电磁场与电磁波(第四章)
电磁场与电磁波(第4版)第4章部分习题参考解答
GG G G G G − j(k x + k y + k z ) ∇ 2 E (r ) = E0∇ 2 e − jk ⋅r = E0∇ 2 e x y z
G ⎛ ∂2 ∂2 ∂ 2 ⎞ − j(k x + k y + k z ) = E0 ⎜ 2 + 2 + 2 ⎟ e x y z ⎝ ∂x ∂y ∂z ⎠ G − j(k x + k y + k z ) G G 2 = (− k x2 − k y − k z2 ) E0 e x y z = − k 2 E (r ) G G G G 代入方程 ∇ 2 E (r ) + ω 2 με E (r ) = 0 ,得 G G − k 2 E + ω 2 με E = 0
G G ω ∂2 ω G (3) ∇ 2 E = ey E0∇ 2 cos(ωt + z ) = ey E0 2 cos(ωt + z ) ∂z c c
ω G ω = −ey ( ) 2 E0 cos(ωt + z ) c c
G ∂2 E G ∂2 ω ω G = e E cos(ωt + z ) = −eyω 2 E0 cos(ωt + z ) y 0 2 2 ∂t ∂t c c G G 1 ∂2 E ω 1 ⎡ G ω ⎤ G ω 2 ∇ E − 2 2 = −ey ( ) 2 E0 cos(ωt + z ) − 2 ⎢ −e yω 2 E0 cos(ωt + z ) ⎥ = 0 c ∂t c c c ⎣ c ⎦
电磁场与电磁波 第4章 静态场的边值问题
设 q’ 距球心为b,则 q 和 q’ 在球外 任一点(r,,)处产生的电位为
第四章 静态场的边值问题
1 ( q q) 4π 0 R R
1(
q
4π 0 r 2 d 2 2rd cos
q
)
r 2 b2 2rb cos
径为a 的圆的反演点。
第四章 静态场的边值问题
将式(4-2-3)代入(4-2-2),可得球外任意点(r,,)的电位
q (
1
a
)
4π 0 r 2 d 2 2rd cos d r 2 b2 2rb cos
(4-2-5)
若导体球不接地且不带电,则当球外放置点电荷 q 后,它的
电位不为零,球面上净电荷为零。此情形下,为满足边界条件,
第四章 静态场的边值问题
第四章 静态场的边值问题
在给定的边界条件下求解泊松方程或拉普拉斯方程称为边 值问题。根据场域边界面上所给定的边界条件的不同,边值问 题通常分为 3 类:
第一类边值问题,给定位函数在场域边界面上的值; 第二类边值问题,给定位函数在场域边界面上的法向导数值; 第三类边值问题又称混合边值问题,一部分边界面上给定的 是位函数值,另一部分边界面上给定的是位函数的法向导数 值。
4.3.1 直角坐标系中的分离变量
直角坐标系中,标量拉普拉斯方程为
2 2 2
0 x2 y2 z2
(4-3-1)
第四章 静态场的边值问题
设 (x,y,z) = X (x)Y(y)Z(z),代入方程(4-3-1),整理可得
1 X
d2 X dx2
1 Y
d 2Y dy2
1 Z
d2Z dz2
电磁场与电磁波课后习题及答案四章习题解答
如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。
解根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为题图由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布两平行无限大导体平面,距离为,其间有一极薄的导体片由到。
上板和薄片保持电位,下板保持零电位,求板间电位的解。
设在薄片平面上,从到,电位线性变化,。
题图解应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:①②③根据条件①和②,可设的通解为由条件③有两边同乘以,并从0到对积分,得到故得到求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。
并按定出边缘电容。
解在导体板()上,相应于的电荷面密度则导体板上(沿方向单位长)相应的总电荷相应的电场储能为其边缘电容为如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。
解根据题意,电位满足的边界条件为①题图②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布为一长、宽、高分别为、、的长方体表面保持零电位,体积内填充密度为的电荷。
求体积内的电位。
解在体积内,电位满足泊松方程(1)长方体表面上,电位满足边界条件。
由此设电位的通解为代入泊松方程(1),可得由此可得或(2)由式(2),可得故如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。
求板间的电位函数。
解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。
而在的分界面上,可利用函数将线电荷表示成电荷面密度。
电位的边界条件为题图①②③由条件①和②,可设电位函数的通解为由条件③,有(1)(2)由式(1),可得(3)将式(2)两边同乘以,并从到对积分,有(4)由式(3)和(4)解得故如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。
(完整版)《电磁场与电磁波》(第4版)谢处方第四章_时变电磁场00
在于内外导体之间的理想介质中,内外导体表面的电场无切向分量,
只有电场的径向分量。利用高斯定理和安培环路定理,容易求得内
外导体之间的电场和磁场分别为
rr U
E
e
ln(b
, a)
r rI
H e 2
(a b)
内外导体之间任意横截面上的坡印廷矢量
r S
rr EH
r [e
U
ln(b
a
)
]
r (e
I )
11
4.3 电磁能量守恒定律 讨论内容
电磁能量及守恒关系 坡印廷定理 坡印廷矢量
第4章 时变电磁场
12
电磁能量及守恒关系
电场能量密度:
we
1 2
rr ED
磁场能量密度:
wm
1
r H
r B
2
dW
dt V
S
电磁能量密度:
w
we
wm
1 2
rr ED
1
r H
r B
2
空间区域V中的电磁能量:
W
V
w dV
V
r H
(
r E
)
t
r
r ( H )
r 2H
2H
t 2
r
r 2H
2H t 2
0
若为有源空间,结果如何?
