中考专题化简求值
初中数学化简求值专题
![初中数学化简求值专题](https://img.taocdn.com/s3/m/e5df6fa950e79b89680203d8ce2f0066f533648b.png)
初中数学化简求值专题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-初中数学化简求值个性化教案3、整体代入例练:已知:x+x 1=3,求代数式(x+x 1)2+x+6+x1的值 例练:已知当x=7时,代数式ax 5+bx-8=8,求x=7时,8225++x bx a 的值.例练: 若ab=1,求11+++b ba a 的值 例练:已知y xy x y xy x y x ---+=-2232311,求的值 4、归一代入例练:已知a=3b,c=4a 求代数式cb a cb a -++-65292的值5、利用性质代入例练:已知a,b 互为相反数,c,d 互为倒数,x 的绝对值等于1,求代数式a+b+x 2-cdx 的值6、取特殊值代入例练:设a+b+c=0,abc >0,求ac b ++b a c ++c ba +的值是 A -3 B 1 C 3或-1 D-3或-1解决本类问题的关键在于化简,可能是单方向化简然后求值,即通过整式乘除,因式分解化简成一个最简单的代数式,然后代入字母对应的数字解决问题;也可能是双向化简,即从条件和问题同时入手化简。
找到两者对应关系后进行代入求值。
代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值 2.利用乘法公式求值3.设参数法与换元法求值4.利用非负数的性质求值5.利用分式、根式的性质求值举例分析1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x 的值是通过一个一元二次方程给出的,若解出x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解 已知条件可变形为3x 2+3x-1=0,所以6x 4+15x 3+10x 2=(6x 4+6x 3-2x 2)+(9x 3+9x 2-3x)+(3x 2+3x-1)+1=(3x 2+3x-1)(2z 2+3x+1)+1=0+1=1.说明 在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a ,b ,c 为实数,且满足下式: a 2+b 2+c 2=1,① 求a+b+c 的值.解 将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a 2+b 2+c 2+2(bc+ac+ab)=a 2+b 2+c 2=1, 所以 a+b+c=±1.所以a+b+c 的值为0,1,-1. 说明 本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.解 x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.例6:已知1,0,x y z a b ca b c x y z++=++=求222222x y za b c++的值u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即 (x-2)2+|3x-y|=0.所以 y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m 2x 2+m 2y 2-2mxy-2mny+y 2+n 2=0,(m 2x 2-2mxy+y 2)+(m 2y 2-2mny+n 2)=0,即 (mx-y)2+(my-n)2=0. 5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明. 例10 已知xyzt=1,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析 计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算. 同样(但请注意算术根!) 将①,②代入原式有一般题型1、先化简,再求值:12112---x x ,其中x =-2. 2、先化简,再求值:,其中a=﹣1.3、先化简,再求值:,其中x=.4、先化简,再求值:,其中.※5、先化简,再求值,其中x 满足x 2﹣x ﹣1=0.6、化简:ba ba b a b 3a -++-- 7、先化简,再求值:,其中a=.8、先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个合适的数作为x 的值代入求值.9、先化简,再求值:(+1)÷,其中x=2.10、先化简,再求值:3x –3 – 18x 2 – 9,其中x = 10–3 11、先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:12-x x (x x 1--2),其中x =2. 13、先化简,再求值:,其中.※14、先化简22()5525x x xx x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、先化简,再求值:232()111x x x x x x --÷+--,其中32x =.17、先化简。
中考分式化简求值专项练习与答案(可编辑修改word版)
![中考分式化简求值专项练习与答案(可编辑修改word版)](https://img.taocdn.com/s3/m/29b82b72998fcc22bdd10d37.png)
,代入值得:-1
a2
12、化简得: 2 ,代入值得: 2 1
x2
2
14、化简得: a a2 ,代入值得: 7 2
第 7 页(共 7 页)
2
x
5
的整
1
数解.
第 2 页(共 7 页)
7、化简求值:
a2
6ab 9b2 a 2 2ab
5b 2 a 2b
a
2b
1 a
,其中
a,b
满足
ab4 ab2
8、先化简,再求值:
1 x
x2 x2
1 x
x
2
1
1
,其中
x 1
x
的值为方程 2x
5x
1 的解.
9、先化简,再求值: (x 1 3 ) x2 4x 4 ,其中 x 是方程 x 1 x 2 0 的解。
中考专题训练——分式化简求值
1、先化简,再求值:
x2 2x x2 1
x
1
2x 1 x 1
,其中
x
1 2
a2 2、先化简,再求值: (
5a
2
1)
a 2 4 ,其中a 2 3
a2
a2 4a 4
3、先化简,再求值: (1 1 ) x 2 2x 1 ,其中 x 3
x2
x2 4
第 1 页(共 7 页)
x 1
x 1
25
第 3 页(共 7 页)
10、先化简,再求值:
a2
a2 4 4a
4
a
2
2
a2 a
2a 2
,
其中
a
3
1 11、先化简,再求值: (
a2)
专题 整式的化简求值(五大题型50题)(解析版)
![专题 整式的化简求值(五大题型50题)(解析版)](https://img.taocdn.com/s3/m/78e50888162ded630b1c59eef8c75fbfc77d94d7.png)
(苏科版)七年级上册数学《第三章代数式》专题整式的化简求值(50题)1.先化简再求值:2x 2y−[x y 2+3(x 2y−13x y 2)],其中x =12,y =2.【分析】先化简整式,再代入求值.【解答】解:原式=2x 2y ﹣(xy 2+3x 2y ﹣xy 2)=2x 2y ﹣3x 2y=﹣x 2y .当x =12,y =2时,原式=﹣(12)2×2=−14×2=−12.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.2.先化简,再求值:4x 2﹣2xy +y 2﹣(x 2﹣xy +y 2),其中x =﹣1,y =−12.【分析】去括号,合并同类项后代入求值.【解答】解:原式=4x 2﹣2xy +y 2﹣x 2+xy ﹣y 2=3x 2﹣xy ,当x =﹣1,y =−12时,原式=3×(﹣1)2﹣(﹣1)×(−12)=3−12=52.【点评】本题考查了整式的加减—化简求值,掌握去括号法则与合并同类项是解题的关键.3.(2022秋•秦淮区期末)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=﹣1,b=2.【分析】先进行整式的化简,再代入求值即可.【解答】解:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),=7a2b﹣4a2b+5ab2﹣2a2b+3ab2=a2b+8ab2当a=﹣1,b=2时,原式=(﹣1)2×2+8×(﹣1)×22=2﹣32=﹣30.【点评】本题考查了整式的加减,解决本题的关键是先化简.4.(2022秋•邹城市校级期末)先化简,再求值:(2x2﹣2y2)﹣4(x2y+xy2)+4(x2y2+y2),其中x=﹣1,y=2.【分析】利用整式的加减混合运算化简整式,再代入求值.【解答】解:(2x2﹣2y2)﹣4(x2y+xy2)+4(x2y2+y2)=2x2﹣2y2﹣4x2y﹣4xy2+4x2y2+4y2=2x2+2y2﹣4x2y﹣4xy2+4x2y2,∵x=﹣1,y=2,∴原式=2×(﹣1)2+2×22﹣4×(﹣1)2×2﹣4×(﹣1)×22+4×(﹣1)2×22=2×1+2×4﹣4×2+4×4+4×4=2+8﹣8+16+16=34.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的加减混合运算.5.(2023•青秀区校级开学)先化简,再求值:4x+2(3y2﹣2x)﹣3(2x﹣y2),其中x=2,y=﹣2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x+6y2﹣4x﹣6x+3y2=﹣6x+9y2,当x=2,y=﹣2时,原式=﹣6×2+9×(﹣2)2=﹣12+36=24.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.6.(2022秋•龙沙区期中)先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2022.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)]=﹣3a2+4ab+(a2﹣4a﹣4ab)=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a.当a=﹣2,b=2022时,原式=﹣2×(﹣2)2﹣4×(﹣2)=﹣2×4+8=﹣8+8=0.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.7.(2022秋•南海区校级期末)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【分析】将代数式去括号,合并同类项,从而将整式化为最简形式,然后把x、y的值代入即可.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2;当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.【点评】本题主要考查了整式的加减运算.整式的加减运算实际上就是去括号、合并同类项.8.(2022秋•梁子湖区期末)先化简,再求值:5x2−[2xy−3(13xy+2)+4x2],其中x=−2,y=12.【分析】先将原式去括号、合并同类项,再把x=﹣2,y=12代入化简后的式子,计算即可.【解答】解:5x2−[2xy−3(13xy+2)+4x2]=5x2﹣(2xy﹣xy﹣6+4x2)=5x2﹣2xy+xy+6﹣4x2=(5x2﹣4x2)+(﹣2xy+xy)+6=x2﹣xy+6,当x=−2,y=12时,原式=(−2)2−(−2)×12+6=4+1+6=11.【点评】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.9.先化简,再求值:2(ab−32a2+a﹣b2)﹣3(a﹣a2+23ab),其中a=5,b=﹣2.【分析】先化简整式,再代入求值.【解答】解:2(ab−32a2+a﹣b2)﹣3(a﹣a2+23ab)=2ab﹣3a2+2a﹣2b2﹣3a+3a2﹣2ab=﹣a﹣2b2.当a=5,b=﹣2时,原式=﹣5﹣2×(﹣2)2=﹣5﹣2×4=﹣5﹣8=﹣13.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.10.先化简,再求值:2(mn ﹣4m 2﹣1)﹣(3m 2﹣2mn ),其中m =1,n =﹣2.【分析】先化简,再代入求值即可.