第3章图像边缘提取与分割

合集下载

医学图像的分割

医学图像的分割

第六章医学图像分割医学图像分割是医学图像处理和分析的关键步骤,也是其它高级医学图像分析和解释系统的核心组成部分。

医学图像的分割为目标分离、特征提取和参数的定量测量提供了基础和前提条件,使得更高层的医学图像理解和诊断成为可能。

本章首先对医学图像分割的意义、概念、分类及其研究现状进行了概述,然后分别对基于阈值、基于边缘、基于区域和基于模式识别原理的各种常见医学图像分割方法作了详尽而系统的介绍,接着在对图像分割过程中经常用到的二值图像数学形态学基本运算作了简单叙述之后,较为详细地讨论了医学图像分割效果和分割算法性能的常用评价方法。

第一节医学图像分割的意义、概念、分类和研究现状医学图像分割在医学研究、临床诊断、病理分析、手术计划、影像信息处理、计算机辅助手术等医学研究与实践领域中有着广泛的应用和研究价值,具体表现为以下几个方面:(1) 用于感兴趣区域提取,便于医学图像的分析和识别。

如不同形式或来源的医学图像配准与融合,解剖结构的定量度量、细胞的识别与计数、器官的运动跟踪及同步等;(2)用于人体器官、组织或病灶的尺寸、体积或容积的测量。

在治疗前后进行相关影像学指标的定量测量和分析,将有助于医生诊断、随访或修订对病人的治疗方案; (3)用于医学图像的三维重建和可视化。

这有助于外科手术方案的制定和仿真、解剖教学参考及放疗计划中的三维定位等;(4)用于在保持关键信息的前提下进行数据压缩和传输。

这在远程医疗中对实现医学图像的高效传输具有重要的价值;(5)用于基于内容的医学图像数据库检索研究。

通过建立医学图像数据库,可对医学图像数据进行语义学意义上的存取和查找。

所谓医学图像分割,就是根据医学图像的某种相似性特征(如亮度、颜色、纹理、面积、形状、位置、局部统计特征或频谱特征等)将医学图像划分为若干个互不相交的“连通”的区域的过程,相关特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同,也就是说在区域边界上的像素存在某种不连续性。

canny边缘检测分析毕业论文

canny边缘检测分析毕业论文

Canny边缘检测分析毕业论文目录引言 (1)第一章图像分割与边缘检测 (2)1.1图像分割简介 (2)1.2图像分割定义 (2)1.3图像分割基本原理 (3)第二章基于边界的分割——边缘检测 (6)2.1边缘的类型 (6)2.2边缘的类型 (6)2.3边缘的判定 (7)第三章常见边缘检测算法的研究与分析 (9)3.1边缘检测过程概述 (9)3.2典型一阶边缘检测算子 (9)3.2.1梯度算子 (10)3.2.2 Roberts边缘算子 (10)3.2.3 Sobel算子 (11)3.2.4 Prewitt算子 (13)3.3 典型二阶边缘检测算子 (14)WORD版本.3.3.1 Laplacian算子 (14)3.3.2 LOG算子 (16)3.4 各边缘检测算子的仿真结果分析 (18)第四章 Canny边缘检测算子 (20)4.1 Canny边缘检测基本原理: (20)4.2 Canny边缘算子评价指标: (20)4.2.1 Canny提出检测三准则【5】 (20)4.2.2边缘检测滤波器对性能指标的影响【10】 (22)4.2.3 尺度对性能指标的影响【10】 (23)4.3 Canny边缘检测流程 (24)4.4 Canny边缘检测仿真结果及分析 (28)第五章 Canny算子改进 (29)5.1对传统Canny算法局限性分析 (29)5.2滤波改进 (30)5.3阈值改进——自适应的阈值 (31)5.3.1最大熵原算法过程 (31)5.3.2最大熵算法的改进 (32)5.4改进的Canny算法的仿真实验 (33)第六章本实验结果及展望 (36)6.1 本算法的实验结果 (36)WORD版本.6.2实验结果分析 (39)6.3 展望 (39)结论 (40)致谢 (41)参考文献 (42)WORD版本.WORD版本.引言20世纪20年代,图像处理首次应用于改善伦敦和纽约之间海底电缆发送的图片质量,20世纪60年代中期,随电子计算机的发展得到普遍应用。

图像处理 毕业设计论文模版

图像处理 毕业设计论文模版

安徽建筑工业学院毕业设计(论文)课题视频序列图像分割及阴影抑制算法的研究专业电气工程及其自动化班级06城建电气2班学生姓名胡伟学号05290080117指导教师栾庆磊2010年6月5日摘要在智能视频监控领域、影视技术、多媒体应用技术中,常常需要检测出人体或其它物体,并将其与背景分离,即解决实时背景下目标的分割问题。

