19.2.3 一次函数与方程、不等式ppt课件

合集下载

人教版《一次函数》上课课件PPT初中数学ppt

人教版《一次函数》上课课件PPT初中数学ppt
当自变量x的值为多少时,一次函数y=3x+2的函数值小于0?
在函数 y=kx+b(k≠0)中,当 y<0 时 x 的取值范围.
(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度; 解一元一次不等式:3x+2>0.
因为任何一个以 x 为未知数的一元一次不等式都可以变形为 kx+b>0(k≠0)或 kx+b<0(k≠0)的形式,所以解一元一次不等式可以看作是求一次函数 y=kx+b 的函数值大于 0
解一元一次不等式:3x+2>0.
当自变量x的值为多少时,一次 函数y=3x+2的函数值大于0?
解一元一次不等式:3x+2<0.
当自变量x的值为多少时,一次 函数y=3x+2的函数值小于0?
解一元一次不等式:kx+b>0(k≠0), kx+b<0(k≠0).
当自变量x的值为多少时,一次函数 y=kx+b的函数值大于0,小于0?
课堂练习
1.如图,直线y=ax+b过点A(0,2)和点B(-3,0), 则方程ax+b=0的解是( D) A.x=2 B.x=0 C.x=-1 D.x=-3
2.一次函数y=kx+b(k,b为常数,k≠0)的图象如图所示, 根据图象信息可求得关于x的方程kx+b=3的解为__x_=__2_.
3.如图是函数y=kx+b(k,b是常数,且k≠0)的图象,利用图象直接写出: (1)方程kx+b=0的解; (2)方程kx+b=-2的解; (3)方程kx+b=-3的解. 解:(1)x=2 (2)x=0 (3)x=-1
(2)从第几个月开始小丽的存款数可以超过小华?
解:(1)y1=62+12x,y2=20x (2)由 20x>62+12x 解得 x>734 , 从第 8 个月开始小丽的存款数可以超过小华

2014519最新人教版19.2.3一次函数与方程、不等式(第1课时)1

2014519最新人教版19.2.3一次函数与方程、不等式(第1课时)1
y 3 2 1 -2 -1 O -1 1 y =3x+2 y =2 y =0 3 2 y =-1
x
从数的角度看
求ax+b>0(a≠0)的解 x为何值时y=ax+b的值大于0
从形的角度看
求ax+b>0(a≠0)的解 确定直线y=ax+b在x轴上方
的图象所对应的x的取值范围
练习:根据图象来解决:2x-4>0
一次函数与一元一次方程的联系
探究: 如图 1 ,求直线 y =2x +1与 x 轴的交点,可令 y=0 ,得到一元一次方程 2x+1=0,解得________ ________ x=-0.5,即交
(-0.5,0) 点为________ .因此-0.5 就是直线 y=2x+1与 x 轴的交点的 横 坐标,也是一元一次方程__________ 2x+1=0 的解. ______
图1是函数 y=2x+1的图象, 根据图象回答方程 2x+1=0 的 解是什么?
y 1
y=2x+1
图1
-0.5
0
x
一元一次方程都可以转化为_________ kx+b=0 的形式.
求方程kx+b=0的解
当一次函数y=kx+b的值为 0 时,求相应的_______ 自变量x 的值.
求直线y=kx+b与 x轴 的交点的 横 坐标.
19.2.3 一次函数与方程、不等式 第1课时
关坝中学
对于函数中的两个变量x和y,我们可以从 哪些方面理解它们的含义呢?
变量名称 平面直角坐标系 坐标系中的点 函数解析式 x x轴 横坐标 自变量 y y轴 纵坐标 函数
思考:平面直角坐标系中,点p(x,y),当y=0时,P在什么位置? 当y>0时,P在什么位置?当y<0时,P在什么位置?

