基于PLC的电阻炉温度控制系统最终版[1]
基于单片机的电阻炉温度控制系统设计
![基于单片机的电阻炉温度控制系统设计](https://img.taocdn.com/s3/m/656e67c4bdeb19e8b8f67c1cfad6195f312be8aa.png)
基于单片机的电阻炉温度控制系统设计一、引言电阻炉是一种广泛应用于工业生产中的加热设备,其温度控制的准确性对于工艺过程的稳定和产品质量的保证至关重要。
本文将基于单片机设计一个电阻炉温度控制系统,通过采集温度传感器的信号,用单片机控制加热器的工作状态,实现对电阻炉温度的精确控制。
二、系统结构设计本系统由四个模块组成:温度采集模块、温度控制模块、显示模块和控制模块。
1.温度采集模块:使用一个高精度的温度传感器,如PT100,将电阻炉内部的温度转化为电压信号。
该信号经过模拟转数字转换器(ADC)转换为数字信号,传输给单片机。
2.温度控制模块:根据温度采集模块传输的信号,单片机通过PID算法计算出控制值,并输出PWM信号控制加热器的工作状态。
PID算法可根据实际情况进行参数调整,以达到系统稳定的控制效果。
3.显示模块:采用数码管或液晶显示器显示当前电阻炉的温度值,方便操作员实时监测电阻炉的运行状态。
4.控制模块:可以通过按钮或者触摸屏等方式进行设定和调整控制参数,例如设定温度范围、PID参数调节等。
三、系统工作原理1.系统初始化:单片机启动后,进行相应的外设初始化和参数设定,包括温度采集模块的配置、PID参数的设定、显示模块的显示等。
2.温度采集与转换:通过温度传感器采集电阻炉内部的温度信号,将其转化为模拟电压信号。
利用ADC将模拟信号转换为数字信号,并传输给单片机进行处理。
3.PID算法计算:单片机根据采集到的温度值,通过PID算法计算出控制值。
PID控制算法通常包括比例系数(P)、积分系数(I)和微分系数(D)三个参数的调整,根据实际情况进行调节以达到控制精度和稳定性要求。
4.PWM输出控制:根据PID算法计算得到的控制值,单片机输出对应的PWM信号。
该信号通过驱动电路控制加热器的工作状态,调整和维持电阻炉的温度。
5.温度显示:单片机将当前的温度值通过显示模块进行显示,使操作员能够实时监测到电阻炉的温度。
基于PLC控制的加热炉温度控制系统
![基于PLC控制的加热炉温度控制系统](https://img.taocdn.com/s3/m/05470fea998fcc22bcd10d60.png)
以照此方法设计)。当加热炉刚启动加热时,由于测到的炉温为常
温,sp -pv=△ U为正值且较大,△U 为PID调节器的输入,此
时PID调节器中P起主要作用,使SCR为最大电压给加热炉加热。 当加热炉温度达到100oC 以上时,sp -pv =△ U 为负值,经PID
调节,使SCR输出电压减小,加热炉温度降低。当温度正好达到
Keyword: programmable logic controller; heating furnace; PID
1 引言
传统的加热炉电气控制系统普遍采用继电器控制技术,由于 采用固定接线的硬件实现逻辑控制,使控制系统的体积增大,耗电 多,效率不高且易出故障,不能保证正常的工业生产。随着计算机 控制技术的发展,传统继电器控制技术必然被基于计算机技术而 产生的PLC控制技术所取代。而PLC本身优异的性能使基于PLC 控制的温度控制系统变的经济高效稳定且维护方便。这种温度控 制系统对改造传统的继电器控制系统有相当的意义[1]。
Abstract: This paper introduces a temperature control system for an electric heating furnace based on the PLC technology and the electronic rectifier technology. The hardware and software of the system are also outlined.