视频图像的目标分割结果,将对目标分类、跟踪及行为理解等后续处理产生重要影响。

图像分割多年里一直受到研究人员的重视,也提出了数以千计的算法。

现今比较流行的目标分割的方法,有不少是忽略阴影检测的,目标总是与阴影一起被检测出来。

阴影会引起目标的合并、目标形状的失真等一些严重问题,引起分割和跟踪错误。

由于阴影直接影响目标的检测,成为影响后续处理效果的关键因素,有必要进一步研究。

本课题拟根据图像处理的理论基础,对一些传统的边缘检测算子进行了理论分析,用仿真实验测试其边缘检测的效果,对比分析各边缘检测算法效果。

介绍几种常用的彩色空间以及彩色空间的转换算法,系统地阐述了图像分割的各种方法,分析总结了几种常用分割方法的优缺点。

选用RGB彩色空间,利用背景差分法对图像初步分割后,再利用区域生长法去除目标外部的噪声,分割出带影子的目标图像。

然后,分析总结了阴影检测的基本假设和一般框架,及国内外目前主流的阴影检测与抑制算法,指出了这些方法用于去除目标阴影时存在的问题。

针对不同图像的阴影和目标体的特点,拟设计一种去除阴影的算法。

基于边缘信息的阴影抑制算法适用于目标体边缘信息丰富,阴影边缘信息相对简单的阴影去除。

关键词图像分割阴影抑制AbstractIn the field of intelligent video surveillance,video technology,multimedia technology,often need to detect a human body or other objects,separate them with background,that is the context of solving real-time target segmentation. Video image object segmentation results,will target classification,tracking and behavior understanding such an important impact on subsequent processing. Image segmentation has been for many years in research attention,also raised thousands of algorithms.Goal of the current popular methods of segmentation, shadow detection,many are neglected,the goal is always to be detected, together with the shadow.The merger will cause the shadow of goals,objectives and some distortion of the shape of a serious problem,causing segmentation and tracking error.As the shadow directly affect target detection,a follow-up treatment effect affecting the key factors,the need for further research.The aim of this theory based on image processing based on some of the traditional edge detector is theoretically analyzed,using simulation experiments to test their effect on edge detection,contrast analysis of the effect of edge detection algorithm.Introduce some commonly used color space and color space conversion algorithm,systematically expounded the various methods of image segmentation,analyzes and summarizes the advantages and disadvantages of several commonly used e RGB color space, the background difference method using the initial segmentation of the image, then use region growing to remove the target of external noise,split the target image with a shadow.Then,the paper summarizes the basic assumptions shadow detection and the general framework of the current mainstream home and abroad shadow detection and suppression,that the goal of these methodsfor the removal of the existing problems in the shadow.Different images of the shadows and objectives of the body characteristics,be designed to remove the shadow of two algorithms.Based on Edge Information's shadow suppression algorithm is applied to the target of the edge information-rich,relatively simple shadow of the shadow edge removal。

第3章 图像处理基础

第3章 图像处理基础

第3章 图像处理技术 章 1. 栅格图像 栅格图像使用像素点来表现图像,每个像素都有特定 的位置、颜色值,像素自左而右、自上而下排列成一 个方阵。 栅格图像会存储整个点阵每个亮点的各种属性,描述 大量细节,因此数据存储量相当庞大,但可以直接显 示输出。 栅格图像的绘制需要从存储数据中读出每位数逐个绘 制到图像中。栅格图像画质细腻、层次感强、细节存 储较多,表现力很强。
第3章 图像处理技术 章 3. 矢量图像 矢量图用一系列计算机指令来表示一幅图,如画点、 画线、画曲线、画圆、画矩形等。这种方法实际上是 以数学方法来描述一幅图,然后变成许许多多的数学 表达式,再经过编程后,用语言来表达。在计算显示 图时,往往能看到画图的过程。
图3-4
第3章 图像处理技术 章 4. 栅格图像和矢量图像的对比 (1) 图像缩放
第3章 图像处理技术 章
第3章 图像处理技术 章
3.1 概述 3.2 图像文件格式 3.3 图像的获取与处理
第3章 图像处理技术 章
3.1 概述
3.1.1 灰度图与彩色图 1. 色彩的三要素 彩色光作用于人眼,使之产生彩色视觉。为了能确切 地表示某一彩色光的度量,可以用亮度、色调和色饱和度 等三个物理量来描述,并称之为色彩三要素。 1) 亮度 亮度是描述光刺激人眼时引起视觉的明暗程度。一般 说来,彩色光辐射的功率越大,亮度越高;反之,亮度越 低。对于不发光的物体,其亮度取决于反射光功率的大小。
第3章 图像处理技术 章 2. 栅格图像的重要参数 (1) 分辨率 屏幕分辨率:指计算机屏幕上最大显示区域水平和垂 直方向上的像素点数。如800×600表示屏幕可以显示 800行,600列,即480000个像素。 图像分辨率:指图像数字化时在水平、垂直方向上的 像素个数,它与屏幕分辨率未必相同。若图像尺寸为 200×100,则它在分辨率为800×600的屏幕上显示只占 屏幕的1/24。 像素分辨率:指一个像素点的长和宽的比例。像素点 尽可能长宽相等,使之成为正方形,否则图像就会变 形。在像素分辨率不同的机器间传输图像时会产生图 像变形。

基于MATLAB的图像锐化及边界提取

基于MATLAB的图像锐化及边界提取

摘要图像增强是指依据图像所存在的问题,按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些冗余信息的处理方法。

其主要目的是使得处理后的图像对给定的应用比原来的图像更加有效同时可以有效的改善图像质量。

图像增强技术主要包含直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。

本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、平滑和锐化等几种常用的增强方法、彩色图像增强的理论基础,通过MATLAB实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。

