计算涉及到基因型和显性-隐性关系的统计学计算。
1. 完全显性的表型计算对于完全显性的表型,只有在个体的基因型中至少有一个显性等位基因才会表现出显性性状。
高中生物遗传概率的计算技巧主要包括基因型的计算和表型的计算。
高中生物遗传概率的计算技巧
高中生物遗传概率的计算技巧遗传概率的计算是高中生物中非常重要的一个部分。
在遗传学中,遗传概率是指下一代个体遗传特征的出现频率。
遗传概率的计算涉及到一些基本的遗传规律和计算技巧。
下面将介绍一些常见的遗传概率的计算技巧。
1. 基本规律在遗传概率的计算中,需要了解一些基本的遗传规律。
其中最重要的是孟德尔的两个基本定律:- 第一定律:互斥的两个基因的分离规律。
每个个体都有两个互斥的基因,一个从父亲传递,一个从母亲传递。
它们组成一个基因对,称为等位基因。
在有性繁殖中,等位基因在配子的分裂过程中分离,随机地分配给下一代。
- 第二定律:基因的自由组合规律。
基因在配子的组合过程中,相互独立地组合,每个配子都随机地接受到一对等位基因中的一个。
2. 基因型与表现型的关系遗传概率的计算中,需要将基因型与表现型联系起来。
基因型是指个体的基因组成,由一对等位基因决定。
表现型是指基因的表现形式,即个体所显示的特征。
3. 单基因遗传概率的计算单基因的遗传概率是指一个基因对是否显性或隐性决定个体表现型的概率计算。
常用的计算方法有:- 隐性基因:如果一个个体拥有隐性基因,那么它的表现型是隐性的,只有当父母双方都是隐性基因型时,子代才能表现出隐性特征。
- 显性基因:如果一个个体拥有显性基因,那么它的表现型是显性的,无论配对的基因是显性还是隐性,个体都能表现出显性特征。
4. 遗传图谱的分析遗传图谱是由一对基因对在配子组合时的可能性所构成的图形,通过遗传图谱可以分析个体的遗传特征。
遗传图谱的计算需要了解遗传交叉规律和染色体分离规律。
5. 多基因遗传概率的计算多基因遗传概率是指多个基因对决定个体的表现型的概率计算。
多基因遗传概率的计算比较复杂,通常使用叉丁图法来计算。
在实际计算中,可以利用概率的计算方法,如排列组合、几何概率和条件概率等,来计算遗传概率。
同时还需要注意遗传概率的不确定性,即每个个体都是一个概率事件,其结果可能有多种可能。
高中生物——概率计算
3、一对夫妻性状都正常,他们的父母也正常,妻子的弟弟是 色盲,则: (1)他们生育色盲男孩的几率是多少? 计算过程:
方法一:1/2XBXb × XBY = 1/2 ×1/4XbY=1/8
方法二:配子法
(1/2XBXB、 1/2XB 1/2XBXb) × XBY
1
2
½( ½ XB ½Xb ) 3/4 XB 3/8XBXB 1/4Xb 1/8XBXb ½ XB 3/8XBY ½Y 1/8XbY
5/12
分别看白化8号:aa,10号1/3AA或2/3Aa 色盲8号: 1/2XBXb或1/2XBXB ,10号 XbY 后代:白化1/3 正常2/3;色盲1/4,正常3/4 组合:白化色盲= 1/3 ×1/4 只白化: 1/3 × ¾
只色盲: 2/3 × 1/4
只患一种病= 1/3 × ¾ + 2/3 × 1/4
概率计算
一、常染色体遗传概率计算
1、一对表现型正常的夫妇,他们的双亲中 有一个白化病患者。预计生一个患白化病孩子 男孩患白化 的几率是 1/4 ,生育一个男孩患白化病的几 白化病男孩 率是 1/4 ,预计他们生育一个白化病男孩的 几率为 1/8 。
思路:1、白化病为常隐在人群中,男性中、女性中的患病率相同—— 与性别无关 2、白化、性别的遗传分别为常染色体、性别决定,两者遗传符合自由 组合定律:白化、男孩=1/4 ×1/2
7
8
9
10
解题思路:常染色体遗传与伴X染色体遗传单独都符合分离定律,一起符 合自由组合定律。故可单独分析每一对,之后在组合。 由8、9患白化推知3、4、5、6的基因型都为Aa,10号为1/3AA或2/3Aa, 2、10患色盲推知5的基因型为XBXb,2的基因型为XbY,4正常则为 XBXb ,3为XBY,故8为XBXb或XBXB ,并且比例为1:1
高中生物遗传概率的计算技巧
高中生物遗传概率的计算技巧
在高中生物中,遗传概率是非常重要的一个概念。
它用来描述在遗传过程中某个性状或基因的传递的概率。
遗传概率的计算涉及到一些基本的概率原理和遗传规律,下面将介绍一些计算遗传概率的常用技巧。
1. 用乘法准则计算两个基因的组合概率。
乘法准则指的是当两个事件是相互独立发生时,它们同时发生的概率等于它们各自发生的概率的乘积。
