(完整版)状态反馈控制器的设计

合集下载

状态反馈控制器设计

状态反馈控制器设计

第五章 状态反馈控制器的设计题目:系统结构图如下图所示:要求:闭环系统的输出超调量σ≤5%,峰值时间t p ≤0.5s 。

分别求出开环、PID 闭环、状态反馈闭环、PID/状态反馈闭环的单位阶跃响应,并分析相应曲线得出结论。

1.开环系统单位阶跃响应图 1 开环系统仿真模型0.0.0.0.1.1.仿真时间(s )阶跃响应图2 开环系统单位阶跃响应分析:由图中的响应曲线可知开环系统不稳定,通过开环传递函数G K (s )=3211872s s s++也可以判断出开环系统不稳定。

2.闭环传递函数及其单位阶跃响应(1)闭环传递函数G B (s)=32118721s s s +++,特征根分别为λ1=-12.0138,λ2=-5.9722,λ3=-0.0139。

(2)闭环传递函数仿真模型及其单位阶跃响应曲线见图3、图4。

图3 闭环传递函数仿真模型图4 闭环传递函数单位阶跃响应分析:响应曲线表明,系统是稳定的,但是系统的响应时间太长,远达不到要求。

3.加入PID控制器,并进行参数整定后的单位阶跃响应图 5 PID控制仿真模型其中参数设置为:K p =256.8 ,K i =0.2,K d=23.2。

图6 PID 闭环控制输出波形图分析:通过Workspace 数据查询可知峰值时间tp=0.98686s ,最大输出值为1.0485,所以超调量为4.85%,满足要求,峰值时间达不到要求。

4.加入状态反馈控制器的单位阶跃响应图7 状态反馈控制仿真模型其中H1 到H3依次为10000、284.8、96.1。

0.0.0.0.1.-4t i m e(sec)O u t p u t图8 状态反馈控制单位阶跃响应分析:通过Workspace数据查询可知峰值时间tp=0.4492s,最大输出值为1.0449,所以超调量为4.49%,满足性能指标要求。

5.状态反馈/PID控制的单位阶跃响应图9 状态反馈/PID控制仿真模型其中PID参数设置为:K p =1.05 ,K i =0.01,K d=0;状态反馈控制H1 到H3依次为10000、284.8、96.1。