参考文献:
[1] 秦曾煌.电工学上册[M].北京:高等教育出版社,1999 [2] 郁汉琪.电气控制与可编程序控制器应用技术[M].南京: 东南大学出版社.2003 [3] 胡文金,计算机测控应用技术[M].重庆:重庆大学出版社. 2003 [4] 刘卫民.电力电子技术[M].重庆:重庆大学出版社.2003
基于PLC的电阻炉温度控制系统论文
![基于PLC的电阻炉温度控制系统论文](https://img.taocdn.com/s3/m/b5a12f2743323968011c926b.png)
3,输入输出设备:装置,用于永久地存储用户数据,诸如EPROM,EEPROM写入器装置,用于永久地存储用户数据,诸如EPROM,EEPROM,条形码阅读器,输入模拟电位,打印机等。
第三代
高性能8位微处理器及位片式微处理器
处理速度提高,向多功能及联网通信发展
第四代
16位、32位微处理器及高性能位片式微处理器
逻辑、运动、数据处理、联网功能的多功能
2.2
PLC从组成形式一般分为整体模块两项。通常它包括一个内置的PLC CPU板,I / O板,显示面板,内存和电源的。模块化可编程控制器CPU模块通常,I / O模块,内存模块,电源模块,背板或机架等。它们在设计上与应用上采用了一种模块化的PLC,不管什么样的PLC的,都属于巴士完善的组织结构的类型。
迅速发展和应用量增长的PLC技术,日本在20世纪70年代初年开始生产可编程控制器,而欧洲是在20世纪70年代中期,现如今,闻名于世界的电器厂生产之初基本上是所有的可编程控制器。从出现可编程控制器到现在已经经历了四次更换,如下:
代次
器件
功能
第一代
1位处理器
逻辑控制功能
第二代
8位处理器及存储器
产品系列化
中文摘要
各种工业和科学实验中最常见和最重要的热参数的温度,产品或结果的温度控制的精度将有显著影响。温度不同,PLC可靠性高,抗干扰性强能力强,抗干扰能力强,使用方便,PLC控制是比较好的控制中的一个。
本文介绍的控制方案电阻炉,阐述了从硬件和软件的组合物和系统的功能中,温度控制系统主要被引入。该系统FP0系列PLC为控制核心,利用强大的PLC,首先能顺利地进行金属材料的热处理工艺,同时电气装置也能够按照设计要求稳定运行。该系统还使用触摸屏替代了普通的按钮,促进了人机互动,既可以随意修改程序段中的数值,又可以实现热处理工艺过程的自动跟踪和监控,实现了热处理工艺优化。外围电路简单,控制精度高,速度快,具有小型化和低功耗的优势。
《2024年基于PLC的环形炉温度控制系统设计与应用》范文
![《2024年基于PLC的环形炉温度控制系统设计与应用》范文](https://img.taocdn.com/s3/m/5df43098d4bbfd0a79563c1ec5da50e2524dd1df.png)
《基于PLC的环形炉温度控制系统设计与应用》篇一一、引言在工业生产过程中,温度控制是一个关键环节,特别是在环形炉的加热工艺中。
为确保产品质量、生产效率和能源利用效率,开发一种基于PLC(可编程逻辑控制器)的环形炉温度控制系统显得尤为重要。
本文将详细介绍基于PLC的环形炉温度控制系统的设计与应用,并分析其在实际生产中的效果。
二、系统设计1. 硬件设计本系统主要由PLC控制器、温度传感器、执行器(如加热器、冷却器等)以及人机界面(HMI)等部分组成。
其中,PLC控制器负责接收温度传感器的信号,并根据设定的控制算法输出控制信号给执行器,实现对环形炉温度的控制。
(1)PLC控制器:选用高性能的PLC控制器,具备高速运算、高精度控制等特点,可满足环形炉温度控制的复杂要求。
(2)温度传感器:选用具有高精度、快速响应特性的温度传感器,以实现对环形炉温度的实时监测。
(3)执行器:包括加热器和冷却器等,根据PLC控制器的指令进行工作,实现对环形炉温度的调节。
(4)人机界面:提供友好的操作界面,方便操作人员对系统进行监控和操作。
2. 软件设计软件设计主要包括PLC控制程序的编写和HMI界面的设计。
(1)PLC控制程序:根据环形炉的温度控制要求,编写相应的控制程序。
通常采用PID(比例-积分-微分)控制算法,实现对环形炉温度的精确控制。
同时,程序还应具备自诊断、报警等功能,以便及时发现并处理系统故障。
(2)HMI界面:设计友好的操作界面,包括温度显示、控制参数设置、报警信息提示等功能。
操作人员可通过HMI界面实时监控环形炉的温度,并根据需要设置控制参数。
三、系统应用本系统已广泛应用于各类环形炉的温度控制,如冶金、化工、建材等行业的生产线中。
在实际应用中,系统表现出较高的稳定性和可靠性,有效提高了环形炉的温度控制精度和能源利用效率。
同时,系统还具备自诊断和报警功能,方便操作人员及时发现并处理系统故障,保障了生产的顺利进行。
基于PLC的温度控制系统的设计
![基于PLC的温度控制系统的设计](https://img.taocdn.com/s3/m/0e66cc41854769eae009581b6bd97f192379bf52.png)
1 引言1.1 设计目的温度的测量和控制对人类平常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。
在许多场合,及时准确获得目的的温度、湿度信息是十分重要的。
近年来,温湿度测控领域发展迅速,并且随着数字技术的发展,温湿度的测控芯片也相应的登上历史的舞台,可以在工业、农业等各领域中广泛使用。
1.2 设计内容重要是运用PLC S7-200作为可编程控制器,系统采用PID控制算法,手动整定或自整定PID参数,实时计算控制量,控制加热装置,使加热炉温度为为一定值,并能实现手动启动和停止,运营指示灯监控实时控制系统的运营,实时显示当前温度值。