在遗传中,一个基因由两个等位基因组成,每个等位基因都有相应的概率。
当要计算两个基因的组合概率时,可以将它们各自的概率相乘。
对于一个有红色和白色等位基因的基因,红色等位基因的概率为0.6,白色等位基因的概率为0.4,那么红色等位基因和白色等位基因的组合概率为0.6 * 0.4 = 0.24。
4. 根据孟德尔第一定律(分离定律)计算基因组合的概率。
孟德尔第一定律指的是在杂交中,两个纯合子自交后得到的子代,各自继承的等位基因是独立分离的。
根据这个定律,可以计算出特定基因组合的概率。
对于一个有红色和白色等位基因的基因,红色等位基因和白色等位基因分别在两个纯合子自交中分离发生,那么红色等位基因和白色等位基因组合的概率为0.24。
高中生物遗传概率的计算技巧
高中生物遗传概率的计算技巧遗传概率是指某一基因在一代或多代后表现的概率。
在高中生物中,学习遗传概率是非常重要的一部分。
以下是几种常见的计算遗传概率的技巧。
1. 独立基因的遗传概率:当两个基因的遗传不会互相影响时,两个基因的遗传概率可以通过乘积法计算。
例如,红色花瓣是一种显性遗传,白色花瓣是隐性遗传,如果两个单色的花瓣的合子杂交,其子代的花瓣颜色应该是红白相间的。
因此,下一代中红色和白色花瓣的可能性相等,因此是50%。
2. 部分显性基因的遗传概率:在这种情况下,一个基因的表现方式有些微不同,所以有些表现是中间的。
例如黑毛狗(D)是显性基因,白毛狗(d)是隐性基因。
这两个基因的杂交将导致一个产生灰色毛的中间表现。
如果父亲(Dd)和母亲(dd)杂交,他们的后代可能是黑色毛(Dd)、灰色毛(Dd)或白色毛(dd)。
黑色毛与灰色毛的概率都是50%。
3. 复合基因的遗传概率:这种情况下,两个或更多的基因对同一特征进行编码(parental generation)。
例如,一个基因对身体高度编码,另一个基因对眼睛颜色编码。
复合基因的遗传概率可以通过解决Punnett方格表来计算。
例如,在人类中,红绿色盲是由X染色体上的一个反常基因引起的。
如果一个女性是红绿色盲,她的父亲是正常的,那么她的儿子是患病的概率是50%。
4. 应用遗传概率计算概率:这种情况下,遗传概率用于解决问题,而不只是计算后代的可能性。
例如,在一个家庭中,一个男孩有红绿色盲,他的妹妹没有。
他们的母亲是红绿色盲,他们的父亲不是。
我们可以通过遗传概率计算,可知这个家庭中的每个人所携带的基因,并确定哪个家庭成员携带引起这种疾病的基因。
需要注意的是,上述计算技巧是基于课本中示例的简单情况。
在现实生活中,基因的组合很复杂,在计算时还需要考虑许多其他因素。
然而,通过这些技巧,学习遗传概率的基础知识,可以帮助我们更好地理解遗传学的基本原理,更好地理解人类和其他物种的遗传特征。
论高中生物遗传概率计算技巧
论高中生物遗传概率计算技巧遗传概率是遗传学研究中的基本概念,用于描述某一特定性状在后代中出现的可能性。
对于高中生物学学生来说,理解和计算遗传概率是非常重要的。
下面给出一些高中生物遗传概率计算的技巧。
1. 遗传概率的计算原则遗传概率的计算是基于两个重要的原则:分离定律和自由组合定律。
分离定律指出:一对等位基因在生殖过程中分离,各自独立地进入不同的配子中。
自由组合定律指出:不同基因的组合出现在同一个个体中时,它们在配子形成过程中的组合是自由、随机而独立的。
2. 单基因性状的遗传概率计算对于单基因性状,可以通过用字母表示基因型,通过盗图、列举所有可能的基因型并计算频数来计算遗传概率。
对于一个基因座只有两种等位基因的性状,可以通过画一个2x2的盒图来列举所有可能的基因型。
然后,计算各个基因型出现的频数,并将其除以总数得到频率。
根据频率计算遗传概率。
4. 使用概率分布计算遗传概率在一些情况下,可以使用概率分布函数来计算遗传概率。
对于多基因性状的几率图,可以使用二项式分布或泊松分布等来计算特定基因型或表现型的概率。
这需要一定的数学知识,但也可以帮助学生更深入地理解和计算遗传概率。
5. 使用遗传交叉计算遗传概率遗传交叉是指染色体在减数分裂过程中的交换现象。
通过研究遗传交叉的发生概率,可以计算不同基因型出现的概率。
高中生物学生可以通过练习遗传交叉问题来提高计算遗传概率的技巧。
理解和计算遗传概率是高中生物学中重要的内容。
通过掌握遗传概率的计算原则,使用几率图、概率分布函数和遗传交叉等技巧,高中生物学生可以更好地理解和计算遗传概率,提高解题的能力。
论高中生物遗传概率计算技巧