控制器设计中的状态反馈方法研究

控制器设计中的状态反馈方法研究

控制器设计中的状态反馈方法研究引言在控制器设计中,状态反馈方法是一种广泛应用的技术。

它通过实时监测被控对象的状态,将其反馈给控制器,从而实现对被控对象的精准控制。

本文将着重研究控制器设计中的状态反馈方法。

一、状态反馈的原理状态反馈技术是基于被控对象的状态量进行控制的一种方法。

通常,对于某个被控对象,我们需要知道它的状态才能控制它。

获得被控对象的状态可以采用传感器或测量设备等手段进行实时监测。

将获得的状态反馈给控制器后,控制器就能根据当前状态量的信息计算出一个控制信号,并通过执行机构对被控对象进行控制。

这样就实现了对被控对象的精准控制。

二、状态反馈的分类1. 全反馈与局部反馈全反馈是指系统中所有的状态量都被采集到并用于设计控制器,因此也被称为全状态反馈。

全反馈能够有效控制系统,但增加了硬件和软件的复杂度。

局部反馈则只使用系统部分状态信息进行设计,其主要应用于大型系统中,减少成本和提高控制度。

2. 直接反馈与间接反馈直接反馈是指将被控对象的输出量作为反馈信号输入到控制器中,直接进行调节。

间接反馈则是通过测量被控对象状态来计算输出量,进而进行反馈调节。

三、状态反馈的应用1. 电子电气系统的控制在电子电气系统的控制中,状态反馈技术被广泛应用。

例如,在直流电机控制中,通过采集电机电流和角度来实时监测电机状态,从而实现对电机转速和转向的精准控制。

2. 机械工程中的控制在机械工程中,状态反馈技术同样是一种常用技术。

例如,在飞机自动驾驶系统中,通过实时监测飞机状态,将监测结果反馈给控制器,实现对飞机飞行姿态和高度的自动控制。

3. 医疗器械中的应用在医疗器械中,常常需要按照生理状态对人体进行精准控制。

这就需要采用状态反馈技术。

例如,在人工呼吸器控制中,通过实时监测患者的呼吸状态,将监测结果反馈给人工呼吸器,从而实现对患者的呼吸进行精准控制。

结论状态反馈是一种应用广泛的技术,它通过实时监测被控对象的状态,将监测结果反馈给控制器,实现对被控对象的精准控制。

(完整版)状态反馈控制器的设计

(完整版)状态反馈控制器的设计

(完整版)状态反馈控制器的设计上海电⼒学院实验报告⾃动控制原理实验课程题⽬:状态反馈控制器的设计班级:姓名:学号:时间:⼀、问题描述已知⼀个单位反馈系统的开环传递函数为,试搭建simulink 模型。

仿真原系统的阶跃响应。

再设计状态反馈控制器,配置系统的闭环极点在,并⽤simulink 模型进⾏仿真验证。

⼆、理论⽅法分析MATLAB提供了单变量系统极点配置函数acker (),该函数的调⽤格式为K=place ( A,b,p)其中,P为期望闭环极点的列向量,K为状态反馈矩阵。

Acker ()函数时Ackerman 公式编写,若单输⼊系统可控的,则采⽤状态反馈控制后,控制量u=r+Kx 。

对于多变量系统的状态反馈极点配置,MATLAB也给出了函数place (),其调⽤格式为K=place ( A,B,P)状态反馈是将系统的状态变量乘以相应的反馈系数,然后反馈到输⼊端与参考输⼊叠加形成控制量,作为受控系统的输⼊,实现闭环系统极点的任意配置,⽽且也是实现解耦和构成线性最优调节器的主要⼿段。

只要给定的系统是完全能控且能观的,则闭环系统的极点可以通过状态反馈矩阵的确定来任意配置。

这个定理是⽤极点配置⽅法设计反馈矩阵的前提和依据。

在单输⼊,单输出系统中,反馈矩阵有唯⼀解,且状态反馈不改变系统的零点。

三、实验设计与实现1、搭建原系统的sumlink模型并观察其单位阶跃响应原系统sumlink模型原系统单位阶跃响应由原系统单位阶跃响应可知系统不稳定2、⽤极点配置法设计状态反馈控制器①利⽤matlab计算系统的状态空间模型的标准型>> a=[10];b=[1 5 6 0];[A B C D]=tf2ss(a,b)A = -5 -6 01 0 00 1 0B = 1C = 0 0 10③系统能控性矩阵>> uc=ctrb(A,B)uc = 1 -5 190 1 -50 0 1 >> rank(uc) ans = 3 所以系统完全能控③系统能观型矩阵>> vo=obsv(A,C) vo = 0 0 100 10 010 0 0 >> rank(vo) ans = 3 所以系统完全能观所以可以⽤极点配置法设计状态反馈控制器④求解系统反馈矩阵>> p=[-3 -0.5+j -0.5-j];k=acker(A,B,p)k = -1.0000 -1.7500 3.7500 加⼊反馈后的系统闭环极点为:>>sysnew=ss(A-B*k,B,C,D);pole(sysnew)ans = -3.0000-0.5000 + 1.0000i-0.5000 - 1.0000i⑤搭建加⼊反馈控制器后系统的sumlink模型⑥观察新系统的单位阶跃响应四、实验结果分析加⼊反馈控制器后系统的闭环极点在,符合题⽬要求。

