相对标准方差的计算公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

标准偏差

标准偏差(Std Dev,Standard Deviation) -统计学名词。一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。

目录

编辑本段公式

标准偏差公式:S = Sqrt[(∑(xi-x拨)^2) /(N-1)]公式中∑代表总和,x拨代表x的均值,^2代表二次方,Sqrt代表平方根。

例:有一组数字分别是200、50、100、200,求它们的标准偏差。

x拨 = (200+50+100+200)/4 = 550/4 = 137.5

S^2 =

[(200-137.5)^2+(50-137.5)^2+(100-137.5)^2+(200-137.5)^2]/(4-1) 标准偏差 S = Sqrt(S^2)

STDEV基于样本估算标准偏差。标准偏差反映数值相对于平均值 (mean) 的离散程度。

编辑本段语法

STDEV(number1,number2,...)

公式表达

Number1,number2,... 是对应于总体中的样本的 1 到 30 个数字参数。

编辑本段说明

忽略逻辑值(TRUE 和 FALSE)和文本。如果不能忽略逻辑值和文本,请使用 STDEVA 函数。 STDEV 假设其参数是总体中的样本。如果数据代表整个样本总体,则应使用函数 STDEVP 来计算标准偏差。此处标准偏差的计算使用“无偏差”或“n-1”方法。 STDEV 的计算公式如下:

编辑本段计算步骤

标准偏差的计算步骤是:

步骤一、(每个样本数据-样本全部数据之平均值)。

步骤二、把步骤一所得的各个数值的平方相加。

步骤三、把步骤二的结果除以 (n - 1)(“n”指样本数目)。

步骤四、从步骤三所得的数值之平方根就是抽样的标准偏差。

编辑本段举例

假设有 10 件工具在制造过程中是由同一台机器制造出来的,并取样为随机样本进行断裂强度测量。

St 1 St

2

St

3

St

4

St

5

St

6

St

7

St

8

St

9

St

10

公式说明

(结

果)

编辑本段标准差

标准差也被称为标准偏差,或者实验标准差,标准差(Standard Deviation)各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。例如,A、B两组各有6位学生参加同一次语文测验,A 组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。

编辑本段标准偏差与标准差的区别

标准差(Standard Deviation)各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。

例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。

标准偏差(Std Dev,Standard Deviation) - 统计学名词。一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。

相对标准偏差

相对标准偏差(RSD,relative standard deviation)就是指:标准偏差与测量结果算术平均值的比值,用公式表示如下

RSD=S/Χ*100%其中S为标准偏差,x为测量平均值.

相对标准偏差RSD就是变异系数:变异系数的计算公式为: cv = S/x(均值)×100%

相关文档
最新文档