关键词MATLAB ;图像锐化;边界提取AbstractImage enhancement is based on the problems existing in the images, according to the specific need to highlight some of the information in an image, at the same time, to weaken or remove some redundant information processing method. Its main purpose is to make the image after processing for a given application is more effective than the original image at the same time can effectively improve the image quality. Image enhancement technology mainly includes histogram modification, image smoothing processing, image intensification processing and color processing technology, etc. This article first overview of the principle of image enhancement and image enhancement method of classification and histogram enhancement, smoothing and sharpening of several common enhancement method, the theoretical basis of color image enhancement, through practical processing effect of MATLAB experiment compared the advantages and disadvantages of various algorithms, discussed the main technical points of the different enhancement algorithm, and its image enhancement method for performance evaluation.Key wordsMATLAB;image sharpening; edge extraction·目录摘要 0Abstract (1)第一章绪论 (3)1.1 图像锐化及边界提起发展背景和意义 (3)1.2 图像锐化处理的现状和研究方法 (3)1.3MATLAB简介 (4)1.4 MATLAB对图像处理的特点 (4)第二章基于MATLAB的图像锐化 (5)2.1图像锐化概述 (5)2.2 线性锐化滤波器 (5)2.3 非线性锐化滤波器 (6)2.3.1 Roberts算子 (6)2.3.2 Prewitt锐化算子 (7)2.3.3 Sobel锐化算子 (8)2.3.4 一阶微分锐化的效果比较 (9)2.3.5 二阶微分锐化其算法为: (9)第三章基于MATLAB的边界提取 (11)3.1图像边界提取的概念 (11)3.2微分算子法 (11)3.2.1 Sobel算子 (12)3.2.3 prewitt算子 (12)3.2.4 Laplacian算子 (13)3.2.5 Canny边缘检测法 (13)3.2.6各种方法边界提取的图像 (15)3.2.7结论 (17)参考文献 (18)致谢 (19)第一章绪论1.1 图像锐化及边界提起发展背景和意义数字图像处理(Digital Image Processing)又称为计算机图像处理,它最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。

图像分割与特征提取 ppt课件

图像分割与特征提取  ppt课件

ppt课件
5
7.1 图像分割的概念
2. 图像分割的依据和方法
◆图像分割的依据是各区域具有不同的特性,这些 特性可以是灰度、颜色、纹理等。而灰度图像分割的 依据是基于相邻像素灰度值的不连续性和相似性。也 即,子区域内部的像素一般具有灰度相似性,而在区 域之间的边界上一般具有灰度不连续性。
◆灰度图像分割是图像分割研究中最主要的内容,其 本质是按照图像中不同区域的特性,将图像划分成不 同的区域。
7.2.1 图像边缘
图像
剖面
一阶导数
二阶导数
上升阶跃边缘 (a)
下降阶跃边缘 (b)
脉冲状边缘 (c)
屋顶边缘 (d)
图7.1 图像边缘及其导数曲线规律示例
ppt课件
11
7.2 基于边缘检测的图像分割
7.2.1 图像边缘
综上所述,图像中的边缘可以通过对它们求导数 来确定,而导数可利用微分算子来计算。对于数字图 像来说,通常是利用差分来近似微分。
方向:
f (x, y) = arctan(Gx / Gy )
(7.5)
ppt课件
14
7.2.2 梯度边缘检测
(1) Roberts算子
是一个交叉算子,其在点(i,j)的梯度幅值表示为:
G(i, j) = f (i, j) f (i 1, j 1) f (i 1, j) f (i, j 1) (7.6)
ppt课件
2
7.1 图像分割的概念
◆目标或前景 ◆背景 ◆目标一般对应于图像中特定的、具有独特性质的 区域。
ppt课件
3
7.1 图像分割的概念
1. 图像分割
图像分割就是依据图像的灰度、颜色、纹理、边 缘等特征,把图像分成各自满足某种相似性准则或具 有某种同质特征的连通区域的集合的过程。

胡学龙《数字图像处理(第二版)》课后习题解答

胡学龙《数字图像处理(第二版)》课后习题解答

2
1.PHOTOSHOP:当今世界上一流的图像设计与制作工具,其优越性能令其产品望尘 莫及。PHOTOSHOP 已成为出版界中图像处理的专业标准。高版本的 P扫描仪、数码相机等图像输入设备采集的图 像。PHOTOSHOP 支持多图层的工作方式,只是 PHOTOSHOP 的最大特色。使用图层功能 可以很方便地编辑和修改图像,使平面设计充满创意。利用 PHOTOSHOP 还可以方便地对 图像进行各种平面处理、绘制简单的几何图形、对文字进行艺术加工、进行图像格式和颜色 模式的转换、改变图像的尺寸和分辨率、制作网页图像等。
1.5 常见的数字图像处理开发工具有哪些?各有什么特点? 答.目前图像处理系统开发的主流工具为 Visual C++(面向对象可视化集成工具)和 MATLAB 的图像处理工具箱(Image Processing Tool box)。两种开发工具各有所长且有相互 间的软件接口。 Microsoft 公司的 VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发 出来的 Win 32 程序有着运行速度快、可移植能力强等优点。VC++所提供的 Microsoft 基础 类库 MFC 对大部分与用户设计有关的 Win 32 应用程序接口 API 进行了封装,提高了代码 的可重用性,大大缩短了应用程序开发周期,降低了开发成本。由于图像格式多且复杂,为 了减轻程序员将主要精力放在特定问题的图像处理算法上,VC++ 6.0 提供的动态链接库 ImageLoad.dll 支持 BMP、JPG、TIF 等常用 6 种格式的读写功能。 MATLAB 的图像处理工具箱 MATLAB 是由 MathWorks 公司推出的用于数值计算的有 力工具,是一种第四代计算机语言,它具有相当强大的矩阵运算和操作功能,力求使人们摆 脱繁杂的程序代码。MATLAB 图像处理工具箱提供了丰富的图像处理函数,灵活运用这些 函数可以完成大部分图像处理工作,从而大大节省编写低层算法代码的时间,避免程序设计 中的重复劳动。MATLAB 图像处理工具箱涵盖了在工程实践中经常遇到的图像处理手段和 算法,如图形句柄、图像的表示、图像变换、二维滤波器、图像增强、四叉树分解域边缘检 测、二值图像处理、小波分析、分形几何、图形用户界面等。但是,MATLAB 也存在不足 之处限制了其在图像处理软件中实际应用。首先,强大的功能只能在安装有 MATLAB 系统 的机器上使用图像处理工具箱中的函数或自编的 m 文件来实现。其次,MATLAB 使用行解 释方式执行代码,执行速度很慢。第三,MATLAB 擅长矩阵运算,但对于循环处理和图形 界面的处理不及 C++等语言。为此,通应用程序接口 API 和编译器与其他高级语言(如 C、 C++、Java 等)混合编程将会发挥各种程序设计语言之长协同完成图像处理任务。API 支持 MATLAB 与外部数据与程序的交互。编译器产生独立于 MATLAB 环境的程序,从而使其他 语言的应用程序使用 MATLAB。

