神经网络控制PPT课件

合集下载

人工智能控制技术课件:神经网络控制

人工智能控制技术课件:神经网络控制
进行的,这种排列往往反映所感受的外部刺激的某些物理特征。
例如,在听觉系统中,神经细胞和纤维是按照其最敏感的频率分
布而排列的。为此,柯赫仑(Kohonen)认为,神经网络在接受外
界输入时,将会分成不同的区域,不同的区域对不同的模式具有
不同的响应特征,即不同的神经元以最佳方式响应不同性质的信
号激励,从而形成一种拓扑意义上的有序图。这种有序图也称之


,

,

,

)
若 输 入 向 量 X= ( 1
, 权 值 向 量
2


W=(1 , 2 , ⋯ , ) ,定义网络神经元期望输出 与
实际输出 的偏差E为:
E= −
PERCEPTRON学习规则
感知器采用符号函数作为转移函数,当实际输出符合期
望时,不对权值进行调整,否则按照下式对其权值进行
单神经元网络
对生物神经元的结构和功能进行抽象和
模拟,从数学角度抽象模拟得到单神经
元模型,其中 是神经元的输入信号,
表示一个神经元同时接收多个外部刺激;
是每个输入所对应的权重,它对应
于每个输入特征,表示其重要程度;
是神经元的内部状态; 是外部输入信
号; 是一个阈值(Threshold)或称为
第三代神经网络:
2006年,辛顿(Geofrey Hinton)提出了一种深层网络模型——深度
置信网络(Deep Belief Networks,DBN),令神经网络进入了深度
学习大发展的时期。深度学习是机器学习研究中的新领域,采用无
监督训练方法达到模仿人脑的机制来处理文本、图像等数据的目的。
控制方式,通过神经元及其相互连接的权值,逼近系统

神经网络控制基础人工神经网络课件ppt课件

神经网络控制基础人工神经网络课件ppt课件

其他工业领域应用案例
电力系统
神经网络控制可以应用于电力系统的负荷预测、故障诊断和稳定性 分析等方面,提高电力系统的运行效率和安全性。
化工过程控制
神经网络控制可以对化工过程中的各种参数进行实时监测和调整, 确保生产过程的稳定性和产品质量。
航空航天
神经网络控制在航空航天领域的应用包括飞行器的姿态控制、导航控 制和故障诊断等,提高飞行器的安全性和性能。
05 神经网络控制性能评估与优化
性能评估指标及方法
均方误差(MSE)
衡量神经网络输出与真实值之间的误差,值越小表示性能越好。
准确率(Accuracy)
分类问题中正确分类的样本占总样本的比例,值越高表示性能越好。
交叉验证(Cross-Validation)
将数据集分成多份,轮流作为测试集和训练集来评估模型性能。
强化学习在神经网络控制中应用
强化学习原理
通过与环境进行交互并根据反馈信号进行学习的方法,使神经网络能够自主学习 到最优控制策略。
强化学习算法
包括Q-learning、策略梯度等算法,用于求解神经网络控制中的优化问题,实现 自适应控制。
04 神经网络控制系统设计与实现
系统需求分析
功能性需求
明确系统需要实现的功能,如 数据输入、处理、输出等。
非监督学习
无需已知输出数据,通过挖掘输入数 据中的内在结构和特征进行学习,常 用于聚类、降维等任务。
深度学习在神经网络控制中应用
深度学习模型
通过构建深层神经网络模型,实现对复杂非线性系统的建模与控制,提高控制 精度和性能。
深度学习优化算法
采用梯度下降等优化算法对深度学习模型进行训练,提高训练效率和模型泛化 能力。

RBF网络应用—逼近非线性函数 神经网络控制课件(第三版)