现代控制理论状态反馈控制器设计

现代控制理论状态反馈控制器设计
[ ] K = b0 − a0 b1 − a1 L bn−2 − an−2 bn−1 − an−1 T
例 已知被控系统的传递函数是
G(s) =
10
s(s + 1)(s + 2)
设计一个状态反馈控制器,使得闭环极点是-2,−1 ± j 解 确定能控标准型实现
⎡0 1 0⎤ ⎡0⎤ x& = ⎢⎢0 0 1⎥⎥ x + ⎢⎢0⎥⎥u
实现极点配置的条件:
3 + k3 = 4 2 + k2 = 6
k1 = 4
⇒ k1 = 4, k2 = 4,
极点配置状态反馈控制器是 u = −[4 4 1]x
k3 =1
分析:ห้องสมุดไป่ตู้点:能控标准型使得计算简单;
缺点:能控标准型中的状态往往难以直接测量;
解决方法:考虑新的实现。串连分解
u
1
x3
s+2
1 x2 s +1
确定参数 a0 , a1 , L, an−1 3。确定转化为能控标准型的变换矩阵 T = Γc[A~, B~](Γc[A, B])−1 4。确定期望特征多项式系数
(λ − λ1() λ − λ2 )L(λ − λn ) = λn + bn−1λn−1 + L + b1λ + b0
5。确定极点配置反馈增益矩阵
状态反馈控制律:
u = −[k0 k1 k2 ]x
得到的闭环系统: 特征多项式:
⎡0
x&
=
⎢ ⎢
0
⎢⎣− a0 − k0
1 0 − a1 − k1
0⎤
1
⎥ ⎥
x
=
Ac
x

5.状态反馈控制器的设计

5.状态反馈控制器的设计

Chapter5状态反馈控制器设计控制方式有“开环控制”和“闭环控制”。

“开环控制”就是把一个确定的信号(时间的函数)加到系统输入端,使系统具有某种期望的性能。

然而,由于建模中的不确定性或误差、系统运行过程中的扰动等因素使系统产生一些意想不到的情况,这就要求对这些偏差进行及时修正,这就是“反馈控制”。

在经典控制理论中,我们依据描述控制对象输入输出行为的传递函数模型来设计控制器,因此只能用系统输出作为反馈信号,而在现代控制理论中,则主要通过更为广泛的状态反馈对系统进行综合。

通过状态反馈来改变和控制系统的极点位置可使闭环系统具有所期望的动态特性。

利用状态反馈构成的调节器,可以实现各种目的,使闭环系统满足设计要求。

参见R38例5.3.3,通过状态反馈的极点配置,使闭环系统的超调量匚p乞5%,峰值时间(超调时间)t p乞0.5s,阻尼振荡频率壮乞10。

5.1线性反馈控制系统的结构与性质设系统S=(A, B,C)为x 二Ax Bu y 二Cx (5-1)图5-1 经典控制-输岀反馈闭环系统经典控制中采用输出(和输出导数)反馈(图5-1 ):其控制规律为:u二-Fy v F为标量,v为参考输入(5-2)x 二Ax Bu 二Ax B (- Fy V (A-BFC)x Bv可见,在经典控制中,通过适当选择F ,可以利用输出反馈改善系统的动态性能现代控制中采用状态反馈(图5-2 ):其控制规律为:u - -Kx v,K〜m n (5-3)(K的行=u的行,K的列=x的行)称为状态反馈增益矩阵。

状态反馈后的闭环系统S K =(A K,B,C)的状态空间表达式为x =(A-BK)x Bv = A K X Bv y = Cx (5-4)式中:|A K三A-BK若K -FC ,“状态反馈”退化成“输出反馈”,表明“输出反馈”只是“状态反馈”的一种特例,因此,在经典控制理论中的输出反馈”(比例控制P )和 输出导数反馈”(微分控制D )能实现的任务,状态反馈必能实现,反之则未必。

现代控制理论5状态反馈控制器的设计2

现代控制理论5状态反馈控制器的设计2
应速度等等 • 系统稳定性的决定因素:系统极点 • 影响动态性能的因素:二阶系统(极点位置),
高阶系统(一对主导极点) • 结论:极点影响系统的稳定性和动态性能。
• 线性系统:
x& Ax Bu
状态反馈:u Kx
闭环系统的状态方程为:
x& (A BK)x
• 需要回答两个问题:
➢在什么条件下,或者说对什么样的系统, 极点配置问题可解,即使得闭环系统具 有给定极点的状态反馈控制器存在性。
• 状态空间模型的线性系统:
状态反馈控制: 闭环系统:
• 输出反馈控制:
x& (A BFC)x Bv
y
Cx
5.1.2 反馈控制的性质
• 在静态反馈下,闭环系统矩阵分别变为:
• 结论:反馈可以改变系统的动态特性。
• 定理5.1.1 状态反馈不改变被控系统的能 控性。
证明方法一;
证明方法二。
K=-[0.3125 0.9375]x
5.3 极点配置
• 5.3.1 问题的提出 • 5.3.2 极点配置可解的条件和方法 • 5.3.3 极点配置状态反馈控制器的设计算