基于AI技术的图像识别与处理应用指南

基于AI技术的图像识别与处理应用指南

基于技术的图像识别与处理应用指南第1章图像识别与处理基础 (4)1.1 图像识别概述 (4)1.1.1 图像识别的基本流程 (4)1.1.2 图像识别的主要方法 (4)1.2 图像处理基本概念 (4)1.2.1 图像处理的基本操作 (4)1.2.2 常用图像处理算法 (5)1.3 技术在图像识别与处理中的应用 (5)1.3.1 深度学习模型在图像识别中的应用 (5)1.3.2 技术在图像处理中的应用 (5)第2章图像预处理技术 (5)2.1 图像增强 (5)2.1.1 直方图均衡化 (6)2.1.2 伽马校正 (6)2.1.3 自适应直方图均衡化 (6)2.2 图像滤波 (6)2.2.1 均值滤波 (6)2.2.2 中值滤波 (6)2.2.3 高斯滤波 (6)2.2.4 双边滤波 (6)2.3 边缘检测与轮廓提取 (6)2.3.1 边缘检测 (7)2.3.2 轮廓提取 (7)2.3.3 Canny边缘检测 (7)第3章特征提取与匹配 (7)3.1 传统特征提取算法 (7)3.1.1 SIFT算法 (7)3.1.2 SURF算法 (7)3.1.3 ORB算法 (7)3.2 深度学习特征提取方法 (7)3.2.1 卷积神经网络(CNN) (7)3.2.2 迁移学习 (8)3.2.3 对抗网络(GAN) (8)3.3 特征匹配技术 (8)3.3.1 暴力匹配 (8)3.3.2 最近邻匹配 (8)3.3.3FLANN匹配器 (8)3.3.4 RANSAC匹配 (8)第4章深度学习基础 (8)4.1 卷积神经网络(CNN) (8)4.1.1 卷积神经网络简介 (8)4.1.3 池化层 (9)4.1.4 全连接层 (9)4.1.5 常见卷积神经网络结构 (9)4.2 深度信念网络(DBN) (9)4.2.1 深度信念网络简介 (9)4.2.2 稀疏自编码器 (9)4.2.3 限制玻尔兹曼机 (9)4.2.4 DBN的训练方法 (9)4.3 循环神经网络(RNN) (9)4.3.1 循环神经网络简介 (9)4.3.2 RNN的基本结构 (10)4.3.3 长短时记忆网络(LSTM) (10)4.3.4 门控循环单元(GRU) (10)第5章目标检测技术 (10)5.1 传统目标检测方法 (10)5.1.1 基于特征匹配的目标检测 (10)5.1.2 基于模板匹配的目标检测 (10)5.1.3 基于机器学习的目标检测 (10)5.2 基于深度学习的目标检测算法 (10)5.2.1 RCNN系列算法 (10)5.2.2 单次多框检测器(SSD) (11)5.2.3 YOLO系列算法 (11)5.2.4 RetinaNet (11)5.3 目标跟踪技术 (11)5.3.1 基于相关滤波的目标跟踪 (11)5.3.2 基于深度学习的目标跟踪 (11)5.3.3 基于优化方法的目标跟踪 (11)第6章语义分割与实例分割 (11)6.1 语义分割概述 (11)6.2 基于深度学习的语义分割算法 (12)6.2.1 卷积神经网络(CNN)基础 (12)6.2.2 全卷积神经网络(FCN) (12)6.2.3 编码器解码器结构 (12)6.2.4 区域分割网络(RCNN系列) (12)6.3 实例分割技术 (12)6.3.1 实例分割概述 (12)6.3.2 Mask RCNN (12)6.3.3 PointRend (12)6.3.4 SOLO系列 (12)第7章图像识别应用案例 (13)7.1 自然场景文本识别 (13)7.1.1 背景介绍 (13)7.1.2 技术要点 (13)7.2 人脸识别技术 (13)7.2.1 背景介绍 (13)7.2.2 技术要点 (13)7.2.3 应用案例 (14)7.3 交通场景识别 (14)7.3.1 背景介绍 (14)7.3.2 技术要点 (14)7.3.3 应用案例 (14)第8章计算机视觉与技术的融合 (14)8.1 增强现实与虚拟现实技术 (14)8.1.1 增强现实技术 (14)8.1.2 虚拟现实技术 (15)8.2 视觉导航 (15)8.2.1 视觉感知 (15)8.2.2 路径规划 (15)8.3 自动驾驶技术 (16)8.3.1 环境感知 (16)8.3.2 决策与控制 (16)第9章图像处理与技术的行业应用 (16)9.1 医疗影像诊断 (16)9.1.1 概述 (16)9.1.2 应用案例 (16)9.2 工业检测与自动化 (17)9.2.1 概述 (17)9.2.2 应用案例 (17)9.3 农业领域应用 (17)9.3.1 概述 (17)9.3.2 应用案例 (17)第10章伦理与法律问题 (17)10.1 数据隐私与保护 (17)10.1.1 数据收集与存储 (17)10.1.2 数据使用与共享 (18)10.1.3 数据安全与合规 (18)10.2 人工智能伦理问题 (18)10.2.1 公平性与歧视 (18)10.2.2 人类就业与权益 (18)10.2.3 人工智能道德责任 (18)10.3 法律法规与政策建议 (19)10.3.1 完善法律法规体系 (19)10.3.2 加强监管与执法 (19)10.3.3 政策支持与引导 (19)第1章图像识别与处理基础1.1 图像识别概述图像识别是指利用计算机技术对图像进行自动分类和识别的过程。

