梁的弯曲第七章答案

合集下载

第七章-直梁弯曲时的内力和应力复习进程

第七章-直梁弯曲时的内力和应力复习进程

第七章直梁弯曲时的内力和应力一、填空题:1、梁产生弯曲变形时的受力特点,是梁在过轴线的平面内受到外力偶的作用或者受到和梁轴线相___________的外力的作用。

2、车床上的三爪盘将工件夹紧之后,工件夹紧部分对卡盘既不能有相对移动,也不能有相对转动,这种形式的支座可简化为___________支座。

3、矩形截面梁弯曲时,其横截面上的剪力作用线必然________于外力并通过截面________。

4、梁弯曲时,其横截面上的剪力作用线必然__________于横截面。

5、梁弯曲时,任一横截面上的弯矩可通过该截面一侧(左侧或右侧)的外力确定,它等于该一侧所有外力对________力矩的代数和。

6、梁上某横截面弯矩的正负,可根据该截面附近的变形情况来确定,若梁在该截面附近弯成上_____下_______,则弯矩为正,反之为负。

7、用截面法确定梁横截面上的剪力时,若截面右侧的外力合力向上,则剪力为______。

8、以梁横截面右侧的外力计算弯矩时,规定外力矩是顺时针转向时弯矩的符号为_______。

9、将一悬臂梁的自重简化为均布载荷,设其载荷集度为q,梁长为L,由此可知在距固定端L/2处的横截面上的剪力为_________,固定端处横截面上的弯矩为__________。

10、在梁的集中力偶左、右两侧无限接近的横截面上,剪力相等,而弯矩则发生_______,_________值等于梁上集中力偶的力偶矩。

11、剪力图和弯矩图是通过________和___________的函数图象表示的。

12、桥式起重机横梁由左、右两车轮支承,可简化为简支梁,梁长为L,起吊重量为P,吊重位置距梁左、右两端长度分别为a、b,且a>b,由此可知最大剪力值为_______.13、将一简支梁的自重简化为均布载荷作用而得出的最大弯矩值,要比简化为集中罚作用而的最大弯矩值__________14、由剪力和载荷集度之间的微分关系可知,剪力图上的某点的_________等于对应于该点的载荷集度.15、设载荷集度q(X)为截面位置X的连续函数,则q(X)是弯矩M(X)的_______阶导函数。

材料力学第七章课后题答案 弯曲变形

材料力学第七章课后题答案 弯曲变形
3.确定积分常数
(a) (b)
7
该梁的位移边界条件为:
在x 0处, w0 dw 在x 0处, 0 dx 将条件(c)与(d)分别代入式(b)和(a),得 D 0,C 0 4.建立挠曲轴方程 将所得 C 与 D 值代入式(b),得挠曲轴的通用方程为
1 Fa 2 F 3 3Fa [ x x xa EI 4 6 4 由此得 AC 段、 CD 段和 DB 段的挠曲轴方程依次为 w
5.计算 wC 和 θ B 将 x a 代入上述 w1或w2 的表达式中,得截面 C 的挠度为
41qa 4 ( ) 240EI 将以上所得 C 值和 x 2a 代入式(a),得截面 B 的转角为 wC θB qa 3 7 4 16 1 187 203qa 3 [ ] EI 24 24 24 720 720 EI ()
(4)
D1 0 , C1
由条件(4) 、式(a)与(c) ,得
qa 3 12 EI
C2
由条件(3) 、式(b)与(d) ,得
qa 3 3EI
D2
7qa 4 24 EI
3. 计算截面 C 的挠度与转角 将所得积分常数值代入式(c)与(d) ,得 CB 段的转角与挠度方程分别为
q 3 qa 3 x2 6 EI 3EI 3 q qa 7 qa 4 4 w2 x2 x2 24 EI 3EI 24 EI 将 x2=0 代入上述二式,即得截面 C 的转角与挠度分别为
5.计算 wC 和 θ B 将 x a 代入上述 w1 或 w2 的表达式中,得截面 C 的挠度为
Fa 3 ( ) 12 EI 将以上所得 C 值和 x 3a 代入式(a),得截面 B 的转角为 wC