论高中生物遗传概率计算技巧高中生物遗传概率计算是生物学中非常重要的一部分,也是学生们在生物学学习过程中需要掌握的知识点之一。
遗传概率计算涉及到遗传定律和概率统计的知识,是一项需要一定技巧和方法的复杂计算过程。
本文将带领大家系统地了解高中生物遗传概率计算的技巧,并给出一些实用的方法,帮助大家更好地掌握和运用这一知识。
一、遗传概率计算的基本原理1.孟德尔遗传定律遗传概率计算的基础是孟德尔遗传定律,即简单遗传定律、自由组合定律和同等参与定律。
简单遗传定律指的是每一对性状的基因,在受精时分别由父母各自的两个基因中的一个传给子代。
自由组合定律指的是两个或两个以上的性状,每一个基因的组合都是相互独立的。
同等参与指的是两种不同的性状,在杂合受精时等概率地出现。
2.遗传概率计算的基本原则遗传概率计算的基本原则是要根据父本和母本的基因型确定基因型组合,并计算各种可能的基因型在子代中的比例。
具体来说,就是要根据孟德尔遗传定律的规律,按照概率统计学的方法,通过分析遗传过程中各种可能出现的情况并计算它们的概率,来预测子代的遗传结果。
二、遗传概率计算的常见方法1.花色遗传的计算以红花和白花为例,红花的基因型为RR,白花的基因型为rr。
红花和白花杂交称为自交杂交。
如果把红花的花粉别人白花上,子代的一半花为红色,一半花为白色,属于常规遗传计算,计算公式为:红花概率=1/2*1/2+1/2*1/2=1/2;白花概率=1/2*1/2+1/2*1/2=1/2。
2.纯合子代和杂合子代的比例计算在进行遗传概率计算的时候,还涉及到纯合子代和杂合子代的比例计算。
纯合子代指的是一个体的两个基因完全相同,杂合子代指的是一个体的两个基因不完全相同。
纯合子代的计算方法是将两个相同的基因型组合在一起进行遗传概率计算,例如AA*AA,AA*aa,aa*aa,计算结果为全为A的概率=1;全为a的概率=1。
而杂合子代的计算方法是将两个不同的基因型组合在一起进行遗传概率计算,例如Aa*Aa,Aa*aa, Aa*AA,计算结果为Aa的概率=1/2,AA的概率=1/4,aa的概率=1/4。
高中生物遗传概率的计算技巧
高中生物遗传概率的计算技巧遗传概率是基因遗传规律的数学表达式。
大家在学习遗传的时候,一定会遇到遗传概率的计算问题。
下面,我将为大家介绍高中生物遗传概率的计算技巧。
一、遗传概率的计算原则1. 各个性状的遗传是独立的,在遗传过程中不相互影响。
2. 遗传概率的计算是基于孟德尔遗传规律的。
3. 遗传概率是用概率统计的方法计算的,只是表达一种可能性。
在遗传概率的计算中,最基本的公式是乘法原理和加法原理。
1. 乘法原理乘法原理指出,如果某个事件要依赖于两个或多个独立的事件,那么这个事件发生的概率等于每个事件独立发生的概率的乘积。
例如,两颗红色的花豆杂交所产生的第二代为红色花豆的概率就是杂交过程中男性和女性所拥有的红色基因分别相乘的结果。
加法原理指出,如果某个事件可以有多种路径达成,则这个事件发生的概率等于达成每种可能路径的概率之和。
例如,在人类血型的基因表示中,A、B、O血型三种表现形态都可以由AB、AO、BO三种基因型产生,那么个体表现为A、B、O血型的概率等于基因型为AB、AO、BO的次数之和。
1. 找出所有受精可能在计算遗传概率之前,我们必须先明确双亲所携带的基因型和表现型,以及受精可能的全部程式。
2. 设定变量将每个基因型和表现型设定为一个变量,方便后面的计算。
3. 确定基本遗传模式基本遗传模式是根据所研究的遗传特征的表现形式得出的。
复合遗传模式是在基本遗传模式的基础上考虑加强、减弱或修改某些因素所得出的。
5. 计算两代遗传概率根据基因型比例和表现型比例计算两代遗传概率。
四、遗传概率的例子1. 假设一对双亲AaBb和AaBb,问该双亲所生后代具有Aabb基因型的概率。
答案:该双亲AABB、AABb、AaBB、AaBb各自产生1/4的配子,由于是自由互相结合,所以具有Aabb基因型的后代数量占总子代的1/16。
因此,该双亲所生后代具有Aabb基因型的概率为1/16。
答案:双亲AB/ab和ab/ab各自产生4种孢子,分别为AB、Ab、aB、ab,由此组合后,共可组成16种单倍体基因型的配子。
高中生物必修二遗传的常用计算技巧和结论
高中生物必修二遗传的常用计算技巧和结论1. 分离定律相关计算技巧基因型的确定对于一对相对性状的遗传,如果已知亲本的表现型,比如高茎和矮茎。
我们可以假设高茎为显性(D),矮茎为隐性(d)。
如果亲本是纯合子,那么高茎亲本就是DD,矮茎亲本就是dd。
它们杂交后,子一代全是高茎,基因型为Dd。
