命题、定理、证明PPT教学课件
合集下载
命题、定理、证明-ppt课件
添加“如果”“那么”后,命题的意义不能改变;改写的句子要 完整,语句要通顺,使命题的题设和结论更明朗,易于分辨;改写过 程中,可以适当增加词语,切不可生搬硬套.
知识点3 命题的真假 例3 下列命题是真命题的是( A ) A.同位角相等,两直线平行 B.同角的余角互补 C.方程2x+4=0的解为x=2 D.在同一平面内,过一点有且只有一条直线与已知直线平行
1.下列语句中,是命题的是( A ) A.有公共顶点的两个角是对顶角 B.作∠A的平分线 C.用量角器量角的度数 D.直角都相等吗
2.命题“互为相反数的两个数的和为零”是___真_____命题(填 “真”或“假”),将其改写成“如果……那么……”的形式:如果 ___两__个__数__互__为__相__反__数_______,那么___这__两__个__数__的__和__为__零_____.
课前预习
1.命题的定义:判断一件事情的语句,叫做命题.命题由___题__设___和___结__论___ 两部分组成. 2.命题的真假:如果题设成立,那么结论一定成立,这样的命题叫做____真____命 题;如果题设成立时,不能保证结论一定成立,这样的命题叫做___假_____命题. 3.定理:经过推理证实的___真_____命题叫做定理.定理也可以作为继续推理 的依据. 4.证明:在很多情况下,一个命题的正确性需要经过推理才能作出判断,这 个推理过程叫做证明.
训练 4.判断下列命题是真命题还是假命题.如果是假命题,请举 出一个反例.
(1)对顶角相等; (2)三条直线两两相交,总有三个交点; (3)如果ac=bc,那么a=b. 解:(1)真命题. (2)假命题.反例:三条直线交于一点. (3)假命题.反例:当c=0时,1×0=2×0,但是1≠2.
判断一个命题是假命题,只要举出一个例子(反例),它符合命题 的题设,但不满足结论即可.
知识点3 命题的真假 例3 下列命题是真命题的是( A ) A.同位角相等,两直线平行 B.同角的余角互补 C.方程2x+4=0的解为x=2 D.在同一平面内,过一点有且只有一条直线与已知直线平行
1.下列语句中,是命题的是( A ) A.有公共顶点的两个角是对顶角 B.作∠A的平分线 C.用量角器量角的度数 D.直角都相等吗
2.命题“互为相反数的两个数的和为零”是___真_____命题(填 “真”或“假”),将其改写成“如果……那么……”的形式:如果 ___两__个__数__互__为__相__反__数_______,那么___这__两__个__数__的__和__为__零_____.
课前预习
1.命题的定义:判断一件事情的语句,叫做命题.命题由___题__设___和___结__论___ 两部分组成. 2.命题的真假:如果题设成立,那么结论一定成立,这样的命题叫做____真____命 题;如果题设成立时,不能保证结论一定成立,这样的命题叫做___假_____命题. 3.定理:经过推理证实的___真_____命题叫做定理.定理也可以作为继续推理 的依据. 4.证明:在很多情况下,一个命题的正确性需要经过推理才能作出判断,这 个推理过程叫做证明.
训练 4.判断下列命题是真命题还是假命题.如果是假命题,请举 出一个反例.
(1)对顶角相等; (2)三条直线两两相交,总有三个交点; (3)如果ac=bc,那么a=b. 解:(1)真命题. (2)假命题.反例:三条直线交于一点. (3)假命题.反例:当c=0时,1×0=2×0,但是1≠2.
判断一个命题是假命题,只要举出一个例子(反例),它符合命题 的题设,但不满足结论即可.
人教版七年级数学下册课件: 命题、定理、证明
【例4】(人教七下P24改编)判断下列命题是真命题还
是假命题,是假命题的举反例加以说明.
(1)如果AB=BC,那么C是AB的中点;
(2)如果 = ,那么a=b.
思路点拨:(1)利用分类讨论思想可说明命题为假命
题;(2)分别取a,b的值说明这是假命题.
解:(1)这是假命题.
反例:当点C在AB的延长线上时,虽然AB=BC,但点
条件,另一个作为结论构成一个命题,根
据平行线的判定和性质及对顶角相等进行
证明.
图5-10-1
解:命题为“如果∠1=∠2,∠B=∠C,那么∠A=
∠D”.
证明:∵∠1=∠CGD,
∠1=∠2,
∴∠CGD=∠2.
∴EC∥BF.
∴∠AEC=∠B.
又∵∠B=∠C,∴∠AEC=∠C.
∴AB∥CD.
∴∠A=∠D.(答案不唯一)
(2)这是假命题.
反例:如答图5-10-1,∠1与∠2为
同位角,但∠1≠∠2.
答图5-10-1
典例精析
【例5】(创新题)如图5-10-1,有三个条件:①∠1
=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个
作为条件,另一个作为结论构成一个命题,并证明该命
题的正确性.
思路点拨:根据题意,从中任选两个作为
举一反三
10. (创新题)如图5-10-2,在四边形ABCD中,①
AB∥CD;②∠A=∠C;③AD∥BC.
(1)请你以其中两个为条件,第三个为结论,写出一
个命题;
(2)判断这个命题是否为真命题,
并说明理由.
图5-10-2
解:(1)命题为“如果AB∥CD,∠A=∠C,那么
AD∥BC”.
(2)这个命题是真命题. 理由如下:
是假命题,是假命题的举反例加以说明.
(1)如果AB=BC,那么C是AB的中点;
(2)如果 = ,那么a=b.
思路点拨:(1)利用分类讨论思想可说明命题为假命
题;(2)分别取a,b的值说明这是假命题.
解:(1)这是假命题.
