1.2线性规划的可行域
图解法和单纯形法求解线性规划问题-推荐下载
1.3 线性规划问题的标准化
使用单纯形法求解线性规划时,首先要化问题为标准形式
所谓标准形式是指下列形式:
n
max z c j x j j 1
t
s
n
j
x
1
j
aij
x
0
j
bi
(i 1,, m)
( j 1,2,, n)
当实际模型非标准形式时,可以通过以下变换化为标准形式:
2.1 确定初始可行解
确定初始的基本可行解等价于确定初始的可行基,一旦初始的可行基确定了,那么对
应的初始基本可行解也就唯一确定,为了讨论方便,不妨假设在标准型线性规划中,系数
矩阵A中前 m 个系数列向量恰好构成一个可行基,即A=(BN),其中
B=(P1,P2,…Pm)为基变量 x1,x2,…xm 的系数列向量构成的可行基,
xn1
x n 1
(ai1 x1 0
使原条件写成
axin1x110 ain xn xn1 bi
ai2 x2
ain xn ) bi
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
运筹学线性规划
4
例1.1:(计划安排问题) I 设备A(h) 0 设备B(h) 4 原材料(公斤) 2 利润(万元) 2 II 资源总量 3x2 15 3 15 0 12 s.t. 4x1 12 2 14 2x1+2x2 14 3 x1,x2 0 I,II生产多少, 可获最大利润?
s.t. x1 -x2 +x4 -x5 -x7 =2
x1 , x2 , x4 ,
…
, x7 0
12
第二节 线性规划问题的图解法及几何意义
一、线性规划问题的解的概念
0 3 1 0 0 15 4 0 0 1 0 X= 12 2 2 0 0 1 14
5
max Z= 2x1 +3x2
解:设 计划期内生产产品I、II的数量x1、x2 则该问题的数学模型为:
例1.2 成本问题
某炼油厂根据每季度需供应给合同单位汽油15万吨、煤油 12万吨、重油12万吨。该厂计划从A,B两处运回原油 提炼,已知两处的原油成分含量见表1-2;又已知从A 处采购的原油价格为每吨(包括运费)200元,B处采购 的原油价格为每吨(包括运费)290元, 问:该炼油厂该 如何从A,B两处采购原油,在满足供应合同的条件下, 使购买成本最小。 油品来源 A B min S 200x1 290x 2
解:(1) 确定可行域 x1 0 x1 =0 (横)
30
x2 0 x2=0 (纵) x1+2x2 30 x1+2x2 =30
第一章_线性规划
第 一 节 线性规划问题及其数学模型
一、线性规划问题的数学模型
线性规划问题主要解决以下两类问题: 1、任务确定后,如何统筹安排,做到应用尽量少的人 力和物力资源来完成任务; 2、在一定量的人力、物力资源的条件下,如何安排、 使用他们,使完成的任务最多。
在生产管理和经济活动中,经常会遇到线性规划问 题,如何利用线性规划的方法来进行分析,下面举例 来加以说明。
表1-2
成分
产品来源
分析:很明显,该厂可以有多种不同的方案从A,B 两处采购原油,但最优方案应是使购买成本最小的一 个,即在满足供应合同单位的前提下,使成本最小的 一个采购方案。
解:设分别表示从A,B两处采购的原油量(单位:万 吨),建立的数学模型为:
m in S 200 x1 290 x2
3. 若存在无非负要求的变量。即有某一个变 量 xj 取正值或负值都可以。这时为了满足标准型 对变量的非负要求,可令 xj = xjˊ- xj〞, 其中: xjˊ、 xj〞 0 ,由于xjˊ可能大于也可能小于xj〞,故 xj 可以为正也可以为负。
上述的标准型具有如下特点: (1)目标函数求最大值; (2)所求的变量都要求是非负的; (3)所有的约束条件都是等式; (4)常数项非负。 综合以上的讨论可以说明任何形式的线
max Z x1 2x2 3x4 3x5 0x6 0x7
x1 x2 x4 x5 x6 7
x13x1x2
x4 x2
x5 2x4
x7 2 2x5 5
x1, x2, x4, , x7 0
第二节 线性规划问题的图解法及几何意义
例1-1:(计划安排问题)某工厂在计划期内安排 生产Ⅰ、Ⅱ两种产品,已知生产单位产品所占用的 设备A、B的台时、原材料的消耗及两种产品每件 可获利润见表所示:
运筹学之线性规划引论
2x2 24 x1,x2 0
例2 合理配料问题
原料 A B C 每单位成本
1
4 10
2
2
6 12
5
3
1 71
6
4
2 53
8
每单位添 加剂中维生 12 14 8 素最低含量
求:最低成本的原料混合方案
解:设每单位添加剂中原料i的用量为xj(j =1,2,3,4)
4x1 + 6x2 + x3+2x4 12
s.t
x1 + x2 + 7x3+5x4 14
2x2 + x3 + 3x4 8
xj 0 (j =1,…,4)
例3、合理下料问题
2.9m 钢筋架子100个,每个需用 2.1m 各1,原料长7.4m
1.5m 求:如何下料,使得残余料头最少。 解:首先列出各种可能的下料方案;
X1+2X2 30
3X1+2X2 60
2x2 24 另外,产品数不能为负,即:
x1,x2 0
同时,我们有一个追求的目标---最大利润,即:
Max Z= 40x1 +50x2
综合上述讨论,在生产资源的消耗以及利润与产品产量成 线性关系的假设下,把目标函数和约束条件放在一起,可 以建立如下的数学模型:
目标函数 约束条件
Max s.t
Z= 40x1 +50x2
j =1,2,3
Min Z= 2x11 + x12+3x13+2x21 +2x22 +4x23 +3x31 +4x32 +2x33