【解答】解:原式=2mn ﹣8m 2﹣2﹣3m 2+2mn=4mn ﹣11m 2﹣2,当m =1,n =﹣2时,原式=4×1×(﹣2)﹣11×12﹣2=﹣21.【点评】本题主要考查了整式的加减,解题的关键是正确的化简.11.先化简再求值:5xy ﹣(4x 2+2y )﹣2(52xy +x 2),其中x =3,y =﹣2.【分析】利用去括号法则先去括号再合并同类项,最后代入求值.【解答】解:原式=5xy ﹣4x 2﹣2y ﹣5xy ﹣2x 2=(5xy ﹣5xy )﹣(4x 2+2x 2)﹣2y=﹣6x 2﹣2y当x =3,y =﹣2时原式=﹣6×32﹣2×(﹣2)=﹣50.【点评】本题考查了整式的化简求值,掌握去括号法则和合并同类项法则是解决本题的关键.12.(2022秋•绿园区期末)先化简,再求值:12m−(2m−23n 2)+(−32m +13n 2),其中m =−14,n =−12.【分析】先去括号,然后合并同类项,再代入求值.【解答】解:原式=12m−2m +23n 2−32m +13n 2=n 2﹣3m ,当m =−14,n =−12时,原式=n 2﹣3m=(−12)2﹣3×(−14)=14+34=1.【点评】本题考查了整式的加减—化简求值,熟悉去括号和合并同类项法则是解题的关键.13.(2022秋•万秀区月考)先化简,再求值2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b,其中a=3,b=﹣2.【分析】先去括号再合并同类项,最后代入求值.【解答】解:2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b=2a2b+2ab﹣4a2b+4ab﹣4a2b=﹣6a2b+6ab.当a=3,b=﹣2,原式=﹣6×32×(﹣2)+6×3×(﹣2)=6×9×2﹣6×3×2=108﹣36=72.【点评】本题考查了整式的化简,掌握去括号法则、合并同类项法则是解决本题的关键.14.(2022秋•陕州区期中)先化简,再求值3x2y−2(x2y+14x y2)−2(x y2−xy),其中x=12,y=﹣2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:3x2y−2(x2y+14x y2)−2(x y2−xy)=3x2y−2x2y−12x y2−2x y2−2xy=x y2−52x y2+2xy把x=12,y=﹣2代入原式=(12)2×(−2)−52×12×(−2)2+2×12×(−2)=−712.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.15.(2022秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.【分析】(1)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,将a的值代入计算即可求出值.【解答】解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.16.先化简,再求值.若m2+3mn=﹣5,则代数式5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+7]的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=5m2﹣(5m2﹣2m2+mn﹣7mn+7)=5m2﹣5m2+2m2﹣mn+7mm﹣7=2m2+6mm﹣7,∵m2+3mn=﹣5,∴原式=2(m2+3mn)﹣7=2×(﹣5)﹣7=﹣10﹣7=﹣17.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.17.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.18.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.19.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.【分析】先去括号,合并同类项,再将x+y=6,xy=﹣4,整体代入进行计算即可.【解答】解:原式=5x+2y﹣3xy﹣2x+y﹣2xy=3x+3y﹣5xy=3(x+y)﹣5xy,当x+y=6,xy=﹣4时,原式=3×6﹣5×(﹣4)=18+20=38.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.【分析】化简整理代数式,整体代入求值.【解答】解:∵m+4n=﹣1.∴(6mn+7n)+[8m﹣(6mn+7m+3n)]=6mn+7n+(8m﹣6mn﹣7m﹣3n)=6mn+7n+8m﹣6mn﹣7m﹣3n=4n+m=﹣1.【点评】本题考查了整式的化简求值,解题的关键是掌握整体代入求值.21.(2022秋•荔湾区期末)已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=7a2+3ab+3b2﹣8a2﹣6ab﹣4b2=﹣a2﹣3ab﹣b2;当a2+b2=3,ab=﹣2时,原式=﹣(a2+b2)﹣3ab=﹣3﹣3×(﹣2)=﹣3+6=3,∴原代数式的值为3.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号),利用整体思想解题是关键.22.(2022秋•平昌县期末)先化简,再求值.已知代数式2(3x2﹣x+2y﹣xy)﹣3(2x2﹣3x﹣y+xy),其中x+y=67,xy=﹣2.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=6x2﹣2x+4y﹣2xy﹣6x2+9x+3y﹣3xy=7x+7y﹣5xy,当x+y=67,xy=﹣2时,原式=7(x+y)﹣5xy=7×67−5×(﹣2)=6+10=16.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号),利用整体思想代入求值是解题关键.23.有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b =﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1= .(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.【分析】(1)根据a2﹣2a=1,把2a2﹣4a+1化为2(a2﹣2a)+1,整体代入计算;(2)根据m+n=2,mn=﹣4,把2(mn﹣3m)﹣3(2n﹣mn)化为5mn﹣6(m+n),整体代入计算;(3)根据a2+2ab=﹣5,ab﹣2b2=﹣3,①×3﹣②×2得结果.【解答】解:(1)当a2﹣2a=1时,2a2﹣4a+1=2(a2﹣2a)+1=3;故答案为:3;(2)当m+n=2,mn=﹣4时,2(mn﹣3m)﹣3(2n﹣mn)=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣32;(3)∵a2+2ab=﹣5①,ab﹣2b2=﹣3②,①×3﹣②×2得3a2+6ab﹣(2ab﹣4b2)=3a2+4ab+4b2=﹣5×3﹣(﹣3)×2=﹣9.【点评】本题考查了整式的加减—化简求值,掌握整体代入的思想,把每一个整式进行适当的变形是解题的关键.24.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)根据阅读材料,直接合并同类项即可;(2)根据等式性质可得3x2﹣6y=12,然后整体代入即可求值;(3)先根据已知3个等式可得a﹣c=8,2b﹣d=5,再整体代入即可求值.【解答】解:(1)3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=﹣(a﹣b)2;(2)∵x2﹣2y=4,∴3x2﹣6y=12,∴3x2﹣6y﹣21=12﹣21=﹣9;(3)∵a﹣2b=3①,2b﹣c=﹣5②,c﹣d=10③,∴①+②得,a﹣c=﹣2,②+③得,2b﹣d=5,∴(a﹣c)+(2b﹣d)﹣(2b﹣c)=﹣2+5﹣(﹣5)=8.【点评】本题考查了整式的加减﹣化简求值,解决本题的关键是掌握整式的加减.25.阅读理解:已知4a−52b=1,求代数式2(a﹣b)+3(2a﹣b)的值.解:因为4a−52b=1,所以原式=2a−2b+6a−3b=8a−5b=2(4a−52b)=2×1=2.仿照以上解题方法,完成下面的问题:(1)已知a﹣b=﹣3,求3(a﹣b)﹣a+b+1的值;(2)已知a2+2ab=2,ab﹣b2=1,求2a2+5ab﹣b2的值.【分析】(1)把(a﹣b)看成一个整体,先变形要求值代数式,再整体代入;(2)可变形已知,整体代入求值.【解答】解:(1)3(a﹣b)﹣a+b+1=3(a﹣b)﹣(a﹣b)+1=2(a﹣b)+1.当a﹣b=﹣3时,原式=2×(﹣3)+1=﹣6+1=﹣5.(2)法一、∵a2+2ab=2,ab﹣b2=1,∴2a2+4ab=4,∴2a2+4ab+ab﹣b2=5.即2a2+5ab﹣b2=5.法二、∵a2+2ab=2,ab﹣b2=1,∴a2=2﹣2ab,﹣b2=1﹣ab.∴2a2+5ab﹣b2=2(2﹣2ab)+5ab+1﹣ab=4﹣4ab+5ab+1﹣ab=5.【点评】本题主要考查了整式的化简求值,掌握整式的运算法则和整体的思想方法是解决本题的关键.26.(2022秋•祁阳县期末)图是湘教版七年级上册数学教材65页的部分内容.明明同学在做作业时采用的方法如下:由题意得3(a2+2a)+2=3×1+2=5,所以代数式3(a2+2a)+2的值为5.【方法运用】:(1)若代数x2﹣2x+3的值为5,求代数式3x2﹣6x﹣1的值;(2)当x=1时,代数式ax3+bx+5的值为8.当x=﹣1,求代数式ax3+bx﹣6的值;(3)若x2﹣2xy+y2=20,xy﹣y2=6,求代数式x2﹣3xy+2y2的值.【分析】(1)根据题意得出x2﹣2x+3=5,求出x2﹣2x=2,变形后代入,即可求出答案;(2)根据题意求出a+b+5=8,求出a+b=3,再把x=﹣1代入代数式,最后整体代入,即可求出答案;(3)代数式x2﹣2xy+y2=20减去代数式xy﹣y2=6,即可得出答案.【解答】解:(1)根据题意得:x2﹣2x+3=5,即x2﹣2x=2,所以3x2﹣6x﹣1=3(x2﹣2x)﹣1=3×2﹣1=6﹣1=5;(2)∵当x=1时,代数式ax3+bx+5的值为8,∴a+b+5=8,∴a+b=3,当x=﹣1时,ax3+bx﹣6=a×(﹣1)3+b×(﹣1)﹣6=﹣a﹣b﹣6=﹣(a+b)﹣6=﹣3﹣6=﹣9;(3)∵①x2﹣2xy+y2=20,②xy﹣y2=6,∴①﹣②,得x2﹣2xy+y2﹣(xy﹣y2)=20﹣6,整理得:x2﹣3xy+2y2=14.【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.27.(2022秋•惠东县期中)有这样一道题“如果式子5a+3b的值为﹣4,那么式子2(a+b)+4(2a+b)的值是多少?”爱动脑筋的佳佳同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,则原式=2(5a+3b)=2×(﹣4)=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照佳佳的解题方法,完成下面问题:(1)已知a2﹣2a=1,则2a2﹣4a+1= ;(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值;(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求3a2+4ab+4b2的值.【分析】(1)根据a2﹣2a=1,把2a2﹣4a+1化为2(a2﹣2a)+1,整体代入计算;(2)根据m+n=2,mn=﹣4,把2(mn﹣3m)﹣3(2n﹣mn)化为5mn﹣6(m+n),整体代入计算;(3)根据a2+2ab=﹣5,ab﹣2b2=﹣3,①×3﹣②×2得结果.【解答】解:(1)当a2﹣2a=1时,2a2﹣4a+1=2(a2﹣2a)+1=3;故答案为:3;(2)当m+n=2,mn=﹣4时,2(mn﹣3m)﹣3(2n﹣mn)=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣32;(3)∵a2+2ab=﹣5①,ab﹣2b2=﹣3②,①×3﹣②×2得3a2+6ab﹣(2ab﹣4b2)=3a2+4ab+4b2=﹣5×3﹣(﹣3)×2=﹣9.【点评】本题考查了整式的加减—化简求值,掌握整体代入的思想,把每一个整式进行适当的变形是解题的关键.28.(2022秋•西安期中)化简求值:−12(5xy−2x2+3y2)+3(−12xy+23x2+y26),其中x、y满足(x+1)2+|y﹣2|=0.