若为导电媒质,结果如何?
第4章 时变电磁场
4
4.2 电磁场的位函数
讨论内容
位函数的定义 位函数的性质 位函数的规范条件 位函数的微分方程
第4章 时变电磁场
5
引入位函数的意义 引入位函数来描述时变电磁场,使一些问题的分析得到简化。
(1 2
第四章第2节电磁场与电磁波练习(word版含答案)
2021-2022学年人教版(2019)选择性必修第二册第四章第2节电磁场与电磁波过关演练一、单选题1.下列关于电磁波的说法,正确的是()A.只要有电场和磁场就能产生电磁波B.电场随时间变化时一定能产生电磁波C.要想产生持续的电磁波,变化的电场(或磁场)产生的磁场(或电场)必须是均匀变化的D.振荡电流能在空间中产生电磁波2.对于电磁波的发现过程,下列说法正确的是()A.麦克斯韦通过实验证实了电磁波的存在B.麦克斯韦预言了电磁波的存在C.赫兹根据自然规律的统一性,提出变化的电场产生磁场D.电磁波在任何介质中的传播速度均为8310m/s3.关于电磁波的形成机理,一些认识,正确的是()A.电磁波由赫兹预言提出,并指出光也属于电磁波B.磁场能产生电场,电场也能产生磁场C.变化的磁场能产生电场,所产生的这个电场还能继续产生磁场D.变化的电场能产生磁场,所产生的这个磁场不一定还能继续产生电场4.如图所示是我国500m口径球面射电望远镜(F AST),它可以接收来自宇宙深处的电磁波。
关于电磁波,下列说法正确的是()A.赫兹预言了电磁波的存在B.麦克斯韦通过实验捕捉到电磁波C.频率越高的电磁波,波长越长D.电磁波可以传递信息和能量5.以下有关电磁场理论,正确的是()A.稳定的电场周围产生稳定的磁场B.有磁场就有电场C.变化的电场周围产生变化的电场D.周期性变化的磁场产生周期性变化的电场6.关于电磁场和电磁波,下列叙述中不正确的是()A.均匀变化电场在它的周围产生均匀变化的磁场B.振荡电场在它的周围产生同频振荡的磁场C.电磁波从一种介质进入另一种介质,频率不变,传播速度与波长发生变化D.电磁波能产生干涉和衍射现象7.下列说法正确的是()A.电磁波在真空中的传播速度与电磁波的频率有关B.电磁波可以由电磁振荡产生,若波源的电磁振荡停止,空间的电磁波随即消失C.声波从空气进入水中时,其波速增大,波长变长D.均匀变化的磁场产生变化的电场,均匀变化的电场产生变化的磁场E.当波源与观察者相向运动时,波源自身的频率变大8.关于电磁波理论,下列说法正确的是()A.在变化的电场周围一定产生变化的磁场,在变化的磁场周围一定产生变化的电场B.均匀变化的电场周围一定产生均匀变化的磁场C.做非匀变速运动的电荷可以产生电磁波D.麦克斯韦第一次用实验证实了电磁波的存在9.下列说法正确的是()A.电场随时间变化时一定产生电磁波B.X射线和 射线的波长比较短,穿透力比较弱C.太阳光通过三棱镜形成彩色光谱,这是光衍射的结果D.在照相机镜头前加装偏振滤光片拍摄日落时水面下的景物,可使景物清晰10.真空中所有电磁波都有相同的()A.频率B.波长C.波速D.能量二、多选题11.以下叙述正确的是()A.法拉第发现了电磁感应现象B.电磁感应现象即电流产生磁场的现象C.只要闭合线圈在磁场中做切割磁感线的运动,线圈内部便会有感应电流D.感应电流遵从楞次定律所描述的方向,这是能量守恒的必然结果12.下列说法正确的是()A.波的衍射现象必须具备一定的条件,否则不可能发生衍射现象B.要观察到水波明显的衍射现象,必须使狭缝的宽度远大于水波波长C.波长越长的波,越容易发生明显的衍射现象D.只有波才有衍射现象13.间距为L=1m的导轨固定在水平面上,如图甲所示,导轨的左端接有阻值为R=10Ω的定值电阻,长度为L=1m、阻值为r=10Ω的金属棒PQ放在水平导轨上,与导轨有良好的接触,现在空间施加一垂直导轨平面的磁场,磁感应强度随时间的变化规律如图乙所示,已知磁场的方向如图甲所示,且0~0.2s的时间内金属棒始终处于静止状态,其他电阻不计。