当子一代自交时,会出现DD:Dd:dd = 1:2:1的比例,这就是根据分离定律得出的。
这里的小技巧就是先确定显隐性,然后根据亲本的纯合或者杂合情况来推断后代的基因型比例。
表现型比例计算当我们知道了基因型比例后,表现型比例就很好算了。
在完全显性的情况下,像刚才说的D对d完全显性,DD和Dd的表现型都是高茎,只有dd 是矮茎。
所以子一代自交后的表现型比例就是高茎:矮茎= 3:1。
这就像分糖果一样,根据基因型把不同表现型的“糖果”数量数出来就好啦。
2. 自由组合定律相关计算技巧棋盘法这是一种很有趣的方法哦。
当我们有两对相对性状,比如豌豆的黄色圆粒(YYRR)和绿色皱粒(yyrr)杂交时。
先确定每一对性状的分离情况,黄色对绿色是显性,圆粒对皱粒是显性。
子一代的基因型就是YyRr。
然后我们用棋盘法来计算子二代的基因型和表现型比例。
我们把Yy产生的配子Y 和y,Rr产生的配子R和r分别写在棋盘的两边,然后像下围棋一样把它们组合起来,就可以得到各种基因型的比例啦。
子二代的表现型比例会出现9:3:3:1,这可是自由组合定律的一个经典比例哦。
分枝法分枝法就像是把一棵大树的树枝分开来看。
还是以刚才的两对相对性状为例,我们先看一对性状,比如黄色和绿色这对性状,Yy自交后代有3种基因型(YY:Yy:yy = 1:2:1)和2种表现型(黄色:绿色= 3:1);再看圆粒和皱粒这对性状,Rr自交后代也是3种基因型(RR:Rr:rr = 1:2:1)和2种表现型(圆粒:皱粒= 3:1)。
然后我们把这两对性状的结果像树枝一样分开组合,就可以快速得到子二代的基因型和表现型比例啦。
生物遗传概率计算口诀
生物遗传概率计算口诀
2021年高考生物遗传概率的计算方法
高考生物必备知识点:遗传定义
亲子之间以及子代个体之间性状存在相似性,表明性状可以从亲代传递给子代,这种现象称为遗传(heredity)。
遗传学是研究此一现象的学科,目前已知地球上现存的生命主要是以DNA作为遗传物质。
除了遗传之外,决定生物特征的因素还有环境,以及环境与遗传的交互作用。
遗传起源于早期生命过程的信息化或节律化。
高考生物必备知识点:遗传概率的计算方法例题解析
1、利用典型的框架式遗传图解的方法:
例1.纯合白色球状南瓜与纯合黄色盘状南瓜相交(两对基因独立遗传),F1全为白色盘状南瓜。
若F2中有纯合的白色球状南瓜380株,则杂合的白色盘状南瓜大约有多少株?
A.380株
B.760株
C.1520株
D.3040株
解析:该题涉及两对相对性状,符合基因的自由组合规律,若相应基因为Aa、Bb,则其框架式图解如下:
2、利用棋盘法
例2.人类多指基因(T)是正常指(t)的显性,白化基因(a)是正常(A)的隐性,都在常染色体上,而且都是独立遗传。
一个家庭中,父亲是多指,母亲正常,他们有一个白化病和正常指的孩子,则下一个孩子只有一种病和两种病的几率分别是:
A.1/2,1/8
B.3/4,1/4
C.1/4,1/4
D.1/4,1/8
解析:据题意分析,先推导出双亲的基因类型为TtAa(父),ttAa(母)。
感谢您的阅读,祝您生活愉快。
高考生物遗传概率计算试题解题技巧
高考生物遗传概率计算试题解题技巧高考生物遗传概率计算试题解题技巧在生物的有性生殖中,生物相交常见的有杂交(测交实际上属于杂交范畴)和自交两种方式。
求解杂交或自交后代中某种基因型或表现型个体出现的概率也是遗传规律题中一种常见的题型。
这类题型有两种类型,一种是两亲本概率都为1时的计算,另一种是两亲本概率都不为1(或其中之一不为1)时的计算。
对于第一种类型,根据遗传规律采用一定的方法可以直接求解,如Aa和aa杂交后代中aa出现的概率为1/2。
第二种类型的计算那么比拟复杂。
【方法点拨】(1)当两亲本出现的概率不为1(或其中之一不为1)时,求解杂交后代中某种基因型或表现型出现的概率,应分两步进展:①先不考虑亲本出现的概率或把亲本出现的概率当做1,运用穿插线法、棋盘法或分解组合相乘法,求出后代中某一基因型或表现型出现的概率;②把第一步求出的结果与亲本出现的概率相乘,最终得出结果。
(2)当亲本出现的概率不为1时,自交后代概率的计算方法与杂交类似,也分两步进展。
但在计算时需要注意二者计算时的区别:当两个杂交亲本出现的概率都不为1时,需要将两个亲本出现的概率都考虑进去相乘,而在自交中,亲本不为1的概率只能考虑一次(即相乘一次),这是因为自交中父本和母本都是同一植株,例如父本的基因型是Aa,那么母本的基因型一定也是Aa。