反例:当点C在AB的延长线上时,虽然AB=BC,但点
条件,另一个作为结论构成一个命题,根
据平行线的判定和性质及对顶角相等进行
证明.
图5-10-1
解:命题为“如果∠1=∠2,∠B=∠C,那么∠A=
∠D”.
证明:∵∠1=∠CGD,
∠1=∠2,
∴∠CGD=∠2.
∴EC∥BF.
∴∠AEC=∠B.
又∵∠B=∠C,∴∠AEC=∠C.
∴AB∥CD.
∴∠A=∠D.(答案不唯一)
(2)这是假命题.
反例:如答图5-10-1,∠1与∠2为
同位角,但∠1≠∠2.
答图5-10-1
典例精析
【例5】(创新题)如图5-10-1,有三个条件:①∠1
=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个
作为条件,另一个作为结论构成一个命题,并证明该命
题的正确性.
思路点拨:根据题意,从中任选两个作为
举一反三
10. (创新题)如图5-10-2,在四边形ABCD中,①
AB∥CD;②∠A=∠C;③AD∥BC.
(1)请你以其中两个为条件,第三个为结论,写出一
个命题;
(2)判断这个命题是否为真命题,
并说明理由.
图5-10-2
解:(1)命题为“如果AB∥CD,∠A=∠C,那么
AD∥BC”.
(2)这个命题是真命题. 理由如下:
《命题、定理、证明》课件(22张ppt)
判断一件事情的语句叫做命题。
注意: 1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
下列语句是命题吗?
①熊猫没有翅膀.
②大象是红色的
③同位角相等.
④连接A、B两点.
⑤你多大了?
句子 ① ② ③ 能判断一件事情. 是命题
句子 ④ ⑤ ⑥ 不能判断一件事情. 不是命题
问题1 请同学读出下列语句 (1)如果两条直线都与第三条直线平行,那么这两 条直线也互相平行; (2)两条平行线被第三条直线所截,同旁内角互补; (3)对顶角相等; (4)等式两边都加同一个数,结果仍是等式.
像这样判断一件事情的语句,叫做命题(proposition).
命题的概念
⑥请你吃饭。
问题2 判断下列语句是不是命题? (1)你饭吃了吗?( ) (2)两点之间,线段最短。( ) (3)请画出两条互相平行的直线。 ( ) (4)过直线外一点作已知直线的垂线。 ( ) (5)如果两个角的和是90º,那么这两个角互余。( ) (6)对顶角不相等。( )
(1)这个命题的题设和结论分别是什么呢?
题设:在同一平面内,一条直线垂直于两条平行线中 的一条;
结论:这条直线也垂直于两条平行线中的另一条.
(2)你能结合图形用几何语言表述命题的题设和结论吗?
命题1 在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.
已知:b∥c, a⊥b .
下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断? 1、对顶角相等; 2、画一个角等于已知角; 3、两直线平行,同位角相等; 4、a、b两条直线平行吗? 5、温柔的小明; 6、玫瑰花是动物;
否
是
注意: 1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
下列语句是命题吗?
①熊猫没有翅膀.
②大象是红色的
③同位角相等.
④连接A、B两点.
⑤你多大了?
句子 ① ② ③ 能判断一件事情. 是命题
句子 ④ ⑤ ⑥ 不能判断一件事情. 不是命题
问题1 请同学读出下列语句 (1)如果两条直线都与第三条直线平行,那么这两 条直线也互相平行; (2)两条平行线被第三条直线所截,同旁内角互补; (3)对顶角相等; (4)等式两边都加同一个数,结果仍是等式.
像这样判断一件事情的语句,叫做命题(proposition).
命题的概念
⑥请你吃饭。
问题2 判断下列语句是不是命题? (1)你饭吃了吗?( ) (2)两点之间,线段最短。( ) (3)请画出两条互相平行的直线。 ( ) (4)过直线外一点作已知直线的垂线。 ( ) (5)如果两个角的和是90º,那么这两个角互余。( ) (6)对顶角不相等。( )
(1)这个命题的题设和结论分别是什么呢?
题设:在同一平面内,一条直线垂直于两条平行线中 的一条;
结论:这条直线也垂直于两条平行线中的另一条.
(2)你能结合图形用几何语言表述命题的题设和结论吗?
命题1 在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.
已知:b∥c, a⊥b .
下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断? 1、对顶角相等; 2、画一个角等于已知角; 3、两直线平行,同位角相等; 4、a、b两条直线平行吗? 5、温柔的小明; 6、玫瑰花是动物;
否
是
人教版八年级上册 13.1 命题、定理与证明(共33张PPT)
动手试一试:
证明:直角三角形的两个锐角互余.
已知:如图,在△ABC中,∠C=90°.
求证:∠A+∠B=90°.
A
B
C
证明:∵∠A+∠B+∠C=180°,
又∵∠C=90°,
∴ ∠A+∠B=180°-∠C=90°.
随堂练习
练习
把下列命题改成“如果……,那么……”的 形式,并分别指出条件和结论.
(1)全等三角形的对应边相等; (2)在同一平面内,垂直于同一条直线的 两条直线相互平行.
(1)条件:如果两个三角形是全等三 角形,结论:那么它们的对应边相等;
练习
把下列命题改成“如果……,那么……”的 形式,并分别指出条件和结论.
(1)全等三角形的对应边相等; (2)在同一平面内,垂直于同一条直线的 两条直线相互平行.
( 2)条件:如果在同一平面内两条直 线都垂直于同一条直线,结论:那么这两 条直线平行.
练习
指出下列命题中的真命题和假命题:
(1)同位角相等,两直线平行; (2)多边形的内角和等于180°; (3)三角形的外角和等于360°; (4)平行于同一条直线的两条直线相互 平行.