工程力学---材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解

工程力学---材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解

P
B C
l 2 l 2
A
x
P 解:AC段:M ( x ) x 2 y P EIy x 2 A P 2 EIy x C x 4 l 2 P 3 EIy x Cx D 12
P
B C
l 2
x
由边界条件: x 0时,y 0
l 由对称条件: x 时,y 0 2
梁的转角方程和挠曲线方程分别为:
最大转角和最大挠度分别为:
11qa max A 1 x1 0 6 EI 19qa 4 ymax y2 x2 2 a 8EI
3
例5:图示变截面梁悬臂梁,试用积分法
求A端的挠度 P
I
2I
l
fA 解: AC段 0 x l
B
P 3 2 EIy x C2 x D2 6
由边界条件: x l时,y=0, =0
得:
C2
1 1 Pl 2 , D2 Pl 3 2 3
l x 时,yC左 =yC右 , C左 = C右 由连续条件: 2
5 3 2 C1 Pl , D1 Pl 3 16 16
由连续条件: x1 x2 a时, y1 y2 , y1 y2
由边界条件: x1 0时, y1 0
0 x 2 a 时 , y 由对称条件: 2 2
得 D1 0
C1 C2 得 D1 D2
11 3 得 C2 qa 6
qa 1 (11a 2 3 x12 ) 0 x1 a 6 EI q 2 [3ax2 2 ( x2 a)3 11a 3 a x2 2a 6 EI qa y1 (11a 2 x1 x13 ) 0 x1 a 6 EI q y2 [4ax23 ( x2 a) 4 44a 3 x2 ] a x2 2a 24 EI

工程力学---材料力学(第七章- 梁弯曲时位移计算与刚度设计)经典例题及详解

工程力学---材料力学(第七章- 梁弯曲时位移计算与刚度设计)经典例题及详解

得: D 0
Pl 2 得: C 16
AC段梁的转角方程和挠曲线方程分别为:
P 2 2 (4 x l ) 16 EI Px y (4 x 2 3 l 2 ) 48 EI
y
P
B
A
x
l 2
C
l 2
x
最大转角和最大挠度分别为:
max A B
ymax y
q 7qa 8k 384 EI
3
q/2
B C
q/2
A B C
顺时针
q/2
例16:图示梁B处为弹性支座,弹簧刚 度
EI k 求C端挠度fC。 2a 3
q
A
EI k
B
C
2a
a
解:(1)梁不变形,仅弹簧变形引起的C点挠度为 4 3 qa 3qa B处反力=qa fC 1 2 k EI
q
B
x
l
由边界条件: x 0时,y 0
x l时,y 0
得:
ql 3 C , D0 24
梁的转角方程和挠曲线方程分别为:
y
q 2 3 3 (6lx 4 x l ) 24 EI
q
x
A qx y (2lx 2 x 3 l 3 ) 24 EI
ql 3 24 EI
A a a
q
B C
a
qa 12 EI
顺时针
3 3
P=qa
A B
P=qa
m=qɑ²/2
qa qa C B 6 EI 4 EI
4
顺时针
B
q
C
qa 5qa fC B a 8EI 24 EI

《建筑力学》第7章梁的弯曲

《建筑力学》第7章梁的弯曲

∑M
( A)
= 0 ⇒ −2 ×10 + 8 + YB × 6 = 0
∑M
( B)
= 0 ⇒ 4 ×10 + 8 − YA × 6 = 0
YB = 2kN
YA = 8kN
YA
YB
目录
例7-1: : (2)截开 ) 处切开梁分成左右两个隔离体。 在D处切开梁分成左右两个隔离体。 处切开梁分成左右两个隔离体 (3)取隔离体进行受力分析 ) 在切面处将未知内力--剪力和弯矩设定为方向 剪力和弯矩设定为方向, 在切面处将未知内力 剪力和弯矩设定为方向,对隔离体进行受 力分析即表达出内力,照抄出外力。 力分析即表达出内力,照抄出外力。
dA
N = ∫σdA, M y = ∫ zσdA, MZ = ∫ yσdA
A A A
y z
由静力法分析可得: 由静力法分析可得:
z
y
N = ∫σdA= 0,
A
My = ∫ zσdA= 0,
A
MZ = ∫ yσdA= M
A
弯曲正应力
对于
MZ = ∫ yσdA= M
A
将 σ = Eε = E y ρ
代入得: 代入得
P1
D
P2 A C B
P3 E
a
a
a
a
解:1.将梁上荷载分开 ,求P1作用下梁的弯矩图 将梁上荷载分开
P1
D
P2 A C B
P1 P3 E a a a a
D
A
C
B
E
a
a
a
a
1200
d a
c
b
e
2 .P2作用下梁的弯矩图
P2 P1