上海小学四年级到高中三年级数学教材目录
上海小学四年级到高中三年级数学教材目录四年级(一)一、复习与提高加法与减法乘法与除法用计算器计算节约用水分数二、数与量大数的认识四舍五入法平方千米从平方厘米到平方千米从克到吨从毫升到升三、分数的初步认识(二)比一比分数的加减计算小研究——“分数墙”四、整数的四则运算工作效率树状算图三步计算式题正推逆推文字计算题运算定律应用五、几何小实践圆的初步认识线段、射线、直线角角的度量角的计算六、整理与提高大数与凑整分数几何小练习数学广场——相等的角数学广场——通过网格来估算四年级(二)一、复习与提高四则运算整数的运算性质看谁算得巧愉快的寒假二、小数的认识与加减法生活中的小数小数的意义你知道吗,小数的大小比较小数的性质小练习综合练习小数点移动小数加减法三、统计折线统计图的认识折线统计图的画法四、几何小实践垂直平行小练习你知道吗,五、整理与提高问题解决小数加减法的应用小数与测量凑整垂直与平行数学广场——用多功能三角尺画垂线与平行线数学广场——五舍六入数学广场——计算比赛场次数学广场——位置的表示方法五年级(一)一、复习与提高符号表示数小数二、小数乘除法小数乘整数小数乘小数连乘、乘加、乘减整数乘法运算定律推广到小数除数是整数的小数除法出数是小数的除法循环小数用计算器计算积、商的凑整三、统计平均数平均数的计算平均数的应用四、简易方程(一)用字母表示数化简与求值方程找等量关系列方程,解应用题五、几何小实践平行四边形平行四边形的面积三角形的面积梯形梯形的面积六、整理与提高小数的四则混合运算水、电、天然气的费用——小数应用问题解决图形的面积数学广场——时间的计算数学广场——编码五年级(二)一、复习与提高小数的四则混合运算方程面积的估测自然数二、正数和负数的初步认识正数和负数数轴三、简易方程(二)列方程解应用题小总结四、几何小实践体积立方厘米、立方分米、立方米长方体与正方体的体积组合体的体积正方体、长方体的表面积小练习体积与容积五、问题解决行程表面积的变化体积与重量可能性可能情况的个数可能性的大小六、总复习数与运算练习一方程与代数练习二图形与几何练习三统计初步练习四预初六年级(一)第一章数的整除1、整数和整除1.1 整数和整除的意义 1.2 因数和倍数1.3 能被2,5整除的数 2、分解素因数1.4 素数、合数与分解素因数1.5 公因数与最大公因数 1.6 公倍数与最小公倍数第二章分数1、分数的意义和性质 2.1 分数与除法 2.2 分数的基本性质 2.3 分数的大小比较2、分数的运算2.4 分数的加减法 2.5 分数的乘法 2.6 分数的除法 2.7 分数与小数的互化2.8 分数、小数的四则混合运算2.9 分数运算的应用第三章比和比例1、比和比例3.1 比的意义3.2 比的基本性质3.3 比例2、百分比3.4 百分比的意义3.5 百分比的应用3.6 等可能事件第四章圆和扇形1、圆的周长和弧长 4.1 圆的周长4.2 弧长2、圆和扇形的面积 4.3 圆的面积4.4 扇形的面积六年级(二)第五章有理数1、有理数5.1 有理数的意义 5.2 数轴5.3 绝对值2、有理数的运算5.4 有理数的加法 5.5 有理数的减法 5.6 有理数的乘法 5.7 有理数的除法5.8 有理数的乘方 5.9 有理数的混合运算 5.10 科学记数法第六章一次方程(组)和一次不等式(组)1、方程与方程的解 6.1 列方程6.2 方程的解2、一元一次方程6.3 一元一次方程及其解法 6.4 一元一次方程的应用 3、一元一次不等式(组) 6.5 不等式及其性质 6.6 一元一次不等式的解法6.7 一元一次不等式组 4、一次方程组6.8 二元一次方程 6.9 二元一次方程组及其解法6.10 三元一次方程组及其解法 6.11 一次方程组的应用第七章线段和角的画法1、线段的相等与和、差、倍7.1 线段的大小比较7.2 画线段的和、差、倍2、角7.3 角的概念与表示7.4 角的大小的比较、画相等的角7.5 画角的和、差、倍7.6 余角、补角第八章长方体的再认识1、长方体的元素2、长方体的直观图的画法3、长方体中棱与棱位置关系的认识4、长方体中棱与平面位置关系的认识5、长方体中平面与平面位置关系的认识初中七年级(一)第九章整式1、整式的概念9.1 字母表示数9.2 代数式9.3 代数式的值9.4 整式2、整式的加减9.5 合并同类项9.6 整式的加减3、整式的乘法9.7 同底数幂的乘法9.8 幂的乘方9.9 积的乘方9.10 整式的乘法4、乘法公式9.11 平方差公式9.12 完全平方公式5、因式分解9.13 提取公因式法9.14 公式法9.15 十字相乘法9.16 分组分解法6、整式的除法9.17 同底数幂的除法9.18 单项式除以单项式9.19 多项式除以单项式第十章分式1、分式10.1 分式的意义10.2 分式的基本性质2、分式的运算10.3 分式的乘除10.4 分式的加减10.5 可以化为一元二次方程的分式方程10.6 整数指数幂及其运算第十一章图形的运动1、图形的平移11.1 平移2、图形的旋转11.2 旋转11.3 旋转对称图形与中心对称图形11.4 中心对称3、图形的翻转11.5 翻折与轴对称图形 11.6 轴对称七年级(二)第十二章实数1、实数的概念12.1 实数的概念2、数的开方12.2 平方根和开方根12.3 立方根和开立方12.4 几次方根3、实数的运算12.5 用数轴上的点表示实数12.6 实数的运算4、分数指数幂12.7 分数指数幂第十三章相交线,平行线1、相交线13.1 邻补角、对顶角13.2 垂线13.3 同位角、内错角、同旁内角2、平行线13.4 平行线的判定13.5 平行线的性质第十四章三角形1、三角形的有关概念及性质14.1 