《电磁波与电磁场》4-恒定磁场
外加磁场时,磁场力使带电粒子的运动方向发生变化或产生 新的电流,使磁矩重新排列,宏观的合成磁矩不再为零,这 种现象称为磁化。
媒质磁化 B
B
B'
磁化结果出磁偶现极的子 合成磁矩产生二次磁场BS,这种二次 磁场影响外加磁场Ba,导致磁化状态发生改变,从而又使J’S
Chapter 4 恒定磁场
磁场是由运动电荷或电流产生的;当产生磁场 的电流恒定时,它所产生的磁场不随时间变化, 这种磁场称为恒定磁场。
4.1 磁感应强度 4.3 磁场的基本方程 4.5 电感 4.7 磁路
4.2 安培环路定律 4.4 磁场位函数 4.6 磁场能量
第4章 恒定磁场
1. 磁场是由运动电荷或电流产生的。 2. 运动电荷或载流导线在磁场中要受到磁场的作用力。 3. 检验磁场是否存在的一种方法是改变载流导线在磁
抗磁性。媒质正常情况下,原子中的合成磁矩为零。当外 加磁场时,电子进动产生的附加磁矩方向总是与外加磁场 的方向相反,导致媒质中合成磁场减弱。如银、铜、铋、 锌、铅及汞等属抗磁性媒质。 顺磁性。媒质在正常情况下,原子中的合成磁矩并不为零, 只是由于热运动结果,宏观的合成磁矩为零。在外加磁场的 作用下,磁偶极子的磁矩方向朝着外加磁场方向转动。使合 成磁场增强。如铝、锡、镁、钨、铂及钯等属顺磁性媒质。
但是,无论抗磁性或者顺磁性媒质,其磁化现象均很微弱,因此,可 以认为它们的相对磁导率基本上等于1。铁磁性媒质的磁化现象非常 显著,其磁导率可以达到很高的数值。值得注意的是,近年来研发的 新型高分子磁性材料,其相对磁导率可达到与介电常数同一数量级。
媒质 金 银 铜
高中物理选择性必修2 第四章 第2、3节 电磁场与电磁波 无线电波的发射和接收
第四章第2、3节电磁场与电磁波、无线电波的发射和接收教学设计一、教材分析电磁场的形成、电磁波的产生以及发射和接收是这两节的知识主干,在物理观念的形成上作为重点落实。
由于LC回路产生电磁振荡不如机械振动直观,要引导学生结合教材图示分析理解,并通过多媒体手段和实验演示等讲这一过程形象化,帮助学生在物理思维的培养上再上一个台阶。
电磁场的概念和麦克斯韦电磁理论是电磁学的核心内容,但是中学对电磁场理论是要求初步了解。
教材突出了理论的核心内容是:变化的电场产生磁场,变化的磁场产生电场,交替产生的电场和磁场传播出去形成电磁波。
能够动手实验的要学生亲自动手培养学生的科学探究能力。
无线电波的发射和接收涉及概念较多,可以结合图表、思维导图、流程图等多种手段,或者利用运送货物的装卸等流程来帮助学生理解调制、调谐、解调等一系列名次含义。
对电磁波的发现以及无线电波的应用,可以介绍赫兹和马可尼等人的不懈努力以及科技成果,落实培养学生的科学态度与责任。
二、学情分析学生在学习电磁场理论时,已经具备:静电场的知识、电流的产生和电流的磁效应知识、电磁感应现象等知识;接触并了解过电磁波的接收(半导体收音机等)或发射的机械设备。
学生对电磁场的知识掌握还不够全面和系统化,要更好的创设情境,精心组织素材,进一步培养学生的抽象思维和创造思维能力。