一次函数与方程、不等式(共15张PPT)

一次函数与方程、不等式(共15张PPT)

04 综合练习与提高
综合练习题一
总结词
理解一次函数与方程、不等式之间的 关系
详细描述
通过解决一系列的练习题,理解一次 函数与方程、不等式之间的关系,掌 握将实际问题转化为数学模型的方法 。
综合练习题二
总结词
掌握一次函数的图像和性质
详细描述
通过绘制一次函数的图像,理解函数的增减性、截距等性质,掌握利用图像解决实际问题的技巧。
一次函数与不等式的实际应用
一次函数与不等式在实际生活中有着 广泛的应用。例如,在购物时,我们 可以通过比较商品的价格和折扣率来 选择最划算的购买方案,这需要用到 一元一次不等式的知识。
另外,在生产活动中,我们可以通过 控制生产成本和产量之间的关系来制 定最优的生产计划,这也需要用到一 元一次不等式R。
02 一次函数与方程
一次函数与一元一次方程的关系
一次函数是形如$y = kx + b$的函数,其中$k$和$b$是常数, 且$k neq 0$。一元一次方程是只含有一个变量的方程,其形式 为$ax + b = 0$,其中$a$和$b$是常数,且$a neq 0$。
一次函数与方程、不等式(共15张 ppt)
目录
• 一次函数的基本概念 • 一次函数与方程 • 一次函数与不等式 • 综合练习与提高 • 总结与回顾
01 一次函数的基本概念
一次函数的定义
一次函数
一般形式为y=kx+b(k≠0),其 中x为自变量,y为因变量,b为截 距,k为斜率。
线性函数
特殊的一次函数,形式为y=kx+b (k≠0,b=0)。
一次函数在实际问题中的应用
一次函数可以用于解决实际问题,如路程、速度和时间问题、价格和销售问题等。

一次函数与方程、不等式、方程组关系PPT课件

一次函数与方程、不等式、方程组关系PPT课件

05
CHAPTER
总结与展望
总结一次函数与方程、不等式、方程组的关系
一次函数与方程的关系
一次函数与方程组的关系
一次函数是线性方程的几何表示,通 过将方程中的x替换为函数表达式,可 以得到相应的方程。
一次函数可以用于解决线性方程组问 题,通过消元法或代入法将方程组转 化为一次函数的交点问题。
一次函数与不等式的关系
斜率
一次函数图像的倾斜程度 由斜率k决定,k>0时,图 像为增函数;k<0时,图 像为减函数。
截距
b为y轴上的截距,表示函 数与y轴交点的纵坐标。
一次函数的图像
绘制方法
通过代入一组x值计算对应的y值 ,得到一系列点,将这些点连接 成线即可得到一次函数的图像。
图像特点
一次函数图像是一条直线,斜率为 k,截距为b。
一次函数与方程、不等式、方 程组关系ppt课件
目录
CONTENTS
• 一次函数的基本概念 • 一次函数与方程的关系 • 一次函数与不等式的关系 • 一次函数的应用 • 总结与展望
01
CHAPTER
一次函数的基本概念
一次函数的定义
01
02
03
一次函数
形如y=kx+b(k≠0)的 函数,其中x是自变量,y 是因变量。
一次函数与一元一次不等式组
一元一次不等式组
由两个或两个以上一元一次不等式组成的集合。
关系
对于一元一次不等式组,可以通过将其转化为一次函数的形式,利用函数的交点来求解。例如,解不等式组 $begin{cases} x + 2 > 0 x - 1 < 0 end{cases}$,可以将其转化为两个一次函数的形式,然后找到两个函数的 交点,即解集。

19.2.3一次函数与方程、不等式(第2课时)课件

19.2.3一次函数与方程、不等式(第2课时)课件

二、深入剖析,感悟新知
问题:1号探测气球从海拔5m处出发,以1m/min的速度 上升.与此同时,2号探测气球从海拔15m处出发,以 0.5m/min的速度上升.两个气球都上升了1h. (1)请用式子分别表示两个气球所在位置的海拔y (单位:m)关于上升时间x(单位:min)的函数关 系;
二、深入剖析,感悟新知
三、例题学习,提高认知
例2 如图,求直线l1与l2 的交点坐标.
y
分析:由函数图象可以求 直线l1与l2的解析式, 进而通过方程组求出交点坐标.
O x
四、随堂练习,巩固新知
1.教材第98页练习题. 2.已知一次函数y=3x+5与y=2x+b的图象交点为(-1,2), y 3 x 5, 则方程组 y 2 x b 的解是_______,b的值为______.
y x 5, 元一次方程组 y 0.5 x 15 的解吗?为什么?
三、例题学习,提高认知
例1 当自变量x取何值时,函数y=2.5x+1和y=5x +17 的值相等?这个函数值是多少?
Zx`````xk
方法一 :联立两个函数,得 2.5x+1=5x +17,解此方程; 方法二: 把两个函数转化为二元一次方程组,解方程组; 方法三: 画函数图象,求交点坐标.
Zxxk
二、深入剖析,感悟新知
思考:通过问题(2)、(3)的分析,我们能否概括 出二元一次方程的解和一次函数图象上的点的坐标之 间是什么关系?
Zxx```k
方程的解

一次函数图象上点的坐标
以二元一次方程的解为坐标的点,它都在其相应的 一次函数的图象上;一次函数图象上点的坐标,都 适合其相应的二元一次方程.