(2)是假命题; (1)(3)(4)是真命题.
练习
把下列定理改成“如果……,那么……” 的形式 ,指出它们的条件和结论,并用演绎 推理证明(1)所示的定理.
CD分别相交于E、F,PQ与 A
E
B
AB、CD分别相交于E、G,
C
∠PEM=27°,∠DGQ=63°.
求证:MN⊥CD.
F GD
Q N
作业
PM
A
E
B
CF
证明: AB//CD( ),
《命题、定理、证明》相交线与平行线精品课件
相交线的性质
相交线两端的点之间的距离叫做相交线的长度。相交线在数轴上的投影叫做相交 线的斜度。
相交线的判定方法
斜度法
通过测量两条直线的斜度是否相等来判断它们是否相交。
端点距离法
通过测量两条直线两端的点之间的距离是否相等来判断它们是否相交。
相交线在生活中的应用
建筑学
在建筑设计中,相交线被用来 确定点、线、面之间的位置关 系,以及建筑物的立体形状和
命题和定理都是数学中重要的 概念,它们之间有着密切的联
系。
许多重要的数学定理是由一系 列相关的命题组成的,这些命 题在证明过程中被逐步验证和
确认。
命题可以作为定理的中间步骤 或组成部分,而定理则是命题
的最终结论或推论。
02
相交线的性质与判定
相交线的定义与性质
相交线的定义
两条直线在同一平面内,如果它们不平行且不重合,那么这两条直线就叫做相交 线。
感谢您的观看
THANKS
增强学习兴趣
命题、定理、证明具有挑 战性和趣味性,可以增强 学生对数学的学习兴趣。
促进创新思维
命题、定理、证明鼓励学 生发挥创新思维,尝试解 决新的问题,推动数学的 发展。
命题、定理、证明在其他学科中的应用
自然科学
在物理学、化学、生物学 等自然科学中,命题、定 理、证明被广泛应用于建 立实验方法和理论框架。
命题、定理、证明在实际问题中的应用案例三
案例名称
设计一个高效、稳定的网络系统
应用定理解决问题
根据证明的定理,构建出符合要求
01
02
已知条件
网络系统的用途、用户数量、数据流 量等。
03
建立命题和定理
根据已知条件,设计出网络系统的架 构,并确定各部分的功能和连接方式 。
相交线两端的点之间的距离叫做相交线的长度。相交线在数轴上的投影叫做相交 线的斜度。
相交线的判定方法
斜度法
通过测量两条直线的斜度是否相等来判断它们是否相交。
端点距离法
通过测量两条直线两端的点之间的距离是否相等来判断它们是否相交。
相交线在生活中的应用
建筑学
在建筑设计中,相交线被用来 确定点、线、面之间的位置关 系,以及建筑物的立体形状和
命题和定理都是数学中重要的 概念,它们之间有着密切的联
系。
许多重要的数学定理是由一系 列相关的命题组成的,这些命 题在证明过程中被逐步验证和
确认。
命题可以作为定理的中间步骤 或组成部分,而定理则是命题
的最终结论或推论。
02
相交线的性质与判定
相交线的定义与性质
相交线的定义
两条直线在同一平面内,如果它们不平行且不重合,那么这两条直线就叫做相交 线。
感谢您的观看
THANKS
增强学习兴趣
命题、定理、证明具有挑 战性和趣味性,可以增强 学生对数学的学习兴趣。
促进创新思维
命题、定理、证明鼓励学 生发挥创新思维,尝试解 决新的问题,推动数学的 发展。
命题、定理、证明在其他学科中的应用
自然科学
在物理学、化学、生物学 等自然科学中,命题、定 理、证明被广泛应用于建 立实验方法和理论框架。
命题、定理、证明在实际问题中的应用案例三
案例名称
设计一个高效、稳定的网络系统
应用定理解决问题
根据证明的定理,构建出符合要求
01
02
已知条件
网络系统的用途、用户数量、数据流 量等。
03
建立命题和定理
根据已知条件,设计出网络系统的架 构,并确定各部分的功能和连接方式 。
八年级数学上册讲解命题、定理与证明命题课件
⑴同位角相等,两直线平行; 条件: 同位角相等 结论: 两直线平行 如果同位角相等,那么两直线平行.
7
课程讲授
1 命题
例2 指出下列命题的条件和结论,并改写成“如果……, 那么……”的形式:
⑵三个角都相等的三角形是等边三角形. 条件: 一个三角形的三个角相等 结论: 这个三角形是等边三角形 如果一个三角形的三边相等,那么这个三角 形是等边三角形.
3
课程讲授
1 命题
如果两个角是对顶角,那么这两个角相等; 正确 两直线平行,同旁内角相等; 错误
定义:它们都是判断某一件事情的语句,像这样表
示判断的语句叫做命题.
4
课程讲授
1 命题
例1 判断下列语句是否为命题. (1)长度相等的两条线段是相等的线段吗? 不是
(2)两条直线相交,有且只有一个交点; 是 3 不相等的两个角不是对顶角; 是 4 欢迎前来参加北京冬奥会!不是 5 两个锐角的和是钝角; 是
(1)全等三角形的对应边相等; 条件: 两个三角形全等 结论:这两个三角形的对应边相等
如果两个三角形全等,那么它们的对应边相等
13
随堂练习
2.把下列命题改写成“如果……,那么……”的形式,并分 别指出它们的条件和结论: (2)在同一平面内,垂直于同一条直线的两条 直线互相平行.
条件: 在同一平面内,有两条直线分别垂直于第三条直线 结论:这两条直线互相平行
15
课堂小结
命题
定义 表示判断的语句叫做命题.