人工智能图像识别技术指南

人工智能图像识别技术指南

人工智能图像识别技术指南第1章引言 (3)1.1 图像识别技术概述 (3)1.2 人工智能与图像识别的关系 (3)1.3 图像识别技术的应用领域 (3)第2章图像处理基础 (4)2.1 数字图像处理概述 (4)2.2 图像变换 (4)2.3 图像滤波与增强 (4)2.4 边缘检测与分割 (4)第3章特征提取与表示 (4)3.1 特征提取方法 (4)3.2 特征表示与度量 (4)3.3 常用特征提取算法 (4)3.4 特征选择与优化 (4)第4章深度学习基础 (4)4.1 神经网络简介 (4)4.2 卷积神经网络(CNN) (4)4.3 深度学习训练技巧 (4)4.4 深度学习框架介绍 (4)第5章目标检测技术 (4)5.1 目标检测概述 (4)5.2 基于候选框的目标检测方法 (4)5.3 基于深度学习的目标检测算法 (4)5.4 目标检测数据集与评估指标 (4)第6章图像分类技术 (4)6.1 图像分类概述 (4)6.2 传统图像分类算法 (4)6.3 深度学习图像分类算法 (4)6.4 数据不平衡与过拟合问题 (4)第7章场景识别与分割 (4)7.1 场景识别概述 (4)7.2 基于特征的场景识别方法 (4)7.3 深度学习场景识别算法 (4)7.4 图像分割技术 (5)第8章人体姿态估计 (5)8.1 人体姿态估计概述 (5)8.2 基于传统方法的姿态估计 (5)8.3 基于深度学习的姿态估计 (5)8.4 人体姿态估计的应用场景 (5)第9章人脸识别技术 (5)9.1 人脸识别概述 (5)9.3 深度学习人脸识别算法 (5)9.4 人脸识别中的挑战与解决方案 (5)第10章视频分析与行为识别 (5)10.1 视频分析概述 (5)10.2 目标跟踪技术 (5)10.3 行为识别方法 (5)10.4 深度学习在视频分析中的应用 (5)第11章医学图像识别 (5)11.1 医学图像概述 (5)11.2 医学图像预处理与增强 (5)11.3 医学图像分割与标注 (5)11.4 深度学习在医学图像诊断中的应用 (5)第12章图像识别技术的挑战与展望 (5)12.1 数据安全与隐私保护 (5)12.2 算法可解释性与可靠性 (5)12.3 通用性与自适应学习 (5)12.4 未来发展趋势与展望 (5)第1章引言 (5)1.1 图像识别技术概述 (5)1.2 人工智能与图像识别的关系 (6)1.3 图像识别技术的应用领域 (6)第2章图像处理基础 (6)2.1 数字图像处理概述 (7)2.2 图像变换 (7)2.3 图像滤波与增强 (7)2.4 边缘检测与分割 (7)第3章特征提取与表示 (7)3.1 特征提取方法 (7)3.2 特征表示与度量 (8)3.3 常用特征提取算法 (8)3.4 特征选择与优化 (9)第4章深度学习基础 (9)4.1 神经网络简介 (9)4.2 卷积神经网络(CNN) (9)4.3 深度学习训练技巧 (10)4.4 深度学习框架介绍 (10)第5章目标检测技术 (11)5.1 目标检测概述 (11)5.2 基于候选框的目标检测方法 (11)5.3 基于深度学习的目标检测算法 (11)5.4 目标检测数据集与评估指标 (11)第6章图像分类技术 (12)6.1 图像分类概述 (12)6.3 深度学习图像分类算法 (12)6.4 数据不平衡与过拟合问题 (12)第7章场景识别与分割 (13)7.1 场景识别概述 (13)7.2 基于特征的场景识别方法 (13)7.3 深度学习场景识别算法 (13)7.4 图像分割技术 (14)第8章人体姿态估计 (14)8.1 人体姿态估计概述 (14)8.2 基于传统方法的姿态估计 (14)8.3 基于深度学习的姿态估计 (14)8.4 人体姿态估计的应用场景 (15)第9章人脸识别技术 (15)9.1 人脸识别概述 (15)9.2 基于特征的人脸识别方法 (15)9.3 深度学习人脸识别算法 (16)9.4 人脸识别中的挑战与解决方案 (16)第10章视频分析与行为识别 (17)10.1 视频分析概述 (17)10.2 目标跟踪技术 (17)10.3 行为识别方法 (17)10.4 深度学习在视频分析中的应用 (17)第11章医学图像识别 (17)11.1 医学图像概述 (18)11.2 医学图像预处理与增强 (18)11.3 医学图像分割与标注 (18)11.4 深度学习在医学图像诊断中的应用 (18)第12章图像识别技术的挑战与展望 (19)12.1 数据安全与隐私保护 (19)12.2 算法可解释性与可靠性 (19)12.3 通用性与自适应学习 (19)12.4 未来发展趋势与展望 (20)好的,以下是一份关于人工智能图像识别技术指南的目录:第1章引言1.1 图像识别技术概述1.2 人工智能与图像识别的关系1.3 图像识别技术的应用领域第2章图像处理基础2.1 数字图像处理概述2.2 图像变换2.3 图像滤波与增强2.4 边缘检测与分割第3章特征提取与表示3.1 特征提取方法3.2 特征表示与度量3.3 常用特征提取算法3.4 特征选择与优化第4章深度学习基础4.1 神经网络简介4.2 卷积神经网络(CNN)4.3 深度学习训练技巧4.4 深度学习框架介绍第5章目标检测技术5.1 目标检测概述5.2 基于候选框的目标检测方法5.3 基于深度学习的目标检测算法5.4 目标检测数据集与评估指标第6章图像分类技术6.1 图像分类概述6.2 传统图像分类算法6.3 深度学习图像分类算法6.4 数据不平衡与过拟合问题第7章场景识别与分割7.1 场景识别概述7.2 基于特征的场景识别方法7.3 深度学习场景识别算法7.4 图像分割技术第8章人体姿态估计8.1 人体姿态估计概述8.2 基于传统方法的姿态估计8.3 基于深度学习的姿态估计8.4 人体姿态估计的应用场景第9章人脸识别技术9.1 人脸识别概述9.2 基于特征的人脸识别方法9.3 深度学习人脸识别算法9.4 人脸识别中的挑战与解决方案第10章视频分析与行为识别10.1 视频分析概述10.2 目标跟踪技术10.3 行为识别方法10.4 深度学习在视频分析中的应用第11章医学图像识别11.1 医学图像概述11.2 医学图像预处理与增强11.3 医学图像分割与标注11.4 深度学习在医学图像诊断中的应用第12章图像识别技术的挑战与展望12.1 数据安全与隐私保护12.2 算法可解释性与可靠性12.3 通用性与自适应学习12.4 未来发展趋势与展望第1章引言1.1 图像识别技术概述图像识别技术作为人工智能领域的一个重要分支,主要研究如何让计算机实现对图像的自动识别和处理。