材料力学答案第七章

材料力学答案第七章

第七章 弯曲变形第七章答案7-1 用积分法求位移时,下列各等直梁应分几段?写出各梁中AB 段的挠曲线近似微分方程。

写出确定积分常数的位移边界条件和变形连续条件。

解:应该分为3段 取CD 为研究对象得:ql F F D C 41==取整体为研究对象得:ql F A 83=,ql F A 87= )223( )2(21)2(41)23(l )23(41)(0 21833233322212111l x l x l q x l ql w EI l x x l ql w EI l x qx qlx w EI ≤≤---=''≤≤--=''≤≤-=''0|||||0|0||23233232233232210133232211='='============l x lx lx lx lx l x l x x w w w w w w w w解:应该分为2段F F F C A ==,0)2( )2()(0 22211l x l x l F w EI l x Fl w EI ≤≤-=''≤≤=''1x x AF DF BF DF(b)AF 1xkFw w w w w w l x l x l x l x l x x -='='========22212101232321|||||0| 7.2 用积分法求图示梁跨度中点的挠度c w 和端截面转角A θ及B θ。

(EI ql w C 76854=,EI ql A 38473=θ,EI ql B 12833-=θ)解:ql F A 81=;ql F B 83=1113111211111 481 161)2(0 81D x C qlx EIw C qlx w EI l x qlx w EI ++=+='≤≤='' 2224232223222222222 )2(241 481 )2(61 161)2( )2(21 81D x C l x q qlx EIw C l x q qlx w EI l x l l x q qlx w EI ++--=+--='≤≤--='' 边界条件:0|011==x w ⇒ 01=D 0|22==l x w ⇒0 162414812244=++⋅-D l C ql ql 222132||l x l x w w ===⇒2211)2( )2(D l C D l C +=+ 222132||l x l x w w =='='⇒021==C C则:021==D D ,4213847ql C C -== 32111133113847 161)2(0 3847 481qlqlx w EI l x x ql qlx EIw -='≤≤-=3847)2(61 161)2( 3847)2(241 48133222222342322ql l x q qlx w EI l x l x ql l x q qlx EIw ---='≤≤---= AF BF1xEI ql w x A 3847|3011-='==θ EI ql w l x B 1283|322='==θ EIql l ql l ql EI w w C 3845)]2(3847 )2(481[13331-=-==7.3 用叠加法求下列各梁的指定位移。

工程力学第7章 弯曲强度答案

工程力学第7章 弯曲强度答案

43第 7 章 弯曲强度7-1 直径为 d 的圆截面梁,两端在对称面内承受力偶矩为 M 的力偶作用,如图所示。

若已知变形后中性层的曲率半径为 ρ ;材料的弹性模量为 E 。

根据 d 、 ρ 、E 可以求得梁所承受 的力偶矩 M 。

现在有 4 种答案,请判断哪一种是正确的。

(A)M =E π d 习题 7-1 图(B) 64ρ M =64 ρ(C) E π d 4 M =E π d(D)32 ρ M = 32ρ E π d 3正确答案是 A 。

7-2关于平面弯曲正应力公式的应用条件,有以下 4 种答案,请判断哪一种是正确的。

(A) 细长梁、弹性范围内加载; (B) 弹性范围内加载、载荷加在对称面或主轴平面内; (C) 细长梁、弹性范围内加载、载荷加在对称面或主轴平面内; (D) 细长梁、载荷加在对称面或主轴平面内。

正确答案是 C _。

7-3 长度相同、承受同样的均布载荷 q 作用的梁,有图中所示的 4 种支承方式,如果从 梁的强度考虑,请判断哪一种支承方式最合理。

l 5习题 7-3 图正确答案是 d 。

7-4 悬臂梁受力及截面尺寸如图所示。

图中的尺寸单位为 mm 。

求:梁的 1-1 截面上 A 、−⎜ ⎟ A I zB 两点的正应力。

习题 7-4 图解:1. 计算梁的 1-1 截面上的弯矩:M = ⎛1×103N ×1m+600N/m ×1m ×1m ⎞ =−1300 N ⋅ m ⎝2 ⎠ 2. 确定梁的 1-1 截面上 A 、B 两点的正应力:A 点:⎛150 ×10−3 m ⎞ 1300 N ⋅ m ×⎜− 20 ×10−3m ⎟ σ = M z y = ⎝ 2 ⎠=2.54×106 Pa = 2.54 MPa (拉应力) I zB 点:100 ×10-3m ×(150 ×10-3m )3121300N ⋅ m ×⎜ 0.150m − 0.04m ⎟⎛ ⎞ σ = M z y ⎝ 2 ⎠ =1.62 ×106 Pa =1.62MPa(压应力) B ()127-5 简支梁如图所示。

第七章 弯曲变形

第七章 弯曲变形

材料力学
弯曲变形/挠曲线的近似微分方程
二、挠曲线的近似微分方程
1 M ( x) 力学公式 ( x) EI z d2y 1 dx2 数学公式 3 ( x) dy 2 2 [1 ( ) ] dx 1