RBF网络应用—逼近非线性函数 神经网络控制课件(第三版)
例 2-6-5 M 高斯RBF网络应用 逼近非线性函数
1
RBF网络应用—逼近非线性函数
Matlab程序
m265a.m
4
RBF网络应用—逼近非线性函数
m265a.m执行结果
构造3个高斯RBF
5
RBF网络应用—逼近非线性函数
m265a.m执行结果
构造非线性函数d=f(u)
6
RBF网络应用—逼近非线性函数
12
RBF网络应用—逼近非线性函数
m265b.m执行结果
网络输出
13
RBF网络应用—逼近非线性函数
m265b.m执行结果
非线性函数d(o) 、网络输出y(*)
14
RBF网络应用—逼近非线性函数
m265b.m执行结果
与m265a.m 执行 结果 比较: 相同
非线性函数d(o) 、网络输出y(*)
m265a.m执行结果
设计的网络输出 y逼近d=f(u)
7
RBF网络应用—逼近非线性函数
m265a.m执行结果
Command Window:
w1 = 0.7000
-1.7000
2.1000
-0.1000
2.7000
-1.4000
3.0000
b1 = 26
1. 设计的RBFNN结构。 2. RBFNN的所有参数。 由m265b.m程序,仿真N1,7,1 逼近非线性函数d=f(u)的过程。
10
RBF网络应用—逼近非线性函数
m265b.m执行结果
7个隐层节点的输出
11
RBF网络应用—逼近非线性函数
m265b.m执行结果
7个隐层节点输出的加权、网络输出
15
RBF网络应用—逼近非线性函数

神经网络控制大全69页PPT

神经网络控制大全69页PPT

13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、会是不守纪律的。——雨果
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
神经网络控制大全
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)

神经网络控制

神经网络控制

M—P模型的提出兴起了对神经网络的研究。
(2) 1949年心理学家D.O.Hebb提出神经元之间突触联系强度可变 的假设。他认为学习过程是在突触上发生的,突触的联系强度随其前 后神经元的活动而变化。根据这一假设提出的学习率为神经网络的学 习算法奠定了基础。
(3) 1958年,Rosenblatt提出感知机,第一次把神经网络的研究付 诸工程实践。这是一种学习和自组织的心理学模型,它基本上符合 神经生理学的知识,模型的学习环境是有噪声的,网络构造中存在 随机连接,这符合动物学习的自然环境。这种类型的机器显然有可 能应用于模式识别、联想记忆等方面。
3.兴盛阶段
再次兴起的原因:
(1)计算机不具备学习能力。在处理能明确定义的问题或运用能明 确定义的概念作为知识时,计算机比较容易对它们进行处理,但是对 一些知识背景不清楚、推理规则不明确、环境信息十分复杂的知识处 理或是算法难以提取的信息处理任务往往感到很困难。 (2)日本第五代机计划远未达到预想水平,也倾向使人觉得有必要 进一步弄清人们习以为常的认知功能是如何进行的.这些认知功能包 括视、听觉感知,学习记忆,运动控制等.从而使人们认识到不能拘 泥一格而必须开拓新的思路,探索新的人类智能实现途径。这时原来 已出现过的,与人脑的生理组织更为接近的神经网络模型就自然成为 理想的候选模型。
兴盛阶段的标志:
(1)近些年来.许多科学家提出了许多种具备不同信息处理能力的神 经网络模型,至今为止。约已开发出了三十多种。神经网络也 被应用到了许多信息处理领域,如模式别、自动控制、信号处理、辅助 决策、人工智能等等。 (2)神经计算机的研究也为神经网络的理论研究和应用研究促供了 强有力的支持,各大学、科研团体和公司开发了许多神经网络模拟软 件包、各种型号的电子神经计算机以及许多神经网络芯片。 (3)1987年6月在美国加州举行了第一届神经网络国际会议,并成立 了国际神经网络学会,以后每年召开两次国际联合神经网络大会 (IJCNN)。 1990年12月在北京召开了我国首届神经网络学术大会,在南 京召开的1991中国神经网络学术大会上成上了中国神经网络学会。当前 发行了两种专门介绍神经网络研究的刊物,《IEEE Transaction on Neural Network》和《Neural Network》