真命题与假 命题
如果条件成立,那么结论一定成立. 像这样的命题,称为真命题.
当条件成立时,不能保证结论总是正 确,或者说结论不成立,像这样的命 题,称为假命题.
16
第13章 全等三角形
7
课程讲授
1 命题
例2 指出下列命题的条件和结论,并改写成“如果……, 那么……”的形式:
⑵三个角都相等的三角形是等边三角形. 条件: 一个三角形的三个角相等 结论: 这个三角形是等边三角形 如果一个三角形的三边相等,那么这个三角 形是等边三角形.
3
课程讲授
1 命题
如果两个角是对顶角,那么这两个角相等; 正确 两直线平行,同旁内角相等; 错误
定义:它们都是判断某一件事情的语句,像这样表
示判断的语句叫做命题.
4
课程讲授
1 命题
例1 判断下列语句是否为命题. (1)长度相等的两条线段是相等的线段吗? 不是
(2)两条直线相交,有且只有一个交点; 是 3 不相等的两个角不是对顶角; 是 4 欢迎前来参加北京冬奥会!不是 5 两个锐角的和是钝角; 是
(1)全等三角形的对应边相等; 条件: 两个三角形全等 结论:这两个三角形的对应边相等
如果两个三角形全等,那么它们的对应边相等
13
随堂练习
2.把下列命题改写成“如果……,那么……”的形式,并分 别指出它们的条件和结论: (2)在同一平面内,垂直于同一条直线的两条 直线互相平行.
条件: 在同一平面内,有两条直线分别垂直于第三条直线 结论:这两条直线互相平行
15
课堂小结
命题
定义 表示判断的语句叫做命题.
真命题与假 命题
如果条件成立,那么结论一定成立. 像这样的命题,称为真命题.
当条件成立时,不能保证结论总是正 确,或者说结论不成立,像这样的命 题,称为假命题.
16
第13章 全等三角形
13.定理与证明PPT课件(华师大版)
是( )
A.40°
B.50°
C.60°
D.140°
2 完成下面的证明过程,并在括号内填上理由.已知:如图所
示,AD∥BC,∠BAD=∠BCD.求证:AB∥CD.
证明:因为AD∥BC( ),
所以∠1=________(
),
又因为∠BAD=∠BCD(
),
所以∠BAD-∠1=∠BCD-∠2(
),
即∠3=∠4,所以AB∥________(
2 × 3 + 1 =7, 2 × 3 × 5+! =31, 2 × 3 × 5 × 7 + l = 211.
计算一下 2×3×5×7×
11+1与 2×3×5×7× 11×13+1,你 发现了什么?
于是,他根据上面的结果并利 用质数表得出结论:从 质数2开始, 排在前面的任意多个质数的乘积加1 一定 也是质数.他的结论正确吗?
例2 填写下列证明过程中的推理根据.
如图13.1-2:已知AC,BD相交于点O,DF平分
∠CDO与AC相交于点F,BE平分∠ABO与AC相交
于点E,∠A=∠C.
求证:∠1=∠2.
证明:∵∠A=∠C(已知),
∴AB∥CD(________).
图13.1-2
∴∠ABO=∠CDO(________).
又∵DF平分∠CDO,BE平分∠ABO(已知),
).
获取证明思路的方法: (1)从已知条件出发,结合图形,根据前面学过的定
义、基本事实、定理、公式逐步推理求证的结论,这 种方法叫做“综合法”. (2)从结论出发,去探求其成立的原因,直到与已知 条件相吻合为止,这种方法叫“分析法”. (3)“两头凑”,即在解决问题时,将上面的两种方 法结合起来用.
人教版七年级下数学《命题、定理、证明》相交线与平行线PPT课件
作用
线段的基本事实:两点间线段最短.
平行线的判定-基本事实:同位角相等,两直线平行.
平行线的基本事实:经过直线外的一点有且仅有 一条直线与已知直线平行.
定理:有些真命题它们的正确性是经过推理证实的, 也可以作为继续推理的依据.
作用 学过的定理: (1)补角的性质:同角或等角的补角相等.
(2)余角的性质:同角或等角的余角相等.
3.下列说法正确的是__①__④__⑤___ ① -3是9的平方根; ②25的平方根是5; ③ -36的平方根是-6; ④平方根等于0的数是0; ⑤64的算术平方根是8.
4.下列说法不正确的是___B___ A.0的平方根是0 B. 22 的平方根是2 C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
第五章 相交线与平行线
命题、定理、证明
知识回顾
前面, 我们学过一些对某一件事情作出判断的语句, 例如:
(1)如果两条直线都与第三条直线平行, 那么这两条直线 也互相平行;
(2)两条平行线被第三条直线所截, 同旁内角互补;
(3)对顶角相等;
(4)等式两边加同一个数, 结果仍是等式.
你能说明其中的条件 和结论分别是什么吗?
情景导入
操场上,裁判员向老师汇报训练成绩.
小刚的百米成 绩有进步,已 达到9秒9.
好!继续努 力,争取跑
进9秒.
获取新知 知识点一:命题的概念、形式和分类
能对一件事情作出判断的语句, 叫做命题.
备注: 1.只要能作出判断,无论判断的结果是对还是错 如对顶角相等(对);互补的角是邻补角(错); 2.常见的不能作出判断的情况 表示动作,或疑问句,或类似感叹句,或表示选择
没有,因为一个数的平方不可能是负数.