,得:
以上两式消去
材料力学
d2y M ( x) dx2 3 EI z dy 2 2 [1 ( ) ] dx
材料力学
x 0, y A 0
x a时,C左 C右 x a时,yC左 yC右
x L, yB lBD
FBy h EA
FBy k
弯曲变形/用积分法求梁的变形
讨论:
(1)凡载荷有突变处(包括中间支座),应作为分段点;
(2)凡截面有变化处,或材料有变化处,应作为分段点; (3)中间铰视为两个梁段间的联系,此种联系体现为两 部分之间的相互作用力,故应作为分段点;
B L x
A
x L时,yB 0.
材料力学
弯曲变形/用积分法求梁的变形 若B支座改为弹簧支撑,则: y A a
L
若B支座改为拉杆支撑,则: D B kx A a
L
F
C
b
F C b
EA
h
x 0, y A 0
B
x a时,C左 C右 x a时,yC左 yC右
x L, y B
弯曲变形/用积分法求梁的变形 AC段 (0 x a) BC段 (a x L) Fb 2 Fb 2 F EI y1 EI 1 x C1 , EI y2 EI 2 x ( x a ) 2 C2 , 2L 2L 2 Fb 3 Fb 3 F EIy 1 x C1 x D1 , EIy 2 x ( x a ) 3 C2 x D2 , 6L 6L 6 3、确定常数 由边界条件:

梁的弯曲、变形复习及习题解答-2013

梁的弯曲、变形复习及习题解答-2013
Fs1 5kN
1
FA
Fs1
m 0;
M1 0
q=2kN/m 1 2 3 4 A 1 2 D3 B 4C 2m 2m 2m
F=12kN
2-2截面
F
y
0; FA Fs 2 0
FA
A 2 2
FB M2 Fs2
Fs 2 5kN
2
m
0; M 2 FA 2 0
m=12kN.m q=6kN/m 1 2 3 4 A 1 2 3 4 B 2m C 4m
FA Fs图
FB
4. 画剪力图
5. 根据剪力与弯矩之间的 微分关系画弯矩图
M图
6. 注意弯矩极值与剪力关系
9
无分布载荷段 外 力
q=0
均布载荷段
Fs 图 特 征
水平直线
Fs Fs Fs
斜直线
Fs x x
d 2 M ( x) q ( x) 2 dx
x

P

x

A
B
A
Fs M

a
l
FAy
4
判断剪力和弯矩的正负
弯曲内力的正负号规定:
① 剪力Fs :
Fs(+)
Fs(+) ② 弯矩M: M(+) M(+)
Fs(–)
Fs(–)
M(–)
M(–)
使微段梁有顺时针转动趋势的剪力为正,反之为 5 负;使微段梁产生向下凸变形的弯矩为正,反之为负。
用截面法求剪力和弯矩时应注意:
- ○ - ○
C z 30
M图
- ○
解:求支座反力;
画内力图;
21

第七章 弯曲——弯曲位移

第七章 弯曲——弯曲位移
EIy′′ = − M ( x )
EIy = − ∫ [ ∫ M ( x)dx]dx + Cx +D
式中C, D 由梁支座处的已知位移条件 即位移边界条件确定。 弯矩方程分n段时,积分常数个数为 2n 个 由边界条件确定的方程需要2n个 方法的局限性:外力复杂或多跨静定梁时计算量过大
EIy ′ = EI θ = − ∫ M ( x ) dx +C
第七章 弯曲--弯曲位移部分
(Displacements of Bending Beam)
§7-7 梁的位移─挠度及转角
在工程中,对某些受弯构件,除要 求具有足够的强度外,还要求变形不能 过大,即要求构件有足够的刚度,以保 证正常工作。
摇臂钻床的摇臂或车床的主轴变形过大, 就会影响零件的加工精度,甚至会出现废品。
Fb ( l 2 − b 2 ) Fb 3 F ( x − a )3 y2 = − x− x + 6 EIl 6 EIl 6 EI
受任意荷载的简支梁,只 要挠曲线上没有拐点,均 可近似地将梁中点的挠度 作为最大挠度。
F
a A x C D b B
x
y
l
例4:已知梁的抗弯刚度为EI。试求图示简支梁
的转角方程、挠曲线方程,并确定θmax和ymax。
挠曲线近似微分方程
1、挠曲线方程(deflection equation)
曲线 y = f (x) 的曲率为
y′′ κ=± 2 3/ 2 ′ (1 + y )
梁纯弯曲时中性层的曲率:
M ( x) 1 = ρ ( x) EI z
M ( x) 1 = ρ( x) EI z
1 y′′ κ= =± ≈ ± y′′ 2 3/ 2 (1 + y′ ) ρ( x)