三、素养目标1.了解电磁场的形成、电磁波的产生。
2.了解电磁波的发射、传播和接收过程,知道无线电通信的基本原理。
3.能正确区分调制、调幅、调频、调谐和解调等概念。
4.结合实际生活,说出无线电通信在生活中的应用。
四、教学重点、难点1.教学重点:电磁场的形成、电磁波的产生、无线电的传播过程。
2.教学难点:无线电波传播的各种概念辨析。
五、教学方法实验演示法、类比分析法.六、教学过程同学们请看,这是电视台发射电视信号的信号塔效果图。
那么,为什么要建高耸入云的发射塔呢?这是为了接受信号,也就是电磁波。
接下来我们就来学习一下关于电磁波以及电磁波的发射和接收的相关知识。
电磁场与电磁波及其应用 第四章
在线性、 各向同性媒质中, 当参数不随时间变化时,
于是得到 再利用矢量恒等式
可得到 (4.3.4)
在体积V上, 对式(4.3.4)两端积分, 并应用散度定理即 可得到
(4.3.5)
由于E和H也是相互垂直的, 因此S、 E、 H三者是相互 垂直的, 且构成右旋关系, 如图4.3-1 所示。
第四章 时变电磁场
4.1 波动方程 4.2 时变场的位函数 4.3 时变电磁场的能量与能流 4.4 时谐电磁场 4.5 左手媒质 4.6 时变电磁场的应用
4.1 波 动 方 程
在无源空间中, 电流密度和电荷密度处处为零, 即 ρ=0、 J=0。 在线性、 各向同性的均匀媒质中, E和H满足 麦克斯韦方程
图4.3-1 能流密度矢量与电场及磁场的方向关系
例4.3.1 同轴线的内导体半径为a、 外导体半径为b, 其 间均匀充填理想介质。 设内外导体间电压为U, 导体中流过 的电流为 I。 (1) 在导体为理想导体的情况下, 计算同轴线 中传输的功率; (2) 当导体的电导率σ为有限值时, 计算通 过内导体表面进入每单位长度内导体的功率。
磁场仍为 内导体表面外侧的坡印廷矢量为
由此可见内导体表面外侧的坡印廷矢量既有轴向分量, 也 有径向分量, 如图4.3-3所示。
图4.3-3 同轴线中电场、 磁场和坡印廷矢量 (非理想导体情况)
进入每单位长度内导体的功率为
式中
是单位长度内导体的电阻。 由此可见,
进入内导体中的功率等于这段导体的焦耳损耗功率。
利用复数取实部表示方法, 可将式(4.5.1)写成
式中
(4.4.2)
称为复振幅, 或称为u(r, t)的复数形式。 为了区别复数形 式与实数形式, 这里用打“•”的符号表示复数形式。
时变电磁场
y, y,
z, z,
t) t)
Exm E ym
(x, (x,
y, y,
z) z)
cos[t cos[t
x (x, y (x,
y, y,
z)] z)]
Ez
(x,
y,
z,
t)
Ezm
(x,
y,
z)
cos[t
z
(
x,
y,
z)]
式中:Exm , Eym , Ezm 为电场在x,y,z方向分量的幅度
x, y,z 为电场x,y,z分量的初始相位
电磁场与电磁波
第4章 时变电磁场
第四章 时变电磁场
时变情况下,电场和磁场相互关联,构成统一的电磁场 时变电场和磁场能量在空间中不断相互转换,并以电磁波动的 形式从一个地方传递到另外一个地方
本章主要内容: ➢ 时变电场和磁场满足的方程——波动方程 ➢ 时变电磁场的辅助函数——标量电位和矢量磁位 ➢ 时变电磁场的能量守恒定律 ➢ 正弦规律变化的时变场——时谐电磁场
对于时变场来说,动态位函数常用的规范条件为洛伦兹规范条件
A
t
洛伦兹规范条件
思考:库仑规范条件和洛伦兹规范条件有何联系?