【分析】由非负数的和为0得非负数为0,解出x,y的值,代入化简后的代数式求值即可.【解答】解:∵(x+1)2+|y﹣2|=0.∴x+1=0,y﹣2=0,∴x=﹣1,y=2.−12(5xy﹣2x2+3y2)+3(−12xy+23x2+y26)=−52xy+x2−32y2−32xy+2x2+y22=﹣4xy+3x2﹣y2.当x=﹣1,y=2时,原式=﹣4×(﹣1)×2+3×(﹣1)2﹣22=8+3﹣4=7.【点评】本题考查的是整式的化简和非负数的性质,解题的关键是利用非负数的性质求出x,y的值.29.(2022秋•公安县期中)先化简,再求值:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab,其中a=12,b=﹣4.【分析】首先去括号进而合并同类项,再把a,b的值代入计算求出答案即可.【解答】解:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab =4a2b﹣(﹣2ab2﹣2ab+2ab2+a2b)﹣3ab=4a2b+2ab﹣a2b﹣3ab=3a2b﹣ab;当a=12,b=﹣4时,原式=3×(12)2×(−4)−12×(−4)=−3+2=−1.【点评】此题主要考查了整式的加减﹣化简求值,正确合并同类项是解题关键.30.(2022秋•海林市期末)先化简再求值:12a+2(a+3ab−13b2)−3(32a+2ab−13b2),其中a、b满足|a﹣2|+(b+3)2=0.【分析】先去括号,然后合并同类项进行化简,根据非负数的性质求出a、b的值代入化简后的结果进行计算即可.【解答】解:原式=12a+2a+6ab−23b2−92a−6ab+b2=−2a+13b2,∵|a﹣2|+(b+3)2=0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,当a=2,b=﹣3时,原式=﹣2×2+13(﹣3)2=﹣4+3=﹣1.【点评】本题考查了整式的加减——化简求值,涉及了去括号法则,合并同类项法则,非负数的性质等,熟练掌握各运算的运算法则以及非负数的性质是解题的关键.31.(2022秋•万州区期末)化简求32a2b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.【分析】利用去括号的法则和合并同类项的法则化简运算,利用非负数的性质求得a,b的值,将a,b 的值代入运算即可.【解答】解:原式=32a2b﹣2ab2﹣2−32a2b+12ab2﹣2=−32a b2−4.∵2(a−3)2022+|b+23|=0,(a﹣3)2022≥0,|b+23|≥0,∴a﹣3=0,b+23=0,∴a=3,b=−2 3.∴原式=−32×3×(−23)2−4=−92×49−4=﹣2﹣4=﹣6.【点评】本题主要考查了求代数式的值,整式的加减与化简求值,非负数的应用,正确利用去括号的法则和合并同类项的法则运算是解题的关键.32.(2022秋•偃师市期末)已知:(x−2)2+|y+12|=0,求2(xy2+x2y)﹣[2xy2﹣3(1﹣x2y)]+2的值.【分析】根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.【解答】解:原式=2xy2+2x2y﹣(2xy2﹣3+3x2y)+2=2xy2+2x2y﹣2xy2+3﹣3x2y+2=(2﹣2)xy2+(2﹣3)x2y+(3+2)=﹣x2y+5;∵(x+2)2≥0,|y−12|≥0,又∵(x−2)2+|y+12|=0,∴x﹣2=0,y+12=0,∴x=2,y=−1 2,∴原式=﹣22×(−12)+5=2+5=7.【点评】本题考查整式的化简求值,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.33.(2022秋•沙坪坝区校级期中)先化简,再求值:2(x 2y−2x y 2)−[(−x 2y 2+4x 2y)−13(6x y 2−3x 2y 2)],其中x 是最大的负整数,y 是绝对值最小的正整数.【分析】去括号,合并同类项,代入数据求值.【解答】解:∵x 是最大的负整数,y 是绝对值最小的正整数,∴x =﹣1,y =1,∴2(x 2y−2x y 2)−[(−x 2y 2+4x 2y)−13(6x y 2−3x 2y 2)]=2x 2y ﹣4xy 2﹣(﹣x 2y 2+4x 2y ﹣2xy 2+x 2y 2)=2x 2y ﹣4xy 2+x 2y 2﹣4x 2y +2xy 2﹣x 2y 2=﹣2x 2y ﹣2xy 2=﹣2×(﹣1)2×1﹣2×(﹣1)×12=﹣2+2=0.∴化简后结果为:﹣2x 2y ﹣2xy 2,值为:0.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.34.(2022秋•越秀区期末)已知代数式M =(2a 2+ab ﹣4)﹣2(2ab +a 2+1).(1)化简M ;(2)若a ,b 满足等式(a ﹣2)2+|b +3|=0,求M 的值.【分析】(1)直接利用去括号,进而合并同类项即可得出答案;(2)结合非负数的性质得出a ,b 的值,代入a ,b 的值得出答案.【解答】解:(1)M =2a 2+ab ﹣4﹣4ab ﹣2a 2﹣2=﹣3ab ﹣6;(2)∵(a ﹣2)2+|b +3|=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,故M=﹣3×2×(﹣3)﹣6=18﹣6=12.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.35.(2022秋•和平区校级期中)先化简再求值:若(a+3)2+|b﹣2|=0,求3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}的值.【分析】先去括号、合并同类项,再根据非负数的性质求出a、b,最后代入化简后的整式求值.【解答】解:3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}=3ab2﹣[2a2b﹣(5ab2﹣6ab2+2a2b)]=3ab2﹣(2a2b﹣5ab2+6ab2﹣2a2b)=3ab2﹣2a2b+5ab2﹣6ab2+2a2b=2ab2.∵(a+3)2+|b﹣2|=0,又∵(a+3)2≥0,|b﹣2|≥0,∴a+3=0,b﹣2=0.∴a=﹣3,b=2.当a=﹣3,b=2时,原式=2×(﹣3)×22=2×(﹣3)×4=﹣24.【点评】本题考查了整式的化简﹣求值,掌握去括号法则、合并同类项法则、非负数的性质及有理数的混合运算是解决本题的关键.36.(2022秋•江都区期末)已知代数式A=x2+xy﹣12,B=2x2﹣2xy﹣1.当x=﹣1,y=﹣2时,求2A﹣B 的值.【分析】将x=﹣1,y=﹣2代入求出A、B的值,再代入到2A﹣B即可.【解答】解:当x=﹣1,y=﹣2时,A=1+2﹣12=﹣9,B=2﹣4﹣1=﹣3,∴2A﹣B=﹣18+3=﹣15.【点评】本题考查整式的加减以及代数式求值,掌握去括号、合并同类项分组是正确解答的前提.37.已知:A=x−12y+2,B=x﹣y﹣1.(1)化简A﹣2B;(2)若3y﹣2x的值为2,求A﹣2B的值.【分析】(1)把A、B表示的代数式代入A﹣2B中,计算求值即可;(2)利用等式的性质,变形已知,整体代入(1)的结果中求值即可.【解答】解:∵A=x−12y+2,B=x﹣y﹣1,∴A﹣2B=x−12y+2﹣2(x﹣y﹣1)=x−12y+2﹣2x+2y+2=﹣x+32y+4;(2)当3y﹣2x=2时,即﹣x+32y=1.A﹣2B=﹣x+32y+4=1+4=5.【点评】本题考查了整式的加减、整体代入的思想方法,掌握去括号、合并同类项法则是解决本题的关键.38.(2022秋•邹平市校级期末)先化简,再求值:A =5xy 2﹣xy ,B =x y 2−2(32x y 2−0.5xy).求A ﹣B ,其中x ,y 满足(x +1)2+|3﹣y |=0.【分析】利用整式的混合运算化简整式,再根据非负数的性质判断x ,y 的值,代入求值即可.【解答】解:∵A =5xy 2﹣xy ,B =x y 2−2(32x y 2−0.5xy) =xy 2﹣3xy 2+xy=﹣2xy 2+xy ,∴A ﹣B=5xy 2﹣xy ﹣(﹣2xy 2+xy )=5xy 2﹣xy +2xy 2﹣xy=7xy 2﹣2xy ,∵(x +1)2+|3﹣y |=0,∴x +1=0,3﹣y =0,∴x =﹣1,y =3,∴原式=7xy 2﹣2xy=7×(﹣1)×32﹣2×(﹣1)×3=﹣7×9+6=﹣63+6=﹣57.【点评】本题考查了整式的混合运算化简求值,非负数的性质,解题的关键是掌握整式的混合运算,非负数的性质.39.(2022秋•大丰区期末)已知A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a .(1)求A ﹣3B .(2)求当a =2,b =﹣1时,A ﹣3B 的值.【分析】(1)先把A 、B 表示的代数式代入,然后化简求值;(2)把a 、b 的值代入化简的代数式,计算得结果.【解答】解:(1)∵A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a ,∴A﹣3B=2a2b﹣5ab2﹣3(a2b﹣2ab2﹣a)=2a2b﹣5ab2﹣3a2b+6ab2+3a=﹣a2b+ab2+3a.(2)当a=2,b=﹣1时,A﹣3B=﹣22×(﹣1)+2×(﹣1)2+3×2=4+2+6=12.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B﹣2A的值.【分析】先把A、B表示的代数式代入并化简整式,再利用非负数的性质求出x、y的值,最后代入计算.【解答】解:B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣2x﹣4y=﹣5x﹣5y.∵|x﹣2|+(y−15)2=0,|x﹣2|≥0,(y−15)2≥0,∴|x﹣2|=0,(y−15)2=0.∴x=2,y=1 5.当x=2,y=15时,原式=﹣5×2﹣5×1 5=﹣10﹣1=﹣11.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则,非负数的性质是解决本题的关键.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.【分析】(1)先去括号,合并同类项,然后把A,B的值代入化简后的式子,进行计算即可解答;(2)把a,b的值代入(1)中的结论,进行计算即可解答.【解答】解:(1)∵A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab,∴A﹣2(A﹣B)=A﹣2A+2B=﹣A+2B=﹣(2a2b﹣ab﹣2a)+2(a2b﹣a+3ab)=﹣2a2b+ab+2a+2a2b﹣2a+6ab=7ab;(2)当a=−27,b=3时,A﹣2(A﹣B)=7×(−27)×3=﹣6.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.【分析】(1)将A=3ab+a﹣2b,B=2ab﹣b代入2A﹣3B,再进行化简即可求解;(2)由(1)可得2A﹣3B+4,再把b=2a代入可求解.【解答】解:(1)∵A=3ab+a﹣2b,B=2ab﹣b,∴2A﹣3B=2(3ab+a﹣2b)﹣3(2ab﹣b)=6ab+2a﹣4b﹣6ab+3b=2a﹣b;(2)由(1)知,2A﹣3B=2a﹣b,∴2A﹣3B+4=2a﹣b+4,∴当b=2a时,原式=2a﹣2a+4=4.【点评】本题主要考查了整式的加减运算,掌握去括号法则和合并同类项法则是解题的关键.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.【分析】(1)把A、B代入2A﹣(A+3B)计算即可;(2)当a,b互为倒数时,ab=1,根据(1)的计算结果,求出2A﹣(A+3B)的值即可.【解答】解:(1)∵A=6a2+2ab+7,B=2a2﹣3ab﹣1,∴2A﹣(A+3B)=2A﹣A﹣3B=A﹣3B=(6a2+2ab+7)﹣3(2a2﹣3ab﹣1)=6a2+2ab+7﹣6a2+9ab+3=11ab+10.(2)当a,b互为倒数时,ab=1,2A﹣(A+3B)=11ab+10=11×1+10=11+10=21.【点评】此题主要考查了整式的加减﹣化简求值问题,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.44.(2021秋•沂源县期末)已知多项式x 2+ax ﹣y +b 与bx 2﹣3x +6y ﹣3差的值与字母x 的取值无关,求代数式3(a 2﹣2ab ﹣b 2)﹣4(a 2+ab +b 2)的值.【分析】先根据代数式的差与字母x 无关,求出a 、b 的值,再化简代数式,代入计算.