三角形的有关概念14.2 三角形的内角和2、全等三角形14.3 全等三角形的概念与性质14.4 全等三角形的判定3、等腰三角形14.5 等腰三角形的性质 14.6 等腰三角形的判定14.7 等边三角形第十五章平面直角坐标系1、平面直角坐标系15.1 平面直角坐标系2、直角坐标系平面内点的运动 15.2 直角坐标系平面内点的运动八年级(一)第十六章二次根式1 二次根式的概念及性质16.1 二次根式16.2 最简二次根式和同类二次根式2 二次根式的运算16.3 二次根式的运算第十七章一元二次方程1 一元二次方程的概念17.1 一元二次方程的概念2 一元二次方程的解法17.2 一元二次方程的解法17.3 一元二次方程根的判别式3 一元二次方程的应用17.4 一元二次方程的应用第十八章正比例函数和反比例函数1 正比例函数18.1 函数的概念18.2 正比例函数2 反比例函数18.3 反比例函数3 函数的表示法18.4 函数的表示第十九章几何证明1 几何证明19.1 命题和证明19.2 证明举例2 线段的垂直与角的平分线19.3 逆命题和逆定理19.4 线段的垂直平分线19.5角的平分线19.6 轨迹3 直角三角形19.7 直角三角形全等的判定19.8 直角三角形的性质19.9 勾股定理19.10 两点的距离公式八年级(二)第二十章一次函数1 一次函数的概念20.1 一次函数的概念2 一次函数的图像与性质20.2 一次函数的图像20.3 一次函数的性质3 一次函数的应用20.4 一次函数的应用第二十一章代数方程1 整式方程21.1 一次整式方程21.2 特殊的高次方程的解法2 分式方程21.3 可化为一元二次方程的分式方程3 无理方程21.4 无理方程4 二元二次方程组21.5 二元二次方程和方程组21.6 二元二次方程组的解法5 列方程(组)解应用题21.7 列方程(组)解应用题第二十二章四边形1 多边形22.1 多边形2 平行四边形22.2 平行四边形22.3 特殊的平行四边形3 梯形22.4 梯形22.5 等腰梯形22.6 三角形、梯形的中位线4 平面向量及其加减运算22.7平面向量22.8 平面向量的加法22.9平面向量的减法第二十三章概率初步1 事件及其发生的可能性23.1 确定事件和随机事件23.2 事件发生的可能性2 事件的概率23.3 事件的概率23.4 概率计算举例九年级(一)第24章相似三角形1 相似形24.1 放缩与相似形2 比例线段24.2 比例线段24.3 三角形一边的平行线3 相似三角形24.4 相似三角形的判定24.5 相似三角形的性质4 平面向量的线性运算24.6 实数与向量相乘24.7 向量的线性运算第25章锐角三角形1 锐角的三角比25.1 锐角的三角比的意义25.2 求锐角的三角比的值2 解直角三角形25.3 解直角三角形25.4 解直角三角形的应用第26章二次函数1 二次函数的概念26.1 二次函数的概念2 二次函数的图像26.2 特别二次函数的图像26.3 二次函数y=ax^2+bx+c的图像九年级(二)第27章圆与正多边形1 圆的基本性质27.1 圆的确定27.2 圆心角、弧、弦、弦心距之间的关系27.3 垂径定理2 直线与圆、圆与圆的位置关系27.4 直线与圆的位置关系27.5 圆与圆的位置关系3 正多边形与圆27.6 正多边形与圆统计初步第28章1 统计的意义28.1 数据整理与表示28.2 统计的意义2 基本的统计量28.3 表示一组数据平均水平的量28.4 表示一组数据波动程度的量28.5 表示一组数据发布的量28.6 统计实习高中高一(一)第一章集合和命题1 集合1.1 集合及其表示法1.2 集合之间的关系1.3 集合的运算2 四种命题的形式1.4 命题的形式及等价关系3 充分条件与必要条件1.5 充分条件,必要条件1.6 子集与推出关系第二章不等式2.1 不等式的基本性质2.2 一元二次不等式的解法2.3 其他不等式的解法2.4 基本不等式及其应用*2.5 不等式的证明第三章函数的基本性质3.1 函数的概念3.2 函数关系的建立3.3 函数的运算3.4 函数的基本性质第四章幂函数、指数函数和对数函数(上) 1 幂函数4.1 幂函数的性质图像与性质2 指函数4.2 指数函数的图像与性质4.3 借助计数器观察函数递增的快慢高一(二)第四章幂函数、指数函数和对数函数(下)3 对数4.4 对数概念及其运算4 反函数4.5 反函数的概念5 对数函数4.6 对数函数的图像与性质6 指数方程和对数方程4.7 简单的指数方程4.8 简单的对数方程第五章三角比1 任意角的三角比5.1 任意角及其度量5.2 任意角的三角比2 三角恒等比5.3 同角三角比的关系和诱导公式5.4 两角和与差的余弦、正弦和正切3 解斜三角形5.6 正弦定理、余弦定理和解斜三角形第六章三角函数1 三角函数的图像与性质6.1 正弦函数与余弦函数的图像性质6.2 正切函数的图像性质6.3 函数y=Asin(wx+ψ)的图像、性质2 反三角函数与最简三角方程6.4 反三角函数6.5 最简三角方程高二(一)第七章数列与数学归纳法1 数列7.1 数列7.1 等差数列7.3 等比数列2 数学归纳法7.4 数学归纳法7.5 数学归纳法的应用7.6 归纳——猜想——论证3 数列的极限7.7 数列的极限7.8 无穷等比数列各项的和第八章平面向量的坐标表示8.1 向量的坐标表示及其运算8.2 向量的数量积8.3 平面向量的分解定理8.4向量的应用第九章矩形和行列式初步1 矩形9.1 矩形的概念9.2 矩形的运算2 行列式9.3 二阶行列式9.4 三阶行列式第十章算法初步10.1 算法的概念10.2 程序框图*10.3 