1.3 设计目的通过对温度控制的设计,提高在电子工程设计和实际操作方面的综合能力,初步培养在完毕工程项目中所应具有的基本素质和规定。
培养团队精神,科学的、实事求是的工作方法,提高查阅资料、语言表达和理论联系实际的技能。
2 系统总体方案设计2.1 系统硬件配置及组成原理2.1.1 PLC型号的选择本温度控制系统采用德国西门子S7-200 PLC。
S7-200 是一种小型的可编程序控制器,合用于各行各业,各种场合中的检测、监测及控制的自动化。
S7-200系列的强大功能使其无论在独立运营中,或相连成网络皆能实现复杂控制功能。
因此S7-200系列具有极高的性能/价格比。
2.1.2 PLC CPU的选择S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。
S7-200PLC 硬件系统的组成采用整体式加积木式,即主机中涉及定数量的I/O端口,同时还可以扩展各种功能模块。
S7-200PLC由基本单元(S7-200 CPU模块)、扩展单元、个人计算机(PC)或编程器,STEP 7-Micro/WIN编程软件及通信电缆等组成。
表2.1 S7-200系列PLC中CPU22X的基本单元本设计采用的是CUP226。
它具有24输入/16输出共40个数字量I/O点。
基于PLC的智能炉温网络控制系统设计
![基于PLC的智能炉温网络控制系统设计](https://img.taocdn.com/s3/m/12815c9bfe4733687f21aa76.png)
基于PLC的智能炉温网络控制系统设计环形炉温控制系统的良好设计,将直接关系到炉的燃烧质量和燃料的节约,以及减少对污染气体的排放。
近几年,由于智能化的炉温控制系统越来越成熟,对以后的工业发展显得越来越重要,也是社会的发展趋势。
标签:PLC;智能控制系统;炉温;设计引言燃炉主要运用于冶金、采矿等众多工业领域,智能炉温控制系统通过PLC 的智能调节系统,能够很好地实时监测和调整炉温,使炉内的燃料尽量达到完全燃烧,减少对燃料的浪费,降低对空气的污染。
基于PLC智能控制系统的设计和应用,将在很大程度上减少了人力的投入,也保证了燃炉的安全性和高效性。
1 系统结构设计该系统的主要结构由PLC以及MCF5272构成,系统的运行部件由电动部件和切向调节阀构成,并且微处理器会自动把数据处理后传输给PLC。
而PLC会通过模糊的智能控制系统把数据处理好后输出给系统,制动调节水位的装置会根据智能控制系统反馈的信息,把水位调节到与闸门相平衡的位置。
这样始终保持锅炉中的水位与水蒸气蒸发掉的水位保持平衡,达到自动控制的目的。
1.1 搭建硬件平台给燃炉搭建一个合适的平台,通过预先输入实测的温度值,经过预设系统进行计算。
不断调整系统的参数,使实测值与计算值相符,以达到对水位的及时调整,保证蒸汽量的持续输出。
将数据处理器处理后的数据传输到PLC,这样PLC 就可以不用再对数据进行处理,直接对接受的信号做出相应的反应。
PLC智能控制系统,既保证了运行的安全性又大大地减少了人力,对以后的锅炉发展有大大的好处。
下面,通过一张图纸,更清晰地了解搭建平台的具体布置。
1.2 实现系统软件的控制在平台上通过软件的方式对锅炉进行实时控制,防止锅炉出现危险,并且当锅炉出现危险时,系统通过报警器自动发出警报,这时还可以通过人为的方式进行手动控制,来应对不可逆转的过程。
而在正常情况下,还是主要采取智能控制的方式为主,人为控制的方式为辅。
1.3 应用WISMO2C通信控制模块系统中装入SIM卡,不仅可以方便地输入和输出數据,还可以实时地进行一些漏洞的修补,以便系统能够更好地运行。
《基于PLC的环形炉温度控制系统设计与应用》范文
![《基于PLC的环形炉温度控制系统设计与应用》范文](https://img.taocdn.com/s3/m/58d2cf8c85254b35eefdc8d376eeaeaad0f31668.png)
《基于PLC的环形炉温度控制系统设计与应用》篇一一、引言随着工业自动化技术的不断发展,温度控制系统的设计与应用在工业生产中显得尤为重要。
环形炉作为许多工业生产过程中的关键设备,其温度控制系统的稳定性和精确性直接影响到产品的质量和生产效率。
因此,基于PLC的环形炉温度控制系统应运而生,本文将介绍其设计思路和应用效果。
二、系统设计1. 系统构成基于PLC的环形炉温度控制系统主要由PLC控制器、温度传感器、执行机构、人机界面等部分组成。
其中,PLC控制器作为系统的核心,负责接收温度传感器的信号,根据设定的控制算法输出控制信号,驱动执行机构进行温度调节。
2. PLC控制器设计PLC控制器是整个系统的“大脑”,其设计应考虑到系统的实时性、稳定性和可扩展性。
首先,应选择合适的PLC型号,根据环形炉的规模和工艺要求,确定I/O点的数量和类型。
其次,编写控制程序,实现温度的实时监测、报警、自动调节等功能。
此外,还应考虑到系统的故障诊断和保护功能,确保系统的稳定运行。
3. 温度传感器和执行机构的选择温度传感器是测量环形炉温度的关键部件,应选择具有高精度、高稳定性的传感器。
执行机构则是根据PLC控制器的指令进行温度调节的部件,常见的有电动调节阀、电动执行器等。
在选择时,应考虑到其响应速度、调节精度和可靠性等因素。
4. 人机界面设计人机界面是操作人员与系统进行交互的界面,应设计得简洁、直观、易操作。
通过人机界面,操作人员可以实时监测环形炉的温度、设定温度目标值、查看报警信息等。
此外,还应具备历史数据查询、报表生成等功能,方便操作人员进行生产管理和数据分析。
三、系统应用基于PLC的环形炉温度控制系统在实际应用中取得了显著的效果。