神经网络内模控制 PPT课件

神经网络内模控制 PPT课件

7
内部模型辨识目标函数
8
内模控制过程及结果2
(2) 系统输入:
r (k ) 是周期 k 100 的方波
9
控制系统输入、输出:r、y
112
内部模型辨识目标函数
13
结束
14
例3 神经非线性 内模控制
1
一阶 SISO 可逆、具有一阶时延的非线性系统,仿真模型:
y (k 1) 0.8 sin( y (k )) 1.2u (k )
(1) 系统输入:
r (k ) 1(k )
输出端干扰: ( k 50) 0.1( k ) (2) 系统统输入:
r (k ) 是周期 k 100 的方波
P( z )
y ˆ y
内部模型 e1
ˆ ( z) P
0.5
内模控制结构
3
内模控制过程及结果1
(1) 系统输入: 输出端干扰:
r (k ) 1(k )
(k 50) 0.1(k )
4
控制系统输入、输出、扰动:r、y、v
5
内模控制器输出:u
6
内模控制器、内部模型调整
2
内模控制设计
• 神经模型辨识器结构 1 BP网络N1,3,1 +两个 z • 内模控制器设计 取具有一阶时延对象逆模型 结构与例2逆模型辨识器同 • 滤波器设计 取滤波器:
F ( z) 1 , 0 1 1 z 1
r e
_
滤波器
F ( z)
g
内模 控制器
D( z )

u
对象

智能控制系统 -神经网络-PPT课件

智能控制系统 -神经网络-PPT课件
1 1T 2 Jn () e ( n ) e( n )( e n ) k 2k 2
1 1T 2 J E e ( n ) E e ( n )( e n ) k 2 2 k
13
误差纠正学习
w J 用梯度下降法求解 k 对于感知器和线性网络:
1
感知器网络
感知器是1957年美国学者Rosenblatt提出的 一种用于模式分类的神经网络模型。 感知器是由阈值元件组成且具有单层计算单元 的神经网络,具有学习功能。 感知器是最简单的前馈网络,它主要用于模式 分类,也可用在基于模式分类的学习控制和多 模态控制中,其基本思想是将一些类似于生物 神经元的处理元件构成一个单层的计算网络
w ( p w ) 若 神 经 元 k 获 胜 k j j k j w 0 若 神 经 元 k 失 败 k j
wkj
pj
k
5.2
前向网络及其算法
前馈神经网络(feed forward NN):各神经元接受 前级输入,并输出到下一级,无反馈,可用一 有向无环图表示。 图中结点为神经元(PE):多输入单输出,输 出馈送多个其他结点。 前馈网络通常分为不同的层(layer),第i层的输入 只与第i-1层的输出联结。 可见层:输入层(input layer)和输出层(output layer) 隐层(hidden layer) :中间层
5.1
神经网络的基本原理和结构
1
神经细胞的结构与功能
神经元是由细胞体、树突和轴突组成
图 生物神经元模型
神经网络的基本模型
2
人工神经元模型
人工神经网络是对生物神经元的一种模拟和简化,是 神经网络的基本处理单元。
神经元输出特性函数常选用的类型有:

智能控制第7章 模糊神经网络控制与自适应神经网络PPT课件

智能控制第7章 模糊神经网络控制与自适应神经网络PPT课件
fj(4)=max(u1(4),u2(4),...,up(4)), aj(4)=fj(4) 且第三、四层节点之间的连接系数wji(4)=1
第五层
❖有两种模式
❖从上到下的信号传输方式 ,同第一层。
❖从下到上是精确化计算,如果采用重心法, 有
fj(5 ) w ( j5 )iu i(5 ) (m ( j5 )i (j5 )i)u i(5 ), i
E fj(4)
E fj(5)
fj(5) fj(4)
E fj(5)
fj(5) u(j5)
u(j5) fj(4)
E fj(5)
m(5) ji
u (5) (5)
ji i
u(j5)
i
u (5) (5) (5) jj jj
(j5i)ui(5))(
m u ) (5) (5) (5) (5)
图7-2 :规则节点合并示例
2. 有导师学习阶段
❖可采用BP学习
E1(y(t)ˆy(t))2min 2
w(t1)w(t)(E w)
E w ( n E )e ( n w t)e tE f w f E f fa w a
第五层
m E (j5)i a E (j5) a fj((j5 5))
wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感34如果被控系统yk1fykyk1uk1gukwwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感351tdltdltdltdl神经网络n神经网络n331基于神经网络的模型参考自适应控制结构图参考模型wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感3671wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感37则控制系统的误差方程为其中wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感383233wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感393233wwwthemegallerycom用一个半导体功率器件作为开关该器件不断地重复开启和关断使得输入的直流电压在通过这个开关器件后变成了方波该方波经过电感40对于yk1fykyk1uk1guk可得如果存在可用神经网络逼近之