【解答】解:x 2+ax ﹣y +b ﹣(bx 2﹣3x +6y ﹣3)=x 2+ax ﹣y +b ﹣bx 2+3x ﹣6y +3=(1﹣b )x 2+(a +3)x ﹣7y +b +3.∵多项式x 2+ax ﹣y +b 与bx 2﹣3x +6y ﹣3差的值与字母x 的取值无关,∴1﹣b =0,a +3=0.∴b =1,a =﹣3.3(a 2﹣2ab ﹣b 2)﹣4(a 2+ab +b 2)=3a 2﹣6ab ﹣3b 2﹣4a 2﹣4ab ﹣4b 2=﹣a 2﹣10ab ﹣7b 2.当b =1,a =﹣3时.原式=﹣(﹣3)2﹣10×(﹣3)×1﹣7×12=﹣9+30﹣7=14.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及绝对值的意义是解决本题的关键.45.(2022秋•大竹县校级期末)已知代数式x 2+ax ﹣(2bx 2﹣3x +5y +1)﹣y +6的值与字母x 的取值无关,求13a 3−2b 2−14a 3+3b 2的值.【分析】首先对题中前一个代数式合并同类项,由代数式的值与字母x 无关求得a 、b 的值,再把a 、b 的值代入后一个代数式计算即可.注意第二个代数式先进行合并同类项,可简化运算.【解答】解:x 2+ax ﹣(2bx 2﹣3x +5y +1)﹣y +6=(1﹣2b )x 2+(a +3)x ﹣6y +5,因为此代数式的值与字母x 无关,所以1﹣2b =0,a +3=0;解得a =﹣3,b =12,13a 3−2b 2−14a 3+3b 2 =112a 3+b 2,当a=﹣3,b=12时,上式=112×(﹣3)3+(12)2=−2.【点评】此题考查的知识点是整式的加减﹣化简求值,关键是掌握用到的知识点为:所给代数式的值与某个字母无关,那么这个字母的相同次数的系数之和为0.46.(2022秋•利川市校级期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.【分析】原式去括号合并后,根据结果与x取值无关求出a与b的值,所求式子去括号合并后代入计算即可求出值.【解答】解:原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,由结果与x取值无关,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=5ab2﹣a2b﹣2a2b+6ab2=11ab2﹣3a2b=﹣33﹣27=﹣60.【点评】此题考查了整式的加减﹣化简求值,以及整式的加减,熟练掌握运算法则是解本题的关键.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式3a2b−[2a b2−4(ab−34a2b)]+2a b2的值.【分析】首先求出a,b的值,再化简求值即可.【解答】解:A﹣B=(x2+ax﹣y)﹣(bx2﹣x﹣2y)=(1﹣b)x2+(a+1)x+y,∵A与B的差与x的取值无关,∴a=﹣1,b=1,∴原式=3a2b﹣2ab2+4ab﹣3a2b+2ab2=4ab=﹣4.【点评】本题考查整式的加减,解题关键是理解题意,掌握整式是加减法则,属于中考常考题型.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.【分析】(1)直接将A=2x2+3xy﹣2x,B=x2﹣xy+y2代入计算即可;(2)先根据非负性求出x、y的值,再代入(1)中结果计算即可;(3)直接将10xy﹣4x﹣4y2转化为(10y﹣4)x﹣4y2计算y即可.【解答】解:(1)2A﹣4B=2(2x2+3xy﹣2x)﹣4(x2﹣xy+y2)=4x2+6xy﹣4x﹣4x2+4xy﹣4y2=10xy﹣4x﹣4y2.(2)由题意可知:x﹣1=0,y+2=0,所以x=1,y=﹣2,原式=10×1×(﹣2)﹣4×1﹣4×(﹣2)2=﹣20﹣4﹣16=﹣40.(3)因为2A﹣4B的值与x的取值无关,所以2A﹣4B=10xy﹣4x﹣4y2=2x(5y﹣2)﹣4y2,所以5y﹣2=0,所以y=2 5.【点评】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.【分析】(1)去括号,合并同类项将原式化为(3+6b)x2+(a+4)x﹣6y+7,再令x项的系数为0即可;(2)根据去括号、合并同类项将原式化简后,再代入求值即可.【解答】解:(1)原式=3x2+ax﹣y+6+6bx2+4x﹣5y+1=(3+6b)x2+(a+4)x﹣6y+7,∵该多项式的值与字母x的取值无关,∴3+6b=0,a+4=0,∴a=﹣4,b=−1 2;(2)原式=3ab2﹣(5a2b+2ab2﹣1+ab2)+6a2b =3ab2﹣5a2b﹣2ab2+1﹣ab2+6a2b=a2b+1,当a=﹣4,b=−12时,原式=(﹣4)2×(−12)+1=﹣8+1=﹣7.【点评】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关得出关于a和b的方程,计算即可.(2)先将4A+[(2A﹣B)﹣3(A+B)]去括号,合并同类项,再将A=4a2﹣ab+4b2,B=3a2﹣ab+3b2代入化简,然后将a与b的值代入计算即可.【解答】解:(1)2x2−12bx2﹣y+6=(2−12b)x2﹣y+6,ax+17x﹣5y﹣1=(a+17)x﹣5y﹣1,∵关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2−12b=0,a+17=0,∴a=﹣17,b=4.(2)4A+[(2A﹣B)﹣3(A+B)]=4A+2A﹣B﹣3A﹣3B=3A﹣4B,∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴3A﹣4B=3(4a2﹣ab+4b2)﹣4(3a2﹣ab+3b2)=12a2﹣3ab+12b2﹣12a2+4ab﹣12b2=ab,由(1)知a=﹣17,b=4,∴原式=(﹣17)×4=﹣68.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减的运算法则是解题的关键.。
福建中考数学化简求值
![福建中考数学化简求值](https://img.taocdn.com/s3/m/9dc02f5153d380eb6294dd88d0d233d4b14e3fbc.png)
福建中考数学化简求值在福建中考数学考试中,化简求值是一个常见的题型。
化简是指将一个复杂的式子简化成一个简单的形式,求值是指计算出式子的具体数值。
化简求值题通常是通过一系列的运算步骤和性质转换,将复杂的式子逐步还原为简单的形式,最后求得结果。
在解决化简求值题时,我们通常要运用一些基本的数学性质,例如整数的加减乘除运算法则、分数的加减乘除运算法则、方幂运算法则、根式的运算法则等等。
同时,我们还需要灵活运用各种计算技巧,如因式分解、配方法、同底数运算等,以简化式子并快速求得结果。
首先,化简求值题中常见的一个情况是分式的化简。
在分式的化简中,我们需要运用到分式的加减乘除运算法则,通过将分子分母进行合并、约分等操作,将复杂的分式化简为简单的分式,从而便于求值。
同时,我们还需要注意辅助运算的顺序,以确保计算的正确性。
其次,方幂和根式的化简也是化简求值题中常见的情况。
在方幂的化简中,我们需要运用到方幂运算法则,通过合并同底数的幂、分解乘幂等操作,将复杂的方幂化简为简单的形式。
而在根式的化简中,我们需要运用到根式的乘方、除法等运算法则,通过化简根号下的数为最简形式,进而方便计算。
最后,化简求值题可能还涉及到其他一些数学知识点的运用,如代数式的化简、三角函数的化简等。
在这些情况下,我们需要根据具体的题目要求,灵活运用相关的数学理论和方法,将复杂的式子逐步简化,并最终求出具体的数值。
总而言之,在解决福建中考数学化简求值题时,我们需要熟练掌握基本的数学性质和运算规则,善于灵活运用各种计算技巧,同时要注意运算的顺序和细节处理。
只有这样,我们才能准确、高效地完成化简求值题,并在考试中取得好成绩。
希望通过本文的介绍,能够帮助大家更好地理解和应对福建中考数学化简求值题。
(完整版)中考数学化简求值专项练习试题(较高难度)
![(完整版)中考数学化简求值专项练习试题(较高难度)](https://img.taocdn.com/s3/m/840bfe4caa00b52acec7ca55.png)
中考数学化简求值专项练习(较高难度)一. 已知条件不化简,所给代数式化简 例1.先化简,再求值: ()a a a a a a a a -+--++÷-+221444222,其中a 满足:a a 2210+-=例2. 已知x y =+=-2222,,求()yxy y xxy x xy x y x yx y++-÷+⋅-+的值。
例3. 已知条件化简,所给代数式不化简 例 3. 已知a b c 、、为实数,且ab a b +=13,bc b c ac a c +=+=1415,,试求代数式abcab bc ac++的值。
例4. 已知条件和所给代数式都要化简例4.若x x+=13,则x x x 2421++的值是( ) A. 18 B. 110 C. 12D.14例5. 已知a b +<0,且满足a ab b a b 2222++--=,求a b ab3313+-的值。
中考数学化简求值专项练习解析卷一. 已知条件不化简,所给代数式化简 例1.先化简,再求值:()a a a a a a a a -+--++÷-+221444222,其中a 满足:a a 2210+-= 解:()a a a a a a a a -+--++÷-+221444222=-+--+÷-+=-+--+÷-+[()()][()()()]a a a a a a a a a a a a a a a a 2212424212422222=-++⨯+-=+4224122a a a a a a a ()()=+122a a由已知a a 2210+-= 可得a a 221+=,把它代入原式: 所以原式=+=1212a a 例2. 已知x y =+=-2222,,求()yxy y xxy xxy x y x yx y++-÷+⋅-+的值。
解:()yxy y xxy x xy x y x yx y++-÷+⋅-+=++-⨯+⋅-+()y x yxy x x y xy x yx y=-++-⋅-=-+y xy x xy y x x yxyy x xy当x y =+=-2222,时 原式=-++-+-=-222222222()()二. 已知条件化简,所给代数式不化简 例 3. 已知a b c 、、为实数,且ab a b +=13,bc b c ac a c +=+=1415,,试求代数式abcab bc ac++的值。
2023年中考九年级数学一轮复习 分式化简求值
![2023年中考九年级数学一轮复习 分式化简求值](https://img.taocdn.com/s3/m/7a21b00382c4bb4cf7ec4afe04a1b0717fd5b391.png)
2023年中考九年级数学一轮复习 --分式化简求值1.先化简,再求代数式aa+2−1a−1÷a+2a2−2a+1的值,其中a=6tan60∘−22.先化简,再求值:(1x−3+1x+3)·9−3x2x,其中x= √3-3.3.先化简,再求值:x 2−6x+9x2−9÷x−32,其中x=√2﹣3.4.先化简,再求值:a2−1b2−2b+1÷ a+1b−1+1b−1,其中a= √3,b= √3+1.5.先化简,再求值:(1﹣1a+1)×a2+2a+12,其中a=√2.6.先化简(2x+11−x﹣1)÷x1−x2,然后从﹣2≤x<2的范围内选取一个合适的整数作为x的值代入求值.7.先化简,再求值:(1−1a+1)÷aa2+2a+1,其中a=√3−1.8.先化简,再求值:(1﹣2x)÷ x 2−4x+4x2−4﹣x+4x+2,其中x2+2x﹣8=0.9.先化简,再请你用喜爱的数代入求值(x+2x2−2x −x−1x2−4x+4)÷x+2x3−4x10.先化简,后求值.(aa+1﹣aa2−1)÷aa+1﹣a+1a−1,其中a= √3+1.11.先化简,再求值:(1x−y+1x+y)÷xyx2−y2,其中x=2014,y=﹣2.12.先化简,再求值:x−2x2−1÷(1﹣3x+1),其中x= √3+1.13.先化简,再求代数式aa+2−1a−1÷a+2a2−2a+1的值,其中a=6tan30°−2.14.先化简,再求值:(m+2+52−m)⋅2m−43−m,其中m=12.15.先化简,再求值:(x 2−1x2−2x+1−1)÷x x−1,其中x=3−1×6.16.先化简,再求值:a+1a2−2a+1÷(1+2a−1),其中a=3.答案解析部分1.【答案】解:原式= a a+2−1a−1·(a−1)2a+2= a a+2−a−1a+2 = 1a+2 当a=6× √33﹣2=2 √3 ﹣2时, 原式= 12√3−2+2=12√3= √362.【答案】解:原式= x+3+x−3(x+3)(x−3) • 3(3−x )2x =﹣ 3x+3 当x= √3 ﹣3时,原式=﹣ √3 .3.【答案】解:原式=(x−3)2(x+3)(x−3)•2x−3=2x+3, 当x=√2﹣3时,原式=√2.4.【答案】解:原式= (a−1)(a+1)(b−1)2 • b−1a+1 + 1b−1 = a−1b−1 + 1b−1= a b−1 ,当a= √3 ,b= √3 +1时,原式= √3√3+1−1 =1.5.【答案】解:原式 =a a+1×(a+1)22 =a(a+1)2 . 当a =√2 时,原式 =√2(√2+1)2=2+√22 . 6.【答案】解:( 2x+11−x ﹣1)÷ x 1−x 2= 2x+1−(1−x)1−x ⋅(1+x)(1−x)x= 2x+1−1+x 1−x ⋅(1+x)(1−x)x= 3x 1−x ⋅(1+x)(1−x)x=3(1+x )=3+3x ,∵﹣2≤x <2且x 为整数,∴当x=﹣2时,原式=3+3×(﹣2)=3+(﹣6)=﹣3.7.【答案】解:原式= a+1−1a+1÷a(a+1)2=a a+1·(a+1)2a=a+1。