首先,该系统具有较高的控制精度和稳定性,能够实时监测环形炉的温度,并根据设定的控制算法自动调节执行机构,使温度保持在设定范围内。
其次,该系统具有丰富的功能,如温度报警、历史数据查询、报表生成等,方便操作人员进行生产管理和数据分析。
基于PLC电热炉温度控制系统设计
![基于PLC电热炉温度控制系统设计](https://img.taocdn.com/s3/m/5321b207777f5acfa1c7aa00b52acfc789eb9fd0.png)
基于PLC电热炉温度控制系统设计随着工业自动化的不断发展,PLC(可编程逻辑控制器)在工业生产中的应用越来越广泛。
其中,电热炉温度控制系统是一个重要的应用领域。
本文将就基于PLC电热炉温度控制系统设计展开深入的研究,以期能为相关领域的工程师和技术人员提供有价值的参考。
首先,我们将介绍PLC电热炉温度控制系统的基本原理和工作流程。
在一个典型的电热炉中,温度是一个重要参数,它直接影响着产品质量和生产效率。
传统上,人工操作是常用的温度控制方法。
然而,这种方法存在许多缺点,如操作不稳定、效率低下等。
而基于PLC技术设计的电热炉温度控制系统能够自动化地实现对温度进行精确、稳定地控制。
接下来我们将详细介绍PLC在电热炉温度控制系统中所起到的作用。
首先是传感器部分,在这个部分中我们会介绍温度传感器的种类和工作原理,并详细解释如何选择合适的传感器以及如何进行正确的安装和校准。
接下来是控制器部分,我们将介绍PLC控制器的基本原理以及其在温度控制中的应用。
此外,我们还将讨论PLC在数据采集和通信方面的作用,以及如何进行数据处理和分析。
然后,我们将详细介绍PLC电热炉温度控制系统设计中所需要考虑的关键因素。
首先是系统稳定性和可靠性。
在电热炉温度控制系统中,稳定性是至关重要的因素。
我们将讨论如何通过合适的控制算法来实现系统稳定,并介绍一些常用的控制算法,如PID(比例-积分-微分)算法等。
此外,我们还将讨论硬件设计方面需要考虑的因素,如电路设计、电源设计等。
接下来是安全性问题。
在一个工业生产环境中,安全问题是非常重要且不可忽视的因素。
我们将讨论一些常见安全问题,并提出相应解决方案。
最后,在本文中我们还将介绍一些实际案例,并对其进行分析和评估。
这些案例将涵盖不同的行业和应用领域,以期能够提供更多的实践经验和参考。
综上所述,本文将从基本原理、PLC技术应用、关键因素考虑以及实际案例分析等方面对基于PLC电热炉温度控制系统设计展开深入研究。
课程设计(论文)-基于PLC的电加热炉温度控制系统设计
![课程设计(论文)-基于PLC的电加热炉温度控制系统设计](https://img.taocdn.com/s3/m/e37862d96394dd88d0d233d4b14e852458fb398f.png)
课程设计(论文)-基于PLC的电加热炉温度控制系统设计引言电加热炉在很多工业生产过程中都扮演着重要角色,而温度控制是电加热炉设计中一个至关重要的问题。
在传统控制方式中,人工干预方案过程复杂,效率较低,不利于生产效率和产品质量的提高。
本文将介绍基于PLC的电加热炉温度控制系统的设计思路、实现原理和结果。
一、设计思路本设计将采用PID控制算法,该算法具有高效、稳定、精度高等优点。
通过对电加热炉加热、冷却及温度等变量进行采样处理,并将PID控制器中的比例、积分、微分三个参数进行调节,使电加热炉的温度控制在预定温度范围内。
二、实现原理本设计所用的硬件设备主要包括PLC、温度传感器、电源、电加热炉及调节阀等。
其中,PLC负责对相关参数的采集与计算,并通过输出信号控制电加热炉内加热、冷却和温度调节。
具体实现步骤如下:1.系统启动后,PLC获取温度传感器采集到的温度值,并将该值与预定温度进行比较,如果温度低于预定温度,PLC将对电源输出信号,让电加热炉进行加热;否则,PLC关闭电加热炉,让炉内温度保持稳定。
2.为了防止温度超过预定值,PLC同时监控温度,当温度高于预定值时,PLC会输出信号关闭电加热炉并打开冷却阀,降低炉内温度。
3.PLC采用PID算法计算比例、积分、微分三个参数,通过对这三个参数的调节,控制电加热炉的加热和冷却过程。
当温度波动较大时,PID控制器会对加热、冷却速度进行调整,使系统实现温度稳定控制。
三、实验结果在实验中,我们将预定温度设置为400℃,测试结果表明:通过使用本文设计的基于PLC的电加热炉温度控制系统,可以让电加热炉的温度控制在预定温度范围内,而且精度高、控制稳定且效率高。
整个系统具有操作简单,实现成本低等优点,可以满足很多工业生产过程中对温度精确控制的需求。
结论本文通过对基于PLC的电加热炉温度控制系统的设计、实现、测试与分析,证明了该系统具有高效、精度高、稳定性强等多方面的优点。
基于PLC电阻炉温度控制系统设计答辩用ppt
![基于PLC电阻炉温度控制系统设计答辩用ppt](https://img.taocdn.com/s3/m/ff529e18b90d6c85ec3ac668.png)
基于PLC的电阻炉温度控制系统设计
论文摘要
温度 控制
组态王
基于PLC的电阻炉
PLC
温度控制系统设计
PID 电阻炉
课题背景
温度是各种工业生产和科学实验中最 普遍、也是最重要的热工参数之一。温 度控制的精度对产品或实验结果会产生 重大的影响。温度控制的模式多样,而 PLC可靠性高,抗干扰能力强,易学易 用,采用PLC控制是其中一种比较优越 的控制
硬件连线图
主程序
运行PLC
初始化安全灯
I0.1=0
I0.1= ? I0.1=1
初始化运行指示灯
调用子程序0
调用子程序1
每10s调用1次子程序2
炉子加热
子程序0
初试化
温度=?
