基于秩转换的非参数检验

合集下载

公布规划-第八章秩转换的非参数检验

公布规划-第八章秩转换的非参数检验

假设:M=45.3 求差、编秩、求和
查表:n=11、T=1.5,P<0.005,差别有统 东部 西部 北部
第一季度 第二季度 第三季度 第四季度
20.4
27.4
90
20.4
30.6
38.6
34.6
31.6
45.9
46.9
45
43.9
计学意义,可认为该厂工人的尿氟含量
高于当地正常人的尿氟含量。
**第二节 两个独立样本 比较的Wilcoxon秩和检验
本含量相等的资料)
补充2、各实验组与对照组 比较的秩和检验
1、各样本秩和从大到小排列
2、q | RT RC | sRT RC
n(na)(na 1)
s RT RC
6
3、查表下结论(此法仅适用于各组样本含量相
等的资料)
结束
7
29.0
9
36.0
12

38

5
6.5
1
9.0
2
12.5
3
18.0
5
24.0
8

19

5
*一、多样本比较的秩和检验
1.建立检验假设: H0:三个处理组总体分布相同; H1:三个总体的分布不同或不全相同。 =0.05。
2.计算 编秩:将各组由小到大排队,再将三个组的数据统一
编秩。 编秩中,
若有相同的数据在同一组内,其秩次按位置顺序编号; 若相同的数据在不同组内,则取其平均秩次。
20 10 48 2 -2 0 15 13 31 6 -36 5 T =54.5 T
8 5 11 1.5 -1.5
7 6 9 4 -10 3 =11.5

秩转换的非参数检验

秩转换的非参数检验

(2)正态近似法u 检验 如果n超出附表10范 围,则用以下公式计算u值,进行u检验:
u T n1 (n1 n2 1) / 2 t 3 t j) ( j n1n2 (n1 n2 1) 1- 3 12 N N
( t C 1-
3 3 j
二、两组频数表或等级资料比较
例8-4 39名吸烟工人和40名不吸烟工人的碳氧血红蛋 白HbCO(%)含量见表8-6。问吸烟工人的HbCO(%)含量 是否高于不吸烟工人的HbCO(%)含量?
表8-6 吸烟工人和不吸烟工人的HbCO(%)含量比较 含量 吸烟 不吸烟 合 秩次 平均 秩和 工人 工人 计 范围 秩次 吸烟 不吸烟
(3)计算正负秩和: T = 54.5, T = 11.5 (4)确定检验统计量T 任取T 和 T 为T ,本例取T =11.5。 3.确定P 值,作出推论: (1) n≤50,查表法。本例n=11,查附表9得 T0.05, 为 ~56, 11 10
本例11.5在此范围内,故P >0.05,按α =0.05 水准,不拒绝Ho 还不能认为两法测定结果有差别。 (2) n>50,u 检验。
第八章
秩转换的非参数检验
非参数检验的概念: 非参数检验是指对原始资料无特殊要求(如正 态分布、总体方差相等)的一类检验方法,它不 是比较参数,而是比较分布的位置。不符合t 检验 和F检验的数值变量资料可用秩和检验,此外,秩 和检验还可用于两组或多组等级资料以及“开口” 资料的比较。等级相关也属于非参数检验。
表8-9 三种药物杀灭钉螺的死亡率(%)比较 甲药 乙药 丙药 死亡率 秩次 死亡率 秩次 死亡率 秩次 32.5 10 16.0 4 6.5 1 35.5 11 20.5 6 9.0 2 40.5 13 22.5 7 12.5 3 46.0 14 29.0 9 18.0 5 49.0 15 36.0 12 24.0 8 63 ─ 38 ─ 19 Ri ni 5 ─ 5 ─ 5