初三数学中考专项化简求值练习题
![初三数学中考专项化简求值练习题](https://img.taocdn.com/s3/m/6c813a06910ef12d2af9e7f9.png)
初三数学中考化简求值1.3 a b的有理化因式是。
2.若最简二次根式21与y121 是同类二次根式,则x y =。
x3x4. 假如 a, b 是方程x2x10的两个根,那么代数式a3a2 b ab 2b3的值是.5.若 1<x<4,则化简( x 4 ) 2( x1) 2的结果是。
6.若a0 , b0 ,则化简(a b)2b2.m 22m1(m1m1此中 m=3.1、化简,求值:m 21m) ,1a14a22a33. 计算:a a 21a3.a24. 先化简,再求值:1· x36x29x1x,此中 x=- 6.a2-4a+4x3x22x2x ÷a2- a,此中 a=2+ 2 .6 化简 3 15102633 32185218、先化简再求值:x 2xy 2 y2(12)(1 xy2)x21,x 22xy y2xy y 4此中 x =3 2 ,y=3 2 。
9、先化简,再求值:x22x2x( x1 24x22) ,此中 x.x213 先化简,再求值,此中x知足x2﹣x﹣1=0.14、先化简,再求值:,此中a=.15、( 2011?包头)化简,其结果是.x2+4x+4x+22x16、先化简,再求值:x2-16÷2x-8-x+4,此中x=2.17. (本小题满分 7 分)先化简,再求值:(x2 y 4 y32 ) (4xyx),此中x 2 1 24 xy 4 y x 2 y y 2 1 x18、先化简,再求值 : x22x1÷(2x —1x 2)此中, x=2+1 x 2x xx y3219. (此题 5 分)已知x、y知足方程组,先将x xy xy化简,再求值。
3x8 y14x y x y20、先化简,再求值:x2(1y) x3 y xy( y1)(y 1)此中 x1, y221。
中考分式化简求值专项练习与答案
![中考分式化简求值专项练习与答案](https://img.taocdn.com/s3/m/375a7b58571252d380eb6294dd88d0d233d43cb7.png)
中考分式化简求值专项练习与答案1、化简得:$\frac{x^2-2x}{2x-1}\div\frac{x+1}{x-1}$,代入$x=-2$得:$-2$2、化简得:$\frac{a^2-5a+2}{a+2}\div\frac{a^2-4}{a+4}$,代入$a=3+\sqrt{2}$得:$-3-\sqrt{2}$3、化简得:$\frac{1}{x+2}\div\frac{x^2-4}{x^2+4x-4}$,代入$x=-3$得:$-\frac{1}{2}$4、化简得:$\frac{-4}{2x(x+1)}$,代入$x=-1$得:$2$5、化简得:$\frac{2x^2-x}{(x-1)(x-2)}-\frac{x-1}{x+2}$,代入方程$x^2-x-1.5=0$的解得:$-\frac{1}{2}$6、化简得:$\frac{a-b}{a+b}+\frac{5b^2}{a^2-6ab+9b^2}$,其中$a+b=4$,代入求得整数解的不等式组得:$1$7、化简得:$\frac{1}{a-2b}-\frac{a+2b}{7a-42b}$,其中$a-b=27$,代入化简求值得:$\frac{1}{7}$8、化简得:$\frac{3x^2+4x-4}{x-2}-\frac{x-1}{x+125}$,代入方程$x^3-1=0$的解得:$-1$9、化简得:$\frac{x-1}{x-2}-\frac{1}{9}$,其中$x$是方程$x^2-x-1=0$的解,代入得:$\frac{1}{9}$10、化简得:$\frac{a^2-42}{a^2-4a+4}-\frac{a-2}{a-2}$,其中$a=-3$,代入得:$-2$11、化简得:$\frac{a-2}{2a+1}\div\frac{a+1}{a-1}\div\frac{a-1}{a+1}$,无解12、化简得:$\frac{1}{a-2}-\frac{a-2}{a+1}\div\frac{a-1}{a+1}$,其中$a=3+\frac{1}{\sqrt{2}}$,代入得:$\frac{1}{2}$13、化简得:$\frac{x-4}{x-1}-\frac{1}{x}$,其中$x=3-4$,代入得:$-2$14、化简得:$\frac{2a}{a^2-2a+1}-\frac{a}{2a+1}$,其中$x-x^2=0$的解,代入得:$0$15、化简得:$\frac{a+1}{a-2}-\frac{a^2-1}{a^2-2a+1}$,其中$a=\tan60^{\circ}$,代入得:$-1$1.代入a=12,化简得:(12)-13=-1.代入a=-13,化简得:(-13)-13=-26.2.代入x=3,化简得:3+4=7.3.化简得:1/a,代入x=3,化简得:1/(3-22)=-1/19.4.化简得:a-a^2,代入a=-7,化简得:(-7)-(-7)^2=42.。
中考分式化简求值题
![中考分式化简求值题](https://img.taocdn.com/s3/m/7f6f5c39d0d233d4b04e69a9.png)
中考分式化简求值题1.(四川资阳)先化简,再求值:232(1)121x x x x x ---÷--+,其中x =原式=223121()112x x x x x x --+----=2(2)(2)(1)12x x x x x +---⨯--=-(x +2)(x -1)=-x 2-x +2 .当x =2时,原式=2(2)(2)2+2=2.(四川乐山)当13x =-时,求23111x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭的值.解:原式3(1)(1)(1)(1)(1)(1)x x x x x x x x x +--+-=⨯-+2233(1)(1)(1)(1)x x x x x x x x x +-++-=⨯+-24x =+ 当13x =-时,原式1243⎛⎫=⨯-+ ⎪⎝⎭103= 3.(山东枣庄)先化简再求值:)21(222222ab b a ab b a b a +-÷+-,其中32+=a ,32-=b解:原式=222()()222()2()a b a b ab a b a b ab ab a b ab ab a b a b ⎡⎤-+---÷=⋅-=-⎢⎥+--⎣⎦当22a b ==-a b -=== 4.(山东济宁)先化简,再求值:)a b ab 2a (a b a 222--+-,其中a =3,b =2。
解:原式22()()2a b a b a ab b a a+--+=÷2()()()a b a b a a a b +-=-a ba b +=-.当3a =,2b =时,原式32532a b a b++===--.5.(湖北潜江、仙桃)先化简后求值:1)113(2-÷--+a aa a a a , 其中22+=a .解:原式=aa a a a a a )1)(1()113(-+⋅--+ =)1()1(3+--a a =42-a 当22+=a 时,原式=226.(山东滨州)先化简,再求值:2121111a a a a -⎛⎫-÷⎪+-+⎝⎭,其中1a =.解:原式212111a a a a --+=÷-+1(1)(1)(1)a a a =++-·11a =-当1a =+时,原式=== 7.(辽宁旅顺口)先化简代数式22221244a b a b a b a ab b--÷-+++,然后选择一个使原式有意义的a 、b 值代入求值.解:22221244a b a b a b a ab b --÷-+++=2(2)12()()a b a b a b a b a b -+⋅-++-=2a b a ba b a b++-++ =2a b a b a b +--+=ba b +. 当1a b ==时,原式11112==+8.(内蒙古乌兰察布)先化简,再求值:516(3)33x x x x -÷+---,其中5x =解:原式=25916()333x x x x x --÷----=252533x x x x --÷--=533(5)(5)x x x x x --⋅-+-=15x -+当5x =时,原式==2=-9.(2007年湖北省襄樊市)先化简,再求值:13x 4x 3x 6x 5x 22---÷+++,其中x =3.解:原式=3x )3x )(2x (+++•1)2x )(2x (3x --+-=2x 2x 2x 3x ----- =2x 1--当x =3时,原式=231--=2+310.(山西太原)先化简,再求值:21122244a a a a a ⎛⎫+÷ ⎪-+-+⎝⎭,其中4a =-.解:原式2222(2)(2)(2)a a a a a a ++-=÷+--22(2)(2)(2)2a a a a a-=+-22a a -=+. 当4a =-时,原式42342--==-+.11.(江苏南通)已知x =2007,y =2008,求x yx y x y x xyx y xy x -+-+÷-++222245452的值.解:222225454x xy y x y x y x xy x y x+++-÷+--22()54(54)x y x y x y x x y x y x +--=⨯+-+2x y x y x x +-=+2x x x+=1x =+.。
初三化简求值练习题及答案
![初三化简求值练习题及答案](https://img.taocdn.com/s3/m/a68c7c8409a1284ac850ad02de80d4d8d15a01ce.png)
初三化简求值练习题及答案如下是一些初三化简求值的练习题及其解答,希望能帮助大家提高数学能力。
第一题:化简并求值:(4x - 5)+ (2x + 3)解答:将表达式中的括号去掉,并合并同类项:4x - 5 + 2x + 3合并同类项:(4x + 2x) - 5 + 3 = 6x - 2所以,化简并求值后的结果为:6x - 2第二题:化简并求值:(2a + 3b) - (a - 4b)解答:将表达式中的括号去掉,并分配符号:2a + 3b - a + 4b合并同类项:(2a - a) + (3b + 4b) = a + 7b所以,化简并求值后的结果为:a + 7b第三题:化简并求值:3(x + y) - 2(2x - y) + 5(x + y)解答:将表达式中的括号去掉,并分配符号:3x + 3y - 4x + 2y + 5x + 5y合并同类项:(3x - 4x + 5x) + (3y + 2y + 5y) = 4x + 10y 所以,化简并求值后的结果为:4x + 10y 第四题:化简并求值:4(x + 2) - 5(x - 3) + 2(2 + x)解答:将表达式中的括号去掉,并分配符号:4x + 8 - 5x + 15 + 4 + 2x合并同类项:(4x - 5x + 2x) + (8 + 15 + 4) = x + 27所以,化简并求值后的结果为:x + 27第五题:化简并求值:2(x - 3) - 3(x + 2) + 4(2 - x)解答:将表达式中的括号去掉,并分配符号:2x - 6 - 3x - 6 + 8 - 4x合并同类项:(2x - 3x - 4x) + (-6 - 6 + 8) = -5x - 4所以,化简并求值后的结果为:-5x - 4以上就是初三化简求值练习题及对应答案。
希望能帮助大家更好地理解和掌握化简求值的方法。
在解题过程中,注意合并同类项和分配符号的原则,可以帮助我们简化表达式并求得准确的结果。
专题1化简求值题
![专题1化简求值题](https://img.taocdn.com/s3/m/fa384d5452d380eb62946d9d.png)
=n-1 m
=-m-1 n.