人教版八年级数学下册课件:19.2一次函数--2.3 一次函数与方程、不等式(2)一次函数与二元一次方程组

人教版八年级数学下册课件:19.2一次函数--2.3  一次函数与方程、不等式(2)一次函数与二元一次方程组

24
知识点三:二元一次方程组与一次函数的关系
学以致用
3.已知坐标平面上有两直线相交于一点(2,a),且两直线的方
程式分别为2x+3y=7,3x-2y=b,其中a,b为两数,求a+b之值
为何?( C)A.1 B.-1 C.5 D.-5
4.若一次函数y=k1x+b1与y=k2x+b2的图象没有交点,则关于x
∴OA=3,OB=1,∴AB=4.∴S△ABC=
1 2
×4×1=2.
27
知识点四:一次函数与方程(组)与几何图形的综合问题
典例讲评
解:(3)能,理由如下:设点P的横坐标为x, y

S△APB=
1 2
×4×|x|=6,
A C
解得x=±3.
O
x
B
把x=3代入y=-2x-1,得y=-7;
把x=-3代入y=-2x-1,得y=5;
情景引入
大家观察一次函数的解析式y=x+1,是否有过这样的 疑问:为什么一次函数的解析式与二元一次方程非常相似呢? 是的,你没有猜错,如果我们将一次函数的解析式看作为 一个元一次方程,那么,一次函数y=x+1上的每一个点坐 标就对应二元一次方程x-y+1=0上的一个解.一次函数图象 上有无数个点,二元一次方程也有无数个解.本节课,我们 就来看看一次函数与二元一次方程的关系.
y y=kx-1
A
O Bx C
31
知识点四:一次函数与方程(组)与几何图形的综合问题
学以致用
2.(3)①当点A运动到什么位置时, △AOB的面积是 ? ②在①成立的情况下,在两条坐标轴上是
否存在一定P,使△POA是等腰直角三角 形?若存在,请写出满足条件的所有点P 的坐标;若不存在,请说明理由.

八年级数学下册教学课件《一次函数与二元一次方程组》

八年级数学下册教学课件《一次函数与二元一次方程组》

y
150
y=0.4x
y=30+0.3x, 解方程组
120
y=30+0.3x
y=0.4x,
90
60
x=300,
30

O
x
100 200 300 400
y=120.
y
y=0.4x 150
120
y=30+0.3x
90
60
30
O
x
100 200 300 400
Байду номын сангаас
所以两图象交于点(300,120). 当x=300 时,30+0.3x=0.4x.即当一个月内通话时间等于300min 时,选择两种计费方式费用相等.
2
解:根据图象可知,有交点.
1
令﹣x+5=2x﹣1,解得x=2.
–2 –1 O
将x=2代入y=﹣x+5,得y=﹣2+5=3,
–1 –2
所以交点的坐标为(2, 3).
–3
y=2x﹣1
x
123456 y=﹣x+5
思 考 : ( 2 ) 中交点的坐标与方程
y
组 x+y=5, 的解有什么关系?
6 5
2x﹣y=1
随堂练习
某销售公司推销一种产品,设x(单位:件)是每月推销产品的 数量 , y(单位 : 元)是付给推销员的月报酬.公司付给推销员 的月报酬的两种方案如图所示 , 推销员可以任选一种与公司 签订合同,看图解答下列问题:
( 1) 求每种付酬方案中y关于x的函数 解析式;
方案一:y=40x.
方案二:y=20x+600.
问题3:1号探测气球从海拔5m处出发,以1m/min的速度上 升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min 的速度上升.两个气球都上升了1h. (1)用式子分别表示两个气球所在位置的海拔y(单位:m) 关于上升时间x(单位:min)的函数关系.