第5章神经网络和神经网络控制ppt课件

第5章神经网络和神经网络控制ppt课件
5.1.2 人工神经元模型
激发函数 f (•) 又称为变换函数,它决定神经 元(节点)的输出。该输出取决于其输入之和大 于或小于内部阈值 i 。函数f (•) 一般具有非线性特 性。下图表示了几种常见的激发函数。 1. 阈值型函数(见图(a),(b)) 2. 饱和型函数(见图(c)) 3. 双曲函数(见图(d)) 4. S型函数(见(e)) 5. 高斯函数(见图(f))
25
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
5.2 前向神经网络
5.2.1 感知器网络 感知器是一个具有单层神经元的神经网络,
并由线性阈值元件组成,是最简单的前向网 络。它主要用于模式分类,单层的感知器网 络结构如下图所示。
5.1.1 生物神经元模型
从生物控制论的观点来看,神经元作为控 制和信息处理的基本单元,具有下列一些重要 的功能与特性:
时空整合功能 兴奋与抑制状态 脉冲与电位转换 神经纤维传导速度 突触延时和不应期 学习、遗忘和疲劳
6
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
推荐课后阅读资料
Simon Haykin.神经网络的综合基础(第 2版). 清华大学出版社,2019
Martin T.Hagan.神经网络设计.机械工 业出版社,2019
23
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统

神经网络控制系统教程PPT(MATLAB基于Simulink的三种典型神经网络控制系统学习资料)

神经网络控制系统教程PPT(MATLAB基于Simulink的三种典型神经网络控制系统学习资料)
22
1. 基于传统控制理论的神经控制将神经网络作为传统控制系统中的一个或几个部分,用以充当辨识器,或对象模型,或控制器,或估计器,或优化计算等。这种方式很多,常见的一些方式归纳如下:
22
(a)
(b)
图3-3 神经直接逆动态控制系统
1).神经直接逆动态控制神经直接逆动态控制采用受控对象的一个逆模型,它与受控对象串联,以便使系统在期望响应(网络输入
22
(2)神经间接自校正控制间接自校正控制一般称为自校正控制。自校正控制是一种利用辨识器将对象参数进行在线估计,用控制器实现参数的自动整定相结合的自适应控制技术,它可用于结构已知而参数未知但恒定的随机系统,也可用于结构已知而参数缓慢变化的随机系统。
图3-4 神经自校正控制系统
22
神经自校正控制结构如图3-4所示,它由一个自校正控制器和一个能够在线辨识的神经网络辨识器组成。自校正控制器与被控对象构成反馈回路,根据神经网 络辨识器和控制器设计规则,以得到控制器的参数。 可见,辨识器和自校正控制器的在线设计是自校正控 制实现的关键。
22
上述两种分类并无本质差别,只是后者划分更细一些,几乎涉及到传统控制、系统辨识。滤波和预报等所有方面,这也间接地反映了随着神经网络理论和应用研究的深入,将向控制领域、信息领域等进一步透。为了更能从本质上认识神经网络在实现智能控制中的作用和地位。1998年李士勇将神经网络控制从它与传统控制和智能控制两大门类的结合上考虑分为两大类:即基于传统控制理论的神经控制和基于神经网络的智能控制两大类。
神经网络控制系统
1
神经网络控制理论基于Simulink的三种典型神经网络控制系统
神经网络发展至今已有半个多世纪的历史,概括起来经历了三个阶段:20世纪40 60年代的发展初期; 70年代的研究低潮期;80年代,神经网络的理论研究取得了突破性进展。神经网络控制是将神经网络在相应的控制系统结构中当做控制器或辨识器。神经网络控制的发展,虽仅有十余年的历史,但已有了多种控制结构。

神经网络控制器课件

神经网络控制器课件

神经网络原理
王永骥
5
监督学习NN控制器
问题的提出 SNC设计:
控制系统结构 思路 实例
神经网络原理 王永骥 6
问题的提出
当对象动力学特性未知时系统可控, 人的知识如何传递给控制装置?