当 m-n=
2时,原式=-
1 =- 2
22.
14.(2017·赤峰)先化简再求值:(aa2--64-a+3 2)÷a-a 2,其中 a =2 0170+(-15)-1+ 27tan 30°. 解:原式=[a+a2-a6-2-a+32a-a2- 2]·a-a 2 =a-a+6-23aa--22·a-a 2 =a+-22aa-2·a-a 2 =a-+22.
4.(2017·苏州)先化简,再求值:(1-x+5 2)÷xx2+-39,其中 x= 3-2.
解:原式=xx-+32÷x+x3+x3-3 =xx-+32·x+x3+x3-3
=x+1 2.
当 x=
3-2 时,原式=3-1Βιβλιοθήκη +2=1= 333.
5.(2017·邵阳)先化简,再在-3,-1,0, 2,2 中选择一个 合适的 x 值代入求值. x+x23·xx22--29x+x-x 2.
解:原式=x+x23·x+x3x-x2- 3+x-x 2 =xxx--23+x-x 2 =x. ∵x 不能取-3,0,2, ∴x=-1 或 2, ∴当 x=-1 时,原式=-1.(或当 x= 2时,原式= 2)
6.(2017·呼和浩特)先化简,再求值:xx2+-22x÷x2-x2-4x+4 4+21x, 其中 x=-65.
1.(2017·自贡)先化简,再求值:(a+a+1 2)÷aa2+-21,其中 a=2. 解:原式=aaa++22+1·a+a1+a2-1 =aa++122·a+a1+a2-1 =aa+-11. 当 a=2 时,原式=3.
2.(2017·南充)化简(1-x2+x x)÷xx-+11,再任取一个你喜欢的数 代入求值. 解:原式=x2x+2+x-x x÷xx-+11 =x+x 1·xx+-11 =x-x 1. ∵x 不能取 0,1,-1, ∴当 x=2 时,原式=2.(取 x≠0,1,-1 即可,答案不唯一)
中考数学化简求值及参考答案(精编)
![中考数学化简求值及参考答案(精编)](https://img.taocdn.com/s3/m/ffdea38f0d22590102020740be1e650e53eacf7b.png)
中考数学化简求值及参考答案(精编)1.先化简再求值:y 2−4y+4y−1÷(y +1−3y−1),其中y 的值是不等式组{2y +1≤5−y <1的一个正整数解.2.先化简(3m+1−m +1)÷m 2−4m+4m+1,再从−√2<m <√2的范围内选取一个合适的整数作为m 的值代入求值.3.先化简再求值:x−33x 2−6x ÷(x +2−5x−2),其中x 是方程t 2+3t −4=0的根.4.先化简再求值:m−n m+3n ÷m 2−n 2m 2+6mn+9n 2−2n+1m+n ,其中其中2m=1-2n.5.先化简再求值:(y−1y −y−2y+1)÷2y2−yy2+2y+1,其中y是方程t2−t−1=0的一个根.6.先化简t 2−4t+4t2−2t÷(t−4t),再从−√5<t<√5的范围内选取一个合适的整数作为m的值代入求值.7.先化简再求值:(1x+y +1x−y)÷2xx2+y2+2xy,其中整数x,y是方程x2−y2=5的解.8.先化简再求值:xx2−4÷x2−3xx+2−12−x,其中2,3,x是△ABC三边的长,且x为整数.9.先化简再求值:(m +2−5m−2)÷m+3m 2−3m+2,其中m 是方程x 2−4x −√3=0的解.10.先化简再求值:(3y y−1−y y+1)÷y y 2−1,其中y=4sin45°-2cos60°.11.先化简再求值:(x x+1+1x−1)÷1x 2−1,其中x=√2−112先化简再求值:x 2−2x+1x 2−1÷(x −1−x−1x+1),其中x=√3.13.先化简再求值:(x 2−2x−2−x )÷x−1x 2−4x+4,其中,x=−12.14.先化简再求值:(1y+1+y2−2y+1y2−1)÷y−1y+1,其中y=√2.15.先化简再求值:1y−3∙y3−6y2+9yy2−2y−1−y2−y,其中y是不等式组{y+13>2y3y>y−2的整数解.16.先化简再求值:n 2+4−4nn−1÷(3n−1−n−1),其中n=√2−2.17.先化简再求值:(m+2m2−2m −m−1m2−4m+4)÷m2−16m2+4m,其中m是方程x2−4x−1=0根.参考答案1.y−2y+2=02.2+m2−m=1或33.13(x2+3x)=1124.m+n−1m+n=−15.y+1y2,因为y2=y+1,所以原式=1.6.1t+2=1或137.x+yx−y =5或158.1x−3,当x=4时,原式=1.9.m2−4m+3=3+√310.2y+4=4√2+211.x2+1=4−2√212.1x =√3313.2x-4=-514.yy−1=2+√215.22−y ,−1<y<15,y=0,原式=1.16.2−nn+2=2√2−117.1(m−2)2=15。
化简求值50道(你值得拥有)
![化简求值50道(你值得拥有)](https://img.taocdn.com/s3/m/af7d0b37daef5ef7bb0d3c37.png)
2016中考复习化简求值1.先化简,再求值:(+)÷,其中x=﹣1.2.化简求值:,a取﹣1、0、1、2中的一个数.3.先化简,再求值:÷﹣,其中x=﹣4.4.先化简,再求值:(1﹣)÷,其中x=(+1)0+()﹣1•tan60°.5.先化简,再求值:,其中.6.先化简,再求值:,其中a=﹣1.7.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.8.先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.9.先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.10.先化简,再求值:(+)÷,其中a=2﹣.11.化简求值:(﹣)÷,其中a=1﹣,b=1+.12.先化简,再求值:(x﹣)÷,其中x=cos60°.13.先化简,再求值:(﹣)÷,其中x=﹣1.14.先化简,再求值:(x+1﹣)÷,其中x=2.15.先化简,再求值:(﹣)÷,其中a2+a﹣2=0.16.先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.17.先化简,再求值:÷(﹣)+,其中x的值为方程2x=5x﹣1的解.18.先化简:(x﹣)÷,再任选一个你喜欢的数x代入求值.19.先化简,再求值:÷(2+),其中x=﹣1.20.先化简,再求值:(﹣),其中x=2.21.先化简,再求值:(1﹣)÷,其中a=.22.先化简,再求值:(﹣1)÷,其中a=+1,b=﹣1.23.先化简代数式(﹣)÷,再从0,1,2三个数中选择适当的数作为a的值代入求值.24.先化简,再求值:(x﹣1﹣)÷,其中x是方程﹣=0的解.25.先简化,再求值:(﹣)+,其中a=+1.26.先化简,后计算:(1﹣)÷(x﹣),其中x=+3.27.先化简,再求值:(1﹣)÷,其中x=3.28.先化简,再求值:(﹣)÷,其中x=()﹣1﹣(π﹣1)0+.29.先化简,再求值:()÷,其中a,b满足+|b﹣|=0.30.先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.31. 先化简再求值:错误!未找到引用源。
数学中考备考:化简求值专题
![数学中考备考:化简求值专题](https://img.taocdn.com/s3/m/c928e2db6bec0975f465e2bc.png)
【解析】略
41.
【解析】
解:原式
42.当a=0时,原式=1.
【解析】
试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.
试题解析:
= ,
=
=﹣ ,
当a=0时,原式=1.
考点:分式的混合运算
43.原式= ,
当x= ﹣2时,原式= .
解:化简得:原式=
=
= ,……3分;
当 时:原式= ………5分
考点:分式的化简求值.
点评:此题考查了分式的化简求值,解答此类题要先把原式化为最简,然后再代值,用到的方法有分式的加减法及乘除法,分式的加减法的关键是通分,通分的关键是找出各分母的最简公分母,分式乘除法的关键是约分,约分的关键是找出公因式,在约分时遇到多项式,应先将多项式分解因式再约分.
试题解析:原式= = = ,
当 时,原式= = = .
考点:分式的化简求值.
48.解:原式= ×
= × =2x,
当x= 时,原式=2× = .
【解析】先通分,计算括号里的,再把除法转化成乘法进行约分计算,最后把x的值代入计算即可.
解:原式= × = × =2x,
当x= 时,原式=2× = .
49.取 时,原式 (不唯一)
试题解析:原式= =
当x= 时,原式= = =
考点:分式的化简求值
45. ;-
【解析】
试题分析:首先将括号里面的分式进行通分,然后将各分式的分子和分母进行因式分解,最后进行约分化简,从而将a的值代入化简后的式子进行计算得出答案.