计算机话语和算法程序高二(二)第11章坐标平面上的直线11.1 直线的方程11.2 直线的倾斜角和斜率11.3 两条直线的位置关系11.4 点到直线的距离第12章圆锥曲线12.1曲线和方程12.2 圆的方程12.3椭圆的标准方程12.4 椭圆的性质12.5 双曲线的标准方程12.6 双曲线的性质12.7 抛物线的标准方程12.8 抛物线的性质第13章复数13.1 复数的概念13.2 复数的坐标表示13.3 复数的加法和减法13.4 复数的乘法与除法13.5 复数的平方根与立方根13.6 实系数一元二次方程高三(一)第14章空间直线与平面14.1 平面及其基本性质14.2 空间直线与直线的位置关系14.3 空间直线与平面的位置关系14.4 空间平面与平面的位置关系第15章1 多面体15.1 多面体的概念15.2 多面体的直观图2 旋转体15.3 旋转体的概念3 几何体的表面积、体积和球面距离15.4 几何体的表面积15.5 几何体的体积15.5 球面的距离第16章排列组合与二项式定理16.1 计数定理1——乘法定理16.2 排列16.3 计数定理2——加法定理16.4 组合16.5 二项式定理高三(二)概率论初步第17章17.1 古典概率17.2 频率概率第18章基本统计方法18.1 总体和样本18.2 抽样技术18.3 统计估计18.4 实例分析18.5 概率统计实验高三(拓展&理科)专题一三角恒等变换1.1 半角公式的应用1.2 三角比的积化和差与和差化积专题二参数方程和极坐标方程1 参数方程2.1 曲线的参数方程2.2 直线和圆锥曲线的参数方程2 极坐标方程2.3 极坐标系专题三空间向量及其与3.1 空间向量3.2 空间向量的坐标表示3.3 空间直线的方向向量和平面的法向量3.4 空间向量在度量问题中的应用专题四概率论初步(续)4.1 事件和概率4.2 独立事件积的概率4.3 随机变量和数学期望4.4 正态分布*专题五线性回归5.1 直接观察法5.2 最小二乘法高三(拓展&文科、技艺) 专题一线性规划1.1 线性规划问题1.2 线性规划的可行域1.3 线性规划的解专题二优选与统筹1 实验设计的若干方法2.1 二分法2.2 0.618法2 统筹规划2.3 统筹规划专题三投影与画图3.1 空间图形的平面图3.2 轴测图3.3 三视图专题四统计案例4.1 抽样调查案例4.2 假设检查案例*4.3 列联表独立性检查案例专题五数学与文化艺术5.1 数学与音乐5.2 数学与美术*5.3 数学与文学。
线性规划的基本定理
考察线性规划的标准形式(3. 2)
设可行域的极点为x(1) , x(2) ,..., x(k) ,极方向为d (1) , d (2) ,..., d (t)。
根据表示定理,任意可行点x可表示为
k
t
x i x(i) id(i)
i=1
i=1
(3.3)
k
i 1
i=1
i 0, i 1,2,..., k
1,(3. 2)存在最优解的充要条件是所有 cd(j) 非负,其中 d(j) 是可行域的极方向 2,若(3. 2)存在有限最优解,则目标数的最优值 可在某极点达到.
5
3.线性规划的基本性质
2021/7/17
• 3最优基本可行解
前面讨论知道们最优解可在极点达到,而极点 是一几何概念,下面从代数的角度来考虑。
x1p1 x2p2 ... xsps 0ps1 ... 0pm b
即 BxB b,且 xB B1b 0
从而xHale Waihona Puke xB xNxB 0
是基本可行解
7
3.线性规划的基本性质
2021/7/17
2)设x是Ax=b,x0的基本可行解,记
x
xB xN
xB 0
0
假设存在两点x(1) ,x(2)及某 (0,1),使得
x
8
3.线性规划的基本性质
2021/7/17
• 2 基本性质
– 2.1 线性规划的可行域
定理 线性规划的可行域是凸集.
– 2.2 最优极点
观察上例,最优解在极点(15,2.5)达到,我们 现在来证明这一事实:线性规划若存在最优解, 则最优解一定可在某极点上达到.
9
3.线性规划的基本性质
线性规划的图解法
生产每吨产品所需资源 所需工时占总工时比例 所需原材料(吨)
产 A 1/3 1/3
品 B 1/3 4/3
C 1/3 7/3
设三种产品的产量分别是x1、x2、 x3吨,由于有三个决策变量,用图解 法求解下面的线性规划时,必须首先 建立空间直角坐标系。 M ax Z = 2 x1 +3 x2 +x3
1/ 3x1 +1/ 3x 2 +1/ 3x 3 1 s.t 1/ 3x1 + 4 / 3x 2 + 7 / 3x 3 3 x ,x ,x 0 1 2 3
x2
14 —
12 — 10 —
2x1 + x2 16 B C 2x1 + 2x2 18
4x1+ 6x2=48 2x1+ 2x2 =18
(0,6.8) 8 —
6—
最优解 (3,6)
4x1 + 6x2 48
4—
2— | 2 | 4 | 6
D
| 8 | 10 | 12 | 14 | 16 | 18
4x 1 2x 1 s. . t 2x 1 x ,x 2 1 6x 2 48 2x 2 18
x 2 16
0
按小组分工完成(1)画约束条件1;(2)画约束条 件2; (3)画约束条件3; (4)标明可行域; (5) 目标函数等值线; (6)说明如何得到最优解,算出相 应的目标函数最优值。 其他几 个小组对应讲评。
(案例1)某工厂生产A、B、C三种产品, 每吨的利润分别为2000元、3000元、1000元, 生产单位产品所需的工时及原材料如表1-2所 示。若供应的原材料每天不超过3吨,所能利 用的劳动力总工时是固定的,应如何制定日生 产计划,使三种产品的总利润最大?