5.3.1 问题的提出
• 系统性能:稳态性能和动态性能 • 稳态性能:稳定性、静态误差 • 动态性能:调节时间、超调量、上升时间、响
解;
✓导出了极点配置状态反馈控制律; ✓极点配置状态反馈控制律是唯一的。
• 例: 考虑系统
设计一个状态反馈控制器,使得闭环系统 的极点分别是-2和-3。
• 例:已知被控系统的传递函数为
设计一个状态反馈控制器,使得闭环系统
的极点为

• 例:已知被控系统为:
0 0 0 1
x& 1 6

最优控制问题的状态反馈设计

最优控制问题的状态反馈设计

最优控制问题的状态反馈设计最优控制问题是控制论中的一个重要分支,旨在通过优化系统的性能指标来设计最佳控制策略。

其中,状态反馈设计作为一种常用的控制方法,通过测量系统的状态,并将此信息反馈给控制器,以实现期望的控制效果。

本文将介绍最优控制问题的状态反馈设计原理和方法。

一、最优控制问题简介最优控制问题旨在求解系统在一定约束条件下的最佳控制策略,使得系统的性能指标达到最优。

最优控制问题可以分为两种类型:定态最优控制和动态最优控制。

定态最优控制问题是指在系统达到稳定状态后,使系统达到最优性能。

动态最优控制问题是指在系统的整个过程中,通过调整控制策略使系统达到最优性能。

二、状态反馈设计原理状态反馈设计原理是基于系统状态可测性的假设,即系统的全部状态均可通过传感器进行测量。

状态反馈控制器的设计目标是调整反馈增益矩阵,使得系统的闭环特性满足一定的性能指标。

状态反馈设计的核心思想是通过反馈控制器实时地根据系统状态对控制信号进行修正,以实现期望的控制效果。

三、状态反馈设计方法1. 线性二次型(LQR)调节器法LQR调节器法是一种常用的状态反馈设计方法,其设计目标是使系统的性能指标最小化。

具体而言,LQR调节器法通过优化系统的二次型性能指标来确定状态反馈增益矩阵。

该方法需要先将系统建模为状态空间模型,然后通过求解Riccati方程得到最优的状态反馈增益矩阵。

2. 最小二乘法最小二乘法是一种常用的参数估计方法,可用于状态反馈增益矩阵的设计。

基本思想是通过优化系统的输出与期望输出之间的误差平方和来确定状态反馈增益矩阵。

通过最小化误差函数,可以得到最优的状态反馈增益矩阵。

3. 公共部分系统方法公共部分系统方法是一种基于H∞控制理论的状态反馈设计方法。

该方法通过最小化系统的H∞性能指标,使系统的最坏情况下的性能达到最佳化。

具体而言,公共部分系统方法将控制器设计问题转化为一个凸优化问题,并通过求解线性矩阵不等式(LMI)来确定最优的状态反馈增益矩阵。

mpc中状态反馈控制器设计步骤

mpc中状态反馈控制器设计步骤

mpc中状态反馈控制器设计步骤MPC(Model Predictive Control,模型预测控制)是一种基于数学模型的先进控制方法,其中包括状态反馈控制器的设计步骤。

下面是一般情况下设计MPC中状态反馈控制器的步骤:1. 系统建模:首先需要对被控制的系统进行建模,包括系统的状态方程和输出方程。

这可以通过物理方程、实验数据或系统辨识等方法来实现。

2. 状态空间表示:将系统的状态方程转换为状态空间表示,通常使用矩阵形式表示,即x(k+1) = Ax(k) + Bu(k),y(k) = Cx(k) + Du(k)。