梁的弯曲第七章答案

梁的弯曲第七章答案

梁的弯曲第七章答案思考题1、什么是梁的纯弯曲?什么是梁的横力弯曲?当梁的横截面上仅有弯矩而无剪力,即仅有正应力而无切应力的情况,称为纯弯曲。

横截面上同时存在弯矩和剪力,即既有正应力又有切应力的情况,称为横力弯曲或剪切弯曲。

2、什么是纵向对称截面?什么是中性层和中性轴?中性轴的位置如何确定?梁的横截面一般至少有一个对称轴,因而由各横截面的对称轴组成了梁的一个纵向对称面。

梁弯曲时部分纤维伸长,部分纤维缩短,由伸长区到缩短区,其间必存在一长度不变的过渡层,称为中性层,中性层与横截面的交线称为中性轴。

3、画剪力图和弯矩图的一般步骤是什么?弯曲变形时,如何确定梁的危险截面?a.利用平衡方程求出梁上的全部约束反力;b.判断梁上各段Q、M图的形状;c.确定关键点的剪力和弯矩值,并作图。

d.在图中找到最大剪力和最大弯矩的值,从而确定危险截面。

等截面梁弯曲时,最大弯矩所在的截面为危险截面。

4、弯曲变形时,梁的正应力在横截面上如何分布?如何确定梁横截面的危险点?梁弯曲时,横截面上任一点处的正应力与该截面上的弯矩成正比,与惯性矩成反比,与该点到中心轴的距离y 成正比。

y 值相同的点,正应力相等;中性轴上各点的正应力为零。

在中性轴的上、下两侧,一侧受拉,一侧受压。

距中性轴越远,正应力越大。

梁横截面的危险点是到中心轴的距离最远的点。

5、什么是挠曲线?什么挠度?什么是转角?它们之间有何关系?直梁发生弯曲变形时,除个别受约束处以外,梁内各点都要移动,即都有线位移。

由于各个横截面形心的线位移不同,以致原为直线的形心轴变为平滑曲线,这个曲线称为挠曲线。

受弯曲变形的简支梁,在C 截面,梁横截面的形心变形后移到C ’截面,则梁横截面的形心沿y 轴方向的线位移称为该截面的挠度。

梁的横截面对其原有位置的角位移,称为该截面的转角。

关系:)('tan x f dxdy ==≈θθ。

习题7-1最大剪力值为7qa/4 。

最大弯矩值为7-2 (1)图略(2)MPa 9200max =σ。

建筑力学—弯曲变形及答案概要

建筑力学—弯曲变形及答案概要

第七章 组合变形本章主要讨论建筑工程中常见的组合变形的强度计算问题。

其中斜弯曲、拉(压)与弯曲、偏心拉(压)组合变形的强度计算问题是本章的重点。

第一节 组合变形的概念前面的章节分别研究了杆件在轴向拉(压)、剪切、扭转、平面弯曲基本变形下的强度和刚度计算。

但在工程实际中,结构中一些杆件的受力情况是复杂的,往往同时发生两种或者两种以上的基本变形,这种由两种或两种以上的基本变形组合而成的变形称为组合变形。

例如,图7-1a 所示的烟囱,除自重引起的轴向压缩外,还有水平方向的风力引起的弯曲变形,即同时产生两种基本变形。

又如,图7-1b 所示的备有吊车的厂房柱,作用在立柱上的荷载1F 和2F ,其合力的作用线一般不在立柱轴线上,此时,立柱即发生压缩变形又发生弯曲变形。

再如,图7-1c 所示的曲拐轴,在荷载F 作用下,曲拐AB 段同时发生扭转和弯曲变形。

上述这些杆件的变形,都是结构杆件发生组合变形的工程实例。

图7-1由上一章梁的弯曲可知:外力沿横向作用在梁的纵向对称平面内,梁将发生平面弯曲变形。

那么,外力虽然沿梁的横向(垂直于轴线),但不作用在纵向对称平面内时,梁会发生怎样的变形呢?实验及理论研究得知,此时梁轴线变形后弯成的曲线已不在荷载的作用平面内,即不属于平面弯曲,这种弯曲称为斜弯曲。

若外力不沿梁的横向(斜交于轴线),但力作用仍在纵向对称平面内,梁将发生拉(压)与弯曲组合变形。

若作用外力虽然沿杆件轴向方向,但不与轴线重合,杆件也将发生拉(压)与弯曲组合变形,称为偏心拉(压)。

对发生组合变形的杆件计算应力和变形时,可将荷载进行简化或分解,使简化或分解后得到的静力等效的荷载,每类荷载各自只引起一种基本变形,分别计算,再进行叠加,就得到由原来的荷载所引起的组合变形的应力和变形,这就是组合变形的分析方法和组合变形计算的叠加原理。