人教初中数学八下 19.2.3《一次函数与方程、不等式》一次函数与一元一次不等式课件 【经典初中数学

人教初中数学八下 19.2.3《一次函数与方程、不等式》一次函数与一元一次不等式课件 【经典初中数学
1、先化简:把各个二次根式 都化为最简二次根式。
2、再观察:化简后的二次根 式的被开方数是否相同。
例题讲解
1、计算: (1 )1x 69x (2 ) 8 045 解:(1) 16x 9x (2) 80 45
4 x3 x (43) x
4 53 5 (43) 5
7 x
5
探究
2、计算:
(1)2 81 181 32
18a , 28, x2 4, 5x4 y ,
×× √
×
2
x2 y,
ab ,
3xy ,
1
2 5 3x

×√
×
如图,学校要砌一个正方形花坛,已知外 面的正方形边长为 cm,里2 面2的正方形的边 长为 cm,两个正方形2 的周长和为多少?
22
两个正方形的周长和为:
2
4(2 2 2)
8 24 2
若两个正方形的面积分别为 27cm2、12cm2,则两正方形的周长 和为多少?
1.求Y1和Y2与X的函数关系式
2.问拍这批照片到照相馆拍,费用省还是由学校自己拍费用省=8x,Y2=4x+120
y
(2)由图象可知,当x=30 时,两家一样, Y=4x+120
当X>30时,照相馆省钱,
当X<30时,学校自己省钱.
0 30
x
24
25
教学反思:
5 63 2
3
4
下列解答是否正确?为什么?
(1)2 75 3 27 3 2 75 9 3 3 10 3 10 3 0
错在没有 按照二次根式 加减混算从左 向右依次进行 的运算顺序计 算。
( 2 ) 72 18 3 2 2

人教版八年级数学下册 第十九章 19.2.3 一次函数与方程、不等式 第一课时 课件 (共26张PPT)

人教版八年级数学下册 第十九章 19.2.3 一次函数与方程、不等式 第一课时 课件 (共26张PPT)

(1)途中乙发生了什么事,
P
(2)他们是相遇还是追击; 12
(3)他们几时相遇。
10
8
D E
AB
0
0.5
1 1.2
t
1.右图中的两直线l1 、l2 的交点坐标可以看作
y 2x 1
y 4
l1
3
2
l2 1
-1 0 -1
1 2 3 4x
x 2y 2 2.解方程组 2x y 2
问 经过多长时间两人相遇 ?
你明白他的想法吗?
设同时出发后t 时相遇, 则 20 t 30 t 150
用他的方法做一做,看 看和你的结果一致吗?
t=3
求出s与t之间的关系式,联立解方程组
A、B 两地相距150千米,甲、
对于乙,s 是t
乙两人骑自行车分别从A、B 两地相
的一次函数,
向而行。假设他们都保持匀速行驶, 则他们各自到A 地的距离s (千米) 都
120千米,即乙的
B 两地同时相向而行。假设他 小彬 速度是 30千米/时,
们都保持匀速行驶,则他们各
自到A地的距离s(千米)都是骑 车时间t(时)的一次函数.
1 时后乙距A地120千米, 2 时后甲距A地 40千米.
2 时后甲距A 地 40千米, 故甲的速度是 20千米/时,
由此可求出甲、乙两人的 速度, 以及 ……
2
4
6
所以方程
x 2 y 2 2x y 2
-6
的解是 x 2 。
y
2
一、二元一次方程的解与相应的一次函数图象上点 对应。
以方程 x+y=3 的解为坐标的所有点组成的图形
就是 一次函数 y=3-x 的图象.