15-16第三章图像处理技术(3.7 图像增强)

15-16第三章图像处理技术(3.7 图像增强)

3.7 图像增强
3)空域滤波增强 空域滤波是在图像空间借助模板进行邻域操作完成,根 据其特点可分成线性滤波和非线性滤波两类。各种空域滤波 器根据功能可分成平滑和锐化滤波器。平滑滤波器可用低通 滤波实现。平滑的目的又可分为两类,一类是模糊化,目的 是在提取较大的目标前去除太小的细节或将目标内的小断点 连接起来。另一类是消除噪声。锐化可用高通滤波实现,锐 化的目的是为了增强模糊的细节。
可以证明,图像直方图的累积分布函数满足上述两 个条件并能将变换后的灰度值均匀地分布在灰度级范围 内
3.7 图像增强
直方图均衡化的实现步骤为: ➢ 统计图像各灰度值的计数,即得到图像的直方图。 ➢ 计算图像各灰度值的累积分布函数值。 ➢ 遍历原图像,对于图像中每个像素,都用该像素灰 度值对应的累积分布函数值与最大灰度值(如8位灰度图 像,这个最大值为5)的乘积来替换它。
3.7 图像增强
锐化(高通)滤波器:它能减弱或消除傅里叶空间的低 频分量,但不影响高频分量。因为低频分量对应图像中 灰度值缓慢变化的区域,因而与图像的整体特性,如整 体对比度和平均灰度值等有关,高通滤波器将这些分量 滤去可使图像锐化。
3.7 图像增强
① 平滑滤波器
图6、平滑滤波
a、均值滤波
3.7 图像增强
3.7 图像增强
图2、空域滤波与频域滤波的比较
3.7 图像增强
1、空域图像增强 空域法是直接对图像中的像素进行处理,从根本上说是 以图像的灰度映射变换为基础的。 以下将主要从空域变换、图像代数、空域滤波二个方面 进行展开,使读者对于使用空域点对点变换和直方图修正变 换来增强图像有一个系统深人的了解。其中空域变换包括直 接灰度变换和直方图处理,前者属于点对点变换,后者属于 直方图修正变换;图像代数是一种点对点变换;空域滤波实 际是一种频率域处理转化为空间域点对点模板预算的增强算 法。

图像分割毕业论文

图像分割毕业论文

第一章绪论1.1课题的研究背景及意义随着信息技术的开展和不断深入,人们越来越多的利用计算机来帮助人类获取与处理各种信息。

据统计,在人类从外界获得的信息中有75%左右是来自视觉或者说图像信息,它是人类最有效的信息获取和交流方式,图像也因为其所含的信息量大、表现直观而在近年得到的广为宣传和应用的多媒体中占据了重要的地位。

图像分割是一种根本的计算机视觉技术,是从图像处理到图像分析的关键步骤。

图像分割就是将图像表示为物理上有意义的连通区域的集合,是进行图像分析的第一步工作,也是解决起来比较困难的一个问题。

对于那些基于图像分割结果的接下来的任务,如特征提取、目标识别等的质量的好坏都取决于是否有一个质量比较好的图像分割结果,有效合理的图像分割能够为基于内容的图像检索、对象分析等抽象出十分有用的信息,从而使得更高层的图像理解成为可能[1]。