(3)亲本中至少有一方概率不为1时杂交和自交两类计算方法归纳如下:①杂交后代概率的计算:假设两个亲本出现的概率分别为c和d,杂交后代中某一基因型或表现型的个体在不考虑亲本出现的概率时(或把亲本出现的概率当做1时)的概率为e,那么实际上杂交后代中某一基因型或表现型的个体出现的概率为e×c×d。
②自交后代概率的计算:假设某亲本出现的概率为a,其自交后代中某一基因型或表现型的个体在不考虑亲本出现的概率时(或把亲本出现的概率当做1时)的概率为b,那么实际上自交后代中某一基因型或表现型的个体出现的概率为b×a。
论高中生物遗传概率计算技巧
论高中生物遗传概率计算技巧遗传概率计算是生物学的基本内容之一。
在生物学中,遗传概率计算是指通过分析产生下一代的青春期各种遗传现象和规律,以确定后代表现的可能性的分析方法。
遗传概率计算与概率的营养密切相关。
以下是高中生物中常用的遗传概率计算技巧:1. 单因素一代杂交在单因素一代杂交中,杂种的表型中间,距离亲代表型较远。
对于纯合子,存在一个隐性和显性等位基因。
对于显性等位基因,如果实验群体中有杂种,那么表型相对比较显性;如果实验群体中所有个体均为纯合,则表现为该基因的显性表型。
隐性等位基因的表现,必须由两个相同基因隐性等位基因才能表现出来。
比如,黑猪和白猪都是由纯合子组成的,他们的本质差异在于颜色基因的不同。
假如用一只黑猪及一只白猪杂交,得到第一代杂种猪,那么我们可以根据遗传学原理推断,第一代杂种猪的颜色应该为黑色,因为黑色基因为显性基因,白色基因为隐性基因。
对于这个杂交后代的比例,我们可以使用概率公式来计算:P=1:1,也就是说,黑色基因的概率是1/2,白色基因的概率也是1/2。
在单因素二代杂交中,一个人或动物需要两组基因才能表现出某个特定的特征。
如果在下一代中存在两个相同的等位基因,则这个人或动物被称为纯合子,如果存在不同的等位基因,则它称为杂合子。
例如,黄色动物有两种情况:它可以是纯合子(由两个相同的等位基因组成),也可以是杂合子(由两个不同的等位基因组成)。
现在假设这个黄色动物的等位基因可以是Y或y。
我们假设第一代动物是YY和yy的两种纯合子,即纯表型黄色和纯表型绿色。
在第一代之间进行交叉,两个杂合子生产:Yy和Yy。
我们需要预测第二代的表型,从而比较交叉的效果。
我们可以使用如下的方程来计算:双因素遗传是指在同一个基因上有两个等位基因和另一个基因上有两个等位基因。
这会给后代带来更加复杂的遗传规律。
例如,球形果实的状况或在同一植物物种中结果的颜色等。
例如,我们正考虑第一代杂合子在两个基因上的混合。
论高中生物遗传概率计算技巧
论高中生物遗传概率计算技巧遗传概率计算是遗传学中很重要的一个环节,也是高中生物课程中难度较大的部分之一。
所谓遗传概率,是指通过遗传计算,计算出某个性状在后代中出现的可能性大小。
下面,笔者就介绍几个高中生物遗传概率计算的技巧。
一、显性和隐性基因的计算方法在遗传概率计算中,显性和隐性基因起着重要的作用。
如果对于一个性状,它是由两个不同的基因控制的,那么这两个基因可以分别称为父本基因和母本基因。
如果两个基因不同,则称它们为杂合基因;如果两个基因相同,则称它们为纯合基因。
在显性基因中,一个基因的表现能够完全压制另外一个基因,从而表现出来的性状与另一个基因无关。
而在隐性基因中,一个基因的表现需要与另一个基因相互作用,从而表现出来的性状表现形式与另外一个基因的表现形式有关。
对于纯合显性性状,子代中所有个体都将表现这种性状。
而对于杂合显性性状,子代中1/2的个体将表现这种性状。
对于纯合隐性性状,只有在两个基因都为隐性基因的情况下,子代个体才会表现这种性状,否则都不表现。
而对于一个杂合隐性性状,子代个体中1/4将表现这种性状,3/4将不表现。
二、遗传交叉现象的计算方法在生物遗传交叉中,父本的基因和母本的基因会在一定的比例下进行组合和分配,从而控制后代中的特定性状。
交叉的过程中存在丰富多样的基因组合方式,导致后代的基因组合方式也具有多样性。
而如何计算各种基因组合所对应的后代数量,是遗传概率计算的核心内容之一。
在遗传交叉中,如果是单个性状遗传,可以采用叉积方法:把表型分别作为叉积的“因数”,原则上可具体分析每对因数之间的遗传关系,即可得知该性状在每个后代上不同表型组合的数目。
如果是多与性状遗传,可采用乘法原理:在不同基因等位的各个染色体上同时分析,以得到所有基因等位的组合情况,由此计算各种基因组合所对应的后代数量。
遗传概率计算是高中生物教育中的一项难点,因此,需要掌握一些技巧才能更好地完成遗传概率计算。