人教初中数学八下 19.2.3 一次函数与方程、不等式课件2 【经典初中数学课件汇编】

人教初中数学八下 19.2.3 一次函数与方程、不等式课件2 【经典初中数学课件汇编】

要 学 习 好 探只 索有 一 条 路
二次根式的加减
复习回顾
a b ab ab a b(a≥0,b≥0)
a a
b
b
a b
a
b (a≥0,b>0)
最简二次根式。
复习回顾
下列根式中,哪些是最简二次根式?
18a , 28, x2 4, 5x4 y ,
×× √
×
2
x2 y,
ab ,
3xy ,
1
2 5 3x
解为χ= −3.
3
-3
直线y=x+3的图象与x轴交点坐标为 (_-3_,_0_ ),这说明方程χ+3=0的 解是x=_-3_)
0
x
从“形”上 看
五、强化训练:
4、已知直线 y2x4与 x轴交于点A,
与 轴y交于点B,求△AOB的面积.
解:由已知可得: 当χ=0时,y=4,即:B(0,4) 当y=0时,χ=2,即:A(2,0) 则S △AOห้องสมุดไป่ตู้=0.5 x OA x OB =0.5 x 2 x 4 =4
解:由题意可得: 当直线y=3χ+ 6与χ轴相交时,y=0 则3χ+ 6=0, 解得:χ= -2, 当χ= -2 时, 2 x (-2) + a =0 解得:a = 4
小组交流需要答成共识,然后由小组 中心发言人代表本组展示交流成果
从“数”上看,“解方程ax+b=0(a,b 为常数, a≠0)”与“求自变量 x 为何值时, 一次函数y=ax+b的值为0”有什么关系?从 图象上看呢?

×√
×
如图,学校要砌一个正方形花坛,已知外 面的正方形边长为 cm,里2 面2的正方形的边 长为 cm,两个正方形2 的周长和为多少?

一次函数与方程、不等式(共15张PPT)

一次函数与方程、不等式(共15张PPT)

1
整理方程
通过移项和合并同类项,将一次方程转化为形如ax = b的方程。
2பைடு நூலகம்
用除法解方程
通过将方程两边都除以系数a,得到x = b/a的解。
3
检验解
将求得的解代入原方程,验证方程两边是否相等。
一次方程的应用
经济学
一次方程可用于计算成本、利润和收入等经济指标。
工程学
在工程学中,一次方程可用于计算电路中的电流、电压和电阻。
平行线
具有相同斜率但不同截距的一次 函数将得到平行线。它们在平面 上永远不会相交。
相交线
具有不同斜率的一次函数将交叉 并在某个点相交。这个点是两条 直线的唯一交点。
一次方程的定义
一次方程是一个等式,其中包含至多一个未知数的一次项和常数项。例如, 2x + 3 = 7是一个一次方程。
一次方程的解法
物理学
一次方程可用于描述速度、加速度和力等物理量的关系。
一次不等式的定义和解法
一次不等式是一个包含未知数的一次项和常数项的不等式。例如,3x + 2 > 5是一个一次不等式。
一次函数与方程、不等式
一次函数与方程、不等式是数学中基础而重要的概念之一。通过本次演讲, 我们将深入探讨一次函数、方程和不等式的定义、性质和应用,使您对这些 概念有更深入的理解。
一次函数的表达式
标准形式
一次函数的标准形式为y = ax + b,其中a和b为常数。它描述了 直线的斜率和截距。
斜率截距形式
一次函数的斜率截距形式为y = mx + c,其中m是斜率,c是y轴 截距。这种形式更容易理解直 线的特征。
点斜式
一次函数的点斜式为y − y₁ = m(x − x₁),其中(x₁, y₁)是直线上的已 知点,m是斜率。这种形式方 便从已知点和斜率直接获得函 数。

一次函数与一元一次方程不等式关系PPT课件

一次函数与一元一次方程不等式关系PPT课件

通过一元一次方程求得的函数 解析式可以用来描述函数的图 像。
函数图像与一元一次方程解的关系
函数图像与x轴的交点是一元一次方程的解,即当y=0时,对应的x值就是方程的解。 函数图像与x轴的交点个数与一元一次方程的解的个数相同,可能有1个或多个解。
通过观察函数图像与x轴的交点情况,可以直观地了解一元一次方程的解的情况。
一次函数与一元一次方程不 等式关系ppt课件
• 一次函数的基本概念 • 一元一次方程的基本概念 • 一次函数与一元一次方程的关系 • 一次函数与一元一次不等式的关系 • 实例分析
01
一次函数的基本概念
一次函数的定义
01
一次函数:一般形式为y=kx+b (k≠0),其中x为自变量,y为因 变量,k为斜率,b为截距。
详细描述
选取几个典型的一次函数,如 y=x、y=2x+1等,通过代入法或 消元法将其转化为对应的一元一 次方程,并解释转化过程和原理 。
一次函数与一元一次不等式的实例分析
总结词
通过具体实例展示一次函数与一元一 次不等式的关系
详细描述
选取几个典型的一次函数,如y=x、 y=2x+1等,通过移项或不等式性质 将其转化为对应的一元一次不等式, 并解释转化过程和原理。
一元一次方程的解法
总结词
解一元一次方程通常采用移项、合并同类项、系数化为1等方法。
详细描述
解一元一次方程的基本步骤包括去分母、去括号、移项、合并同类项和系数化 为1。例如,对于方程 3x - 5 = 2,可以通过移项和合并同类项得到 x = 3。
一元一次方程的应用
总结词
一元一次方程在实际生活中有广泛的应用如购物问题、行程问题等。02
斜率k决定了函数的增减性,k>0 时,函数单调递增;k<0时,函 数单调递减。