其中,x是系统的状态量,u是系统的输入量,y是系统的输出量。

3. 状态预测模型构建:根据系统的状态空间表示,构建系统的状态预测模型。

这可以通过迭代计算系统的状态方程得到未来一段时间内的状态估计。

4. 目标函数定义:根据控制要求和目标,定义一个目标函数来衡量系统的性能。

目标函数通常由系统的状态误差、控制输入的变化率等组成。

5. 约束条件设定:根据系统的约束和控制要求,设定约束条件,如输入量的幅值限制、状态量的范围限制等。

6. 优化问题求解:将目标函数和约束条件组合成一个优化问题,并使用优化算法求解最优控制输入序列。

常用的优化算法包括二次规划(QP)算法、线性规划(LP)算法等。

7. 控制器设计:根据优化求解得到的最优控制输入序列,设计状态反馈控制器来实现系统的闭环控制。

状态反馈控制器通常采用线性矩阵不等式(LMI)方法或极点配置方法等进行设计。

8. 控制器实施:将设计好的状态反馈控制器实施到实际系统中,监测系统的状态和输出,根据控制输入调整系统的行为,以实现控制目标。

需要注意的是,MPC方法的设计和实施过程中还涉及到参数的选择、模型误差的补偿、鲁棒性分析等问题,这些都需要根据具体的应用情况进行综合考虑。

第五章状态反馈控制器设计ppt课件

第五章状态反馈控制器设计ppt课件

检验:eig(A-B*K)
极点配置的优点:
可以改善系统的稳定性、动态性能
5.4 跟踪控制器设计
极点配置的优点:改善系统的稳定性、动态性能
那么,对稳态性能、静态误差等的影响?
例 已知被控对象的状态空间模型为
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
如何从能控标准型模型的解导出一般模型的极
点配置控制器。
系统模型
假定该状态空间模型是能控的,则存在线性变换
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
其中
对能控标准型和给定的极点
可得极点配置状态反馈增益矩阵
矩阵P是对称的,
若选取
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
控制器设计转化为以下矩阵方程的求解问题:
(黎卡提矩阵方程)
优点:若对给定的常数,以上矩阵方程有解,
则对任意的
都是系统的稳
例 考虑系统在状态反馈
下的闭环系统
能控能观性。
结论:能控,不能观。
状态反馈使得闭环系统产生了零极点的对消。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
定理5.1.2输出反馈不改变系统的能控能观性。