命题定理与证明课件
详细描述
在命题的证明练习中,学生需要学习如何根据已知条件 和定义,通过逻辑推理和演绎法,推导出结论。这种练 习有助于学生理解命题证明的基本步骤和技巧,培养他 们的逻辑推理能力。
定理的证明练习
总结词
通过定理的证明练习,学生可以深入理解定理的证明过程,掌握定理的应用方法和技巧。
详细描述
在定理的证明练习中,学生需要学习如何根据定理的证明过程,理解和应用定理。这种练习有助于学生深入理解 定理的本质和应用,提高他们的数学素养和解决问题的能力。
相对论
在相对论中,光速不变原理、质能方程等都是重要的命题 和定理,它们为理解宇宙的基本规律提供了基础。
在计算机科学中的应用
数据结构
在数据结构中,各种排序和查找 算法的效率定理、图的遍历定理 等都是关键的命题和定理,它们 为设计和分析算法提供了依据。
算法分析
在算法分析中,时间复杂度、空 间复杂度等概念都是重要的命题 和定理,它们为评估算法的效率 和可行性提供了标准。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
命题与定理的应用
在数学中的应用
代数
概率统计
命题和定理在代数中有着广泛的应用 ,例如在解决方程、不等式和函数问 题时,需要运用各种基本定理和推论 。
在概率和统计中,命题和定理的应用 也十分重要,例如大数定律、中心极 限定理等,都是解决概率统计问题的 基石。
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
命题定理与证明课件
目录
CONTENTS
• 命题与定理的基本概念 • 命题的证明方法 • 定理的证明技巧 • 命题与定理的应用 • 命题与定理的实践练习
《命题、定理、证明》相交线与平行线PPT课件
【详解】
解:∵∠EOD=90°,∠COB=90°,
∴∠1+∠DOC=∠2+∠DOC=90°,
∴∠1=∠2,∴∠AOE+∠2=90°,
∵∠1+∠AOE=∠1+∠COD,
∴∠AOE=∠COD,故选:C.
)
练一练
2.如图,三条直线相交于点,CO⊥AB于点,∠=56°, 则∠=( )
A.30°
B.34°
a与b所成角随木条b的转动而变化
探索与思考
取两根木条a、b,将它们钉在一起,固定木条a,转动木条b.
3)尝试转动木条,是否存在一种情况使a与b所形成的四个角都相等。
∵周角为360°
∴若形成四个相等的角,则这个角为90°
当a与b互相垂直时,所成的四个角都为90°
探究
取两根木条a、b,将它们钉在一起,固定木条a,转动木条b.
【答案】C
【详解】
点C到边AB所在直线的距离是点C到直线AB的垂线段的长度,
而CD是点C到直线AB的垂线段,故选C.
练一练
5.(2019·福建泉州七中初一期末)如图,在立定跳远中,体育老师是这样测量
运动员的成绩的,用一块直角三角板的一边附在起跳线上,另一边与拉直的皮尺
重合,这样做的理由( )
A.垂线段最短
【答案】B
【详解】
解:∵CO⊥AB,∠=56°
∴∠1=90°-∠ =90°-56°=34°
∵对顶角相等
∴ ∠=∠1=34°
C.45°
D.56°
练一练
3.点P为直线l外一点,点A、B、C为直线l上的三点,PA=2 cm,PB=3 cm,
PC=4 cm,那么点P到直线l的距离是(
A.2 cm
解:∵∠EOD=90°,∠COB=90°,
∴∠1+∠DOC=∠2+∠DOC=90°,
∴∠1=∠2,∴∠AOE+∠2=90°,
∵∠1+∠AOE=∠1+∠COD,
∴∠AOE=∠COD,故选:C.
)
练一练
2.如图,三条直线相交于点,CO⊥AB于点,∠=56°, 则∠=( )
A.30°
B.34°
a与b所成角随木条b的转动而变化
探索与思考
取两根木条a、b,将它们钉在一起,固定木条a,转动木条b.
3)尝试转动木条,是否存在一种情况使a与b所形成的四个角都相等。
∵周角为360°
∴若形成四个相等的角,则这个角为90°
当a与b互相垂直时,所成的四个角都为90°
探究
取两根木条a、b,将它们钉在一起,固定木条a,转动木条b.
【答案】C
【详解】
点C到边AB所在直线的距离是点C到直线AB的垂线段的长度,
而CD是点C到直线AB的垂线段,故选C.
练一练
5.(2019·福建泉州七中初一期末)如图,在立定跳远中,体育老师是这样测量
运动员的成绩的,用一块直角三角板的一边附在起跳线上,另一边与拉直的皮尺
重合,这样做的理由( )
A.垂线段最短
【答案】B
【详解】
解:∵CO⊥AB,∠=56°
∴∠1=90°-∠ =90°-56°=34°
∵对顶角相等
∴ ∠=∠1=34°
C.45°
D.56°
练一练
3.点P为直线l外一点,点A、B、C为直线l上的三点,PA=2 cm,PB=3 cm,
PC=4 cm,那么点P到直线l的距离是(
A.2 cm
人教版《命题、定理、证明》PPT精品课件
余角的性质: 补角的性质: 对顶角的性质: 垂线的性质: 平行公理推论:
4.下列说法正确地是( ) A.命题是定理,定理是命题 B.命题不一定是定理,定理不一定是命题 C.真命题可以是定理,假命题不可能为定理 D.定理可能是真命题,也可能是假命题
性质总结
3 定理与证明
定义: 在很多情况下,一个命题的正确性需要经过推理才能
作出判断,这个推理过程叫作证明.
证明几何命题的一般步骤: 1.明确命题中的_已__知___和__求__证__; 2.根据题意,画__出__图__形___,并用数学符号表示已知和求证; 3.经过分析,找出由已知推出_要__证__的__结__论_的途径,写出证 明过程.
典例分析
例 已知:如图,直线b∥c, a⊥b.求证:a⊥c. ①如图,∠A+ ∠B=180°,求证:∠C+ ∠D=180°。
观察下面的命题由几个部分组成? 如果+(题设),那么+(结论)
②内错角相等;
在下面的括号内,填上推理的依据.