15:54
电磁场与电磁波
第4章 时变电磁场
4.2.2 达朗贝尔方程
E (
H H
J
1
E
t A
A) 2
t
t
1 A J E
t
(
A)
Σ
J EdV
V
15:54
E, H
V
电磁场与电磁波
第4章 时变电磁场
坡印廷定理物理意义:单位时间内流入体积V内的电磁能量等于 体积V内增加的电磁能量与体积V内损耗的电磁能量之和。
电磁场与电磁波第四章
∇2ϕ
−
με
∂2ϕ ∂t 2
=
−
1 ε
ρ
矢量位和标量位满足(分离出的两个独立)的方程, 称为达朗贝尔方程
间接方法:A. 求解两个达朗贝尔方程 B. 达朗贝尔方程 + 洛仑兹条件
9
4.3 电磁能量守恒定律
讨论电磁场的能量问题,引入坡印廷矢量, 得到反映电磁能量守恒关系的坡印廷定理。
一、电磁场能量密度和能流密度
=
d dt
V
(1 2
μ
|
v H0
|2
+
1 2
ε
|
v E0
|2 )dV
+
σ
V
|
v E0
|2
dV
20
根据
v E0
或
v H0
满足的边界条件,左端被积函数
v (E0
×
v H
0
)
⋅
evn
|S
=
(evn
×
v E0
)
⋅
v H
0
|S
=
v (H
0
×
evn
)
⋅
v E0
|S
=
0
即
∫ ∫ d
dt
V
(1 2
μ
|
v H0
|2
+
∂2Ez ∂y 2
+
∂2Ez ∂z 2
− με
∂2Ez ∂t 2
=0
解波动方程,可求出空间中电磁场场量的分布。
(直接求解波动方程的过程很复杂)
4
4.2 电磁场的位函数
一、矢量位和标量位
∇ ⋅ Bv = 0
《电磁场与电磁波》课程思政元素
《电磁场与电磁波》课程思政元素第四章恒定磁场第1节恒定磁场的实验定律和磁感应强度一、授课内容二、实施过程(一)思政元素类型中国特色社会主义和中国梦教育(二)课堂教学手法1.教学手段:采用PPT、视频等多媒体形式。
2.课程思政融入点为了纪念伟大的物理学家、电气工程师、交流电之父,人们将磁感应强度的单位定义为“特斯拉”,从特斯拉一生淡泊名利、无私奉献的科研精神,引申出思政案例。
三、思政元素内容淡泊名利甘于奉献,共筑科技强国梦(一)元素内容特斯拉一生的发明见证着他对社会无私的贡献。
在他众多的发明里,最惠及大众的莫过于交流电及交流电发电机了。
如今,在世界的每一个角落,经济的发展、科学的进步和生活的享受都离不开交流电的帮助。
爱迪生发明直流电后,电器得到广泛应用,而电费同时却十分高昂,所以经营输出直流电成为了当时最赚钱的生意。
到特斯拉脱离爱迪生公司后,他正式向社会展示了他的交流电发明。
在1893年1月位于芝加哥的一次世界博览会开幕礼中,特斯拉展示了交流电,同时点亮了90000盏灯泡的供电能力,震慑全场,因为直流电根本达不到这种效果。
在交流电取代了直流电成为供电的主流后,特斯拉本有可能拥有数不清的财富。
因为他掌握了交流电的专利权,在当时每生产一匹交流电,特斯拉就能得到1美元的版税。
然而,在强大的利益驱动下,美国多股财团联合起来,要挟特斯拉放弃此项专利权,并意图独占牟利。
经过多番交涉后,特斯拉决定放弃交流电的专利权,条件是交流电的专利将永久公开。
从此他便撕掉了交流电的专利,损失了收取版税的权利。
也因为如此,交流电再没有专利,成为一项免费的发明,令全人类受益至今。
诺贝尔物理学奖自创立开始的三十年里,尼古拉·特斯拉一个人就被评选出九次,与爱迪生一起二次,而他把这十一次的诺贝尔奖全部让贤。
纵观诺贝尔得奖历史,科学家通过研究尼古拉·特斯拉的作品,从而得到启发获得诺贝尔物理学奖的比率占了27%,间接得到启发的比率超过65%。
第4章 2 《电磁场与电磁波》课件ppt
答案 D
探究二
电磁波与机械波的比较
情境探究
如图所示,某同学正在回答“神舟十号”航天员王亚平的问题,请问她们的通
话是通过机械波进行的还是通过电磁波进行的,为什么?