非参数检验的基本原理

非参数检验的基本原理

非参数检验的基本原理非参数检验是一种利用统计方法来检验假设的一种方法,与参数检验相比,非参数检验不需要对总体的分布做出假设,更为灵活。

本文将介绍非参数检验的基本原理。

一、概述非参数检验是一种统计方法,既不要求数据符合特定分布,也不对总体参数做出假设。

与之相反,参数检验通常假设数据服从特定的分布,例如正态分布。

非参数检验的主要优点是可以更全面地处理数据,更适用于复杂的情况。

然而,非参数检验的统计效率通常较低,需要更多的样本来达到相同的置信水平。

二、基本原理1. 秩次转换非参数检验通常使用秩次转换来处理数据。

所谓秩次转换是将原始的数值转换为它们在样本中的秩次,从而消除数值的大小差异。

对于同一组数据,秩次转换后,可以应用更广泛的统计方法。

2. Wilcoxon符号秩检验Wilcoxon符号秩检验是一种非参数检验方法,主要应用于配对样本或者两组独立样本之间的差异比较。

它的基本思想是对每个观测值计算它们的符号秩,然后通过比较两组样本的秩和来判断差异是否显著。

3. Mann-Whitney U检验Mann-Whitney U检验是一种非参数检验方法,用于比较两组独立样本之间的差异。

它的基本原理是将两组样本中的所有观测值汇总,然后对这些观测值进行秩次转换,并计算两组样本排名和。

通过比较两组样本排名和的大小来判断差异是否显著。

4. Kruskal-Wallis H检验Kruskal-Wallis H检验是一种非参数的方差分析方法,用于比较三组或以上独立样本之间的差异。

它的基本原理是将所有样本的观测值汇总,然后进行秩次转换,并计算各组样本排名和的平均值。

通过比较平均排名和的大小来判断差异是否显著。

三、案例研究为了更好地理解非参数检验的原理,我们以某家公司销售部门的两个月销售额作为例子进行案例研究。

假设第一个月公司销售额为[100, 80, 120, 90, 110],第二个月公司销售额为[95, 85, 115, 100, 105]。

第九讲 秩转换的非参数检验

第九讲 秩转换的非参数检验
T ③任取正秩和或负秩和为 ,本例取
T 11.5

50 确定 P 值,作出推断结论:当n 时,查 T 界值表(附表 9)。
查表时,自左侧找到 n,将检验统计量T 值与相邻左侧一栏的界值相 比: 若 T 值在上、下界值范围内,其 P 值大于表上方相应概率水平;
P 若 T 值恰好等于界值,其 值等于(一般是近似等于)相应概率水平;
d 差 值
(4)=(3)-(2) 20 10 48 2 -2 0 15 13 31 6 -36 5 ─
正 秩 (5) 8 5 11 1.5
负 秩 (6)
1.5 7 6 9 4 10 3 54.5 11.5
第一节 配对样本比较的Wilcoxon符号秩检验
• 血清谷-丙转氨酶不知是否符合正态分布, 本例为小样本资料,其配对差值经正态 性检验,得,虽可用配对检验,为保守 起见,现用Wilcoxon符号秩检验。
t3 t2 中有 2 个 1.5,5 个 8,3 个 14,则t1 2 , 5 , 3 , (t j t j ) (2 2) (53 5) (33 3) 150 。
第一节 配对样本比较的Wilcoxon符号秩检验
符号秩检验若用于配对的等级资料, 则先把等级从弱到强转换成 秩(1,2,3,…) ;然后求各对秩的差值,省略所有差值为 0 的对子数, 令余下的有效对子数为 ;最后按 个差值编正秩和负秩,求正秩和 或负秩和。但对于等级资料,相同秩多,小样本的检验结果会存在偏 性,最好用大样本。
第一节 配对样本比较的Wilcoxon符号秩检验
据表 8-2 第(3) (4)栏,取T 1.5 。 、 有效差值个数n 11 。 n 11 和T 1.5 查附表 9, 据 得单侧P 0.005 ,

8.秩转换的非参数检验-10.14

8.秩转换的非参数检验-10.14

11.5
一、配对样本差值的中位数和0比较 配对样本差值的中位数和 比较
附表9 T 界值表(配对比较的符号秩和检验用) 界值表(配对比较的符号秩和检验用) 单侧:0.05 0.025 0.01 0.005 N 双侧:0.10 0.05 0.02 0.010 5 0-15 .-. .-. .-. 6 2-19 0-21 .-. .-. 7 3-25 2-26 0-28 .-. 8 5-31 3-33 1-35 0-36 , 9 8-37 n=11,T=11.5 3-142 5-140 1-44 查表法: ①查表法: 10 10-45 8-47 5-50 3-52 11 13-53 10-56 7-59 5-61 当 n≤50 时 , 根 据 n 和 12 17-61 13-65 9-69 7-71 T 查 T 界值表 ( 附表 界值表( 13 21-70 17-74 12-79 0.05<P<0.10,按照 水准, 9-82 ,按照α=0.05水准,不 水准 14 25-80 21-84 15-90 12-93 9)。 ) 拒绝H30-90 拒绝 0,尚不能认为两组测定结果有 15 25-95 19-101 15-105 16 35-101 29-107 23-113 19-117 差别。 差别。 17 41-112 34-119 27-126 23-130 18 47-124 40-131 32-139 27-144 若统计量T值在某 界值范围内, 53-137 相应概率; 值在某T界值范围内 若统计量 值在某 界值范围内,P值 > 相应概率; 37-153 值 19 46-144 32-158 60-150 43-167 37-173 值恰好等于界值, 值 20相应概率; 若T值恰好等于界值,P值 = 相应概率; 52-158 值恰好等于界值 . . . . . . . . . 值在界值范围外, 值 相应概率。 若T值在界值范围外,P值 <. 相应概率。 值在界值范围外 50 466-809 434-841 397-878 373-902

秩转换的非参数检验

秩转换的非参数检验

秩转换的非参数检验基本概念1.参数检验方法(parametric test):总体分布类型已知的条件下对其参数进行估计或检验。

(如t-test, F- test)2.非参数检验方法(nonparametric test):一种不依赖总体分布的具体形式,也不对参数进行估计或检验的统计方法来分析此类资料这种方法不受总体参数的影响,检验的是分布或分布位置,而不是参数。

这样的检验方法称为非参数检验(如基于秩次的检验)3.秩次(rank)):秩统计量,是指全部观察值按某种顺序排列的位序。

在一定程度上反映了等级的高低。

4.秩和(rank sum):同组秩次之和。

在一定程度上反映了等级的分布位置非参数检验的优缺点:优点:无严格的条件限制,且多数非参数统计方法较为简单,易于理解和掌握,应用范围广缺点:对适宜参数统计的资料,若用非参数统计处理,常损失部分信息,降低检验效能。