1.1.1图像分割在数字图像处理中的地位为了弄清图像分割在数字图像处理中所处的地位,我们引入并使用“图像工程〞这个概念。

图像技术在广义上是各种与图像有关技术的总称。

图像技术种类很多,跨度很大,但可以将它们归在一个整体框架一一“图像工程〞之下。

图像工程是一个对整个图像领域进行研究应用的新科学,它的内容非常丰富,根据抽象程度和研究方法等的不同可分为三个有特点的层次〔如图1-1所示〕:图像处理、图像分析和图像理解[2]。

图1-1图像分割在图像工程中的位置图像处理着重强调在图像之间进行变换以改善图像的视觉效果。

图像分析那么主要是对图像中感兴趣的目标进行监测和测量,以获得它们的客观信息从而建立对图像的描述。

图像理解的重点是在图像分析的根底上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对原始成像客观场景的解释,从而指导和规划行动。

图像处理、图像分析和图像理解具有不同的操作对象,参考图1-1图像处理是比较低层的操作,它主要在图像像素级上进行处理。

图像分析那么进入了中层,它侧重于对像素集合到目标的表达测量描述。

Photoshop图形图像处理第三章

Photoshop图形图像处理第三章

• 上机练习与习题
• 利用给定的图像,练习将需要的部分选 下来,并粘贴到自己喜欢的位置上,从而 合成全新的图像效果。
3.9应用路径制作选区

路径是Photoshop中矢量图形的代表。在Photoshop中,通常都使
用路径来描绘矢量效果的图像。除了可以绘制矢量图形,灵活地应用
路径,还可以建立复杂的选区。
• 3.3.2 选区的作用 • 在图像中创建选区后,编辑图像时,被编辑的范围将会局限在选区
内,而选区以外的像素将会处于被保护状态,不能够被编辑。比如创 建选区后,执行“复制”与“粘贴”命令后,被复制到新图层中的像 素就只是选区内的图像,对包含选区的图像进行亮度调整时,被调整 的范围也只针对选区内起作用。
• 3.3.2 用来创建选区的工具
• 在Photoshop中用来创建选区的工具主要分 为创建规则选区与不规则选区两大类。分 别集中在选框工具组、套索工具组和魔棒 工具组这3组工具以及“色彩范围”命令中。 除此之外还可以通过通道、蒙板、路径等 方法创建不规则选区。
3.4制作最基础的规则形状选区
• 在Photoshop中用来创建规则选区的工具被集中 在选框工具组中,其中包括可以创建矩形的(矩形 选框工具) 、创建正圆与椭圆的(椭圆选框工具) 以及用来创建长或宽为一个像素的(单行选框工具) 和(单列选框工具) 。
工具绘制其他路径的时候, “工作路径”中的路径将被 替换。在需要的情况下,应该对“工作路径”中的路径进 行存储,以备以后使用。
• 存储路径的方法有以下三种。 • (1)单击【路径】调板上的堡按钮,在其快捷菜单中执
行【存储路径】命令,打开【存储路径】对话框。在其 “名称”文本框中输入名称,单击“确定”按钮即可。
• 3.8.2 消除选区锯齿 • 在使用选择工具创建选区时,通常属性栏中都会出现“消除锯齿"

第3章 视觉信息处理

第3章 视觉信息处理

2014-4-16
需要解决的几个经典问题
运动

自体运动:摄像机/成像设备的三维刚性运动; 图像跟踪:跟踪运动的物体。

2014-4-16
需要解决的几个经典问题


场景重建
给定一个场景的二或多幅图像或者一段录像,场 景重建寻求为该场景建立一个计算机模型/三维模 型。
2014-4-16
需要解决的几个经典问题

2014-4-16
主要参考资料



IEEE Transactions on Pattern Analysis and Machine Intelligence,IEEE 模式分析与机器智 能杂志 International Journal on Computer Vision,国际 计算机视觉杂志 Computer Vision and Image Understanding,计 算机视觉与图像理解 Pattern Recognition Letters,模式识别快报

微波:雷达等
(任何范围时间气 候光照条件下收集 数据,使用天线和 计算机记录图像、 微波辐射)

无线电波:医学
和天文学(MRI)
2014-4-16
人的眼睛是一个前后 直径大约23毫米的近 似球状体。 视网膜由锥体细胞 (cone cell)和杆体细 胞(rod cell)两种感 光细胞组成。


图像恢复
图像恢复的目标在于移除图像中的噪声,例如仪 器噪声,模糊等。 图像修复。
2014-4-16
主要参考资料
International Conference on Computer Vision,国际计算机视觉大会 International Conference on Computer Vision and Pattern Recognition,国际计算 机视觉与模式识别大会 International Conference on Image Processing,国际图像处理大会
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21
换言之,如果对所有的 j 值,除 j i 外,
有:
WiTXWjTX
就 可 以 说 X和 第 i个 样 板 最 接
j 近 。 如果 WiTXWjTX , =2、3、4,可以断
定 代表的区域有水平线的性质。
22
对于边缘检测来说也同样遵循上述原理。通 常采用的方法是执行某种形式的二维导数。类似 于离散梯度计算,考虑3×3大小的模板,如图 3—4所示。
在给定一幅含有多个物体的数字图像的条件下,模式识 别过程如图3.1所示,由三个主要阶段组成。
2020/6/2
4
3.1.1 统计模式识别简介
输入图像
物体图像
特征图像
物体类型
图像分割
特征提取
分类
图3.1 模式识别的三个阶段
2020/6/2
5
3.1.1 统计模式识别简介
图像分割:检测出各个物体,把它们的图像和其 余景物分离,这一过程也可以称为图像预处理。
17
例如,设 1, 2, , 9代表3×3模
板的权,并使 x1,x2, ,x9 为模板内各
像素的灰度值。从上述方法来看,应求两个矢 量的积,即:
9
W T X 1 x 1 2 x 2 9 x 9 n 1n x n
18
1)、线样板
线检测样板如图3—3所示。其中,样板(a)沿一 幅图像移动,它将对水平取向的线(一个像素宽度) 有最强的响应。对于恒定背景,当线通过样板中间 一行时出现最大响应;样板(b)对45°方向的那些 线具有最好响应;样板(c)对垂直线有最大响应; 样板(d)则对-45°方向的那些线有最好的响应。
11
当扫描这幅图像时,从 B1 到 B2 之间
的灰度变化就指示出有边界存在。当然,为了
找出水平方向和垂直方向上的边界,要进行两
次扫描。也就是说,首先确定一个门限