要点提示 电磁波。因为机械波的传播离不开介质,而电磁波可以在真空
中传播。
知识归纳
电磁波是电磁现象,机械波是力学现象,两种波产生机理不同,所以除具有
)
答案 √
(3)在电场周围,一定存在和它联系着的磁场。(
解析 变化的电场产生磁场,静电场周围没有磁场。
答案 ×
)
(4)在变化的磁场周围一定会产生变化的电场。(
)
解析 均匀变化的磁场周围产生恒定的电场。
答案 ×
(5)只要有电场和磁场,就能产生电磁波。(
)
解析 周期性变化的电场和周期性变化的磁场相互激发,由近及远地传播出
实例引导
例1 根据麦克斯韦电磁场理论,下列说法正确的是(
)
A.有电场的空间一定存在磁场,有磁场的空间也一定能产生电场
B.在变化的电场周围空间一定产生变化的磁场,在变化的磁场周围空间一
定产生变化的电场
C.均匀变化的电场周围空间一定产生均匀变化的磁场
D.周期性变化的磁场周围空间一定产生周期性变化的电场
变式训练 1如图所示的四种电场中,哪一种能产生电磁波(
)
解析 由麦克斯韦电磁场理论,当空间出现恒定的电场时(如A图),由于它不
激发磁场,故无电磁波产生;当出现均匀变化的电场时(如B、C图),会激发
出磁场,但磁场恒定,不会激发出电场,故也不会产生电磁波;只有振荡的电
场(即周期性变化的电场)(如D图),才会激发出振荡的磁场,振荡的磁场又激
《电磁场与电磁波》(第四版)习题集:第4章时变电磁场
《电磁场与电磁波》(第四版)习题集:第4章时变电磁场第4章时变电磁场在时变的情况下,电场和磁场相互激励,在空间形成电磁波,时变电磁场的能量以电磁波的形式进行传播。
电磁场的波动方程描述了电磁场的波动性,本章首先对电磁场的波动方程进行讨论。
在时变电磁场的情况下,也可以引入辅助位函数来描述电磁场,使一些复杂问题的分析求解过程得以简化。
本章对时变电磁场的位函数及其微分方程进行了讨论。
电磁能量一如其它能量服从能量守恒原理,本章将讨论电磁场的能流和表征电磁场能量守恒关系的坡印廷定理。
本章在最后讨论了随时间按正弦函数变化的时变电磁场,这种时变电磁场称为时谐电磁场或正弦电磁场。
4. 1 波动方程由麦克斯韦方程可以建立电磁场的波动方程,揭示了时变电磁场的运动规律,即电磁场的波动性。
下面建立无源空间中电磁场的波动方程。
在无源空间中,电流密度和电荷密度处处为零,即0ρ=、0=J 。
在线性、各向同性的均匀媒质中,E 和H 满足的麦克斯韦方程为t ε=?EH (4.1.1) tμ=-?HE (4.1.2) 0?=H (4.1.3) 0?=E (4.1.4)对式(4.1.2)两边取旋度,有()()tμ=-E H 将式(4.1.1)代入上式,得到22()0t με+=?EE利用矢量恒等式2()()=??-?E E E 和式(4.1.4),可得到2220tμε??-=?EE (4.1.5)此式即为无源区域中电场强度矢量E 满足的波动方程。
同理可得到无源区域中磁场强度矢量H 满足的波动方程为2220tμε??-=?H H (4.1.6)无源区域中的E 或H 可以通过求解式(4.1.5)或式(4.1.6)的波动方程得到。
在直角坐标系中,波动方程可以分解为三个标量方程,每个方程中只含有一个场分量。
例如,式(4.1.5)可以分解为222222220x x x xE E E E x y z tμε++-= (4.1.7) 222222220yyyyE E E E x y z t με++-= (4.1.8)222222220z z z zE E E E x y z t με++-= (4.1.9)在其它坐标系中分解得到的三个标量方程都具有复杂的形式。
4-2电磁场与电磁波(课件)——高中物理人教版(2019)选择性必修第二册 第四章 电磁振荡与电磁波
课堂小结
1.变化的磁场产生电场,变化的电场产生磁场
2.变化的电场和磁场交替产生,由近及远地向周围传播,形成电磁波。
①波速=光速c
②靠电和磁的相互"感应"传播,而不是靠介质的机械传递。
③方向:与电场强度E与磁感应强度B互相垂直
3.麦克斯韦预言电磁波的存在,以及光是一种电磁波。
三、电磁波与机械波的比较
对比内容
电磁波
机械波
本质
电磁现象
力学现象
产生机理
由电磁振荡产生
由机械振动产生
周期性变化的量
场强E与磁感应强度B随时 质点的位移x、加速度a随时
间和空间作周期性变化
波的性质
传播介质
速度特点
横波
不需要介质,可在真空中
传播
由介质和频率决定
间和空间作周期性变化
既有横波,又有纵波
只在弹性介质中传播
变化的电场产生磁场 电场就像运动的电荷,也会在空间产生磁场。
一、电磁场
电磁波的发现过程
“电生磁”
“磁生电”
麦克斯韦
麦克斯韦猜想与假设:
1 . 变化的磁场产生电场
预言了电磁波的存在
2 . 变化的电场产生磁场
预言光是一种电磁波
赫兹检测到了电磁波,测出电磁波波速等于光速。
一、电磁场
二、电磁波
如果一个变化的电场会产生一个变化的磁场,
解析:电磁波具有波所特有的各种属性,即电磁波具有干涉、衍射、反射
等现象。
答案:D
7、类比是一种有效的学习方法,通过归类和比较,有助于掌握新知