总结:因此对适合参数统计条件的资料或经变量变换后适合参数统计的资料,应最好用参数统计。

但资料不具备用参数统计的条件时,非参数统计是很有效的分析方法适用范围:(1)总体分布为偏态或分布形式未知的计量资料(尤其在n<30的情况下)。

(2)等级资料。

(3)个别数据偏大或数据的某一端无确定的数值。

(4)各总体方差不齐。

检验步骤1、检验假设H0:差值的总体中位数Md=0 H1:差值的总体中位数Md≠0 α=0.052、求差值3、编秩:依差值的绝对值从小到大编秩遇差值为0的对子,舍去不计,同时样本量减一遇差值绝对值相等则取平均秩,称为相同秩(ties)然后按差值的正负对秩次冠以正负号4、求检验统计量:任取正秩和或负秩和为T5、确定P值并做出统计推断(查附表9,内大外小原则)正态近似法(n>50时)超出附表9范围,可用正态近似法作u检验。

两样本比较的秩和检验基本思想:如果H0 成立,即两组分布位置相同,则A组的实际秩和应接近理论秩和n1(N+1)/2; (B组的实际秩和应接近理论秩和n2(N+1)/2).或相差不大,差值很大的概率应很小。

非参数统计中的秩和检验方法详解(七)

非参数统计中的秩和检验方法详解(七)

非参数统计中的秩和检验方法详解统计学作为一门应用广泛的学科,其研究对象主要是各种数据的收集、整理、分析和解释。

在统计学中,参数统计和非参数统计是两种常用的分析方法。

在本文中,我们将重点介绍非参数统计中的一种常见方法——秩和检验。

一、秩和检验的基本原理秩和检验是一种基于秩次的非参数假设检验方法,它不需要对总体分布进行任何假设,因此在数据分布未知或不满足正态分布假设的情况下,秩和检验可以很好地进行统计推断。

秩和检验的基本原理是将样本数据进行排序,然后将排序后的数据转化为秩次,再通过对秩次进行比较来进行假设检验。

秩和检验适用于两组或多组独立样本的比较,常用于检验总体的中位数是否相等或者总体分布是否相同。

二、秩和检验的步骤秩和检验的步骤主要包括数据排序、秩次转换和秩和比较。

具体步骤如下:1. 数据排序:首先对样本数据进行排序,可以按照从小到大或者从大到小的顺序进行排序。

2. 秩次转换:将排序后的数据转化为秩次,即给每个数据赋予一个秩次,通常情况下,秩次是按照数据在样本中出现的顺序进行分配的。

如果出现相同的数据,可以采取加权秩次的方法进行处理。

3. 秩和比较:对计算得到的秩次进行比较,通过比较秩和的大小来进行假设检验,得出检验统计量并进行显著性检验。

三、秩和检验的应用秩和检验方法在实际应用中有着广泛的应用,特别是在医学、生物学、社会科学和工程领域等。

下面以两组独立样本的比较为例,介绍秩和检验的应用。

假设有两组独立样本,分别记为X和Y,我们要比较这两组样本的中位数是否相等。

首先对两组样本数据进行排序,并进行秩次转换,得到秩和值RX和RY,然后对秩和值进行比较,通过比较得到的检验统计量进行显著性检验,从而判断两组样本的中位数是否相等。

四、秩和检验的优缺点秩和检验作为一种非参数方法,具有一些优点和局限性。

优点:秩和检验不需要对数据分布进行假设,因此对于不满足正态分布假设的数据具有较好的适用性;同时,秩和检验是一种较为稳健的检验方法,对异常值和极端值的影响相对较小。

秩转换的非参数检验

秩转换的非参数检验

参数检验

参数检验方法:t 检验,方差分析; 总体分布假定:各组样本所来自的总体为 正态分布(已知的分布形式),各组样本所 来自的总体方差齐性。
非参数检验

定义:不依赖于总体的分布类型,对样本 所来自总体的分布不作严格假定的统计推 断方法,称为非参数检验(nonparametric test)。直接对总体分布做假设检验。 又称为任意分布检验(distribution-free test)。
(1) 很低 低 中 偏高 高 合计
(2) 1 8 16 10 4
(3) 2 23 11 4 0
(4) 3 31 27 14 4 79
(5) 1~3 4~34 35~61 62~75 76~79 —
(6) 2 19 48 68.5 77.5 —
39(n1) 40(n2)
1917(T1) 1243(T2)
查T界值表。
(3)确定P值,作出结论
若n1≤10且n2-n1≤10,可通过查阅T界值表
(附表10)确定P值;
若两样本量不满足上述条件,则可采用正
态近似法作u检验,按公式(8-2)计算u值。
正态近似法
| T n 1(N 1)/2 | n 1 n 2(N 1) ( t j t j ) ) (1 3 12 N N
(通常取秩和较小者)。
, 较小例数组的秩和 n 1 n 2 T min(R1 ,R 2 ),n 1 n 2
N n1 n2 n0 min( n1 , n2 )
较小例数组的平均秩和为:
n0(1 N)/2
若H0成立,T值应接近 n0(1 N)/2 ,若T值严重偏离
n0(1 N)/2 ,则提示H0可能是不正确的。小样本时,