北交大交通运输学院《管理运筹学》知识点总结与例题讲解第2章 线性规划
第二章线性规划教学目的:了解线性规划的基本概念,理解线性规划最优化原理、单纯形法原理,掌握单纯形法及其矩阵描述、人工变量法、,能够对简单的问题建模。
教学重点:线性规划的含义、性质;线性规划问题的求解方法——图解法、单纯形法。
线性规划模型的建立非标准型线性规划问题转化为标准线性规划问题;线性规划问题的图解法;解的存在情况判断;大M法;两阶段法;单纯形法的矩阵表示;教学难点:单纯形法的求解思想、矩阵表示、对偶理论、对偶单纯形法以及灵敏度分析。
学时: 8学时2.1 线性规划(Linear Programming,LP)问题及其数学模型(1学时)我们应用数学规划模型求解实际问题中,将实际问题抽象成数学模型,然后再对其求解。
2.1.1线性规划问题提出我们用一个简单例子来说明如何建立数学规划问题的数学模型。
例2.1 某家具厂生产桌子和椅子两种家具,有关资料见表2-1。
解:用数学语言来描述生产计划安排问题,这个过程称为建立其数学模型,简称建模。
设:①桌子、椅子生产的数量分别为x1,x2,称为决策变量。
因为产量一般是一个非负数,所以有x1,x2≥0,称非负约束。
②限制条件为木工和油漆工的加工时间约束了产品的生产量x1,x2。
约束如下:4x1+3x2≤1202x1+x2≤50③生产桌子、椅子x 1,x 2所得总收入为Z ,显然Z =50x 1+30x 2。
我们希望总收入值能达到最大,这个关系用公式表达为max Z =50x 1+30x 2 把上述所有数学公式归纳如下12121212max .0z 50x 30x 4x 3x 120s t 2x x 50x x =++≤⎧⎪+≤⎨⎪≥⎩,这就是一个最大化的线性规划模型。
例 2.2(运输工具的配载问题)有一辆运输卡车,载重2.5t ,容积183m ,用来装载如下的两种货物:箱装件125kg/个、0.43m /个;包装件20kg/个、1.53m /个。
问:如何装配,卡车所装物件个数最多?解 根据题意,设箱装件1x 个,包装件2x 个,那么需要满足条件:体积约束 120.4 1.518x x +≤重量约束 12125202500x x +≤非负约束12,0x x ≥目标要求 max z=12x x +我们对上面的式子稍作整理,便得到下面的形式:max z=12x x +1212120.4 1.518125202500,0x x x x x x +≤⎧⎪+≤⎨⎪≥⎩ 上述两例中所提出的问题,最终都归结为在变量满足线性约束条件的前提下,求使线性目标函数最大或最小的问题,这种问题称为线性规划问题。
运筹学(重点)
两个约束条件
(1/3)x1+(1/3)x2=1
及非负条件x1,x2 0所代表的公共部分
--图中阴影区, 就是满足所有约束条件和非负
条件的点的集合, 即可行域。在这个区域中的每
一个点都对应着一个可行的生产方案。
22
5–
最优点
4–
l1 3B E
2D
(1/3)x1+(4/3)x2=3
l2 1–
0 1〡 2〡 3A 4〡 5〡 6〡 7〡 8〡 9〡C
运筹学 Operational Research
运筹帷幄,决胜千里
史记《张良传》
1
目录
绪论 第一章 线性规划 第二章 运输问题 第三章 整数规划 第四章 动态规划 第五章 目标规划 第六章 图与网络分析
2
运筹学的分支 数学规划: 线性规划、非线性规划、整数规划、 动态规划、目标规划、多目标规划 图论与网络理论 随机服务理论: 排队论 存储理论 决策理论 对策论 系统仿真: 随机模拟技术、系统动力学 可靠性理论
32
西北角
(一)西北角法
销地
产地
B1
0.3
A1
300
0.1 A2
0.7 A3
销量 300
B2
1.1
400
0.9
200
0.4
600
B3
0.3
0.2
200
1.0
300 500
B4
产量
1.0
700 ②
0.8
400 ④
0.5
600
900 ⑥
600
2000
①
③
⑤
⑥
34
Z
cij xij 0.3 300 1.1 400 0.9 200
上海教材:高一到高三数学教材目录正确版
第1章集合和命题一、集合1.1 集合及其表示法1.2 集合之间的关系1.3 集合的运算二、四种命题的形式1.4 命题的形式及等价关系三、充分条件与必要条件1.5 充分条件, 必要条件1.6 子集与推出关系第2章不等式2.1 不等式的基本性质2.2 一元二次不等式的解法2.3 其他不等式的解法2.4 基本不等式及其应用课题一最大容积问题2.5 不等式的证明(拓展内容)第3章函数的基本性质3.1 函数的概念3.2 函数关系的建立课题二邮件与邮费问题课题三上海出租车计价问题3.3 函数的运算3.4 函数的基本性质函数的零点(拓展内容)第4章幂函数、指数函数和对数函数(上)一、幂函数4.1 幂函数的性质与图像二、指数函数4.2 指数函数的图像与性质4.3 借助计算器观察函数递增的快慢第4章幂函数、指数函数和对数函数(下)三、对数4.4 对数概念及其运算四、反函数4.5 反函数的概念五、对数函数4.6 对数函数的图像与性质六、指数方程和对数方程4.7 简单的指数方程4.8 简单的对数方程课题四声音传播问题第5章三角比一、任意角的三角比5.1 任意角及其度量5.2 任意角的三角比课题一用单位圆中有向线段表示三角比二、三角恒等式5.3 同角三角比的关系和诱导公式5.4 两角和与差的余弦、正弦和正切5.5 二倍角与半角的正弦、余弦和正切三角比的积化和差与和差化积(拓展内容)三、解斜三角形5.6 正弦定理、余弦定理和解斜三角形课题二测建筑物的高度第6章三角函数一、三角函数的性质与图像6.1 正弦函数和余弦函数的性质与图像6.2 正切函数的性质和图像课题三制作弯管6.3 函数y=Asin(wx+φ)的图象与性质函数的性质(拓展内容)二、反三角函数与最简三角方程(拓展内容)6.4 反三角函数6.5 最简三角方程第七章数列与数学归纳法一、数列7.1 数列7.2 等差数列7.3 等比数列二、数学归纳法7.4 数学归纳法7.5 数学归纳法的应用7.6 归纳-猜想-论证三、数列的极限7.7 数列的极限7.8 无穷等比数列各项的和雪花曲线(* 