识,提高学习效率。在类比过程中,既要找出共同之处,又要抓住不
同之处。某同学对机械波和电磁波进行类比,总结出下列内容,其中
第4章 时变电磁场与电磁波(时变电磁场)要点
物质方程
1)辅助方程——本构方程 D 0E P B 0 ( H M ) J E 2)对于各向同性的线性媒质,有 D E B H J E
媒质可分为均匀与不均匀、线性与非线性、各向同性与 各向异性之分。 1)若描述电磁特性的参数(ε、μ、σ)与空间坐标无关,则 是均匀媒质,否则是不均匀媒质; 2)若描述电磁特性的参数(ε、μ、σ)与场量(E或H)的大 小无关,则是线性媒质,否则是非线性媒质; 3)若描述电磁特性的参数(ε、μ、σ)与场量的方向无关, 则是各向同性媒质,否则是各向异性媒质。 对于线性(Linear)、均匀(Homogeneous)、各向同性 (Isotropic)媒质被称为L.H.I媒质。除非另外说明,这里 涉及的媒质是线性、均匀、各向同性媒质。 在真空(或空气)中,ε=ε0,μ=μ0,σ=0。 理想介质指的是电导率σ=0的情况; 理想导体是指电导率σ→∞的媒质。
E d l 0
c
在时变场中应该修正以来代替,
那么恒定磁场的性质安培环路定律
B c E d l S t d S
H d l I
c
在时变场中是否也要修正呢?
全电流定律
全电流定律
D H J t
积分形式
D l H dl s ( J t ) ds
主要内容
法拉第电磁感应定律 位移电流 麦克斯韦方程组 时变场的边界条件 时变电磁场的能量与能流 正弦电磁场 波动方程 时变电磁场中的位函数
本章概貌
电磁感应定律 Maxwell方程组 全电流定律
分界面上衔接条件
动态位A ,
达朗贝尔方程
电磁场与电磁波课后习题及答案--第四章习题解答
习题解答如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。
解 根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布 两平行无限大导体平面,距离为,其间有一极薄的导体片由到。
上板和薄片保持电位,下板保持零电位,求板间电位的解。
设在薄片平面上,从到,电位线性变化,。
解 应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为: ① ② ③根据条件①和②,可设的通解为由条件③有两边同乘以,并从0到对积分,得到故得到求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。
并按定出边缘电容。
解 在导体板()上,相应于的电荷面密度则导体板上(沿方向单位长)相应的总电荷相应的电场储能为其边缘电容为如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。
题图题 图解 根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布为 一长、宽、高分别为、、的长方体表面保持零电位,体积内填充密度为的电荷。
求体积内的电位。
解 在体积内,电位满足泊松方程(1)长方体表面上,电位满足边界条件。
由此设电位的通解为代入泊松方程(1),可得由此可得或(2)由式(2),可得故如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。
求板间的电位函数。
解 由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。
而在的分界面上,可利用函数将线电荷表示成电荷面密度。
电位的边界条件为①②③ 由条件①和②,可设电位函数的通解为题 图题图由条件③,有(1)(2)由式(1),可得(3)将式(2)两边同乘以,并从到对积分,有(4)由式(3)和(4)解得故如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
♫ 差分方程
1 (i 1/ 2, j, k)t
E n1 x
(i
1/
2,
j, k )
1
2 (i 1/ 2, j, k) (i 1/ 2, j, k)t
Exn (i
1/
2,
j, k )
(i
t 1/ 2,
j, k )
2 (i 1/ 2, j, k)
时域有限差分法 FDTD (Finite-Difference Time Domain)
♫ 概况 ♪ 1966年K.S.Yee提出的; ♪ 核心思想:把带时间变量的Maxwell旋度方程转化为差分形式,模拟出电 子脉冲和理想导体作用的时域响应; ♪ 是目前计算电磁学界最受关注,最时髦的算法,但还在发展完善之中 ♪ 基于FDTD的电磁场计算软件:XFDTD等
♫ 原理 ♪ 将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函 数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数 及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自 由度问题变成离散的有限自由度问题。