以下为高中生物遗传概率计算的技巧:1. 对于单一基因单一性状,要先分析每个性状的遗传模式,然后再根据各个基因型可以得到表型比例。
高中生物遗传概率的计算技巧
高中生物遗传概率的计算技巧高中生物遗传学是生物学中的重要分支,研究遗传变异的规律和遗传信息的传递与表达。
在高中生物遗传学中,遗传概率的计算是一个重要的内容。
下面将介绍一些高中生物遗传概率的计算技巧。
1. 随即配子的计算在生物遗传学中,我们经常需要计算基因型的概率。
基因型的概率是由配子的概率决定的。
对于单因素的遗传,我们可以通过给定的基因型的比例来计算配子的比例。
对于红色花和白色花的单因素遗传,假设红色花是RR基因型,白色花是rr基因型,红色花和白色花的配子比例为1:1。
在这种情况下,F1代的基因型比例为1:1,即红色花和白色花各占一半。
2. 独立性原则独立性原则是遗传学中重要的原则之一。
遗传学认为,不同基因位点的座位的遗传变异是相互独立的。
计算多个基因位点的基因型概率时,可以将不同基因位点的概率相乘。
对于一个有两个基因位点的基因型的计算,假设基因位点A有两个等位基因,B有两个等位基因,可以通过将位点A和位点B的基因型概率相乘来计算基因型的概率。
3. 重叠事件的计算在遗传学中,有时候会出现多个基因位点的概率同时发生的情况,这时需要计算重叠事件的概率。
计算重叠事件的概率可以通过将不同事件的概率相乘来实现。
对于一个有两个基因位点的重叠事件的计算,假设基因位点A和位点B的基因型概率分别为1/4和1/2,可以将两个概率相乘,得到重叠事件的概率为1/8。
4. 程序法的计算在一些复杂的遗传问题中,使用程序法来计算遗传概率是一种有效的方法。
程序法是通过列出所有可能的基因型组合,然后按照一定的规则进行计算。
对于一个有两个基因位点的基因型的计算,可以列出所有可能的基因型组合,然后按照一定的规则进行计算。
程序法的使用可以帮助解决一些复杂的遗传问题。
高中生物遗传概率的计算是一个重要的内容,掌握一定的计算技巧可以帮助我们更好地理解和应用遗传学知识。
通过正确的计算方法和技巧,我们可以更好地预测和解释基因型的分布和遗传的规律。
高中生物遗传概率的计算技巧
高中生物遗传概率的计算技巧遗传概率是生物学中一个重要的概念,也是高中生物课程中的一个重点内容。
遗传概率的计算对于理解遗传规律、预测后代特征具有重要意义。
在高中生物课程中,学生需要掌握遗传概率的计算技巧,才能更好地理解遗传规律和遗传现象。
本文将介绍高中生物遗传概率的计算技巧,帮助学生更好地掌握这一内容。
一、遗传概率的基本概念遗传概率是指在生物繁殖过程中,某一基因型或表现型在后代中出现的可能性。
在生物学中,通常使用概率的方法来描述基因的遗传规律。
遗传概率的计算涉及到基因型、表现型、显性和隐性等基本概念,需要学生首先掌握好这些基本知识。
1. 基因型和表现型遗传概率的计算涉及到不同基因型和表现型之间的概率关系。
基因型是指个体的基因组成,通常用字母组合来表示,比如AA、Aa、aa。
表现型是指个体所表现出的具体特征,比如红色花和白色花。
在遗传概率的计算中,需要根据基因型来推断表现型的可能性,这就涉及到基因型和表现型之间的关系。
2. 显性和隐性在遗传概率的计算中,显性和隐性是两个重要的概念。
显性是指在两个等位基因中表现得更为突出的性状,而隐性是指在两个等位基因中表现得相对不突出的性状。
在遗传概率的计算中,显性和隐性的性状会影响后代的表现型,并且需要根据显性和隐性的规律来计算遗传概率。
二、遗传概率的计算方法在遗传概率的计算中,常用的方法包括孟德尔遗传定律、古典概率法和几何概率法。
这些方法在不同的遗传情况下有不同的应用,学生需要根据具体情况选择合适的方法来计算遗传概率。
1. 孟德尔遗传定律孟德尔遗传定律是遗传学中最基本的定律之一,也是遗传概率计算的基础。
孟德尔提出了隐性和显性的概念,以及基因的分离和自由组合规律。
在遗传概率的计算中,可以根据孟德尔的遗传定律来推断后代的基因型和表现型。
2. 古典概率法古典概率法是一种基于排列组合的概率计算方法,适用于一些简单的遗传情况。
在使用古典概率法计算遗传概率时,需要考虑不同基因型的组合可能性,并根据组合的情况来计算后代表现型的比例。
高中生物遗传定律概率计算公式整理
高中生物遗传定律概率计算公式整理遗传题分为因果题和系谱题两大类。
因果题分为以因求果和由果推因两种类型。
以因求果题解题思路:亲代基因型→双亲配子型及其概率→子代基因型及其概率→子代表现型及其概率。