状态反馈控制器的设计

状态反馈控制器的设计

状态反馈控制器的设计状态反馈控制器是一种常见的控制器设计方法,用于调节系统的动态响应和稳定性。

它通过测量系统的输出和状态,并将这些信息与期望输出进行比较,来计算出控制器的控制输入。

接下来,我将介绍状态反馈控制器的基本原理、设计步骤和两个常见的设计方法。

状态反馈控制器的基本原理是基于系统的状态反馈,即通过系统的状态变量来进行控制。

在状态反馈控制器的设计中,首先需要确定系统的状态方程或状态空间表达式。

状态方程描述了系统的状态变化关系,通常使用微分方程或差分方程表示。

状态空间表达式则是将系统的状态方程转换为矩阵形式,以便于计算和分析。

设计一个状态反馈控制器包括以下步骤:1.系统建模:首先需要建立系统的数学模型,确定系统的输入、输出和状态变量。

这可以通过物理建模、数学建模或实验数据分析等方法来完成。

系统的模型可以是连续时间模型,也可以是离散时间模型。

2.系统稳定性分析:通过分析系统的特征值或极点,判断系统的稳定性。

如果系统的特征值都位于单位圆内或实部小于零,则系统是稳定的。

3.设计目标确定:根据系统的性能要求和目标,确定设计的指标,例如系统的快速响应、稳定性、误差补偿等。

4.控制器设计:根据系统的状态方程和控制目标,使用控制理论和方法,设计控制器的增益矩阵。

常用的设计方法有极点配置法和最优控制方法。

5.系统闭环仿真:将设计好的控制器与系统模型相连,进行闭环仿真,检验系统在不同工况和干扰下的响应性能。

可以通过调整控制器的参数来优化系统的性能。

接下来,我将介绍两种常见的状态反馈控制器设计方法:极点配置法和最优控制方法。

1.极点配置法:该方法通过选择恰当的状态反馈增益矩阵,使系统的极点移动到预定位置。

首先需要确定期望的系统极点位置,然后使用反馈增益矩阵的公式进行计算和调整。

极点配置法的优点是设计简单,但对系统的模型和性能要求较高。

2.最优控制方法:该方法是基于最优控制理论,对系统的控制性能进行优化设计。

最优控制方法通常需要确定一个性能指标,例如系统的能量消耗、误差最小化等,然后使用最优化算法来计算最优的控制器增益矩阵。

稳定化状态反馈控制器设计 - 稳定化状态反馈控制器设计(ppt文档)

稳定化状态反馈控制器设计 - 稳定化状态反馈控制器设计(ppt文档)
对任意的 k 1 ,稳定化控制律:
p3 3 2
u kB T Px k[ p2 p3 ]x
k 1 3 31 4 x 2
线性矩阵不等式处理方法。
控制器设计问题转化为以下矩阵方程的求解问题:
ATP PA 2kPBBTP I 0 (黎卡提矩阵方程) 优点:若对给定的常数 k0 ,以上矩阵方程有解,则对 任意的 k k0 ,u kBTPx 都是系统的稳定化控制律。 结论:正无穷大的稳定增益裕度!
例 设计系统的一个稳定化状态反馈控制律
dV (x) dt xT (AT P PA)x 2xT PBu
若选取 u kBT Px, k 0
dV ( x) dt xT ( AT P PA) x 2kxT PBBT Px xT ( AT P PA 2kPBBT P) x
ATP PA 2kPBBTP I dV (x) dt xT x 0
0 1[0
1]


p1 p2
p2 p3


1 0
0 1 0
展开矩阵方程,得到

2 p2

2
p
2 2
1
0
2 p2 2 p32 1 0
p1 p3 2 p2 p3 0
求取一个正定的解矩阵
p1 3 3 2, p2 (1 3) 2 ,
取k=1,则

x1 x 2



0 1
1 x1
0

x
2


0 1u
0 1 p1
1
0

p
2
p2 p3

现代控制理论__状态反馈控制系统的设计与实现

现代控制理论__状态反馈控制系统的设计与实现

现代控制理论 课程实验报告实验题目: 状态反馈控制系统的设计与实现班级 姓名 学号 日期一、 实验目的及内容实验目的:1.1.掌握极点配置定理及状态反馈控制系统的设计方法;1.2.比较输出反馈与状态反馈的优缺点;1.3.训练Matlab 程序设计能力。

实验内容:2.1.针对一个二阶系统,分别设计输出反馈和状态反馈控制器;2.2.分别测出两种情况下系统的阶跃响应;2.3.对实验结果进行对比分析。

2.4.首先应该选取一个既可控又可观测的二阶系统,设置其在未加任何反馈的情况下,观察期波形,可以直观了解系统特性;2.5.其次在前面二阶系统的前提下,加入状态反馈,对系统最后特性产生的变化也可以由示波器来表示,方便直观比较并进行分析;状态反馈 ()()B BK A sI c s G k 1-+-= 2.6.最后对无反馈的二阶系统,加入输出反馈至状态微分,利用仿真示波器观察该情况下的阶跃响应;输出反馈至状态微分 ()()B HC A sI C s G H 1-+-= 二、 实验设备MATLAB 软件 PC 机三、 实验原理3.1.状态反馈进行极点配置的充分必要条件是:系统完全可控;输出反馈进行极点配置的充分必要条件是:系统完全可观测。

3.2.线性定常系统完全可控的充要条件:rank B AB … 1-n A B =n ,n 为A 的维数3.3.线性定常系统完全可观测的充要条件:rank C T C T A T ⋯ A T n −1C T =n,n 为A 的维数。