解决思路:
1) 利用专家控制、规则控制 2) 采用监督(导师)NN控制(SNC)
神经网络原理
王永骥
7
控制系统结构
神经网络原理 王永骥 3
存在的几个问题
5. 缺乏一种专门适用于控制的动态神经网 络(目前方法:静态网络处理动态问题, 不可避免的带来差分方程定阶问题) 6. 稳定性、鲁棒型分析困难
神经网络原理
王永骥
4
本章简介
1) 2) 3) 4) 5) 6)
学习控制(监督) NN自适应(MRAC和STR) NN-PID NN-无模型控制(单个神经元) NN-Fuzzy(思想) 有关稳定性的一些成果
神经网络控制器设计
4.1 引言 4.2 监督学习NN控制器 4.3 NNMRAC(Model-Reference Adaptive Control) 4.4 神经网络自校正控制(NNSTC) 4.5 NN直接自适应控制 4.6 NN-PID控制 4.7 NN-Fuzzy控制



神经网络原理
王永骥
12
控制结果
1) 线性控制为状态反馈:
训练20000次后NN可实现线性律 K=[11.01,19.68,96.49,35.57] 2) 非线性:80000次 反馈线性化及解耦变换 3) 人控制:40000次 训练结束后,HSNC比 人本身操作更好 训练后,SNC还可继续在线学习以 适应新的扰动、取得新的控制策略样本、 增强对系统的全面了解。

第2章-3-智能控制-幻灯片(1)

第2章-3-智能控制-幻灯片(1)
萌芽期(60年代) 形成期(70年代) 发展期(80年代) 高潮期(90年代至今)
智能控制的主要类型
专家控制 模糊控制 神经网络控制 学习控制 基于规则的仿人控制
2.3.2 专家控制(Expert Control)
什么是专家系统、专家控制?
“专家” 是具有某一领域专门知识或丰富实践经 验的人,而“专家系统”则是一个计算机系统,存 储有专家的知识和经验,并用推理的方式针对问题 给出结论。
u(k)
i1 6
u(ui )
i1
注:离散间隔一般较 该例小得多,计算结 果会更接近连续情况
0.210.220.530.840.85 3.72 0.20.20.50.80.8
说明:
模糊控制器的输入量一般取误差 e 和误差变化率 Δe , 若 e , Δe 和控制量 u 均离散化 [注] , 则可离 线计算好 e , Δe 与 u 的对应关系 ( 查询表 ) , 实 时控制时采用查表法 ( 计算量小, 快速 );
集合
冷μ
适中

1.0
0.0
T( ℃)
-20 -10 0 10 20 30 40
为简化计算, 一般用离散形式表示模糊集合。
例如,以 2 ℃ 为间隔进行离散化, 可得
“热” = 0/25 + 0.14/27 + 0.29/29 + 0.43/31 + 0.57/ 33+
+ 0.71/35 + 0.86/37 + 1/39 + 1/41 + 1/43 + 1/45
模糊控制的发展:
1965年美国的Zadeh提出模糊集合理论; 1974年英国的Mamdani首次将模糊理论应用于蒸

第十三章神经网络建模与控制ppt课件

第十三章神经网络建模与控制ppt课件

辨识器取串-并联结构,其中的NN取二维高斯RBF网络。 其中散布系数SC=1,中心参数是程序内部自设的。
13.3 基于神经网络的系统辨识示例
例4 基于CMAC的非线性动态系统辨识 仿真系统模型为: y(k) 5y(k -1) u3(k -1) 2.5 y2 (k -1)
系统输入信号为:
u(k) 0.6cos(2k / 60) 0.4cos(2k / 40)
例1 线性离散系统辨识示例
其中function.prbs(n1,n,k1,k2,k3,k4)是产生M序列的函数 n1 –--n1阶M序列→Np=(2p-1) n----M序列的总长度 Ki (i=1,…4)----M序列参数 K3一般取0,K4一般取0, K1 K2选择使Np达到最大值 程序 Bianshi_ADLINE_L.M 采用的是离线辨识方法 Bianshi_ADLINE_Z.M 采用的是在线辨识方法 函数prbs.M是产生M序列的函数
5y(k -1) 2.5 y2 (k -1)
u 3 (k
-1)
系统输入信号为:
u(k) 0.6cos(2k / 60) 0.4cos(2k / 40)
辨识器的输入/输出为:[u(k), y(k)]/ yˆ(k)
PID神经网络的输入/输出为:[u(k 1), y(k 1)]/ yˆ(k)
PID神经网络输出层用线性节点,准则函数取
n1
① y(k 1) ai y(k i) g(u(k)u(k 1) i0
n=2,m=0时的并联结构如图3所示。
u(k m))
g +∑ +
u(k)
N +× +
y(k+1)
Z-1
∑+ a0 + a1 Z-1