拓展内容)课题五组合贷款购房中的数学问题第八章平面向量的坐标表示8.1 向量的坐标表示及其运算8.2 向量的数量积8.3 平面向量的分解定理8.4 向量的运用第九章矩阵和行列式一矩阵9.1 矩阵的概念9.2 矩阵的运算二行列式9.4 二阶行列式9.5 三阶行列式第十章算法初步10.1 算法的概念10.2 程序框图10.3 计算机语句和算法程序第11章坐标平面上的直线11.1 直线的方程11.2 直线的倾斜角和斜率11.3 两条直线的位置关系11.4 点到直线的距离第12章圆锥曲线12.1 曲线和方程12.2 圆的方程课题二追捕走私船12.3 椭圆的标准方程12.4 椭圆的性质12.5 双曲线的标准方程12.6 双曲线的性质课题三探索点的轨迹12.7 抛物线的标准方程12.8 抛物线的性质课题四做一个有趣的实验第13章复数13.1 复数的概念13.2 复数的坐标表示13.3 复数的加法与减法13.4 复数的乘法与除法13.5 复数的平方根与立方根复数的立方根(* 拓展内容)13.6 实系数一元二次方程高中三年级高中三年级第一学期第14章空间直线与平面14.1 平面及其基本性质14.2 空间直线与直线的位置关系14.3 空间直线与平面的位置关系14.4 空间平面与平面的位置关系第15章简单几何体一、多面体15.1 多面体的概念15.2 多面体的直观图二、旋转体15.3旋转体的概念三、几何体的表面积、体积和球面距离15.4 几何体的表面积15.5 几何体的体积15.6 球面距离课题三凸多面体的顶点数、棱数和面数的关系第16章排列组合与二项式定理16.1 计数原理I——乘法原理16.2 排列16.3 计数原理II——加法原理16.4 组合16.5 二项式定理课题一旅行商问题高中三年级第二学期第17章概率论初步17.1古典概型17.2 频率与概率第18章基本统计方法18.1 总体和样本18.2抽样技术18.3统计估计18.4实例分析18.5 概率统计实验高中三年级拓展②(理科)专题 1 三角恒等变换1.1半角公式的应用1.2三角比的积化和差与和差化积专题 2 参数方程和极坐标方程一、参数方程2.1 曲线的参数方程2.2 直线和圆锥曲线的参数方程课题一轨迹探究二、极坐标方程2.3 极坐标系专题 3 空间向量及其应用3.1 空间向量3.2 空间向量的坐标表示3.3 空间直线的方向向量和平面的法向量3.4 空间向量在度量问题中的应用课题二飞行机器人位置的确定专题4概率论初步(续)4.1 事件和概率4.2独立事件积的概率4.3 随机变量和数学期望4.4 正态分布课题四中国邮政贺年有奖明信片的中奖率计算专题 5 线性回归5.1直接观察法5.2 最小二乘法高中三年级拓展②(文科、技艺)专题 1 线性规划1.1 线性规划问题1.2 线性规划的可行域1.3 线性规划的解课题三线性规划在生活中的应用专题 2 优选与统筹一、试验设计的若干方法2.1 二分法2.2 0.618法二、统筹规划2.3 统筹规划课题三组装一辆自行车的工序流程专题 3 投影与画图3.1空间图形的平面图3.2轴测图3.3三视图专题4统计案例4.1 抽样调查案例4.2 假设检验案例4.3 列联表独立性检验案例专题 5 数学与文化艺术5.1数学与文化艺术5.2数学与美术5.3数学与文学拓展型课程专题 1 矩阵初步1.1 向量的另一种定义1.2 矩阵的概念1.3 矩阵加减法及矩阵与实数的乘积1.4 矩阵的乘法1.5 逆矩阵课题平面图形的矩阵变换专题 2 坐标变换与一般二次曲线2.1 坐标系的平移变换2.2 坐标系的旋转变换2.3 一般二元二方方程的讨论与化简专题 3 二项式定理3.1 二项式定理3.2 二项式系数的应用专题 4 数学建模初步4.1 数学建模的一般步骤4.2 简单数学模型举例专题 5 曲线拟合5.1 直接观察法5.2 最小二乘法专题 6 复数的三角形式6.1 复数的三角表示6.2 复数三角形式的乘法和除法6.3 复数的乘方和开方6.4 复数三角形式的应用专题7 常见曲线的极坐标方程7.1 圆锥曲线的统一的极坐标方程7.2 几种特殊曲线的极坐标方程课题玫瑰线专题8 随机变量8.1 随机变量8.2 二项式分布8.3 随机变量的数学期望和方差。
运筹学—线性规划第2章
1 1
1 0
0 1
0 0
6 2 0 0 1
1 0 0
则
B 0
1
0
的列是线性无关的,即
1
0
0 0 1
p3 0, p4 1 0 0
•
0
p5 0 是线性无关,因此 1
x3
x4
x5
是, 0
p2
1 2
不在这个基中,所以x1,
x2为非基变量。
定义10:使目标函数达到最优值的基本可行解,称为基
本最优值。
• 例4:(SLP)如例3,试找一个基本可行解。
1 1 0
解:B1
1
0
0
是其一个基矩阵.p1,p3, p5是一个基。
6 0 1
则 x1 , x3, x5为基变量。X2, x4为非基变量。令 x2=x4=0. 得x1=2, x3=3, x5=9. 故 x1=(2,0,3,0,9)是原问题的一个基本 可行解,B1为基可行基。
•当 由0连续变动到1时,点z由y沿此直线连续的变动到x,且 因z-y平行x-y,则有:z y (x y) 于是有:
z x (1 ) y
•这说明当 0 1 时,x (1 ) y表示以x.y为端点的直线段
上的所有点,因而它代表以 x.y为端点的直线段。 一般地,如果x.y是n维欧氏空间Rn中的两点,则有如下定义:
• 定义14:设R是Rn中的一个点集,(即R Rn),对于任意 两点x R, y R 以及满足0 1 的实数 ,恒有
x (1 )y R
则称R为凸集。
• 根据以上定义12及13可以看到,凸集的几何意义是:连接凸 集中任意两点的直线段仍在此集合内。
其可行域如上图,可行解(3,1,0,0)T。用x1, x2 表示则为图上点(3,1)。由图可见这不是可行域的 顶点。而我们将证明基本可行解是可行域的顶点。而 在例4中p1,p3线性无关,所以B=(p1,p3)是一个基矩阵, 对应的基本解为(4,0,0,0)T。用坐标x1, x2表示则 为平面上的点(4,0),是上图可行域的顶点。
1.2线性规划的解
. ..
x2 .3 .
. x1 2x2 2 . . . . .