19.2.3一次函数与方程不等式课件人教版八年级数学下册

19.2.3一次函数与方程不等式课件人教版八年级数学下册

解:画函数y=5x-3与y=3x+1 的图象。
从图中看出,当x>2时,
·y y=3x+1
7
直线y=5x-3上的点在直线 y=3x+1上相应点的上方,即 5x-3>3x+1,所以不等式的
y=5x-3
o2
x
解集为x>2。
4、已知直线y=2x+k与直线y=kx-2的交点横坐标
为2,求k的值和交点纵坐标。
K=6
(2,10)
y
5. 已知直线y1=k1x+b1与直线y2=k2x+b2
3
相交于点P(-2,3)。如图所示,当
y1>y2时,x的取值范围是 x<-2
。y1
-2 O
y2
x
数(y=ax +b)值为k 时对应的
自变量的值.
2x
2x +1=0 的解 1
+1=-1-2的解-1
O -1
2x +1=3 的解 1 2 3x
归纳总结
一次函数与一元一次方程的关系
求一元一次方程 kx+b=0的解.
从“函数值”看
一次函数y= kx+b
中y=0时x的值.
求一元一次方程 kx+b=0的解. 从“函数图象”看
的取值范围是( D)
A.y>0 B.y<0 C.-2<y<0 D.y<-2
3.已知直线 y 2x k与x轴的交点为(-2,0),则关于x的不等式 2x k 0
C 的解集是( )
A.x 2
B.x 2
C.x 2
D.x 2
4.对于函数y=-x+4,当x>-2时,y的取值范围是( D)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章 一次函数
19.2.3 一次函数与方程、不等式
1
学习目标
1.认识一次函数与一元(二元)一次方程(组)、一元 一次不等式之间的联系.(重点)
2.会用函数观点解释方程和不等式及其解(解集)的意 义.(难点)
2
今天数学王国搞了个家庭Party,各个成员按照自己所在的集合就坐, 这时来了“x+y=5”.
(2)由图象可知,当x>1时,y<3.
y
A(0,6) (1,3)
3
B(2,0)
O1
x
7
归纳总结:一次函数与一元一次不等式的关系
求kx+b>0(或<0) (k≠0)的解集
从“函数值”看
y=kx+b的值 大于(或小于)0时, x的取值范围
求kx+b>0(或<0) (k≠0)的解集
从“函数图象”看
确定直线y=kx+b 在x轴上方(或下方) 的图象所对应的x 取值范围
x 2,
y
1.
y=ax+b
y 2
y=cx+d
1
-3 -2
-1
O -1
-2
1 2 34x P
-3
-4
-5
-6
13
回顾与反思
通过今天的学习, 能说说你的收获和体会吗? 你有什么经验与收获让同学们共享呢?
看似平淡无奇的 现象有时却隐藏 着深刻的道理
14
课堂小结