《神经网络控制》课件

《神经网络控制》课件
1 神经网络控制的局限性
神经网络控制需要大量的数据和计算资源,对模型的训练和调整要求较高。
2 神经网络控制的挑战
在复杂系统的实时控制和稳定性问题上,神经网络控制仍然面临挑战。
3 神经网络控制未来发展的方向
未来,神经网络控制将更加注重与其他控制技术的结合,如模糊控制、强化学习等。
总结
神经网络控制的优势 和局限性
《神经网络控制》PPT课 件
# 神经网络控制PPT课件
介绍神经网络控制
定义神经网络控制
神经网络控制是利用神经网络模型来设计控制器,实现对系统的控制和优化。
神经网络控制的作用和优势
神经网络控制具有非线性建模能力和适应性,可以处理复杂系统和非线性控制问题。
神经网络控制的发展历程
神经网络控制起源于20世纪80年代,经历了多个阶段的发展,如BP神经网络、RBF神经网络 等。
神经网络控制具有非线性建模 能力和适应性,但对数据和计 算资源要求较高。
神经网络控制的发展 前景
神经网络控制在自动化控制领 域有着广阔的应用前景,将与 其他技术相结合。
未来研究方向
进一步研究神经网络控制与其 他控制技术的融合,提高控制 系统的稳定性和性能。
神经网络的基本单元是神经元,其模型
前馈神经网络和反馈神经网络
2
和激活函数决定了神经网络的行为和表 达能力。
前馈神经网络是一种信息传递方向单一
的网络结构,而反馈神经网络具有循环
连接,在动态系统的控制中应用广泛。
3
训练神经网络的方法
常见的神经网络训练方法包括反向传播 算法、遗传算法、粒子群优化等,用于 调整网络参数以实现优化和学习。
神经网络控制实例
倒立摆控制
自适应神经网络PID
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊控制是基于专家经验和领域知识的,根据模糊推理 实施控制规则。
这两种方式都具有显式表达知识的特点。
出发点:利用神经网络很强的逼近非线性函数的能力
应用对象:模型已知、未知的;线性的、非线性的
.
5
神经网络控制的基本思想(续)
版权所有 复制必究 2009
yd﹢
f NN控制器 u

g
y
被控对象
设被控对象输入输出关系为: yg(u)
.
7
版权所有 复制必究 2009
第6.2节 神经网络系统辨识
6.2.1 系统辨识基本原理 6.2.2 非线性系统辨识
.
8
版权所有 复制必究 2009
6.2.1 系统辨识基本原理
辨识
在输入和输出数据的基础上,从一组给定的模型中,确定 一个与所测系统等价的模型。
基本要素:
输入/输出数据—能够量测到的系统的输入/输出
辨识的收敛速度不依赖于待辨识系统的维数,只与神经 网络结构和所采用的学习算法有关。
神经网络的权值对应于模型参数,可通过学习修改。
神经网络实际上是待辨识系统的物理实现,可用于在线 控制。
.
13
前向建模法
版权所有 复制必究 2009
利用神经网络来逼近非线性系统的前向动力学模型。
TDL
u
TDL
TDL
非线性系统 神经网络N 学习规则
在控制系统中采用神经网络这一工具对难以精确描述的 复杂非线性对象进行建模、控制、优化计算、推理或者 故障诊断,以及同时具有上述某些功能的适当组合,将 这样的系统统称为神经网络控制系统。
基于精确模型的各种控制结构中充当对象——辨识。 在反馈控制系统中直接充当控制器——控制器。 在传统控制器中优化计算作用——优化PID参数。 与其它智能算法的结合。
d