③画一条直线; 只要举出一个例子(反例):它符合命题的题设,但不满足结论即可.
如:画线段AB=CD. 下面的语句是不是命题?
④四边形是正方形;
根据题意,_________,并用数学符号表示已知和求证;
下面哪些语句是命题,哪些不是命题:
下列说法正确地是( )
①同旁内角互补( × ) ∵ CB ∥ DE,
②画一个角等于已知角. 观察下列命题,你能发现这些命题有什么不同的特点吗? ②只要对一件事情作出了判断,不管正确与否,都是命题.
归纳:
②一个角的补角大于这个角( × ) ⑥同角的余角相等( )
⑦互为邻补角的两个角的平分线互相垂直( ) 过推理证实的,这样得到的真命题叫做定理.
人教版七年级数学下册第五章《命题、定理、证明》课件
解:(1)题设:AB⊥CD,垂足为O;结论:∠AOC=90°. (2)题设:∠1=∠2,∠2=∠3;结论:∠1=∠3. (3)题设:两直线平行;结论:同位角相等.
2 下列语句是命题的是( C ) A.延长线段AB到C B.用量角器画∠AOB=90° C.同位角相等,两直线平行 D.任何数的平方都不小于0吗?
解:(1)如果两个角是对顶角,那么这两个角相等. (2)如果两条直线都和第三条直线垂直,那么这 两条直线平行. (3)如果两个角是同一个角的余角或两个相等的 角的余角,那么这两个角相等.
总结
(1)命题改写的原则:不改变命题的原意;为了改写 后的语句通畅且保持原意,应适当地增加或删减 词语或调换词序;
A.1个
B.2个
C.3个
D.4个
知识点 3 定理与证明(举反例)
1.定理:经过推理证实得到的真命题叫做定理. 2.证明:在很多情况下,一个命题的正确性需要经
过推理,才能作出判断,这个推理过程叫做证明.
例4 如图,已知直线b//c,a⊥b .求证a⊥c.
证明:∵a⊥b (已知), ∴∠1 = 90° (垂直的定义). 又b//c(已知), ∴∠1 = ∠2 (两直线平行,同位角相等). ∴ ∠2= ∠1 = 90° (等量代换). ∴a⊥c (垂直的定义).
5 命题“如果a2=b2,那么a=b或a+b=0”的 结论是( C ) A.a2=b2或a=b B.a2=b2 C.a=b或a+b=0 D.a2=b2或a+b=0
知识点 2 命题的分类
命题的种类: (1)真命题:如果题设成立,那么结论一定成立,这
样的命题叫真命题. (2)假命题:题设成立时,不能保证结论一定成立,
1 举出学过的2~3个真命题.
解:如:等角的余角相等, 同旁内角互补,两直线平行.
2 下列语句是命题的是( C ) A.延长线段AB到C B.用量角器画∠AOB=90° C.同位角相等,两直线平行 D.任何数的平方都不小于0吗?
解:(1)如果两个角是对顶角,那么这两个角相等. (2)如果两条直线都和第三条直线垂直,那么这 两条直线平行. (3)如果两个角是同一个角的余角或两个相等的 角的余角,那么这两个角相等.
总结
(1)命题改写的原则:不改变命题的原意;为了改写 后的语句通畅且保持原意,应适当地增加或删减 词语或调换词序;
A.1个
B.2个
C.3个
D.4个
知识点 3 定理与证明(举反例)
1.定理:经过推理证实得到的真命题叫做定理. 2.证明:在很多情况下,一个命题的正确性需要经
过推理,才能作出判断,这个推理过程叫做证明.
例4 如图,已知直线b//c,a⊥b .求证a⊥c.
证明:∵a⊥b (已知), ∴∠1 = 90° (垂直的定义). 又b//c(已知), ∴∠1 = ∠2 (两直线平行,同位角相等). ∴ ∠2= ∠1 = 90° (等量代换). ∴a⊥c (垂直的定义).
5 命题“如果a2=b2,那么a=b或a+b=0”的 结论是( C ) A.a2=b2或a=b B.a2=b2 C.a=b或a+b=0 D.a2=b2或a+b=0
知识点 2 命题的分类
命题的种类: (1)真命题:如果题设成立,那么结论一定成立,这
样的命题叫真命题. (2)假命题:题设成立时,不能保证结论一定成立,
1 举出学过的2~3个真命题.
解:如:等角的余角相等, 同旁内角互补,两直线平行.
华东师大版数学八年级上册1第2课命题、定理与证明课件
“内错角相等,两直线平行”是平行线的判定定理.
定理揭示了客观事物的本质属性.
基本事实、定理、命题、真命题、假命题之间有什关系?
命题
真命题
假命题
基本事实
定理
思考1:当n=1,2,3,4,5时,代数式n2-3n+7的值是 质数吗?你能肯定:对于所有的自然数,式子n2-3n+7的 值都是质数吗?
解:当n=1时,n2-3n+7=5,是质数, 当n=2时,n2-3n+7=5,是质数, 当n=3时,n2-3n+7=7,是质数, 当n=4时,n2-3n+7=11,是质数, 当n=5时,n2-3n+7=17,是质数,
思考1:当n=1,2,3,4,5时,代数式n2-3n+7的值是 质数吗?你能肯定:对于所有的自然数,式子n2-3n+7的 值都是质数吗?
所以,当n=1,2,3,4,5时,代数式n2-3n+7的值
全都是质数.
当n=6时,n2-3n+7=62-18+7=25=52. 所以,对于所有自然数,式子n2-3n+7的值不都是质数.
已知:如图,已知AB∥CD, OP,MN分别平分∠BOM, ∠OMD,OP、MN交于G点, 求证:MN⊥OP.