秩和检验

秩和检验

自由度为(k-1)
当各区组间出现相同秩次时,需进行校正 校正公式为

2 c


c
2
c 1
(t
3 j
t j ) bk ( k
2
1)
b为区组个数,k为处理组个数
随机化区组设计资料的多重比较
检验假设 : H0:第i组与第j组所代表的总体中位数相等 H1:第i组与第j组所代表的总体中位数不等 样本含量较大时,计算Zij值
例: 四种疾病患者痰液内嗜酸性粒细胞的检查 结果见表。问四种疾病患者痰液内嗜酸性粒细 胞的等级分布有无差别?
四种疾病患者痰液内嗜酸性粒细胞等级比较
例 数 白细胞等 级 秩次范 围 平均 秩次 秩 和 合计
支气管扩 张
肺水肿
肺癌
病毒性呼吸 道感染
支气管扩 张
肺水肿
肺癌
病毒性呼吸 道感染
(1) + ++
(2) 0 2 9
(3) 3 5 5
(4) 5 7 3
(5) 3 5 3
(6) 11 19 20
(7) 1~11 12~30 31~50
(8) 6 21 40.5
(9) 0 42 364.5
(10) 18 105 202.5
(11) 30 147 121.5
(12) 18 105
+++
6
第三节 完全随机化设计多组独立样本的 秩和检验
检验步骤
1.建立检验假设 H0:各总体的分布位置相同 H1:各总体的分布位置不同或不全相同 α=0.05 2.编秩 将各组数据混合,由小到大排序并 编秩,如遇有相等数值则取平均秩次 3.求秩和 分别将各组秩次相加。 4.计算统计量

秩转换的非参数检验

秩转换的非参数检验

非参数检验是相对于参数检验而言地.参数检验——如果总体分布为已知地数学形式,对其总体参数作假设检验.计量资料——正态分布——假设检验——检验、检验计量资料:不满足参数检验条件地假设检验方法,一变量变换,二非参数检验(等级资料)非参数检验对总体分布不作严格假定(任意分布检验)秩转换————推断一个总体表达分布位置地中位数(非参数)和已知、两个或多个总体地分布是否有差别.秩转换地非参数检验时先将数值变量资料自小到大,或等级资料从弱到强转换成秩后,再计算检验统计量,其特点是假设检验地结果对总体分布地形状差别不敏感,只对总体分布地位置差别敏感.文档来自于网络搜索配对样本比较地符号秩检验符号秩检验符号秩和检验——用于配对样本差值地中位数和比较——用于单个样本中位数和总体中位数比较配对样本差值地中位数和比较———————<—————————————目地是推断配对样本差值地总体中位数是否和有差别——即推断配对地两个相关样本所来自地两个总体中位数是否有差别.平均秩——相同秩—————————————>———————————单个样本中位数和总体中位数比较—————————————————————目地是推断样本所来自地总体中位数和某个已知地总体中位数是否有差别——用样本各变量值和地差值,即推断差值地总体中为数和是否有差别本法地原理()界值表制作地原理()正态近似法地原理第二节两个独立样本比较地秩和检验————————秩和检验()————用于推断计量资料或等级资料地两个独立样本所来自地两个总体分布是否有差别. ——————推断两个总体分布地位置是否有差别.原始数据地两样本比较————计量资料为原始数据频数表资料和等级资料地两样本比较————计量资料为频数表资料,是按数量区间分组————等级资料是按等级分组本法地原理界值表制作地原理正态近似法地原理、检验第三节完全随机设计多个样本比较地检验一、多个独立样本比较地检验————用于推断计量资料或等级资料地多个独立样本所来自地多个总体分布是否有差别.原始数据地多个样本比较————计数资料为原始数据——————————频数表资料和等级资料地多个样本比较————计量资料为频数表资料,是按数量区间分组————等级资料是按等级分组本法地原理界值表制作地原理地近似法原理多个独立样本两两比较地法检验————进一步推断两两总体分布位置不同——————————————————随机区组设计多个样本比较地检验多个相关样本比较地检验————用于推断随机区组设计地多个相关样本所来自地多个总体分布是否相等.、方法步骤————————————————————————————————、本法地原理()界值表制作地原理()近似法地原理————————————>或>——————————、近似法二、多个相关样本两两比较地检验——————进一步推断两两总体分布位置不同秩转换地非参数检验参数检验————如果总体分布为已知地数学形式,对其总体参数作检验假设非参数检验(任意分布检验)————对总体分布不作严格假定,直接对总体分布作假设检验秩转换地非参数检验————推断一个总体表达分布位置地中位数(非参数)和已知、两个或多个总体地分布是否有差别.————先将数值变量从小到大,或等级从弱到强转换成秩后,再计算检验统计量.————假设检验地结果对总体分布地形状差别不敏感,只对总体分布地位置差别铭感.应用范围:——————对于计量资料不满足正态和方差齐性条件地小样本资料分布不明地小样本资料一端或两端是不确定数值地资料——————对于等级资料若选行*列表资料地检验,只能推断构成比差别选秩转换地非参数检验,可推断等级强度差别注意:如果已知其计量资料满足(或近似满足)检验或检验条件,当然选检验或检验,因为这时若选秩转换地非参数检验,会降低检验效能.文档来自于网络搜索配对样本比较地符号秩检验(符号秩和检验)————用于配对样本差值地中位数和比较;————用于单个样本中位数和总体中位数比较配对样本差值地中位数和比较————目地是推断配对样本差值地总体中位数是否和有差别——即推断配对地两个相关样本所来自地两个总体中位数是否有差别检验步骤()建立检验假设,确定检验水平()求检验统计量值()确定值,作出推断结论——————————————《时,查界值表——————————————>时,正态近似法作检验注意:配对等级资料采用符号秩和检验最好选用大样本单个样本中位数和总体中位数比较————目地是推断样本所来自地总体中位数和某个已知地总体中位数是否有差别————用样本各变量值和地差值,即推断差值地总体中位数和是否有差别第二节两个独立样本比较地秩和检验————用于推断两个独立样本所来自地两个总体分布是否有差别.————目地是推断两个总体分布地位置是否有差别、原始数据地两样本比较——————————《和《时,查界值表——————————> 或> 时,用正态近似法作检验频数表资料和等级资料地两样本比较————计数资料为频数表资料,是按数量区间分组————等级资料是按等级分组第三节完全随机设计多个样本比较地检验一、多个独立样本比较地检验————用于推断计量资料或等级资料地多个独立样本所来自地多个总体分布是否有差别.、原始数据地多个样本比较—————————————————或————查界值表———————且最小样本地例数大于或>时,查界值表、频数表资料和等级资料地多个样本比较二、多个独立样本两两比较地法检验————————————进一步推断两两总体分布位置不同第四节随机区组设计多个样本比较地检验一、多个相关样本比较地检验————用于推断随机区组设计地多个相关样本所来自地多个总体分布是否有差别.————————————————《和《时,查界值表————————————————>或>时,用近似法多个相关样本两两比较地检验——————进一步推断两两总体分布位置不同————检验。