0
x1
解: (1)在直角坐标系上画出可行域
x1 4
x1 2x2 8
(2)做目标函数的等值线 x1 2x2 2
(3)最优值z* 8
求交点:
x1 x2
2x2 3
8
x1 x1
2x2 4
8
(x1, x2 ) (2,3)
(x1, x2 ) (4,2)
max z 7x1 x2
x1 2x2 6
s.t
x1 x2 1 x1 2
x1 , x2 0
其标准型为
max z 7x1 x2
x1 2x2 x3 6
s.t
x1 x2 x4 1 x1 x5 2
x1, x2 , x3 , x4 , x5 0
1 2 1 0 0
系数矩阵A
2x1 x2 3
可行域为空集
无可行解
该问题无最优解
图解法的基本步骤:
1、在直角坐标系x1ox2上做出可行域S的图形
(一般是一个凸多边形)
2、令目标函数值取一个给定的常数k,
做等值线Z c1x1 c2 x2 k 3、对max 问题,令目标函数值k由小变大, 即让等值线向上平移,
若它与可行域S最后交于一个点(一般是S的一个顶点), 则该点就是所求的最优点, 若与S的一条边界重合,此时边界线上的点均是最优点
退化基本可行解:基本可行解中,存在取0值的基变量
对应的基称为退化基
非退化基本可行解:基本可行解中,基变量的取值均>0
对应的基称为非退化基
线性规划问题
退化的线性规划问题:存在退化基 非退化的线性规划问:题 所有基均非退化
第一章 线性规划
B1 5 1 5
B2 4 2 20
B3 3 3 35
B4 2 4 50
B5 1 5 65
B6 0 7 10
毛坯 需要量 3000 5000
85 70 余料长度
4、营养问题 例5.假定一个成年人每天需要从食物中获取3000大 卡热量、65克蛋白质、800毫克钙和75克脂肪。如 果市场上只有8种食物可供选择,他们每千克所含热 量和营养成分以及市场价格见表所示,问如何选择才 能在满足营养的前提下使购买食品的费用最小。
◦ 1、画出满足约束条件的可行区域,可行区域的点称为可 行解 ◦ 2、任取一点f=f0,画出等值线 ◦ 3、平移等值线,使目标函数达到最优。
1、把数学模型转化为标准型 2、确定基变量,在所有约束方程中只出现一次并 且系数为1的为基变量,其余为非基变量。 3、列出初始单纯型表 4、换基迭代:
红星玻璃制品厂是一个有3个工人的生产两种类型手工艺窗户的小厂。 窗户一种是木框架的,一种是铝框架的。3个工人的分工是:张三制作木 框架,每天做4个;李四制作铝框架,每天做6个;王二制作和切割玻璃, 每天制作18平方米的玻璃。又知每生产一个木框架窗户使用3平方米玻璃, 每一个铝框架窗户使用2平方米玻璃。又知每生产一个木框架窗户可获得 30元的利润,每生产一个铝框架窗户可获得50元的利润。由于工厂产量小, 可假设每天生产出来的产品都可以卖出去。现请为该厂制定一个每天的生 产计划,使其获利最大。 木框架窗户 铝框架窗户 工人的生产能力
5、检查检验数:若、确定最优解
◦ 原则上检验数大的变量入基,采用θ法则确定出基变量, 入基与出基交叉点处的变量为旋转元,用方框圈起。 ◦ 将旋转元所在行的所有元素都除以旋转元,将旋转元变为 1 ◦ 利用旋转元所在行的元素把旋转元所在列的所有元素都变 为0
可行域的确定 解析
第四模块:线性规划题组20401: 可行域的确定知识点击满足约束条件的解叫可行解.由所有可行解组成的集合(或区域)叫做可行域. 可行域可以为有限区域,也可以为无限区域. 画二元一次不等式的平面区域的步骤:(1) 直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.(2) 特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选(0,1)或(1,0)来验证.参考答案1.A.解析:将2x =代入原方程,解得1,y =易知点(2,3)A 在直线的上方,由于斜率103k =>,所以点(2,3)A 在直线310x y −+=的左上方. 2.C.解析:将(0,0)代入不等式组判断平面位置,所以选C.3.C.解析:(21)()0 x y x+y 3−+−≤⇒ 210,210,30,30.x y x y x y x y −+≥−+≤⎧⎧⎨⎨+−≤+−≥⎩⎩或 画出平面区域后,只有C 符合题意.4.D.解析:由题意得不等式组表示的平面区域如图中阴影部分(含边界),4(0,)3A ,(1,1)B ,(0,4)C ,则ABC 的面积为1841=233⨯⨯,故选D.5.C.解析:画出可行域后,可按0,1,2,3x x x x ====分别代入检验,符合要求的点有(0,0),(1,0),(1,1),(2,0),(2,1),(3,0)共6个.6.B .解析:画出可行域如图阴影部分所示.直线过(5,0)点,故只有1个公共点(5,0).7. 7.3k =解析:不等式组表示的平面区域如图中阴影部分(含边界). 由于直线43y kx =+过定点4(0,)3.因此只有直线过AB 中点时,直线43y kx =+能平分平面区域. 因为(1,1),(0,4),A B 所以AB 中点15(,)22D .当43y kx =+过点15(,)22时,54=223k +,所以7.3k =8.1[,4]2.解析:直线(1)y a x =+恒过定点P(1,0)−且斜率为a ,作出可行域后数形结合可解.不等式组所表示的平面区域D 为如图所示阴影部分(含边界),且4(1,1),(0,4),(0,)3A B C .直线(1)y a x =+恒过定点(1,0)P −且斜率为a .由斜率公式可知1, 4.2AP BP k k ==若直线(1)y a x =+与区域D 有公共点,数形结合可得14.2a ≤≤9. 84a −<≤− 解析:不等式组60,22x y y −+≥⎧⎨−≤≤⎩表示的平面区域如下图中的阴影部分所示,用平行于y 轴的直线截该平面区域,若得到一个三角形,则a 的取值范围是84a −<≤−.10. B 解析:不等式组表示的平面区域如图中阴影部分(含边界),则图中A 点纵坐标1A y m =+,B 点纵坐标223B m y +=,C 点横坐标2c x m =−, 21122(1)4(22)(1)(22)22333ABDACDBCDm m SSSm m m ++∴=−=⨯+⨯+−⨯+⨯== 13,m m ∴==−或3m =−又当时,不满足题意,应舍去, 1.m ∴=11. B 解析:在同一直角坐标系中作出函数2xy =的图象及30,230x y x y +−≤⎧⎨−−≤⎩所表示的平面区域,如图阴影部分所示.由图可知,当1m ≤时,函数2xy =的图象上存在点(,)x y 满足约束条件,故m 的最大值为1.12. 如下图所示,可求得直线AB 、BC 、CA 的方程分别为670x y ++=,5230x y +−= , 4510x y −−= 由于ABC 区域在直线AB 右上方,670x y ∴++≥;在直线BC 左下方,5230x y ∴+−≤;在直线AC 右下方,4510x y ∴−−≥.ABC ∴区域可表示为670,5230,4510x y x y x y ++≥⎧⎪+−≤⎨⎪−−≥⎩题组点评线性规划问题常用于解决实际问题,确定可行域是解决线性规划问题的第一步,熟练掌握可行域的确定是非常有必要的.根据约束条件,在平面直角坐标系中,把可行域表示的平面准确的画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.本题组第1,2,3题是对可行域的确定,第4题是计算可行域面积,第5,6题题考查整点个数,第7,8,9,10,11题考查平面区域于相关参数,第12题是满足可行域对应不等式组.。