这里需要强调的是:叠加原理是在满足小变形和力与位移成线性关系的条件下才适用。

本章将主要讨论斜弯曲、拉压与弯曲、偏心拉伸(压缩)组合变形的强度计算问题。

(完整版)建筑力学(习题答案)

(完整版)建筑力学(习题答案)

建筑力学复习题一、判断题(每题1分,共150分,将相应的空格内,对的打“√”,错的打’“×”)第一章静力学基本概念及结构受力分析1、结构是建筑物中起支承和传递荷载而起骨架作用的部分。

(√)2、静止状态就是平衡状态。

(√)3、平衡是指物体处于静止状态。

(×)4、刚体就是在任何外力作用下,其大小和形状绝对不改变的物体。

(√)5、力是一个物体对另一个物体的作用。

(×)6、力对物体的作用效果是使物体移动。

(×)7、力对物体的作用效果是使物体的运动状态发生改变。

(×)8、力对物体的作用效果取决于力的人小。

(×)9、力的三要素中任何一个因素发生了改变,力的作用效果都会随之改变。

(√)10、既有大小,又有方向的物理量称为矢量。

(√)11、刚体平衡的必要与充分条件是作用于刚体上两个力大小相等,方向相反。

(×)12、平衡力系就是合力等于零的力系。

(√)13、力可以沿其作用线任意移动而不改变对物体的作用效果。

(√)14、力可以在物体上任意移动而作用效果不变。

(×)15、合力一定大于分力。

(×)16、合力是分力的等效力系。

(√)17、当两分力的夹角为钝角时,其合力一定小于分力。

(√)18、力的合成只有唯一的结果。

(√)19、力的分解有无穷多种结果。

(√)20、作用力与反作用力是一对平衡力。

(×)21、作用在同一物体上的三个汇交力必然使物体处于平衡。

(×)22、在刚体上作用的三个相互平衡力必然汇交于一点。

(√)23、力在坐标轴上的投影也是矢量。

(×)24、当力平行于坐标轴时其投影等于零。

(×)25、当力的作用线垂直于投影轴时,则力在该轴上的投影等于零。

(√)26、两个力在同一轴的投影相等,则这两个力相等。

(×)27、合力在任意轴上的投影,等于各分力在该轴上投影的代数和。

(√)28、力可使刚体绕某点转动,对其转动效果的度量称弯矩。

第七章 弯曲变形(习题解答)

第七章   弯曲变形(习题解答)

7-2c 梁受力、尺寸、刚度如图所示,求A 处的转角,以及C 、D 截面的挠度。

解:(1)求反力写弯矩方程:)3()(2)(2211x a P x M BCx P x M AB--=-=(2)分段积分''1112)(E I y x P x M AB-=-=''222)3()(EIy x a P x M BC=--=121'14C x P EIy +=222'2)3(2C x a P EIy +--=11131112D x C x P EIy ++=222322)3(6D x C x a P EIy ++-+=(3)边界、连续条件定积分常量00,0111=→==D y x⎪⎪⎪⎩⎪⎪⎪⎨⎧-==-=→⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=+⨯=+⨯+-⨯=⨯+⨯→⎩⎨⎧=====25673)23(2)2(402)23(602)2(1202322221221222313212121Pa D Pa C Pa C C a a P C a P D a C a a P a C a P y y a x x θθ时,(4)该梁的转角方程为⎪⎪⎩⎪⎪⎨⎧∈+--∈-=]3,2[(67)3(2]2,0[(3422221221'a a x Pax a P a x Pa x P EIy该梁的挠曲线方程为⎪⎪⎩⎪⎪⎨⎧∈-+-+∈-=]3,2[(2567)3(6]2,0[(31223223211231a a x Pa x Pax a P a x x Pa x P EIy(5)将横坐标值代入相应的式子可求出EIPay EIPa y EIPaD C A 4,,3332-==-=θ习题7-2c 图 习题7-5图7-5 用叠加法求图示外伸梁C 截面的挠度和转角。