3.4极点配置:二阶系统的状态反馈矩阵]2k 1[ k K ,输出反馈矩阵]21[h h H 。

四、 实验步骤4.1.选取一个既可控有可观测的二阶系统,其对应的系统闭环传递函数如:()()1212++=s s s U s Y ,设置希望配置的闭环极点:4]3[--= P 。

4.2.进行可控、可观测判断:因为系统传递函数的分子、分母不存在零极点对消,故系统可控可观测。

第5章状态反馈控制器设计

第5章状态反馈控制器设计

第5章状态反馈控制器设计第5章是关于状态反馈控制器设计的,状态反馈控制器是一种常用的控制器设计方法。

它基于系统的状态变量来设计控制器的反馈信号,以达到控制系统的稳定性、性能和鲁棒性要求。

在状态反馈控制器设计中,首先需要确定系统的状态方程,也就是描述系统动态特性的微分方程。

然后,根据系统的状态方程,可以得到系统的状态变量的表达式。

状态变量是可以直接测量或估计的物理量,如位置、速度、加速度等。

接下来,需要设计控制器的反馈信号的表达式。

为了保证控制系统的稳定性,通常选择线性组合的形式,即反馈信号是状态变量的线性组合。

选择合适的线性组合方式可以使得控制系统的响应更快、稳态误差更小。

常用的状态反馈控制器设计方法有两种:全局状态反馈和局部状态反馈。

全局状态反馈是指控制器的反馈信号包含所有的状态变量,可以使得控制系统的稳定性得到保证。

局部状态反馈是指控制器的反馈信号只包含部分的状态变量,可以使得控制系统的性能得到提升。

在设计状态反馈控制器时,需要满足以下几个步骤:1.系统模型化:将系统的动态特性表达为状态空间模型。

状态空间模型可以用矩阵形式表示,包括状态方程、输出方程和初始条件。

2.系统可控性分析:通过计算系统的可控性矩阵来判断系统是否是可控的。

如果可控性矩阵的秩等于系统的状态变量的个数,则系统是可控的,可以设计状态反馈控制器。

3.控制器设计:选择合适的反馈信号的线性组合方式,设计控制器的反馈矩阵。

反馈矩阵的选择会影响到控制系统的稳定性、性能和鲁棒性。

通常,可以使用经验法则、优化算法或者现代控制理论来进行设计。

4.控制器实现:将控制器的反馈信号与系统的输出信号进行比较,计算出控制器的输出信号。

根据控制器的输出信号来调节系统的输入信号,以实现对系统状态的控制。

最后,需要对设计出的状态反馈控制器进行仿真验证和实验测试。

通过仿真和实验可以评估控制系统的性能,并对控制器进行进一步的改进和优化。

总结起来,状态反馈控制器是一种基于系统状态变量的控制器设计方法。

线性时不变系统的状态反馈控制器设计

线性时不变系统的状态反馈控制器设计

线性时不变系统的状态反馈控制器设计前言前面一篇博客介绍了基于状态空间模型的系统分析。

本篇博客将针对线性时不变系统,基于状态空间模型并根据系统的性能要求来设计控制系统。

一个系统的控制方式有开环控制和闭环控制。

开环控制指的是把一个确定的控制信号(关于时间的函数)加到系统的输入端,使得系统具有其中一种期望的性能,如稳定的跟踪一些参考输入或者使系统的状态达到一些特定值,等等。

上一篇博客讲的系统的能控性就是利用了开环控制,即存在一个特定的控制作用(开环控制)使得系统在有限时间内,从初始状态转移到零状态。

然而,由于建模存在的不确定性或误差、系统运行过程中的扰动等因素,使得我们没办法获得实际物理系统的真实动态方程,我们能得到的仅仅是粗略的低阶的名义模型或有时又称标称模型。

因此在对实际系统的控制过程中,若不能根据系统当前的运行状况及时修改系统的行为,而仍按照名义模型设计的开环控制作用会使得实际系统产生一些意想不到的情况,很难使实际物理系统按我们原先所期望的方式运行。