温度<84°C
温度≥84°C
粗调
微调
返回
子程序1
设定目标温度 设定PID值
返回
子程序2
读入温度并转换 把实际温度值放于VD30中
比例控制(P)是一种最简单的控制方式。其控 制器的输出与输入误差信号成比例关系。其特点 是具有快速反应,控制及时,但不能消除余差。
在积分控制(I)中,控制器的输出与输入误差 信号的积分成正比关系。积分控制可以消除余差, 但具有滞后特点,不能快速对误差进行有效的控 制。
在微分控制(D)中,控制器的输出与输入误差 信号的微分(即误差的变化率)成正比关系。微 分控制具有超前作用,它能预测误差变化的趋势。 避免较大的误差出现,微分控制不能消除余差。
r(t)
e(t) PID控制 u(t) 被控 c(t)
+
环节
对象
_
反馈 环节
PID参数整定
基于PLC的电阻炉温度控制系统
![基于PLC的电阻炉温度控制系统](https://img.taocdn.com/s3/m/0addfdb7bceb19e8b8f6ba38.png)
自动控制系统课程设计基于PLC的电阻炉温度自动控制系统《自动控制系统》课程设计任务书专业自动化班级姓名设计题目:基于PLC的电阻炉温度控制系统一、设计实验条件地点:自动化系Rockwell实验室实验设备:PC机、Mircologix1500可编程控制器、管式电阻炉二、设计任务设计PLC自动控制系统,设定电阻炉的温度在一个特定的范围之内,并自动调节电阻炉温度到这个范围中。
设计要求:使用AB公司的Mircologix1500可编程序控制器,实现电阻炉的温度控制。
三、成员1、前言1987 年,国际电工委员会(IEC)颁布的可编程控制器标准第三稿中,对可编程控制器的定义如下:可编程控制器是一种数字运算操作的电子系统,专为工业环境应用而设计。
它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式、模拟式的输入/输出,控制各种机械或生产过程。
电阻炉是热处理常用设备之一,电阻炉可以提供室温至1200℃范围的温场。
维持电阻炉某一范围的温度恒定是必须要解决的问题。
电阻炉的发热体为电阻丝。
电阻炉通常采用模拟仪表测量温度,并通过控制交流接触器的通断时间比例来控制加热功率,由于模拟仪表本身的测量精度差,加上交流接触器的寿命短,通断比例低,故控制精度低。
本文设计一个采用AB公司Micrologix1500可编程序控制器实现对电阻炉温度的自动控制。
PLC的模拟量输入模块反馈的炉温实际值与给定值的偏差进行PID运算,运算结果输出控制电阻炉平均功率的大小,来达到控制炉温的目的。
2、电阻炉温度控制系统基本构成由PLC控制的电阻炉温度控制系统构成如图1所示,系统工作过程:一是给定值(0~1200℃)通过键盘输入PLC主机,再由PLC主机传递给数字量输出模块,控制固态继电器的开关状态,从而控制电阻炉的加热情况;二是通过温度检测装置热电偶检测到的变换为电流信号的炉温值通过模拟量输入模块读入PLC主机,由PLC主机内部PID的程序与温度给定值相比较,对数字量输出模块进行下一度的控制。
基于plc电阻炉温度控制系统
![基于plc电阻炉温度控制系统](https://img.taocdn.com/s3/m/a3cb7b59fe00bed5b9f3f90f76c66137ee064f02.png)
基于PLC电阻炉温度控制系统简介基于PLC的电阻炉温度控制系统是一种自动化控制系统,用于对电阻炉的温度进行精确控制。
该系统利用PLC(可编程逻辑控制器)作为控制核心,通过传感器实时采集电阻炉的温度数据,并根据设定的控制策略调整电阻炉的工作状态,以保持温度在目标范围内。
系统组成基于PLC的电阻炉温度控制系统主要由以下组件组成:1.电阻炉:作为温度控制的对象,通过加热元件对物体进行加热,同时配备温度传感器用于实时监测温度。
2.PLC:作为控制核心,负责采集传感器数据、执行控制策略,并向电阻炉发送控制信号。
3.温度传感器:用于实时监测电阻炉的温度变化,将温度数据传输给PLC。
4.控制面板:提供用户界面,用户可以通过控制面板设定温度参数,监测实时温度变化,并进行控制策略的调整。
5.人机界面:用于与系统进行交互,包括触摸屏、键盘、指示灯等。
工作原理基于PLC的电阻炉温度控制系统的工作原理如下:1.传感器实时采集电阻炉的温度数据,并将数据传输给PLC。
2.PLC根据设定的控制策略对温度数据进行处理,判断温度是否在目标范围内。
3.如果温度超出目标范围,PLC会根据控制策略调整电阻炉的工作状态,以使温度回到目标范围内。
4.控制面板提供用户界面,用户可以通过控制面板设定温度参数,改变控制策略。
5.人机界面用于与系统进行交互,用户可以通过触摸屏、键盘等方式设定温度参数、监测实时温度变化,并进行控制策略的调整。
优势和应用基于PLC的电阻炉温度控制系统具有以下优势:1.精确控制:通过PLC的高精度数据处理和控制算法,能够实现对电阻炉温度的精确控制,提高生产效率和产品质量。
2.自动化:系统能够实现自动控制和自动调节,减少人工干预,提高生产效率。
3.可编程性:PLC具有可编程性,可以根据不同的需求进行程序设计,以适应不同的生产过程和温度控制要求。
基于PLC的电阻炉温度控制系统广泛应用于各个行业,包括冶金、化工、电子等领域。
基于PLC电热炉温度控制系统设计