由果推因题解题思路:子代表现型比例→双亲交配方式→双亲基因型。
系谱题要明确:系谱符号的含义,根据系谱判断显隐性遗传病主要依据和推知亲代基因型与预测未来后代表现型及其概率方法。
1.基因待定法:由子代表现型推导亲代基因型。
解题四步曲:a。
判定显隐性或显隐遗传病和基因位置;b。
写出表型根:aa、A_、XbXb、XBX_、XbY、XBY;IA_、IB_、ii、IAIB。
c。
视不同情形选择待定法:①性状突破法;②性别突破法;③显隐比例法;④配子比例法。
d。
综合写出:完整的基因型。
2.单独相乘法(集合交并法):①亲代产生配子种类及概率;②子代基因型和表现型种类;③某种基因型或表现型在后代出现概率。
解法:先判定:必须符合基因的自由组合规律。
再分解:逐对单独用分离定律(伴性遗传)研究。
再相乘:按需采集进行组合相乘。
注意:多组亲本杂交(无论何种遗传病),务必抢先找出能产生aa和XbXb+XbY的亲本杂交组来计算aa和XbXb+XbY概率,再求出全部A_,XBX_+XBY概率。
注意辨别(两组概念):求患病男孩概率与求患病男孩概率的子代孩子(男孩、女孩和全部)范围界定;求基因型概率与求表现型概率的子代显隐(正常、患病和和全部)范围界定。
3.有关遗传定律计算:Aa连续逐代自交育种纯化:杂合子(1/2)n;纯合子各1―(1/2)n。
每对均为杂合的F1配子种类和结合方式:2 n ;4 n ;F2基因型和表现型:3n;2 n;F2纯合子和杂合子:(1/2)n1—(1/2)n。
4.基因频率计算:①定义法(基因型)计算:(常染色体遗传)基因频率(A或a)%=某种(A或a)基因总数/种群等位基因(A和a)总数=(纯合子个体数×2+杂合子个体数)÷总人数×2。
高中生物遗传概率的计算技巧
高中生物遗传概率的计算技巧遗传概率是遗传学中重要的概念,其涉及到基因的传递和表现。
在高中生物学课程中,学生常常需要计算基因型和表现型的概率。
下面将介绍一些计算遗传概率的基本方法和技巧。
1. 明确问题:在计算遗传概率之前,首先要明确问题。
给定父母的基因型,求子代的基因型概率;给定已知基因型的个体,求其后代基因型概率等。
明确问题能够帮助我们选择合适的计算方法。
2. 使用基因图谱:在计算遗传概率时,可以使用基因图谱。
基因图谱是基因型和表现型的概率分布图,根据给定的基因型,可以追踪其在不同代中的传递和表现。
通过使用基因图谱,我们可以直观地理解和计算遗传概率。
3. 应用孟德尔定律:孟德尔定律是遗传学的基础。
它包括两个原则:分离律和自由组合律。
分离律表明在杂交过程中,父本的两个等位基因会分离并按照1:1的比例分配给子代。
自由组合律表明不同位点的基因分离和重组是相互独立的。
通过应用孟德尔定律,我们可以计算不同基因型和表现型的概率。
4. 使用概率乘法规则:概率乘法规则是计算复合事件概率的基本方法。
在遗传学中,基因型的计算可以看作复合事件,由多个单一事件组合而成。
概率乘法规则表明,复合事件的概率等于各个单一事件概率的乘积。
我们可以将基因型的计算分解为多个单一事件,并计算它们的概率,然后将概率相乘得到最终结果。
6. 考虑性别差异:在一些情况下,性别差异可能会影响遗传概率的计算。
在计算X连锁遗传的概率时,男性和女性的基因型分布是不同的。
在这种情况下,我们需要根据性别确定计算方法,并进行相应的修正。
7. 综合运用:在实际计算中,我们应该综合运用上述方法和技巧。
根据具体情况,灵活选择合适的计算方法。
要注意思路的清晰和准确,避免计算错误。
高中生物遗传概率的计算需要运用基本的计算方法和技巧,如明确问题、使用基因图谱、应用孟德尔定律、使用概率乘法规则和概率加法规则、考虑性别差异等。
通过合理运用这些方法和技巧,我们可以准确计算遗传概率,并解答相关问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中生物遗传概率计算技巧
新课改高中生物《遗传变异》部分,涉及各种类型的概率计算,与数学知识联系密切,学生普遍感到难度较大,计算时易犯各种各样的错误。
笔者现把教学中积累的、学生易犯错的几个方面做一下总结,希望能对学生的学习起到帮助作用。
一、巧用棋盘格法
用棋盘格法求概率,是概率计算最基本的方法,用来求解子代出现的种类和概率极其方便,但大部分同学不善使用或使用不当。
例1:有一种病,在人群中发病概率为1/100,现有一对正常夫妇生有一个患病女儿和正常儿子。
问该妇女离婚和另一正常男子结婚,所生子女中患该病的概率是?