因此,我们必须根据系统的运行状况实时地来确定控制信号而不是采用预先设计好的控制信号,这就是反馈控制(feedback control)。

在经典控制理论中,我们依据描述对象输入输出行为的传递函数模型来设计控制器,因此只能用系统的可测量输出作为反馈信号。

而现代控制理论则是用刻画系统内部特征的状态空间模型来描述对象,出了可测量的输出信号外,还可以用系统的内部状态来作为反馈信号。

根据可利用的信息是系统的输出还是状态,相应的反馈控制可分为输出反馈和状态反馈。

本篇博客以状态空间模型描述的线性时不变系统为研究对象,介绍状态反馈控制器的一些设计方法。

首先介绍反馈控制的种类、结构及其对系统性能的影响。

进而介绍改善系统动态性能的极点配置方法,提出极点配置状态反馈控制律的设计算法。

针对极点配置方法可能影响系统稳态性能的问题,介绍了实现精确跟踪的控制系统设计方法。

线性反馈控制系统控制系统结构控制系统由被控对象和控制器(controller)两部分组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海电力学院实验报告自动控制原理实验课程题目:状态反馈控制器的设计
班级:
姓名:
学号:
时间:
一、问题描述已知一个单位反馈系统的开环传递函数为,试搭建simulink 模型。

仿真原系统的阶跃响应。

再设计状态反馈控制器,配置系统的闭环极点在,并用simulink 模型进行仿真验证。

二、理论方法分析
MATLAB提供了单变量系统极点配置函数acker (),该函数
的调用格式为K=place ( A,b,p)
其中,P为期望闭环极点的列向量,K为状态反馈矩阵。

Acker ()函数时Ackerman 公式编写,若单输入系统可控的,则采用状态反馈控制后,控制量u=r+Kx 。

对于多变量系统的状态反馈极点配置,MATLAB也给出了函数place (),其调用格式为
K=place ( A,B,P)
状态反馈是将系统的状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入叠加形成控制量,作为受控系统的输入,实现闭环系统极点的任意配置,而且也是实现解耦和构成线性最优调节器的主要手段。

只要给定的系统是完全能控且能观的,则闭环系统的极点可以通过状态反馈矩阵的确定来任意配置。

这个定理是用极点配置方法设计反馈矩阵的前提和依据。

在单输入,单输出系统中,反馈矩阵有唯一解,且状态反馈不改变系统的零点。

三、实验设计与实现
1、搭建原系统的sumlink模型并观察其单位阶跃响应
原系统sumlink模型
原系统单位阶跃响应
由原系统单位阶跃响应可知系统不稳定
2、用极点配置法设计状态反馈控制器
①利用matlab计算系统的状态空间模型的标准型>> a=[10];b=[1 5 6 0];[A B C D]=tf2ss(a,b)
A = -5 -6 0
1 0 0
0 1 0
B = 1
C = 0 0 10
③系统能控性矩阵
>> uc=ctrb(A,B)
uc = 1 -5 19
0 1 -5
0 0 1 >> rank(uc) ans = 3 所以系统完全能控
③系统能观型矩阵>> vo=obsv(A,C) vo = 0 0 10
0 10 0
10 0 0 >> rank(vo) ans = 3 所以系统完全能观所以可以用极点配置法设计状态反馈控制器
④求解系统反馈矩阵
>> p=[-3 -0.5+j -0.5-j];k=acker(A,B,p)
k = -1.0000 -1.7500 3.7500 加入反馈后的系统闭环极点为:
>>sysnew=ss(A-B*k,B,C,D);pole(sysnew)
ans = -3.0000
-0.5000 + 1.0000i
-0.5000 - 1.0000i
⑤搭建加入反馈控制器后系统的sumlink模型
⑥观察新系统的单位阶跃响应
四、实验结果分析
加入反馈控制器后系统的闭环极点在,符合题目要求。

所以实验结果为正确。

五、结论与讨论
这次实验做的是用MATLAB 函数设计合适的状态变量反馈。

首先老师让我们用手算的方法做了一遍,后来又用MATLAB算了
一遍,得到了相同的结果,总之实验进行的很成功,这是最后一次实验了,这门实验课让我掌握了MATLAB的基本用法,收益很多。

相关文档
最新文档