然后T执行下列步骤:
12
第一,对 f (x, y) 的每一行进行检测,产
生的图像的灰度将遵循如下规则
f1(x,y)LLBE
f(x,y)和f(x,y1)处在不同的灰度 其他
要信息源和形状特征的基础。而图像的纹理形
状特征的提取又常常要依赖于图像分割。
2020/6/2
3
3.1.1 统计模式识别简介
统计模式识别认为图像可能包含一个或多个物体,并 且每个物体属于若干事先定义的类型、范畴或模式之一。 虽然模式识别可以用多种方法实现,但是在此只关心用数 字图像处理技术对它的实现。
2020/6/2
9
图 3—1 图f像(x, y) 的直方图
10
由直方图可以知道图像 f (x, y) 的大部
分像素灰度值较低,其余像素较均匀地分布在其 他灰度级上。由此可以推断这幅图像是由有灰度 级的物体叠加在一个暗背景上形成的。可以设一 个阈值 T ,把直方图分成两个部分,如图所示。 T 的选择要本着如下原则:B1 应尽可能包含与背 景相关连的灰度级,而B2 则应包含物体的所有灰 度级。
点样板的例子如图3—2所示。下面用一幅具有 恒定强度背景的图像来讨论。
1)、点样板
15
-1
-1 2 2 -1 2 2 2 2 2 2
-1
8
-1
-1
-1 2 30-1 2 2 0 2 9 2
22222282
2
2
用点样板
2
2
的检测步
2
2
骤如下:
2
2
22222222
3-2 点样板检测
16
样板中心(标号为8)沿着图像从一个像素移 到另一个像素,在每一个位置上,把处在样板内 的图像的每一点的值乘以样板的相应方格中指示 的数字,然后把结果相加。如果在样板区域内所 有图像的像素有同样的值,则其和为零。否则其 和不为零。
19
图3—3 线样板
20
设W 1,W 2,W 3,W 4是图3—3中四个样板的权值组成的九维 矢量。与点样板的操作步骤一样,在图像中的任一
点上,线样板的各个响应为 WiT X ,这 里 i =1、2、
3、4。此处 X 是样板面积内九个像素形成的矢量。 给定一个特定的 X ,希望能确定在讨论问题的区 域与四个线样板中的哪一个有最相近的匹配。如果 第 i 个样板响应最大,则可以断定 X 和第 i 个样 板最相近。
7
3.2 图像分割处理
图像分割也可以按照如下的标准分类: 1.基于区域的分割方法
包括阈值分割法、区域生长和分裂合并法、聚类分 割法等;
2.基于边界的分割方法 包括微分算子法、基于区域和边界技术相结合的
分割方法。
2020/6/2
8
3.2.1 基于区域的分割方法
直方图分割(灰度阈值分割) 最简单的方法是建立在灰度直方图分析的基础上。 如果一个图像是由明亮目标在一个暗的背景上组成 的,其灰度直方图将显示两个最大值,一个是由目 标点产生的峰值,另一个峰值是由背景点产生的。
第3章 图像边缘提取和分割
3.1引言 3.2 图像分割处理
2020/6/2
1
2
第3章 图像边缘提取和分割
3.1引言
图像最基本的特征是边缘,边缘是指其周
围像素灰度有阶跃变化或屋顶状变化的那些像
素的集合,它存在于目标与背景、目标与目标、
区域与区域、基元与基元之间。它是图像分割
所依赖的最重要的特征,也是纹理特征中的重
23
图3—4 3 3样板
考虑3×3的图像区域,G x 及 G y 分别用下式表示
G x ( g 2 h i ) ( a 2 d c )
G y ( c 2 f i ) ( a 2 d g )
24
在 e点的梯度为
1
G Gx2 Gy2 2
采用绝对值的一种定义为
2020/6/2
6
3.2 图像分割处理
用计算机进行数字图像处理的目的有两个: 一是产生更适合人类视觉观察和识别的图像; 二是希望计算机能够自动进行识别和理解图像。
图像处理的关键问题是对图像进行分解。 分解的最终结果是各种特征的最小成分(基元)。 产生基元的过程就是图像分割的过程。
2020/6/2
式中 LE 是指定的边缘灰度级, LB 是背景灰度级。
13
第二,对 f (x, y) 的每一列进行检测,产
生的图像的灰度将遵循下述规则
f2(x,y)L LB E来自f(x,y)和f(x1,y)灰度处在不同 上的 其他
14
3.2.2 基于边界检测方法(样板匹配)
在数字图像处理中,样板是为了检测某些不变 区域特性而设计的阵列。样板可根据检测目的 不同而分为点样板、线样板、梯度样板、正交 样板等等。
相关文档
最新文档