非参数统计中的秩和检验方法详解(Ⅲ)

非参数统计中的秩和检验方法详解(Ⅲ)

非参数统计中的秩和检验方法详解在统计学中,非参数统计是一种不依赖于总体分布的统计方法。

与参数统计相比,非参数统计更加灵活,适用范围更广。

秩和检验方法是非参数统计中的一种重要方法,本文将对秩和检验方法进行详细的介绍。

一、秩和检验的基本原理秩和检验的基本原理是将样本数据转化为秩次,然后通过比较样本秩和的大小来进行假设检验。

秩和检验方法不要求总体分布的形式,适用于不满足正态分布假设的情况。

秩和检验方法主要应用于两组样本比较或者相关性分析。

二、秩和检验的应用场景秩和检验方法适用于样本数据不满足正态分布假设的情况,例如小样本数据、偏态数据或者离群值较多的情况。

此外,秩和检验方法还适用于等级数据或者序数数据的分析。

三、秩和检验的常用方法1. Wilcoxon秩和检验Wilcoxon秩和检验是一种常用的秩和检验方法,用于比较两组独立样本的中位数是否有显著差异。

对于小样本数据,Wilcoxon秩和检验是一个比较有效的非参数检验方法。

2. Mann-Whitney U检验Mann-Whitney U检验是Wilcoxon秩和检验的一种特例,适用于两组独立样本的比较。

与t检验相比,Mann-Whitney U检验不要求数据满足正态分布假设,适用范围更广。

3. Wilcoxon符号秩检验Wilcoxon符号秩检验适用于配对样本的比较,用于检验配对样本中位数是否有显著差异。

对于配对设计的实验研究,Wilcoxon符号秩检验是一种常用的非参数检验方法。

四、秩和检验的步骤进行秩和检验时,通常需要经历以下几个步骤:1. 数据处理:对样本数据进行秩次转换,得到秩和。

2. 假设检验:根据具体情况选择合适的秩和检验方法,进行假设检验。

3. 结果解释:根据检验结果进行统计推断,对研究问题给出合理的结论。

五、秩和检验的优缺点秩和检验方法具有一定的优点和局限性:优点:不依赖于总体分布的形式,适用范围广泛;对偏态数据和离群值不敏感;适用于小样本数据的比较。

《卫生统计学》课后思考题答案

《卫生统计学》课后思考题答案

《卫生统计学》思考题参考答案第一章绪论1、统计资料可以分为那几种类型?举例说明不同类型资料之间是如何转换的?答:(1)1定量资料(离散型变量、连续型变量)、2无序分类资料(二项分类资料、无序多项分类资料)、3有序分类资料(即等级资料);(2)例如人的健康状况可分为“非常好、较好、一般、差、非常差”5个等级,应归为等级资料,若将该五个等级赋值为5、4、3、2、1,就可按定量资料处理。