1.2 线性规划的图解法
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
x1
图解法例2
9— 8— 7— 6— 5— 4— 3— 2— 1— 0
8
MaxZ
2 x1 3 x 2
x2
16 4 x1 4 x 2 12 s .t . x1 2 x 2 8 x1 , x 2 0
A)可行解区无界时一定没有最优解 B)可行解区有界时不一定有最优解 C)如果在两个点上达到最优解,则一定有无穷多个最优 解 D)最优解只能在可行解区的顶点上达到
C
31
一、选择题(续)
9、关于线性规划模型的可行解区,下面( 述正确。
)的叙
A)可行解区内必有无穷多个点 B)可行解区必有界 C)可行解区必须包括原点 D)可行解区必是凸的
管理运筹学--管理科学方法
李军
桂林电子科技大学商学院
第二节 线性规划的图解法
图解法
学习要点
1
2
3
4
5
6
图解法 定义
2
图解步 骤
解的有 关概念
解的可 能结果
图解几 何意义
解与可 行域
一、图解法的定义
图解法
就是用几何作图求LP的最优解的方法。
前提条件
变量个数不能超过两个。
图解法的 目的
①利用它来说明LP问题求解的可能结局。 ② 在LP问题最优解存在时,求出最优解。 ③为寻求LP问题的一般算法提供依据。
4x1 16 4 x2 16 x1 + 2x2 8 1、可行域:满 足所有约束条件的 解的集合,即所有 约束条件共同围城 的区域 (或称可行 解集),记做R 。
1.2线性规划求解方法法
止。
运筹学课件
线性规划
例 2.3.1 求解问题
算 例
min z x 2 2 x 3 x1 2 x 2 x 3 2 x 3x x 1 2 3 4 s.t. x2 x3 x5 2 x j 0; j 1,2,...,5
运筹学课件
注释
单纯形法的基本思路: 从可行域中某
一个顶点(即基本可行解)开始,判断此 顶点是否是最优解,如不是,则再找另一 个使得其目标函数值更优的顶点,称之 为迭代,再判断此点是否是最优解。直
单 纯 形 法
到找到一个顶点(基本可行解)为其最优
解,就是使得其目标函数值最优的解, 或者能判断出线性规划问题无最优解为
D {x Ax b, x 0}
是凸集
定理:任意多个凸集的交还是凸集
♂返回
运筹学课件
线性规划
问 题
1.可行域顶点的个数是否有限? 2.最优解是否一定在可行域顶点上达到? 3.如何找到顶点? 4.如何从一个顶点转移到另一个顶点
♂返回
运筹学课定理 问题
基本 可行 解与 基本 定理
基本假设 凸集
可行域的凸性
♂返回
运筹学课件
考虑线性规划的标准形式
线性规划
min c x
基 本 假 设
Ax b s.t. x 0
其中 x, c R n , b R m , A R mn ,并且假定可行域
D {x R n Ax b, x 0} 不空,系数矩阵 A 是行
说 明
♂返回
灵敏度分析:建立数学模型和求得最优解后, 研究线性规 划的一个或多个参数(系数)ci , aij , bj 变化时, 对最优解产生的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2线性规划的可行域
上海市市西中学金建军一、教学内容分析
这一节重点介绍了线性规划的可行域和可行解的概念,以及如何
用二元一次不等式表示平面区域.例1、例2是用二元一次不等式表示平面区域.
二、教学目标设计
1、掌握线性规划的可行域和可行解;
2、会用二元一次不等式表示平面区域;
3、通过观察、操作等活动,具有读图能力.
三、教学重点及难点
如何用二元一次不等式表示平面区域
四、教学过程设计
(一)引入
上节课在解决线性规划问题时,建立了线性约束条件,满足线
性约束条件的解有无数个,那么如何形象的表示满足线性约束条件的解?
(二)学习新课
(1)定义:
在线性规划问题中,满足线性约束条件的解叫做可行解,所有可行解构成的区域叫做可行域.
线性约束条件都是二元一次不等式组,那么可行域就是一个平面区域.
B x y ax by c表示直线l,那么
{(,)|0}
{(,)|0},{(,)|0}A x y ax by c C x y ax by c 表示怎样的区域?
请学生各自取不同的数据,画出平面区域.
教师选择有代表性的数据,让学生上黑板画
. 最后,让学生边讨论,边总结:
1.当c>0时,集合A 表示直线l 含原点一侧的区域,集合
C 表示直线l 不含原点一侧的区域;
当c<0时,集合A 表示直线l 不含原点一侧的区域,集合
C 表
示直线l 含原点一侧的区域;
当c=0时,借助其它点来判断集合A 、C 所表示的区域. 2. 如果把A 、C 变成{(,)|},{(,)|}E x y y ax b F x y y ax b ,那么集合E 表示直线y ax b 上方的区域,集合F 表示直线y ax b 下方的区域.
(2)实数范围的线性约束条件
例1画出下列不等式组的解为坐标的点所表示的平面区域:
252001
00x
y x
y x y (3)整数范围的线性约束条件
例2画出下列不等式组的解为坐标的点所表示的平面区域:
372240360
,x
y x
y x y
x y N 分析:对于整点的可行域,可以先画出实数范围的可行域,然后把范围内的整点全标出来.
(三)课堂练习:P9/1,2
(四)课堂小结
(五)布置作业:见练习册
五、教学设计说明
1.通过让学生各自取不同的数据,画出二元一次不等式的平面区域,
然后边讨论,边总结出二元一次不等式的平面区域的画法. 2.通过例1,帮助学生掌握实数范围的线性约束条件的平面区域的画
法.
3.通过例2,帮助学生掌握整数范围的线性约束条件的平面区域的画
法.。