y

yN ﹢

.
14
前向建模法(续)
版权所有 复制必究 2009
把系统动力学特征直接引入到网络本身中来,如回归神经 网络。
在网络输入信号中考虑系统的动态因素,即将输入输出的 滞后信号加到网络输入中来,从而保证网络的输出含有先 前的输入、输出信息,模拟离散的动态系统。如可用多层 前向神经网络实现。
6.1.1 神经网络控制的基本思想
神经网络的特点及应用领域
特点:
大规模并行性;冗余性;
容错性;本质的非线性;
自组织、自学习、自适应性。
应用领域:
最优化;模式识别;
信号处理;图象处理;
控制
.
3
神经网络用于控制的优越性
版权所有 复制必究 2009
神经网络可以处理难以用模型或规则描述的过程或系统。
神经网络采用并行分布式信息处理方式,具有很强的容错性, 适于处理实时性要求高的控制系统。
模型类—所考虑的系统的结构
等价准则—辨识的优化目标
推广:
在输入和输出数据的基础上,从一组模型中选择一个模
型,按照某种准则,使之能最好地拟合所关心的实际系
统的动态或静态特性。 .
9
神经网络辨识
版权所有 复制必究 2009d (k )u(k)被控对象
﹢ yp (k) ﹢ ﹢ ep(k)
辨识模型

yN (k)
选择的方法: 无理论指导,可通过实验或仿真 可通过遗传算法来学习神经网络的结构以实现特定的要求。
.
11
神经网络辨识的三要素(续)
版权所有 复制必究 2009
输入信号的选择
从时域上看,要求输入信号必须充分激励系统的所有 模态。但系统有多少模态弄不清楚。
从频域上看,要求输入信号的频谱必须足以覆盖系统 的频谱。
y N ( k 1 ) f ˆ y ( k ) y ( k 1 , ) , y ( , k n 1 ) u ( k ) u , ( k 1 , ) , u ( k , m 1 )
y(k 1)
w ji
....
局限性:
通常要建模系统的结 构未知。
y(k n)
u(k) u(k m 1)
.
15
前向建模法(续)
版权所有 复制必究 2009
考虑一类非线性离散动态系统:
y ( k 1 ) f y ( k ) y ( k 1 ) , , y ( k , n 1 ) u ( k ) u ( k , 1 ) , , u ( k , m 1 )
选择神经网络的结构与系统的结构一致。
本质:从神经网络模型中选择一个模型来逼近实际系统模型。
方法:利用输入输出数据来训练神经网络,使网络的输出与待
辨识系统的输出接近。
.
10
神经网络辨识的三要素
版权所有 复制必究 2009
模型的选择 模型仅是在某种意义下对实际系统的一种近似描述,模型的 确定要兼顾其精确性和复杂性。 模型越精确,模型就会变得越复杂; 适当降低模型的精度要求(只考虑主要因素),模型就简单。
神经网络输入输出关系为: u f (yd, y)
系统输入输出关系为: ygf(yd)
若有: f()g1() 则: y yd
注:由于神经网络控制对象一般比较复杂且高度非线性,g(.)
难以建立,所以利用e=yd-y来调整神经网络权值。
.
6
版权所有 复制必究 2009
6.1.2 神经网络在控制中的作用
.
....
....
vj ym (k)
16
逆模型法
版权所有 复制必究 2009
神经网络是本质的非线性系统,可以实现任何非线性映射。
神经网络具有很强的信息综合能力。
能够同时处理大量不同类型的输入;
能够很好地解决输入信息之间的互补性与冗余性问题;
能够恰当地协调好互相矛盾的输入信息。
神经网络的硬件实现愈趋方便。
.
4
神经网络控制的基本思想
版权所有 复制必究 2009
传统的控制方法是都是基于模型的,需要被控对象的数 学模型。
通常选用白噪声或伪随机信号作为系统的输入信号。 误差准则的选择
是用来衡量模型接近实际系统的程度的标准,通常表 示为一个误差的泛函。
E (w ) f(e (k )) e (k )
k
k .
2
12
神经网络辨识的特点
版权所有 复制必究 2009
不要求建立实际系统的辨识格式。
可以对本质非线性系统进行辨识,而且辨识是通过网络 外部的输入/输出来拟合系统的输入/输出,网络内部隐 含着系统的特性。
版权所有 复制必究 2009
第6章 神经网络控制
1
基本原理
2 神经网络系统辨识
3 直接逆模型控制
4 模型参考自适应控制
5
内模控制
.
1
版权所有 复制必究 2009
第6.1节 神经网络控制的基本原理
6.1.1 神经网络控制的基本思想 6.1.2 神经网络在控制中的主要作用
.
2
版权所有 复制必究 2009
相关文档
最新文档