2、统计工作可分为那几个步骤?答:设计、收集资料、整理资料、分析资料四个步骤。

3、举例说明小概率事件的含义。

答:某人打靶100次,中靶次数少于等于5,那么该人一次打中靶的概率≤0.05,即可称该人一次打中靶的事件为小概率事件,可以视为很可能不发生。

第二章调查研究设计1、调查研究有何特点?答:(1)不能人为施加干预措施(2)不能随机分组(3)很难控制干扰因素(4)一般不能下因果结论2、四种常用的抽样方法各有什么特点?答:(1)单纯随机抽样:优点是操作简单,统计量的计算较简便;缺点是当总体观察单位数量庞大时,逐一编号繁复,有时难以做到。

(2)系统抽样:优点是易于理解、操作简便,被抽到的观察单位在总体中分布均匀,抽样误差较单纯随机抽样小;缺点是在某些情况下会出现偏性或周期性变化。

(3)分层抽样:优点是抽样误差小,各层可以独立进行统计分析,适合大规模统计;缺点是事先要进行分层,操作麻烦。

(4)整群抽样:优点是易于组织和操作大规模抽样调查;缺点是抽样误差大。

3、调查设计包括那些基本内容?答:(1)明确调查目的和指标(2)确定调查对象和观察单位(3)选择调查方法和技术(4)估计样本大小(5)编制调查表(6)评价问卷的信度和效度(7)制定资料的收集计划(8)指定资料的整理与分析计划(9)制定调查的组织措施4、调查表中包含那几种项目?答:(1)分析项目直接整理计算的必须的内容;(2)备查项目保证分析项目填写得完整和准确的内容;(3)其他项目大型调查表的前言和表底附注。

秩转换的非参数检验课件.ppt

秩转换的非参数检验课件.ppt
参数统计
(parametric statistics)
已知总体分布类型,对
未知参数(μ、π)进
行统计推断
依赖于特定分布类 型,比较的是参数
非参数统计
(nonparametric statistics)
对总体的分布类 型不作任何要求
不受总体参数的影响, 比较分布或分布位置
适用范围广;可用于任何类型 资料(等级资料,或“>50mg” )
本例:本例,n=11,T=11.5,查附表9,得双侧 0.05≺P≺0.10,按α=0.05水准不拒绝H0,尚不能认
为两法测谷-丙转氨酶结果有差别。
(ii)大样本(n>50)时,可采用正态近似
Tn(n1)/4
u
n(n1)(2n1) (t3j tj)
24
48
n是对子数,tj为第j个
相同秩次的个数。
A组:- ± + + + ++
12 3 4 5 7
1 2 4.5 4.5 4.5 8.5
B组:
+ ++ ++ ++ +++ +++
6 8 9 10 11 12
4.5 8.5 8.5 8.5 11.5 11.5
秩和
A组: - 、、+、+、+、 ++ 秩和: 1 2 4.5 4.5 4.5 8.5 TA=25
1.5 3 4 5 6 7 8 9 10 11 64.5
负 秩 (4) 1.5
1.5
解: 1.检验假设和检验水准: H0:该厂工人尿氟含量的总体中位数M=45.30 H1:M>45.30 α=0.05 2.编秩、求统计量T: 所有观察值与总体中位数45.30之差,按绝对值由小到 大编秩,绝对值相同取平均秩次,然后分别计算正负秩 次之和,即表8-2第(3)、(4)栏。

2425第十章--基于秩次的非参数检验(1)

2425第十章--基于秩次的非参数检验(1)
参数检验条件的,应该选用参数检验的方 法,因为此时若选用秩转换的非参数检验 的方法,会降低检验效能。
秩和检验(rank sum test)
秩号:将各原始数据从小到大排列,分别给每个数
据一个顺序号,也就是秩号(rank)。
如:
9 6 7.5 13
秩号: 3 1 2
4
秩和:秩号的和
秩和检验:用各组秩和代替原始数据进行假设检验。
T=7663 (样本量较小组 对应的秩和)
①先确定各等级的合计人数、 秩范围和平均秩,见表4的(4) 栏、(5)栏和(6)栏,再计 算两样本各等级的秩和,见(7) 栏和(8)栏;
②本例T=7663;
3 计算Z值
7663 69 (189 1) / 2 0.5
Z
3.0587
120 69 (189 1) /12
0.05
2.5
2.12
-0.03
-1
2.42
0.27
4
2.52
0.37
5
2.62
0.47
6
2.72
0.57
7
2.99
0.84
8
3.19
1.04
9
3.37
1.22

10
4.57
2.42
11
T+=62.5 T-=3.5
确定P值并做出推断结论
本例,n=11,T=3.5,查配对
设计用T界值表,得P<0.005,
检验步骤 1. 建立检验假设,确定检验水平
H0 :差值的总体中位数Md 0 H1 :M d 0
0.05
2. 求检验统计量T值
(1) 编秩:
① 差数为0的数据忽略不计; ② 余下的n个差数按绝对值由小到大排秩号,