试题解析:原式= =
当a=- 时,原式= =-
有理数、分式化简求值计算专题
![有理数、分式化简求值计算专题](https://img.taocdn.com/s3/m/4e50d5221fb91a37f111f18583d049649b660e30.png)
中考计算专题:有理数、分式化简求值1.计算:.2.先化简:,然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.3.计算:.4.先化简,再从不等式组﹣1≤x<3中选择一个适当的整数,代入求值.5.计算:.6.先化简,再求值:,其中x=2024.7.计算:.8.先化简,再求值:(﹣x﹣1)÷,其中x=3.9.计算:(1+π)0+2﹣|﹣3|+2sin45°.10.先化简,再求值:(1﹣)÷,其中x=﹣1.11.计算:cos60°﹣()﹣2﹣|2﹣|+(2024﹣π)0.12.先化简:,再从﹣2,﹣1,0,1中选择一个合适的数作为x代入求值.13.计算:﹣(4﹣π)0﹣(﹣1)2014+(﹣)﹣1﹣|﹣2|﹣tan60°.14.先化简,然后从﹣1,1,﹣2,2中选一个合适的数代入求值.15.计算:|﹣2|﹣()﹣1+(2024﹣π)0﹣6cos30°.16.化简求值:,其中x为数据4,5,6,5,3,2的众数.17.计算:.18.先化简,再从﹣1,0,中选取适合的数字求这个代数式的值.19.计算:(π+2023)0+2sin45°﹣()﹣1+|﹣2|.20.先化简,再求代数式(﹣)÷的值,其中x=2cos45°+1.21.计算:(﹣1)2023+(π﹣)0﹣|1﹣|+2cos30°.22.先化简,再求值:(+1)÷,其中x=3.23.(π﹣1)0﹣+cos45°+()﹣1.24.化简求值:(﹣1)÷,其中x=4.参考答案1.计算:.【解答】解:原式=2﹣+﹣1﹣3=﹣2.2.先化简:,然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.【解答】解:原式=••=x+1.∵在﹣1,0,1,2四个数中,使原式有意义的值只有2,∴当x=2时,原式=2+1=3.3.计算:.【解答】解:原式==.4.先化简,再从不等式组﹣1≤x<3中选择一个适当的整数,代入求值.【解答】解:原式=(+)•=•=,由题意得:x﹣1≠0,x﹣2≠0,∴x≠1和2,在﹣1≤x<3中,x的整数解为﹣1,0,1,2,当x=0时,原式=﹣1,当x=﹣1时,原式==﹣.5.计算:.【解答】解:=2﹣1+2﹣=3﹣.6.先化简,再求值:,其中x=2024.【解答】解:=•=•=﹣=,当x=2024时,原式==.7.计算:.【解答】解:原式==4.8.先化简,再求值:(﹣x﹣1)÷,其中x=3.【解答】解:原式=•=﹣•=﹣,当x=3时,原式=﹣=﹣5.9.计算:(1+π)0+2﹣|﹣3|+2sin45°.【解答】解:(1+π)0+2﹣|﹣3|+2sin45°=1+2﹣3+2×=0+=.10.先化简,再求值:(1﹣)÷,其中x=﹣1.【解答】解:原式=•=•=,当x=﹣1时,原式===.11.计算:cos60°﹣()﹣2﹣|2﹣|+(2024﹣π)0.【解答】解:原式=×﹣﹣(﹣2)+1=﹣﹣+2+1=1﹣.12.先化简:,再从﹣2,﹣1,0,1中选择一个合适的数作为x代入求值.【解答】解:=﹣•=﹣==,∵当x=﹣2,﹣1,1时,原分式无意义,∴x=0,当x=0时,原式==2.13.计算:﹣(4﹣π)0﹣(﹣1)2014+(﹣)﹣1﹣|﹣2|﹣tan60°.【解答】解:原式=﹣1﹣1﹣2﹣﹣=﹣4.14.先化简,然后从﹣1,1,﹣2,2中选一个合适的数代入求值.【解答】解:(x﹣1﹣)÷=[]•==x+1,∵x+1≠0,x2+2x+1≠0,x2﹣4≠0,∴x≠﹣1,x≠±2,∴x=1,当x=1时,原式=1+1=2.15.计算:|﹣2|﹣()﹣1+(2024﹣π)0﹣6cos30°.【解答】解:原式=2﹣﹣4+1﹣6×=2﹣﹣4+1﹣3=﹣1﹣4.16.化简求值:,其中x为数据4,5,6,5,3,2的众数.【解答】解:=÷=÷=•==,∵x为数据4,5,6,5,3,2的众数,∴x=5,∴当x=5时,原式===.17.计算:.=4×﹣2++1﹣3+9=818.先化简,再从﹣1,0,中选取适合的数字求这个代数式的值.【解答】解:=•=•=x(x+1),∵x+1≠0,x≠0,∴x≠﹣1,0,∴x=,当x=时,原式=(+1)=2+.19.计算:(π+2023)0+2sin45°﹣()﹣1+|﹣2|.【解答】解:===1.20.先化简,再求代数式(﹣)÷的值,其中x=2cos45°+1.【解答】解:(﹣)÷===,当x=2cos45°+1=2×+1=+1时,原式==.21.计算:(﹣1)2023+(π﹣)0﹣|1﹣|+2cos30°.===1.22.先化简,再求值:(+1)÷,其中x=3.【解答】解:原式=•=•=,当x=3时,原式==.23.(π﹣1)0﹣+cos45°+()﹣1.【解答】解:原式=1﹣3+×+5=3+1=4.24.化简求值:(﹣1)÷,其中x=4.【解答】解:(﹣1)÷===,当x=4时,原式==.。
初中数学化简求值经典练习题(含答案)
![初中数学化简求值经典练习题(含答案)](https://img.taocdn.com/s3/m/54d37360cd1755270722192e453610661ed95ac0.png)
初中数学化简求值经典练习题(含答案)先化简再求值: 1.(1+ 1x +1x+1)÷x (x+1)+2(x+1)−1x 2−1-1,其中:x=√2-1 ;2.1-(1x−1-1)( 1x-1),其中:x=√5+2 ;3.25x -12x−3y ·(4x 2-9y 2+4x−6y 5x),其中:x=√3+12,y= √3−13;4.2(x-2y )+3(2x-3y )-4(3x-4y ),其中:x= - 34,y= 23;5.7x 3-2x (3x-5)-(4+5x-6x 2+7x 3),其中:x=2;6.(x+1)(x-3)+3x 2- 2〔2(x-2)(x+1)+(5x+4〕),其中:x= 34 ;7.x (x-1)-(x-2)(x+3)+6[32(6+x )+ 13(5-x )],其中x= -1.2 ;8.x−9x 2−9·x 2−6x+99−x+(4x−142x 2−x−21+3),其中x=√3-3 ;9.x−2y 3x+4y ÷(x +−2xy+4y 2x−2y)·3x 2+7xy+4y 2x 2−y 2,其中:x=√5-1,y=√3-1 ;10.12(2x+4)(x-2)+x−5x 2−10x+25·(x 2-x-20),其中:x 是大于3且小于6的自然数; 11.(4x+31x−5+x+5)-x 2−9x−5·x−2x+3,其中:x 满足|x |=4 ;12.(x+3)÷ x 2+x−6x 2−6x+8-x−1x+1×2x 2−x−3x−1,其中:x=2sin60°-1 ;参考答案1.(1+ 1x +1x+1)÷x (x+1)+2(x+1)−1x 2−1-1,其中:x=√2-1 ; 解:(1+ 1x + 1x+1)÷x (x+1)+2(x+1)−1x 2−1-1=(x+1x+ 1x+1)÷x 2+x+2x+2−1(x+1)(x−1)-1=x 2+3x+1x (x+1)÷x 2+3x+1(x+1)(x−1)-1 = x 2+3x+1x (x+1) ·(x+1)(x−1)x 2+3x+1-1=x−1x-1=1 - 1x-1 = - 1x将x=√2-1代入 原式= - √2−1= -√2+1(√2−1)(√2+1)= -√2−1故当 x=√2-1时原代数式的值是:-√2−1 2. 1-(1x−1-1)( 1x-1),其中:x=√5+2 ;解:1-(1x−1 -1)( 1x-1)=1-(1x−1-x−1x−1)( 1x- xx)=1- −x+2x−1 ·1−xx=1-x−2x=1-(1- 2x) = 2x将x=√5+2代入 原式= √5+2=√5−2(√5+2)(√5−2)=2√5-4故当 x=√5+2时原代数式的值是:2√5-4 3.25x -12x−3y ·(4x 2-9y 2+4x−6y5x ),其中:x= √3+12,y= √3−13 ; 解:25x - 12x−3y (4x 2-9y 2+4x−6y 5x)= 25x -12x−3y〔(2x+3y )(2x-3y ) +2(x−3y )5x〕= 25x - 〔(2x+3y )+ 25x〕 = -(2x+3y ) = -2x-3y将x= √3+12,y= √3−13代入原式= -2·√3+12 -3·√3−13= -(√3+1)-(√3−1)=2√3故当x= √3+12,y= √3−13时原代数式的值是:2√34.2(x-2y)+3(2x-3y)-4(3x-4y),其中:x= - 34,y= 23;解:2(x-2y)+3(2x-3y)-4(3x-4y) =2x-4y+6x-9y-12x+16y= -4x+3y将x= - 34,y= 23代入原式= -4·(- 34)+3·23=3+2=5故当 x=2时原代数式的值是:55. 7x3-2x(3x-5)-(4+5x-6x2+7x3),其中:x=2;解:7x3-2x(3x-5)-(4+5x-6x2+7x3)=7x3-6x2+10x-4-5x+6x2-7x3=5x-4将x=2代入原式=5·2-4=6故当 x=2时原代数式的值是:66.(x+1)(x-3)+3x 2- 2〔2(x-2)(x+1)+(5x+4〕),其中:x= 34 ;解:(x+1)(x-3)+3x 2- 2〔2(x-2)(x+1)+(5x+4〕) = x 2-2x-3+3x 2-2〔2(x 2-x-2)+(5x+4〕) =4x 2-2x-3-2〔2x 2-2x-4+5x+4) =4x 2-2x-3-2(2x 2+3x ) =4x 2-2x-3-4x 2-6x = -8x-3 将x= 34 代入原式= -8·34-3= -9故当 x= 34 时原代数式的值是:-97.x (x-1)-(x-2)(x+3)+6[32(6+x )+ 13(5-x )],其中x= -1.2 ;解:x (x-1)-(x-2)(x+3)+6[32(6+x )+ 13(5-x )]=x 2-x-(x 2+x-6)+ [6*32(6+x )+ 6*13(5-x )]=-2x+6+[9(6+x )+ 2(5-x )] =6-2x+(54+9x+10-2x ) =6-2x+(64+7x )=70+5x 将x= -1.2代入 原式=70+5×(-1.2)=64故当x= -1.2时原代数式的值是:64 8.x−9x 2−9·x 2−6x+99−x+(4x−142x 2−x−21+3),其中x=√3-3 ; 解:x−9x 2−9·x 2−6x+99−x +(4x−142x 2−x−21 +3)=x−9(x+3)(x−3)·(x−3)2−(x−9)+〔2(2x−7)(2x−7)(x+3)+3〕= - x−3x+3+2x+3+3= 5−x x+3+3= 5−x+3x+9x+3= 2x+14x+3=(2x+6)+8x+3=2+8x+3将x=√3-3代入 原式=2+(√3−3)+3=2+8√33故当x=√3-3时原代数式的值是:2+ 8√339.x−2y 3x+4y÷(x +−2xy+4y 2x−2y)·3x 2+7xy+4y 2x 2−y 2,其中:x=√5-1,y=√3-1;解:x−2y3x+4y ÷(x + −2xy+4y2x−2y)·3x2+7xy+4y2x2−y2= x−2y3x+4y ÷x2−4xy+4y2x−2y·(3x+4y)(x+y)(x+y)(x−y)=x−2y3x+4y ÷(x−2y)2x−2y·3x+4yx−y=x−2y3x+4y ·1x−2y·3x+4yx−y= 1x−y将x=√5-1,y=√3-1代入原式=(√5−1)−(√3−1)=√5−√3= √5+√3(√5−√3)(√5+√3)= √5+√35−3= √5+√32故当x=√5-1,y=√3-1时原代数式的值是:√5+√3210.12(2x+4)(x-2)+ x−5x2−10x+25·(x2-x-20),其中:x是大于3且小于6的自然数;解:12(2x+4)(x-2)+ x−5x2−10x+25·(x2-x-20)=(x+2)(x-2)+ x−5(x−5)2·(x+4)(x-5)=x2 -4 +x+4=x2 +xx是大于3且小于6的自然数那么x 是自然数4或5,但是当x=5时,分式 x−5x 2−10x+25的分母等于0,故x 不能为5,所以x 只能是自然数4。