![基于PLC电热炉温度控制系统设计](https://img.taocdn.com/s3/m/1f6671dcf9c75fbfc77da26925c52cc58bd690fd.png)
基于PLC电热炉温度控制系统设计摘要:本文采用PLC控制系统对电热炉温度进行自动控制,实现了对炉内温度的精准控制。
通过对温度传感器、控制器及执行机构的设计与配置,确保了系统的稳定性和可靠性。
实验结果表明,该控制系统精度高、可靠性好,可以满足实际生产中的需求。
关键词:PLC控制系统,电热炉,温度控制,自动化,稳定性Abstract:This paper uses PLC control system to automatically controlthe temperature of electric furnace, realizing precisecontrol of temperature in the furnace. By designing and configuring temperature sensors, controllers and actuators,the stability and reliability of the system are ensured. Experimental results show that the control system has high precision and reliability, and can meet the requirements of actual production.Keywords: PLC control system, electric furnace, temperature control, automation, stability1.绪论电热炉是一种重要的热处理设备,其主要应用于金属材料的加热、熔炼及热处理等领域。
在生产实践中,电热炉的温度控制是保证热处理质量的关键。
传统的电热炉温度控制方法存在精度低、易受环境干扰等缺点,严重影响了工艺效率和生产质量。
因此,采用现代化智能化的控制方法对电热炉进行控制,成为了当前一个十分热门的研究方向。
基于PLC的加热炉炉温控制系统设计
![基于PLC的加热炉炉温控制系统设计](https://img.taocdn.com/s3/m/07639824524de518974b7d85.png)
基于PLC的加热炉炉温控制系统设计摘要:现代工业生产过程中,用于热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶大惯性环节。
现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。
随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。
关键词:PLC;加热炉;温度控制系统温度的控制对于工业的发展和生产十分重要,冶金制造、机械加工、食品烹饪以及化工反应中的运用尤其多。
有些工业的制造需要对温度实现精准的调控,这就需要加热炉的温度控制系统的功能达到工业生产运行的标准。
传统的加热炉的温度控制一般是靠继电器加热来实现的,但是在加热过程中必须要满足固定接线,这样对于加热的条件有一定的限制性,而且调控系统的耗能比较多,占用的体积比较大,而且工作的效率也不能满足工业生产的需要,所以传统的加热炉温度控制系统会逐渐被计算机技术所衍生出来的PLC技术所取代,现阶段工业上运用的比较多的就有施耐德PLC、美国AB的PLC以及西门子的PLC。
这里将以西门子公司的S7-300系列PLC为典型的例子对PLC的概念、操作流程、工作原理、系统和配件的调控进行相应的介绍和分析。
1加热炉温度控制系统及其相关理论1.1加热炉温度控制系统就当前我国加热炉应用现状来看,热媒加热炉是最为常见的一种形式,对于热媒加热炉应用来看,其主要包括热媒-原油换热系统、压缩空气供给系统、热媒稳定供给系统以及热媒加热炉系统等四个组成部分,此外,相应的控制系统也是加热炉必不可少的一个关键系统所在,在控制系统中,温度控制系统又是重中之重,温度控制系统的合理使用确实能够有效的提升加热炉应用的效率和价值,必须引起高度的重视。
就加热炉温度控制系统自身来说,当前的应用中主要包括数据通信模块、控制逻辑模块以及人机界面等三个关键部分,其中数据通信模块也是就是我们常说的OPC通信协议,对于这三个关键环节的控制和设计也是加热炉温度控制系统发挥应有作用的关键点所在。
基于PLC的锅炉温度控制系统
![基于PLC的锅炉温度控制系统](https://img.taocdn.com/s3/m/9dad704bd1f34693dbef3e20.png)
基于PLC的锅炉温度控制系统摘要从上世纪80年代至90年代中期,PLC得到了快速的发展,在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC 逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。
PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。
PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。