kruskal wallis 检验公式

kruskal wallis 检验公式

kruskal wallis 检验公式Kruskal-Wallis检验公式是一种非参数统计方法,用于比较三个或多个独立样本的中位数是否存在差异。

它是对方差分析的一种推广,适用于数据不满足正态分布的情况。

本文将详细介绍Kruskal-Wallis检验公式的原理和应用。

Kruskal-Wallis检验公式的原理基于秩次转换,即将每个样本的观测值按照大小顺序排列,并用相应的秩次替代原始值。

这样,我们可以将原始数据转化为秩次数据,从而避免了对数据分布的假设。

接下来,我们将根据秩次数据计算出一个统计量H,该统计量反映了不同样本之间的差异程度。

Kruskal-Wallis检验公式的计算过程如下:1. 将每个样本的观测值按照大小顺序排列,并为每个值分配一个秩次。

如果有多个相同的值,可以为它们分配相同的秩次,计算方法为将相同值的秩次相加后除以相同值的个数。

2. 计算每个样本的秩次和,记为Ri。

3. 计算每个样本的秩次平方和,记为Ri^2。

4. 计算样本的秩次平方和之和,记为T。

5. 计算统计量H的值,公式为H = 12 * T / (N * (N + 1)) - 3 * (N + 1),其中N为总样本量。

6. 根据样本量和显著性水平选择相应的临界值,比较统计量H的值与临界值的大小关系。

7. 如果统计量H的值大于临界值,则拒绝原假设,即认为样本之间存在差异;反之,接受原假设,即认为样本之间不存在差异。

Kruskal-Wallis检验公式的应用场景广泛。

例如,在医学研究中,可以使用Kruskal-Wallis检验来比较不同治疗组的疗效差异;在市场调研中,可以使用Kruskal-Wallis检验来比较不同品牌产品的受欢迎程度;在教育研究中,可以使用Kruskal-Wallis检验来比较不同教学方法的效果差异。

需要注意的是,Kruskal-Wallis检验公式对样本间的方差齐性假设比较敏感。

如果样本方差不齐,可能会导致检验结果的偏误。

卫生统计学 第十二章 基于秩转换的非参数检验

卫生统计学 第十二章 基于秩转换的非参数检验
2020/6/27
分析步骤:
1.建立检验假设,确定检验水准(α) H0:两总体分布位置相同,总体中位数
M1=M2 H1:两总体分布位置不同,总体中位数 2.选择B组,清点M每1≠组M数2据B前A组数据的 个数. 按数值由小α到=大0.0排5列。,若有相同数据,
取平均秩。
2020/6/27
分析步骤:
第十二章 基于秩 转换的非参数检验
2020/6/27
非参数检验的优点:
①适用范围广 ②受限条件少。参数检验对总体分布等有特别限定,而非 参数检验的假定条件少,也不受总体分布的限制,更适合 一般的情况。 ③具有稳健性。参数检验是建立在严格的假设条件基础之 上的,一旦不符合假设条件,其推断的正确性将受到怀疑; 而非参数检验都是带有最弱的假定,所受的限制很少,稳 健性好。
2020/6/27
2020/6/27
第四节 随机区组设计资料比较的秩和检验
随机区组设计资料比较,如果观察结果 不满足方差分析条件,可用Friedman M 检验(Friedman’s M test)。
分析步骤
1.建立检验假设和确定检验水准 2.编秩:
•先在每一配伍组内将数据从小到大编秩, 如有相同数据,取平均秩次;
•再求各处理组秩和Ri,i=1,2,...,k。
2020/6/27
分析步骤
3.计算检验统计量M值
(1)查表法(b≤15,k≤15): ➢M=Σ(Rj-R)2 ==》M界值表 ➢基于χ2分布近似法得到χ2值查有关的 M界值表 (2)χ2分布近似法
H1:k个总体分布位置不同或不全相同; α=0.05。
2.混合编秩 将各组数据混合,由小到大编秩。遇有 原始数据相同时,若相同数据在同一组内 ,则仍按顺序编秩;若相同数据在不同组