解:(1)将原结构的荷载分解,如图所示。

(2)查表可得各简单载荷作用下的θC 、y C 之值。

并将其叠加,得所求θC 、y C 之值。

材料力学 第七章弯曲正应力(1,2)解析

材料力学 第七章弯曲正应力(1,2)解析

M
1.平面假设: 梁各个横截面变形后仍保持为平面,并仍垂直于变形 后的轴线,横截面绕某一轴旋转了一个角度。 2.单向受力假设: 假设各纵向纤维之间互不挤压。于是各纵向纤维均 处于单向受拉或受压的状态。
中性层 梁在弯曲变形时,凹面部分纵向纤维缩短,凸面 部分纵向纤维伸长,必有一层纵向纤维既不伸长也不 缩短,保持原来的长度,这一纵向纤维层称为中性层. 中性轴
C截面
Fb/4 拉应力 压应力 B截面
20
y 20
拉应力
压应力
可见:压应力强度条件由B截面控制,拉应力强度 条件则B、C截面都要考虑。
Fb/2
40 180
120 C 形心 86 z 134
Fb/4 考虑截面B :
t,max
c, max
M B y1 F / 2 2 103 mm134 mm 90 MPa 4 4 Iz 5493 10 mm F 73.8 kN
c
注:强度校核(选截面、荷载) ( 1) ( 2)
[ ]t [ ]c (等截面)只须校核Mmax处
[ ]t [ ]c (等截面)
(a)对称截面情况只须校核Mmax处使
maxt [ ]t , maxc [ ]c
(b)非对称截面情况,具体分析,一般要校核 M+max与 M-max两处。
查型钢表得56b号工字钢的Wz比较接近要求值
Wz 2447cm3 2447103 mm3
此时 max
M max 153MPa Wz
误差小于5%,可用
例4-17 跨长 l= 2m 的铸铁梁受力如图,已知铸铁 的许用拉应力[ t ]=30 MPa,许用压应力[ c ] =90 MPa。试根据截面最为合理的要求,确定T字形梁 横截面的尺寸d ,并校核梁的强度 。

建筑力学—弯曲变形及答案

建筑力学—弯曲变形及答案

第七章 组合变形本章主要讨论建筑工程中常见的组合变形的强度计算问题。

其中斜弯曲、拉(压)与弯曲、偏心拉(压)组合变形的强度计算问题是本章的重点。

第一节 组合变形的概念前面的章节分别研究了杆件在轴向拉(压)、剪切、扭转、平面弯曲基本变形下的强度和刚度计算。

但在工程实际中,结构中一些杆件的受力情况是复杂的,往往同时发生两种或者两种以上的基本变形,这种由两种或两种以上的基本变形组合而成的变形称为组合变形。

例如,图7-1a 所示的烟囱,除自重引起的轴向压缩外,还有水平方向的风力引起的弯曲变形,即同时产生两种基本变形。

又如,图7-1b 所示的备有吊车的厂房柱,作用在立柱上的荷载1F 和2F ,其合力的作用线一般不在立柱轴线上,此时,立柱即发生压缩变形又发生弯曲变形。

再如,图7-1c 所示的曲拐轴,在荷载F 作用下,曲拐AB 段同时发生扭转和弯曲变形。

上述这些杆件的变形,都是结构杆件发生组合变形的工程实例。

图7-1由上一章梁的弯曲可知:外力沿横向作用在梁的纵向对称平面内,梁将发生平面弯曲变形。

那么,外力虽然沿梁的横向(垂直于轴线),但不作用在纵向对称平面内时,梁会发生怎样的变形呢?实验及理论研究得知,此时梁轴线变形后弯成的曲线已不在荷载的作用平面内,即不属于平面弯曲,这种弯曲称为斜弯曲。

若外力不沿梁的横向(斜交于轴线),但力作用仍在纵向对称平面内,梁将发生拉(压)与弯曲组合变形。

若作用外力虽然沿杆件轴向方向,但不与轴线重合,杆件也将发生拉(压)与弯曲组合变形,称为偏心拉(压)。

对发生组合变形的杆件计算应力和变形时,可将荷载进行简化或分解,使简化或分解后得到的静力等效的荷载,每类荷载各自只引起一种基本变形,分别计算,再进行叠加,就得到由原来的荷载所引起的组合变形的应力和变形,这就是组合变形的分析方法和组合变形计算的叠加原理。

这里需要强调的是:叠加原理是在满足小变形和力与位移成线性关系的条件下才适用。

本章将主要讨论斜弯曲、拉压与弯曲、偏心拉伸(压缩)组合变形的强度计算问题。

材料力学第7章

材料力学第7章

由C点处的光滑连续条件:
w1 w1
xa
w2 w2
xa
xa
xa
C1 C 2
, D1 D 2
x0
由梁的边界条件: w1
0 ,
w2
xl
0
D1 D 2 0 ,
C1 C 2
Fb 6l
l b
2
2

12
材料力学
出版社 科技分社
得梁AC段转角方程和挠曲线位移方程
积分一次:
E Iw 1 Fb 2l Fb 6l x C1
2
挠曲线近 Fb 似微分方 E Iw1 x l 程:
积分二次:
E Iw 1 x C1 x D1
3
10
材料力学
出版社 科技分社
CB段(a x l): 弯矩方程:
M
2
x
Fb l
x F x a
tan dw dx f x
小变形梁可近似为 w f x 转角方程
2
材料力学
出版社 科技分社
§7.3 积分法求梁的位移
对于等截面直梁
EI w M x
一次积分得转角方程
EI EI w M x dx C
23
材料力学
出版社 科技分社
所谓改变结构来提高梁的刚度在这里是指增加梁的 支座约束使静定梁成为超静定梁。
24
材料力学
出版社 科技分社
本章小结 (1)梁的位移用挠度w和转角 两个基本量表示,且
x w x ;
(2)由挠曲线近似微分方程
EI w M x
C 0, D 0