本文介绍了以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度帘级控制系统;采用PID算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制。
电热锅炉的应用领域相当广泛,在相当多的领域里,电热锅炉的性能优劣决定了产品的质量好坏。
口前电热锅炉的控制系统大都采用以微处理器为核心的讣算机控制技术,既提高设备的自动化程度乂提高设备的控制精度。
本文分别就电热锅炉的控制系统工作原理,温度变送器的选型、PLC配置、组态软件程序设讣等儿方面进行阐述。
通过改造电热锅炉的控制系统具有响应快、稳定性好、可靠性高,控制精度好等特点,对工业控制有现实意义。
关键词:电热锅炉的控制系统温度控制审级控制PLC PID摘要 (1)1绪论 (1)课题背景及研究目的和意义 (1)1.2国内外研究现状 (3)1.3项目研究内容 (4)2PLC和组态软件基础 (5)2.1可编程控制器基础 (5)2.1.1可编程控制器的产生和应用 (5)2.1.2可编程控制器的组成和工作原理....... 错误!未定义书签。
2.1.3可编程控制器的分类及特点 (7)2.2组态软件的基础 (8)2.2.1组态的定义 (8)2.2. 2组态王软件的特点 (8)2.2. 3组态王软件仿真的基本方法 (8)3PLC控制系统的硬件设计 (9)3.1 PLC控制系统设计的基本原则和步骤 (9)3.1.1PLC控制系统设计的基本原则 (9)3.1.2PLC控制系统设计的一般步骤 (9)3.1.3PLC程序设计的一般步骤 (10)3.2PLC的选型和硬件配置 (11)3.2.1PLC型号的选择 (11)3.2.2S7-200CPU 的选择 (12)3.2.3EM235模拟量输入/输出模块 (12)3.2.4热电式传感器 (12)3.2.5可控硅加热装置简介 (12)3.3系统整体设计方案和电气连接图 (13)3.4 PLC控制器的设计 (14)3.4. 1控制系统数学模型的建立 (14)3.4.2PID控制及参数整定 (14)4PLC控制系统的软件设计 (16)4.1PLC程序设计的方法 (16)4.2编程软件 STEP7—Micro/WIN 概述 (17)4.2. 1 STEP7—Micro/WIN 简单介绍 (17)4.2.2计算机与PLC的通信 (18)4.3 程序设计 (18)4.3. 1程序设计思路 (18)4.3. 2 PID指令向导 (19)4.3. 3控制程序及分析 (25)5组态画面的设计 (29)5.1组态变量的建立及设备连接 (29)5.1. 1新建项目 (29)5.2创建组态画面 (33)5.2. 1新建主画面 (33)5.2.2新建PID参数设定窗口 (34)5.2. 3新建数据报表 (34)5.2. 4新建实时曲线 (35)5.2.5新建历史曲线 (35)5.2.6新建报警窗口 (36)6系统测试 (37)6.1启动组态王 (37)6.2实时曲线观察 (38)6.3分析历史趋势曲线 (38)6.4查看数据报表 (40)6.5系统稳定性测试 (42)结束语 (43)参考文献 (44)致谢 (45)华北电力大学成人教冇毕业设计(论文)1绪论1.1课题背景及研究目的和意义电热锅炉的应用领域相当广泛,电热锅炉的性能优劣决定了产品的质量好坏。
PLC在热处理电阻炉温度控制系统设计中的应用(DOC)
![PLC在热处理电阻炉温度控制系统设计中的应用(DOC)](https://img.taocdn.com/s3/m/6c3de2c56f1aff00bed51e48.png)
新疆工业高等专科职业技术学院毕业设计(论文)2012 级机电一体化专业题目:PLC在热处理电阻炉温度控制系统中的应用毕业时间:二〇一四年六月学生姓名:李婕指导教师:何涛班级: 12机电一体化2013年 12月20日PLC在热处理电阻炉温度控制系统设计中的应用摘要:热处理电阻炉的温度控制系统对零件的热处理质量有着重要影响。
本文主要讨论了以可编程控制器(PLC)为核心的箱式热处理炉温度控制系统的设计。
在提出炉温控制方案的基础上,对炉温控制系统进行了硬件设计和温度控制程序的设计。
本文以45钢零件进行等温球化退火热处理工艺为例,介绍炉温控制系统的具体应用。
关键词:热处理;电阻炉;温度控制;可编程控制器(PLC).一、关键技术与解决方案箱式热处理电阻炉是金属热处理中应用最为广泛的一种周期式作业炉,其测温控温系统对于保证工件的热处理质量具有重要作用。
传统箱式热处理电炉存在主要问题之一是炉温均匀度差,控温精度低,从而造成产品质量问题。
控温方式采用位式调节的箱式热处理炉,在教学实验、科学研究和零件热处理中有着广泛的应用,但由于其控温系统相对落后,常常导致温度控制不准确而造成实验数据的不准确或产品缺陷。
因此,针对位式调节的箱式热处理炉的温度控制系统进行改造设计,对于提高温控精度、保证产品质量具有十分重要的意义。
(一)、温度传感器的选取目前市场上温度传感器较多,主要有以下几种方案:方案一:选用铂电阻温度传感器。
此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。
方案二:采用热敏电阻。
选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。
方案三:采用K型(镍铬-镍硅)热电偶。
其可测量1312℃以内的温度,其线性度较好,而且价格便宜。
1 温度检测电路比较以上三种方案,方案三具有明显的优点,因此选用方案三。