秩转换的非参数检验

秩转换的非参数检验

A法
B法
差值 d 正秩
负秩
3 0 .6
3 0 .6
0
--
--
5 9 .9
6 3 .1
-3 .2
3
4 6 .0
5 8 .0
-1 2 .0
6
2 3 .0
1 0 .9
1 2 .1
7
2 0 .3
3 3 .7
-1 3 .4
9 .5
4 8 .6
9 9 .5
-5 0 .9
11
2 5 .0
2 4 .4
0 .6
1
2 3 .4
3 6 .2
-1 2 .8
8
4 4 .1
4 5 .2
-1 .1
2
3 9 9 .8 4 0 4 .1 -4 .3
4
2 5 .9
3 9 .3
-1 3 .4
9 .5
5 3 5 .6 5 4 4 .8 -9 .2
5
——
——
——
8
58
可编辑ppt
9
秩和分布的特点
对子号
1 2 3
N = 3 时两样本配对比较
10
•秩和分布的特点 (1)离散型的对称分布; (2)N一定时,秩和分布也一定; (3)靠近中央的频数较多; (4)当N足够大时,秩和分布逼近正态分布。
可编辑ppt
11
配对资料的秩和均数:
T+与T-是以T为中心的两个对称点 例11.2资料:T= 11(11 + 1)/ 4 = 33 T+ = 8 , T- = 58, 差值均为 25。
可编辑ppt
4
一、秩和检验的基本思想
总体A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•正态分布
Normal
•总体方差齐
Equal Variance
•数据间相互计的方法。
非参数检验的概念
非参数检验又称为任意(不拘)分布检验
eated(分何而w布种d不itihs的分是tCrAio具布参bspup体以数tyioors形及之inge-.hf式分间Srtel,布的e2Eid0tv应是检ee0ass4tl用否验)uf-o2a时已,,rt0i.1o可知故这N1n以,又E类AoTn不进称s方pl3y考行非o法..5s虑的参e并CP研是数不litey究分检依nLt变布验赖tPd量之r总.o为间f体ile 5.2.0
(Kruskal—Wallis法)
➢ 随机区组设计资料比较的秩和检验
➢ Ridit分析
第一节 配对设计差值比较的符号秩检验
配对设计差值比较的符号秩检验由 eated witWh Aislcpoosxe.oSnlEidvea1sl9ufoa4rti5.oNn年EoT提nl3y出..5 C,li又ent称Profile 5.2.0
Copyright 2004-2011 Aspose Pty Ltd.
③具有稳健性。参数检验是建立在严格的假设条件基础之 上的,一旦不符合假设条件,其推断的正确性将受到怀疑; 而非参数检验都是带有最弱的假定,所受的限制很少,稳 健性好。
非参数检验的缺点:
①对符合用参数检验的资料,如用非参 数检验,会丢E失v部alu分ati信on息on。ly. eated w②it虽hCA然ospp非yors参ige.h数Stl2i检d0e0验s4f-计o2r0算.1N1简EAT便sp3o,.5se但CPl有iteyn些Lt tP问dr.ofile 5.2.0 题的计算仍显繁冗。
(nonparametric test),简称非参检验。 非参数检验方法很多,本章主要介绍基于秩
转换的非参数检验。
非参数检验的优点:
①适用范围广
②受限条件少。参数检验对总体分布等有特别限定,而非
参数检验的假定条E件v少al,ua也ti不on受o总n体ly分. 布的限制,更适合 eated w一i般th的A情sp况o。se.Slides for .NET 3.5 Client Profile 5.2.0
T界值表的构造原理
假定一组配对数据n=4,则: 秩次有:1,2,3,4。差值为正的秩次与 差值为负的E秩v次alu共at有ion2o4n=ly1.6种组合。 eated wi即th A,s每po种se.组Sl合ide出s f现or的.N概ET率3为.5:Client Profile 5.2.0
Copyright 2004-2011 Aspose Pty Ltd. 1/16=0.0625。
差值为负的E秩va和lu以atiTo-n表o示nl。y. eated with AT+sp+oTs-e=.nS(lnid+e1s )f/o2r .NET 3.5 Client Profile 5.2.0
(C4o)py确ri定ghPt值20和0作4-2出0推11断A结sp论os:e Pty Ltd.
当n≤50时,查T界值表 T在界值范围内 P>α T在界值范围外 P<α
16种组合如下表:
T界值表的构造原理
差值为正的 秩次
差值为负的 秩次
T+ T- T
概率
1,2,3,4 —
10 0 0 0.0625
2,3,4
1
9 1 1 0.0625
eated wi11312th,,,,,CA32424o,,,spp443yorsige.hSt23141l, ,2Eid0v23e0as4luf-o2art0i.1oN1nEAoTns87766pl3yo..5seC23344Pliteyn23344Lt tPd}}r.0o00...f011i6l22e25555.2.0
7 非参数检验
Evaluation only.
eated with Aspose.Slides朱fo继r .N民ET 3.5 Client Profile 5.2.0
Copyright 2004-2011 Aspose Pty Ltd.
公共卫生与全科医学教研室
参数检验的特点
➢分析目的:对总体参数(μ π)进行估计或检验。
内容提要:
➢ 配对设计差值比较的符号秩检验(Wilcoxon 配对法)
➢ 完全随机设E计va两lu样at本io比n o较n的ly. Mann-Whiter eated with UAs检po验se.Slides for .NET 3.5 Client Profile 5.2.0
➢ C完o全py随rig机h设t 2计00多4-个20样11本A比s较po的se秩P和ty检Lt验d.
(2C)op编y秩rig:ht 2004-2011 Aspose Pty Ltd.
•求差值 •编秩方法:依差值的绝对值从小到大编秩。 •编秩时注意两点: 遇差值为0者,舍去不计,n相应减 少 •差值的绝对值相等,符号不同者应取平均秩次 •编秩后,按差值的正负给秩次冠上符号。
分析步骤:
(3)求差值为正或负的秩和 差值为正的秩和以T+表示
➢分布:要求总体分布已知,如:
•连续性资料——正态分布
•计 数 资 料E—va—lu二at项io分n布o、nlPy.OISSON分布等 eated w➢i统th计A量sp:os有e.明Sl确id的es理fo论r依.N据E(Tt3分.5布C、liue分nt布Pr)ofile 5.2.0
➢有C严o格py的ri适gh用t 条20件0,4-如20:11 Aspose Pty Ltd.
WCoilpcyorixghotn2符004号-2秩011检A验spo(seWPtiylcLotdx. on signed- rank test),常用于检验 差值的总体中位数是否等于零。
分析步骤:
(1)建立检验假设,确定检验水准 Ho:差值总体中位数Md=0
αH=1:0.差05值E总va体lu中ati位on数oMnldy≠. 0 eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0
相关文档
最新文档