回 顾
解一元一次方程 对应一次函数的值为0时,求
数值相等,并求出函数值.
9
从形的角度看,二元一次方程组与一次函数有什么关系?
பைடு நூலகம்
二元一次方程组的解就是相应的 两个一次函数图象 的交点坐标.
30
归纳总结:
一般地,任何一个二元一次方程都可以转化
25
为一次函y=kx+b(k、b为常数,且k≠0)的形式,
所以每个二元一次方程都对应一个一次函数, 20
也对应一条直线.
y =2
y =0 1 2 3x
y =-1
6
例1 画出函数y=-3x+6的图象,结合图象求: (1)不等式-3x+6>0 和-3x+6<0的解集; (2)当x取何值时,y<3?
解:作出函数y=-3x+6的图象,如图所示,图象与x 轴交于点B(2,0).
(1)由图象可知,不等式-3x+6>0 的解集是图象 位于 x轴上方的x的取值范围,即x<2;不等式 3x+6<0的解集是图象位于 x轴下方的x的取值范 围,即x>2;
归纳总结:一次函数与一元一次方程的关系
求一元一次方程 kx+b=0的解.
从“函数值”看
一次函数y= kx+b
中y=0时x的值.
求一元一次方程 kx+b=0的解.
从“函数图象”看
求直线y= kx+b与 x 轴 交点的横坐标.
5
一次函数与一元一次不等式
问题2 下面三个不等式有什么共同特点?你能从函
数的角度对解这三个不等式进行解释吗?能把你得到的
结论推广到一般情形吗?
(1)3x+2>2;(2)3x+2<0;(3)3x+2<-1.
不等式ax+b>c的解集就是
y 3 y =3x+2
使函数y =ax+b 的函数值大于c 的对应的自变量取值范围;
不等式ax+b<c的解集就是 使函数y =ax+b 的函数值小于c 的对应的自变量取值范围.
2 1
-2 -1 O -1
气球1 海拔高度:y =x+5; 气球2 海拔高度:y =0.5x+15.
(2)什么时刻,1 号气球的高度赶上2 号气球的高度?
这时的高度是多少?请从数和形两方面分别加以研究.
从数的角度看: 解方程组
y =x+5 y =0.5x+15
h1
h2
就是求自变量为何值时,两个 一次函数 y =x+5,y =0.5x+15 的函
15
y y =0.5x+15
方程组的解
10
y =x+5
A(20,25)
对应两条直线交点的坐标
5
O
5 10 15 20
x
10
y 例2 如图,求直线l1与l2 的交点坐标.
分析:由函数图象可以求直线l1与l2的解析式,进而通过方
程组求出交点坐标.
解:因为直线l1过点(-1,0), (0,2) ,用待定系数法可求得
y 3
2
1 2x +1=0 的解
-2 -1 O
2x +1=-1 的解
-1
y =2x+1
2x +1=3 的解 1 2 3x
4
1.直线y=2x+20与x轴交点坐标为(_-1_0__,___0__),这说明方程2x+20=0的解是 x=___-1_0_.
2.若方程kx+b=0的解是x=5,则直线y=kx+b与x轴交点坐标为(__5__,___0__).
x
2则.已方知程一组次函yy数y32=x3xx+55与b, 的y=解2x是+b_的__xy图__象__交2, .1点, b的为值(-1为,_2_)4_,___.
12
y ax b, 3.如图,一次函数y=ax+b与y=cx+d的图象交于点P,则方程组 y cx d 的
解是多少?
解:此方程组的解是
O
x
直线l1的解析式为y =2x+2.同理 可求得直线l2的解析式为y =-x+3.
解方程组
y =2x+2 得
y =-x+3
1
x= 3
y= 8
3
即直线l1与l2 的交点坐标

1 3
,
8 3
11
1.一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为 x=-3 . y
3
y=kx+3
−3 O
x+y=5
到我这里来
这是怎么回事? x+y=5应该坐 在哪里呢?
到我这里来
二元一次方程
一次函数
3
一次函数与一元一次方程
问题1 下面三个方程有什么共同特点?你能从函数 的角度对解这三个方程进行解释吗?
(1)2x+1=3;(2)2x+1=0;(3)2x+1=-1.
用函数的观点看: 解一元一次方程 ax +b =m 就是求当函 数(y=ax +b)值为m 时对应的自变量的值.
8
一次函数与二元一次方程组
问题3 1号探测气球从海拔5 m 处出发,以1 m/min 的速度上升.与此同时,2 号探测气
球从海拔15 m 处出发,以0.5 m/min 的速度上升.两个气球都上升了1 h.
(1)请用解析式分别表示两个气球所在位置的海拔 y(m)与气球 上升时间 x(min)的函数关系.
相应的自变量的值,即一次函数与x轴交点的横坐 标.
一次函数与方程、不 等式
解一元一次不等式 对应一次函数的函数值大
(小)于0时,求自变量的取值范围,即在x轴上 方(或下方)的图象所对应的x取值范围 .
解二元一次方程组 求对应两条直线交点的坐
标.
15
相关文档
最新文档