证明:∵AB∥CD, ∴∠BOM+∠OMD=180°(两直线平行,同旁内角互补), ∵OP 、 MN分别平分∠BOM,∠OMD, ∴2∠POM+2∠NMO=180°. ∴∠POM+∠NMO=90°. ∴∠MGO=90°. ∴MN⊥OP.
新知讲授
上面这些命题是通过长期实践总结出来,被大家公认的真 命题.我们将这些命题视为基本事实.
它们是我们在继续学习过程中用来判断其他命题真假的原 始根据,即出发点. “同位角相等,两直线平行”是基本事实,那么七年级我 们学过的命题“内错角相等,两直线平行”是什么呢?
定理揭示了客观事物的本质属性.
基本事实、定理、命题、真命题、假命题之间有什关系?
命题
真命题
假命题
基本事实
定理
思考1:当n=1,2,3,4,5时,代数式n2-3n+7的值是 质数吗?你能肯定:对于所有的自然数,式子n2-3n+7的 值都是质数吗?
解:当n=1时,n2-3n+7=5,是质数, 当n=2时,n2-3n+7=5,是质数, 当n=3时,n2-3n+7=7,是质数, 当n=4时,n2-3n+7=11,是质数, 当n=5时,n2-3n+7=17,是质数,
思考1:当n=1,2,3,4,5时,代数式n2-3n+7的值是 质数吗?你能肯定:对于所有的自然数,式子n2-3n+7的 值都是质数吗?
所以,当n=1,2,3,4,5时,代数式n2-3n+7的值
全都是质数.
当n=6时,n2-3n+7=62-18+7=25=52. 所以,对于所有自然数,式子n2-3n+7的值不都是质数.
已知:如图,已知AB∥CD, OP,MN分别平分∠BOM, ∠OMD,OP、MN交于G点, 求证:MN⊥OP.
证明:∵AB∥CD, ∴∠BOM+∠OMD=180°(两直线平行,同旁内角互补), ∵OP 、 MN分别平分∠BOM,∠OMD, ∴2∠POM+2∠NMO=180°. ∴∠POM+∠NMO=90°. ∴∠MGO=90°. ∴MN⊥OP.
新知讲授
上面这些命题是通过长期实践总结出来,被大家公认的真 命题.我们将这些命题视为基本事实.
它们是我们在继续学习过程中用来判断其他命题真假的原 始根据,即出发点. “同位角相等,两直线平行”是基本事实,那么七年级我 们学过的命题“内错角相等,两直线平行”是什么呢?
人教版数学七年级下册5.3.2《命题、定理、证明》 课件(共23张PPT)
归纳总结
判断某一种事情的句子叫做命题,理清命题的 定义必须搞清楚两点: (1)命题必须是一个“完整的句子”; (2)命题必须作出判断,如“两条直线相交交 点唯一吗?”没有对事情作出判断,故不是命题。 定理和公理都是真命题,都可以作为证明其他 命题的依据,不同的是:公理是人们从长期实践 中总结出来的真命题,不用证明也不能证明;定 理是用推理证实为正确的命题。
命题1 在同一平面内,如果一条直线垂直 于两条平行线中的一条,那么它也垂直于 另一条. 已知:如图,b∥c,a⊥b . 求证:a⊥c. 证明:∵ a⊥b(已知) ∴∠1=90º (垂直的定义) 又∵ b∥c(已知) ∴∠1=∠2(两直线平行,同位角相等) ∴∠2=∠1=90º(等量代换) ∴ a⊥c(垂直的定义)
题设是: a=b,b=c
结论是: a=c
③ 同位角相等.
如果两个角是同位角,那么这两个角相等.
条件是:两个角是同位角
结论是:这两个角相等 ④ 同角的补角相等. 如果两个角是同一个角的补角,那么这两个角相 等. 条件是:两个角是同一个角的补角 结论是:这两个角相等
讨论与归纳 思考:请问如何判断①是假命题?如何判断②是
真命题?
① 如果两个角相等,那么它们是对顶角. ② 如果两条平行线被第三条直线所截,那么同旁 内角互补. 注意:要判断一个命题是真命题要经过严格
的推理;是假命题只要举一个反例。
1.下列句子哪些是命题?是命题的,指出是真 命题还是假命题? 是 真命题 (1)兔子有四条腿; 是 假命题 (2)内错角相等; 否 (3)画一条直线; 是 假命题 (4)四边形是正方形; 否 (5)你的作业做完了吗? 是 真命题 (6)同位角相等,两直线平行; 是 真命题 (7)对顶角相等; 是 假命题 (8)垂直于同一直线的两直线平行; 否 (9)过点P画线段MN的垂线;
人教版七年级下册数学《命题、定理、证明》说课教学复习课件
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
2、理解几何命题的组成,能够区分命题的题设和结论两部分,并能将命题
改成“如果…那么…”的形式。
3、会判断一些命题的真假。
重点
明确命题的含义
难点
能正确区分真假命题,能找出一个命题的题设和结论。
我们发现5-6所举的命题都是错误的。
就是说,如果题设成立,不能保证结论一定成立,这样的命题叫做假命题。
如何说明一个命题是假命题:只需要举出一个反例即可。
平行线性质知识点回顾
平行线性质1
两直线平行,同位角相等
平行线性质2
两直线平行,内错角相等
平行线性质3
两直线平行,同旁内角互补
还记得平行线性质的推理过程吗?
情景思考
前面,我们学过一些对某一件事情做出判断的语句,例如:
1.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
2.两条平行线被第三条直线所截,同旁内角互补。
3.对顶角相等。
4.等式两边加同一个数,结果仍是等式。
分析下面的句子,它们有什么特点?