解析:由题意看出,该病是常染色体隐性遗传病,该妇女的基因型为aa,只要知道与她二次结婚的正常男子的基因型,就可求他们后代的患病概率。
那么怎样求这一男子的基因型呢?用棋盘格法:
由题意知:aa=1/100,所以a=1/10,a=1-1/10=9/10。
则
aa=81/100,aa=18/100。
该男子正常要么是aa,要么是aa,是aa 的概率为18/100÷(18/100+81/100)=18/99,是aa的概率为81/100÷(18/100+81/100)=81/99,所以:
该妇女×另一正常男子
aa × aa(81/99)
aa(18/99)
只有该男子为aa时后代才可能患病,所生后代患病概率为1×18/99×1/4=1/22
总结:本题极易出现的错误解法:
错误一:由棋盘格推出a=9/10,a=1/10,aa=9/100(因为aa在棋盘格中出现了两次,正确答案应为:9/100×2=18/100)。
错误二:把另一正常男子的概率计算为:aa=81/100,aa=18/100(应为aa=81/99,aa=18/99)。
应用:在人群中的abo血型系统中,a型血为32/100,o型血为4/100,求ab型血和b型血在人群中的概率。
解析:由题意知,ii=4/100,可推出i=0.2,a型血为:
iaia+2 iai=(ia)2+2 iai=0.32,即:
(ia)2+2×0.2ia-0.32=0,也就是(ia-0.4)(ia+0.8)=0,求得ia=0.4,那么:ib=1-ia-i=0.4。
ab型血概率为iaib=2×0.4×0.4=32/100,b型血的概率为(ib)2+2 ibi=0.16+2×0.4×
0.2=32/100。
二、自交和自由交配,求后代概率
自交是指基因型相同的个体间的交配,而自由交配是指任何基因型个体之间自由交配,二者不可混淆。
例2:基因型为aa的个体自交,所得f1代:(1)继续自交:(2)自由交配。
两种情况下的所得f2中aa:aa:aa为多少?
解析:(1)自交:
aa
自交
f1 1/4aa 1/2aa 1/4aa
自交自交自交
f2 1/4aa 1/2(1/4aa+1/2aa+1/4aa) 1/4aa
aa:aa:aa=(1/4+1/6):1/4:(1/8+1/4)=3:2:3
(2)自由交配
aa
自交
f1 1/4aa 1/2aa 1/4aa
自由交配
f2 aa:aa:aa=?
此问题用棋盘格最为简便。
f1产生的雌、雄两种配子均为:
a=1/4+1/2×1/2=1/2,a=1/4+1/2×1/2=1/2。
根据棋盘格法:所以:aa=1/4 aa=2×1/2×1/2=1/2 aa=1/4
所以:aa:aa:aa=1/4:1/2:1/4=1:2:1
三、亲代产生多个后代,有序和无序的比较
例3:一对夫妇基因型皆为aa
(1)按顺序生下男—男—女的概率?
(2)生下两男一女的概率?
(3)生下两男一女且皆为显性性状的概率?
解析:问题(1)已经规定了顺序,即第一个为男孩,第二个为
男孩,第三个为女孩,其概率为:1/2×1/2×1/2=1/8 问题(3)没有规定顺序,应有三种情况,即男—女—男,男—男—女,女—男—男,每种情况的概率都为1/2×1/2×1/2=1/8。
那么生两男一女的概率就是1/8×3=3/8。
问题(3)两男一女的概率3/8,都为显性性状的概率为:3/4
×3/4×3/4=27/64,那么生两男一女且都为显性性状的概率是:3/8×27/64=81/512。
四、逆向思维求概率
有些题型,如果按部就班的去求解,既繁琐又易犯错,变换一下思维方式就会变得既准确又快捷。
例4:基因型为aabbcc和aabbcc的两个个体杂交,求后代中表现性不同于亲本的个体出现的概率。
解析:亲本杂交所生的后代中,用分支法不难看出后代的表现性为4种,不同于亲本的为3种,如果要求表现性不同于亲本个体的概率,需要用分枝法列出三种情况,求每种情况的概率然后相加,这种方法既繁琐又易犯错。
反向考虑,从双亲基因型看,后代表现型如果和双亲一样,那么只能和aabbcc的表现性相同,只要求出后代中基因型a b c 的个体出现的概率:1×3/4×1/2=3/8。
用1减去与亲本表现型相同的个体的概率,就是表现性不同于亲本的后代出现的概率,答案为:1-3/8=5/8。
还有一类题目,根本无法正常求解,如:基因型为aabbccdd……(n对等位基因)的个体自交,求后代不同于亲本的概率。
解析:自交后代中只要有一对基因和亲本不同,就与亲本不一样,情况复杂,无法正向求解。
但亲本只有一种基因型,后代中和亲本一样的概率就好求了,其概率为(1/2)n。
后代中基因型不同于亲本的概率1-(1/2)n。
遗传概率计算题型千变万化,方法多种多样,做题时一定要针对题目特点,寻求最简便的方法,既节省了时间,又保证了计算的准确性。