材料力学第2版 课后习题答案 第7章 弯曲变形

材料力学第2版 课后习题答案  第7章 弯曲变形

解:查自重得:
q = 587.02 N / m
J = 15760cm4 Pl 3 5ql 4 f =− − 48EJ 384EJ −176 × 103 × 113 = 48 × 210 × 109 × 15760 × 10−8 × 4 −587.02 × 5 × 114 + 385 × 210 × 109 × 15760 × 10−8 × 4 = 0.0377 m = 3.77cm
(d) 解:
D A P P E
' yC = y E + θ B ia + y C
C B P
− P ( 2a ) − Pa 3 − Pa3 = − − 3EJ 3EJ 3EJ 3 −10 Pa = 3EJ
3
252
7-5 门式起重机横梁由4根36a工字钢组成如图所示, 梁的两端均可视为铰支, 钢的弹 性模量E=210Gpa。试计算当集中载荷P=176 kN作用在跨中并考虑钢梁自重时,跨中截面 C的挠度yC。
x=l
∴y =−
'
∴D = 0
y=0
∴C =
− M 0l 6
M 0l 2 ⎛ x x 3 ⎞ ⎜ − ⎟ 6 EJ ⎝ l l 3 ⎠
M 0l 2 ⎛ 1 3 x 2 ⎞ ∴θ = y = − ⎜ − ⎟ 6 EJ ⎝ l l 3 ⎠
− M 0l 2 l ;此时挠度最大 f = 3 9 3EJ 2 ⎛ l ⎞ − M 0l 中点挠度 y ⎜ ⎟ = ⎝ 2 ⎠ 16 EJ − M 0l Ml θA = θB = 0 6 EJ 3EJ (b)解: 设中点为C点,则分析CB段
''
C2 = −
D2 = −
a4 24
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考题
1、什么是梁的纯弯曲?什么是梁的横力弯曲?
当梁的横截面上仅有弯矩而无剪力,即仅有正应力而
无切应力的情况,称为纯弯曲。

横截面上同时存在弯
矩和剪力,即既有正应力又有切应力的情况,称为横
力弯曲或剪切弯曲。

2、什么是纵向对称截面?什么是中性层和中性轴?中
性轴的位置如何确定?
梁的横截面一般至少有一个对称轴,因而由各横截面的对称轴组成了梁的一个纵向对称面。

梁弯曲时部分纤维伸长,部分纤维缩短,由伸长区到缩短区,其间必存在一长度不变的过渡层,称为中性层,中性层与横截面的交线称为中性轴。

3、画剪力图和弯矩图的一般步骤是什么?弯曲变形时,
如何确定梁的危险截面?
a.利用平衡方程求出梁上的全部约束反力;
b.判断梁上各段Q、M图的形状;
c.确定关键点的剪力和弯矩值,并作图。

d.在图中找到最大剪力和最大弯矩的值,从而确定危险截面。

等截面梁弯曲时,最大弯矩所在的截面为危险截面。

4、弯曲变形时,梁的正应力在横截面上如何分布?如
何确定梁横截面的危险点?
梁弯曲时,横截面上任一点处的正应力与该截面上的弯矩成正比,与惯性矩成反比,与该点到中心轴的距离y 成正比。

y 值相同的点,正应力相等;中性轴上各点的正应力为零。

在中性轴的上、下两侧,一侧受拉,一侧受压。

距中性轴越远,正应力越大。

梁横截面的危险点是到中心轴的距离最远的点。

5、 什么是挠曲线?什么挠度?什么是转角?它们之间有何关系?
直梁发生弯曲变形时,除个别受约束处以外,梁内各点都要移动,即都有线位移。

由于各个横截面形心的线位移不同,以致原为直线的形心轴变为平滑曲线,这个曲线称为挠曲线。

受弯曲变形的简支梁,在C 截面,梁横截面的形心变形后移到C ’截面,则梁横截面的形心沿y 轴方向的线位移称为该截面的挠度。

梁的横截面对其原有位置的角位移,称为该截面的转角。

关系:)('tan x f dx
dy ==≈θθ。

习 题
7-1
最大剪力值为7qa/4 。

最大弯矩值为
7-2 (1)图略
(2)MPa 9200max =σ。

相关文档
最新文档