命题的概念
命题的概念:像这样判断一件事情的语句,叫做命题。
注意:
证明的每一步推理都要有根据,不能“想当然”.
典例精析
例2 已知:b∥c, a⊥b .
求证:a⊥c.
b
c
1
2
a
证明: ∵ a ⊥b(已知)
∴ ∠1=90°(垂直的定义)
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
2、理解几何命题的组成,能够区分命题的题设和结论两部分,并能将命题
改成“如果…那么…”的形式。
3、会判断一些命题的真假。
重点
明确命题的含义
难点
能正确区分真假命题,能找出一个命题的题设和结论。
我们发现5-6所举的命题都是错误的。
就是说,如果题设成立,不能保证结论一定成立,这样的命题叫做假命题。
如何说明一个命题是假命题:只需要举出一个反例即可。
平行线性质知识点回顾
平行线性质1
两直线平行,同位角相等
平行线性质2
两直线平行,内错角相等
平行线性质3
两直线平行,同旁内角互补
还记得平行线性质的推理过程吗?
情景思考
前面,我们学过一些对某一件事情做出判断的语句,例如:
1.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
2.两条平行线被第三条直线所截,同旁内角互补。
3.对顶角相等。
4.等式两边加同一个数,结果仍是等式。
分析下面的句子,它们有什么特点?
命题的概念
命题的概念:像这样判断一件事情的语句,叫做命题。
注意:
证明的每一步推理都要有根据,不能“想当然”.
典例精析
例2 已知:b∥c, a⊥b .
求证:a⊥c.
b
c
1
2
a
证明: ∵ a ⊥b(已知)
∴ ∠1=90°(垂直的定义)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.举反例说明下列命题是假命题: (1)互补的两个角一个是钝角,一个是锐角;
___________________________________ (2)若∣a∣=∣b∣,则a=b;
___________________________________ (3)内错角相等;
___________________________________ 4.把下列命题改写成“如果…,那么…”的形式: (1)垂直于同一直线的两条直线平行;
其中一个事项作为结论(用如果……那么……的形式写出命题,例
如:如果a⊥b,b⊥c,那么a∥b). (1)写出一个真命题,并说明它的正确性; (2)写出一个假命题;并举出反例.
a
b
c
2020/10/12
13
2020/10/12
谢谢
探索是数学的生命!
14
THANKS
FOR WATCHING
演讲人: XXX
判断
一件事情的语句
(6)对顶角相等;
(7)画线段AB=CD.
2020/10/12
命题
4
任务一:写出一个是命题的语句和一个不是命题 的语句,并与同伴分享.
2020/10/12
5
2.观察下列命题: (1)如果两个角相等,那么它们是对顶角; (2)如果a>b,b>c,那么a>c; (3)如果等式两边都加上同一个数,那么结果仍是等式.
2020/10/12
2
学习目标
1.知道命题的定义; 2.能分清命题的题设和结论并能将一个命题改写为 “如果……,那么……”的形式; 3.会判断一个命题的真假性.
2020/10/12
3
探索新知
1.下面的语句中,哪些语句对事情做出了判断.
(1)两直线平行,同位角相等;
(2)玫瑰花是动物;
(3)在直线AB上任取一点C; (4)同角的余角相等; (5)你喜欢数学吗?
你能发现这些命题有什么共同的结构特征吗?
2020/10/12
6
两个角相等
它们是对顶角
如果
a>b,b>c
那么
a>c
等式两边都加上同一个数
结果结果仍仍是是等等式 式
2020/10/12
7
任务二: (1)把下列命题改写成“如果……,那么……”的形式并分别指出它们的题设和结论; (2)判断哪些是正确的,哪些是错误的。
①内错角相等,两直线平行;
√
如果内错角相等,那么这两条直线平行。
②平行于同一直线的两条直线平行;
√
如果两条直线平行于同一直线,那么这两条直线也平行
③相等的角是对顶角.
×
如果两个角相等,那么这两个角是对顶角。
注意:添加“如果”、“那么”后,命题的意义不能改变,改写的句子要完
202整0/10,/12 语句要通顺,使命题的题设和结论更 )
A.内错角相等
B.如果 a+b=0,那么 a、b 互为相反数
C.已知a²=4,求a的值
D.玫瑰花是红色的
2.下列命题中是真命题的是( )
A.相等的角是直角
B. 同位角相等
C. 若∣y∣=2,则y=±2
D. 若ab=0,则a=0
2020/10/12
11
当堂检测
8
任务三:下列哪些命题是真命题,哪些命题是假命题?
1.对顶角相等;
真命题
2.如果a≠b,b≠c,那么a≠c; 3.如果a²=b²,那么a=b;
假命题 假命题
4.互补的两个角是邻补角;
假命题
2020/10/12
9
体验收获
通过本节课的学习,你有什么收获呢? 你还有什么困惑吗?
2020/10/12
10
2020/10/12
命题、定理、证明
1
情境导入
在我们日常讲话中,经常会遇到这样的语句,如: 1.我们班的同学多么聪明; 2.中国的首都是北京; 3.夏天生机勃勃; 4.浪费是可耻的.
在几何里,同样会有这样的语句,如: 1.对顶角相等; 2.如果两条直线都与第三条直线平行,那么这两条 直线也平行; 3.画线段AB=CD.
___________________________________ (2)同角的补角相等.
___________________________________
2020/10/12
12
能力提升
已知三条不同的直线a,b,c在同一平面内:①a∥b;②a⊥c;③
b⊥c;④a⊥b.请你用①②③④所给出的其中两个事项作为条件,
PPT文档·教学课件
谢谢大家!本文档为精心编制而成,您可以在下载后自由修改和打印,希望下载对您有帮助!