专题04 分式的运算与化简求值篇(解析版)-2023年中考数学必考考点总结
![专题04 分式的运算与化简求值篇(解析版)-2023年中考数学必考考点总结](https://img.taocdn.com/s3/m/0e3ba8a66aec0975f46527d3240c844769eaa0fd.png)
知识回顾专题04分式的运算与化简求值2023年中考数学必考考点总结1.因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a -+=-22;完全平方公式:()2222b a b ab a ±=+±。
③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则:()()n x m x c bx x ++=++2。
2.分式的性质:分式的分子与分母同时乘上或除以同一个不为0的数或式子,分式的值不变。
()0≠÷÷==C CB C A BC AC B A 3.约分与通分:约数乘上相同字母或式子的最低次幂。
②通分:将几个异分母的分式化成同分母的分式的过程。
公分母等于系数的最小公倍数乘上所有式子的最高次幂。
4.分式的乘除运算:①乘法运算步骤:I :对分子分母因式分解;II :约掉公因式;III :分子乘以分子得到积的分子,分母乘以分母得到积的分母。
②除法运算法则:除以一个分式等于乘上这个分式的倒数式。
5.分式的加减运算:具体步骤:I :对能分解的分母进行因式分解,并求出公分母;II :将分式通分成同分母;专题练习III :分母不变,分子相加减。
6.分式的化简求值:将分式按照加减乘除的运算法则化简至最简分式,然后带入已知数据求值即可。
46.(2022•西藏)计算:224222---⋅+a a a a a a .【分析】分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.【解答】解:原式=•﹣=﹣=1.47.(2022•兰州)计算:()x x x x +÷⎪⎭⎫ ⎝⎛+211.【分析】根据分式的加减运算以及乘除运算法则即可求出答案.【解答】解:原式===.48.(2022•大连)计算:x x x x x x x 1422444222--+÷+--.【分析】先算除法,后算减法,即可解答.【解答】解:÷﹣=•﹣=﹣=.49.(2022•十堰)计算:⎪⎪⎭⎫ ⎝⎛-+÷-a ab b a a b a 2222.【分析】根据分式的运算法则计算即可.【解答】解:÷(a +)=÷(+)=÷=•=.50.(2022•常德)化简:212312+-÷⎪⎭⎫ ⎝⎛+++-a a a a a .【分析】根据分式混合运算的法则计算即可.【解答】解:(a ﹣1+)÷=[+]•=•=.51.(2022•内蒙古)先化简,再求值:1441132-+-÷⎪⎭⎫ ⎝⎛---x x x x x ,其中x =3.【分析】先通分算括号内的,把除化为乘,化简后将x =3代入计算即可.【解答】解:原式=•=﹣•=﹣,当x =3时,原式=﹣=﹣5.52.(2022•阜新)先化简,再求值:⎪⎭⎫ ⎝⎛--÷-+-21129622a a a a a ,其中a =4.【分析】根据分式的混合运算法则把原式化简,把a 的值代入计算即可.【解答】解:原式=÷(﹣)=÷=•=,当a =4时,原式==.53.(2022•资阳)先化简,再求值.111122-÷⎪⎭⎫ ⎝⎛+-a a a ,其中a =﹣3.【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将a 的值代入原式即可求出答案.【解答】解:原式===,当a =﹣3时,原式=.54.(2022•黄石)先化简,再求值:1961212+++÷⎪⎭⎫ ⎝⎛++a a a a ,从﹣3,﹣1,2中选择合适的a 的值代入求值.【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将a 的值代入原式即可求出答案.【解答】解:原式=÷=•=,由分式有意义的条件可知:a 不能取﹣1,﹣3,故a =2,原式==.55.(2022•朝阳)先化简,再求值:323444222++-+÷+--x x x x x x x x ,其中x =(21)﹣2.【分析】把除化为乘,再算同分母的分式相加,化简后求出x 的值,代入即可.【解答】解:原式=•+=+===x ,∵x =()﹣2=4,∴原式=4.56.(2022•锦州)先化简,再求值:212112--÷⎪⎭⎫ ⎝⎛-++x x x x ,其中13-=x .【分析】先对分式进行化简,然后再代入求解即可.【解答】解:原式====,当时,原式=.57.(2022•盘锦)先化简,再求值:⎪⎭⎫ ⎝⎛+--++-÷--1111231322x x x x x x ,其中12+-=x .【分析】根据分式的运算法则“除以一个数等于乘以它的倒数”把除法改写成乘法;利用平方差公式和完全平方公式将分式的分子分母分别因式分解;约分化简后,求x 的值;去掉绝对值符号时注意正负,正数的绝对值是它本身,负数的绝对值是它的相反数,最后将x 的值代入原式.【解答】解:原式====,∵=,∴原式===58.(2022•郴州)先化简,再求值:⎪⎭⎫ ⎝⎛-++÷-2221b a b b a b a ab ,其中a =5+1,b =5﹣1.【分析】先算括号里,再算括号外,然后把a ,b 的值代入化简后的式子进行计算即可解答.【解答】解:÷(+)=÷=•=ab ,当a =+1,b =﹣1时,原式=(+1)(﹣1)=5﹣1=4.59.(2022•营口)先化简,再求值:14412512+++÷⎪⎭⎫ ⎝⎛++-+a a a a a a ,其中a =9+|﹣2|﹣(21)﹣1.【分析】先把括号内通分,再把除法运算化为乘法运算,接着把分子分母因式分解,则约分得到原式=,然后根据算术平方根的定义、绝对值和负整数指数幂的意义计算出a 的值,最后把a 的值代入计算即可.【解答】解:原式=•=•=•=•=,∵a =+|﹣2|﹣()﹣1=3+2﹣2=3,∴原式==.60.(2022•绵阳)(1)计算:2tan60°+|3﹣2|+(20221)﹣1﹣212;(2)先化简,再求值:y x y x y x y x x y x -+÷⎪⎪⎭⎫ ⎝⎛----3,其中x =1,y =100.【分析】(1)先算负整数指数幂、化简二次根式,再化简绝对值代入特殊角的函数值,最后算加减.(2)按分式的运算法则先化简分式,再代入求值.【解答】解:(1)原式=2×+2﹣+2022﹣=2+2﹣+2022﹣=2024;(2)原式=[﹣]÷=×=×=×=.当x =1,y =100时.原式=100.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2012河南、11)先化简X2 4x 4
x2 2x
(x -),然后从
x
■. 5 x .. 5的范围内选取一个合适的整数作为x的值1
3、( 2011河南、16)先化简(1 )
x 1
2
x 4x 4
x2 1
然后从2x2的范围内选取一个合适的整数作为x的值
中考专题一化简求值注意:此类要求的题目,如果没有化简,直接代入求值一分不得!
考点:①分式的加减乘除运算②因式分解③二次根式的简单计算
1、( 2013 年河南、16)先化简,再求值:(x 2)2 (2x 1)(2x 1) 4x(x 1),其中x= . 2 .
代入求值。
代入求值。
4、(2010河南,16)已知A
x2 4
门,将它们组合成(A B) C或AB C的形式, 请你从中任选一种进行计算•先化简,再求值,其中x 3.
(2009河南, 16 )先化简(丄
x 1
*)
护,然后从,211中选取一个你认为合适的数作为x的值代入
求值•
6、(河南原创一, 16)先化简(x y 2xy
x
2y2 2 2
x y xy
,再选择一组合适的
x y
x、y代入求值,其中x 1,
3 y .. 3且y为整数.
7、(河南原创二, 16 )先化简,再求值:
1 1 11
(
4 4b b2b2 4 4b)^2~b F^),其中b
8、(河南原创三, 16 )先化简,再求值: (x 2 1) x2 2x 1
其中tan 6001.
9、(河南原创四, 16 )先化简,在求职难: (a2 4a 4 学Z)(彳1),其中a是满足不等式组
a 2a a 7 a 2
的2a 3
整数解.
10、(河南原创五, 16 )先化简,再求值: x 1 2 x 1
(x ),这里x是一元为此方程x2 2x 3
x x x
0的一个根.
11、(河南原创六,16)已知x是一元二次方程x2 2x 1 0的根,求代数式3^4x (x 2代)的值.
12、(原创卷七)先化简
x x 2x
(门厂)r,然后从不等式组
x 2
2x 12
3
的解集中,选取一个你认为符合题
意的x的值代入求值。
13、(原创卷八)先化简分式
3x x x
(C厂)厂,再从不等式组
x 3(x
4x 2
2)2,
的解集中选取一个合适的值作
5x 1
为x的值代入求值。
14、(原创卷九)先化简,
2
a 6a 9
a 2
2a 6
2,再从的范围内选取一个你喜欢的整数作为a的
值代入求值。
15、(原创卷十)先化简,再求值(
1
X2
2 4
87) 4x 4
x2 2x,
然后从.5 x ,3的范围内选取一个合适的整数
作为x的值代入求值。
18、( 2011郑州一模)先化简,再求值:
(x2总),其中十.
16、(原创卷十一)先化简,再求值: x )
x 2 1 x 2
然后从不等式
3 x 1中,选取一个你认为合理的整
数值x 代入求值。
17、(原创卷十二)先化简,在求值: 2
X 2 2x 1 x 2
1
,其中x=2.
19、(2013郑州一模)先化简,再求值:
x—
y
x+ y
xy2
,其中x = 2 + 1 , y = 2 — 1.
20、(2012郑州市一模)计算:
1、先化简,再求值:
2 2
a 2a
b b
2 .2
a b
16 3
2 2011 、3ta
n600
(11),其中a 2 1 , b 2 1
,x 1 x \ 1 (2 2 ) ,其中 x , 2 1 x xx 2x 1 x
3、( 2012郑州,16)先化简,再求值:
12 4 x
—
(x 2
厂2)厂2,其中…
4.
2、( 2012郑州市一模)先化简,再求代数式的值:
2 ( a
a 2 -)
1
其中 a = 4cos60
4、(2013安阳一模,16 )先化简代数式,再求值异)
1,其中a(1)2012tan 60o.
5、( 2013、安阳)先化简,
x 2
x21 (x 1
2x 1
訂),然后从
、
1
2、3中选一个你认为合适的数作为
x的值代入求值。
(2013、开封第二模拟)先化简,再求值:(浮' —)
x 1 x 1
x 2
x2 2x 1
,其中x是不等式组
x 4 0
2x 3 1
的整数解。
7 7、(2012开封第一摸)先化简,再求值、
x2
1,其中X
8、(2013开封一模,16)先化简,再求值.已知x 2 .3 , y 2 3,计算代数式(乞^
x y
1 -) y
的值.
(2013新乡一模,16 )先化简(亠
a 1 1)
4a 4
,然后从0,-1,2中选取一个你认为合适的数作为a 1
值代入求值
-,求相应x 的值. 3
2 x
x x x 10、( 2013新乡二模)先化简分式 ( 2 ) —2 ,若该分式的值等于 x 1 x 1 x 2x 1
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求。