♫ 特点 ♪ 近似性仅限于相对小的子域; ♪ 将函数定义在简单几何形状的单元域上,不考虑整个定 义域的复杂边界条件。
♫ 原理
麦克斯韦方程组
H
D t
J
E
B t
Jm
D E
本构关系式
B H J E
Jm m H
H z y
H y z
Ex t
Ex
H
x
z
H z x
Ey t
Ey
H y
x
H x y
Ez t
Ez
Ez y
Ey z
H x t
mHx
Ex
z
Ez x
H y t
mHy
E y x
♫ 关键要素 ♪ 差分格式 ♪ 解的稳定性 ♪ 吸收边界条件
♫ 特点 ♪ 广泛的应用性 ♪ 节约运算和存储空间 ♪ 适合并行计算 ♪ 计算程序的通用性 ♪ 简单直观,容易掌握
♫ 计算步骤 ♪ 采用一定的网格划分方式离散化场域; ♪ 对场内的偏微分方程及各种边界条件进行差分离散化处理,建立差分格式, 得到差分方程组; ♪ 结合选定的代数方程组的解法,编制程序,求边值问题的数值解。
n
v x', y' z' 11x', y' z' 2 2 x', y' z' n n x', y' z' i i x', y' z' i 1
♪ 将解带入电位函数中可得
n
Vj V x j, y j , z j
1
4
ii x', y' z'dv'
i 1
v'
R
Vj
n
i
i 1
Vn 1Vn1 2Vn2 nVnn
V1 V11
V1 j
或
Vj
Vj1
V jj
Vn Vn1
Vnj
V1n 1
V jn
j
Vnn n
有限元法
FEM (Finite Element Method )
♫ 概况 ♪ 起源于土木工程和航空工程中的弹性和结构分析问题的研究,它的发展可 以追溯到Alexander Hrennikoff(1941)和Richard Courant(1942)的工作。 ♪ 核心思想:由解给定的泊松方程化为求解泛函的极值问题。 ♪ 基于MOM的电磁场计算软件:HFSS、ANSYS。
1 4
i x', y' z' dv'i
vi
R ji
♪即
n
V j iV ji i 1
其中 V ji
1
4
i x', y' z'dv'i
vi
R ji
i 1,2, , n
V1 1V11 2V12 nV1n V2 1V21 2V22 nV2n
♪ 亦即 V j 1V j1 2V j2 nV jn
第四章 电磁算法及仿真
主要内容
♫ 电磁场数值算法 ♫ MOM、FEM、FDTD、MRTD ♫ 电磁仿真软件 ♫ Maxwell、CST、HFSS
电磁场数值算法
小波基
加权余量法
边界积分法 内域积分法(伽略金法)
边界元法
矩量法
有限元法
快速算法
麦克斯韦方程组
时域多分辨分析法
时域有限差分法
有限差分法
时域积分方程法
Ex y
H z t
mHz
♫ Yee元胞
♫ 计算方法
(i 1, j, k 1)
Ex
Hz
(i, j, k 1)
Ey
Ey (i 1, j 1, k 1)
(i, j 1, k 1) Ez
Ez
Hx
z(k)
(i, j, k) x(i)
Ey y( j)
Ez
Hy
(i 1, j 1, k)
Ex (i, j 1, k)
矩量法 MOM (Method of Moment)
♫ 概况 ♪ R.F.Harrington在20世纪60年代对矩量法求解电磁问题做了全面深入分析。 ♪ 核心思想:根据线性空间理论,N个线性方程的联立方程组、微分方程、 差分方程及积分方程均属于希尔伯特空间中的算子方程,它们可化作矩阵 方程予以求解,在求解过程中需计算广义矩量。 ♪ 基于MOM的电磁场计算软件:ADS的momentum,Sonnet等
1
1 (i 1/ 2, j, k)t 2 (i 1/ 2, j, k)
H
n1/ z
2
(i
1/
2,
j
1/
2,
k
)
H
n z
1/
2
(i
y
1/
2,
j
1/
2, k)
H
n 1/ 2 y
2)
H
n1/ y
2
(i
1/
2,
j, k
1/
2)
z
1 (i, j 1/ 2, k 1/ 2)t
♫ 特点 ♪ 频域矩量法比较成熟,时域矩量法有待发展; ♪ 矩阵规模的大小涉及到占用内存的多少,在很大程度上影响 了计算的速度。
♫ 理论
♪ 在静电学中,在由点的电荷分布在点产生的电位分布可以表示为
V x, y, z
1 4
v x', y', z'dv'
v'
R
♪ 设 v x', y' z' 的一个解是
若已知t1=t0=nt时刻空间各处E的值
计算t2=t1+t/2时刻空间各处H的值 计算t1=t2+nt/2时刻空间各处E的值
♪ Yee采用矩形网格进行空间离散,将每个节点进行编号,节 点的编号和其空间坐标位置按照下面的方式对应起来。
(i, j, k) (ix, jy, kz)
♪ 任意函数F(x, y, z, t)在时刻nΔt的值可以表示为
H
n1/ x
2
(i,
j
1/
2, k
1/
2)
1
2(i, j 1/ 2, k 1/ 2) (i, j 1/ 2, k 1/ 2)t