(二)、控制电路部分图3 炉温控制系统工作流程1.选择K型热电偶,其测量温度范围为-200~+1200℃,在工业上应用最多,适应氧化性气氛,线性度好,可以充分保证测量精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东北大学秦皇岛分校自动化工程系自动控制系统课程设计
基于PLC的电阻炉温度自动控制系统
专业名称自动化
班级学号
学生姓名
指导教师顾德英
设计时间2010.6.28~2010.7.9
东北大学秦皇岛分校自动化工程系
《自动控制系统》课程设计任务书
专业自动化班级50702 姓名蒙杰
设计题目:基于PLC的电阻炉温度控制系统
一、设计实验条件
地点:自动化系Rockwell实验室
实验设备:PC机、Mircologix1500可编程控制器、管式电阻炉
二、设计任务
设计PLC自动控制系统,设定电阻炉的温度在一个特定的范围之内,并自动调节电阻炉温度到这个范围中。
设计要求:使用AB公司的Mircologix1500可编程序控制器,实现电阻炉的温度控制。
三、成员
廖秀娟、张立辉、蒙杰、孙晨晨、陈晓、
东北大学秦皇岛分校课程设计报告用纸
1、前言
1987 年,国际电工委员会(IEC)颁布的可编程控制器标准第三稿中,对可编程控制器的定义如下:可编程控制器是一种数字运算操作的电子系统,专为工业环境应用而设计。
它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式、模拟式的输入/输出,控制各种机械或生产过程。
电阻炉是热处理常用设备之一,电阻炉可以提供室温至1200℃范围的温场。
维持电阻炉某一范围的温度恒定是必须要解决的问题。
电阻炉的发热体为电阻丝。
电阻炉通常采用模拟仪表测量温度,并通过控制交流接触器的通断时间比例来控制加热功率,由于模拟仪表本身的测量精度差,加上交流接触器的寿命短,通断比例低,故控制精度低。
本文设计一个采用AB公司Micrologix1500可编程序控制器实现对电阻炉温度的自动控制。
PLC的模拟量输入模块反馈的炉温实际值与给定值的偏差进行PID运算,运算结果输出控制电阻炉平均功率的大小,来达到控制炉温的目的。
2、电阻炉温度控制系统基本构成
由PLC控制的电阻炉温度控制系统构成如图1所示,系统工作过程:一是给定值(0~1200℃)通过键盘输入PLC主机,再由PLC主机传递给数字量输出模块,控制固态继电器的开关状态,从而控制电阻炉的加热情况;二是通过温度检测装置热电偶检测到的变换为电流信号的炉温值通过模拟量输入模块读入PLC主机,由PLC主机内部PID的程序与温度给定值相比较,对数字量输出模块进行下一度的控制。
其中PLC是整个系统的主控核心。
第3页
3、电阻炉温度控制系统硬件设计
3.1 确定控制系统输入输出(I/O)信号点数
1、总开关需点动按钮一个,因此,共需开关量输入点1个。
温度检测装置(热电偶)需要模拟量输入点1个。
2、固态继电器的开关需要2个数字量输出点。
3.2 确定输入输出模块型号
由于热电偶采用WHNB-130型号,输出电压为4~20mA,,所以模拟量输入模块型号选择为1769-IF4,它可以直接和热电偶相连。
数字量输出模块型号选择为1769-OB16。
3.3 热电偶选型
实验室配有WHNB-130型号热电偶,输出电压为4~20mA,温度测量区间在0~1200℃。
3.4 固态继电器
固态继电器(Solid State Relay,缩写SSR),是由微电子电路,分立电子器件,电力电子功率器件组成的无触点开关。
用隔离器件实现了控制端与负载端的隔离。
固态继电器的输入端用微小的控制信号,达到直接驱动大电流负载。
固态继电器是具有隔离功能的无触点电子开关,在开关过程中无机械接触部件。
实验室配有施耐德SSR-01 DA型号固态继电器,铭牌上输入为3~32V直流输入,输出为24~240V交流输出,而Micrologix1500的数字量输出模块输出电压为24V,所以满足本实验需要。
3.6 Micrologix1500简介
Micrologix1500可编程序控制器包括电源、输入电路、输出电路和处理器。
控制器具备24点I/O和28点I/O组态功能。
Micrologix 1500是更为优秀的可编程控制器平台,比Micrologix 1000提供更多的高级功能。
在过去,为了实现这些功能,可能选用大型的控制器,而现在Micrologix 1500控制器为用户提供了更经济的方案。
Micrologix 1500采用了新颖的两块式组合设计方式。
它由处理器和基座组成,两者通过导轨进行装配,从而构成一个完整的控制器单元。
另外,处理器可以从基座中单独拆除,这样一来,用户对基座的I/O端口可以有更灵活的选择,不仅减少了设备,而且还能降低成本。
1769 Compat系列I/O模块结构紧凑,
东北大学秦皇岛分校课程设计报告用纸
第 5 页
可以扩展控制器的I/O 。
从而增强系统的灵活性,满足更大范围应用项目的要求。
这种高性能、无机架式I/O 模块可从正面进行拆除和插入,可以显著降低系统成本,减少维护时间。
另外,Micrologix 1500 还提供一项新的功能,用户可以通过一个面板,对程序中的固定的参数文件进行修改,逼近简化了人机沟通方式,还增强了控制器的性能。
3.5 系统硬件连接
电阻炉温度控制系统硬件接线图如图2所示
4 数字PID 在电阻炉温度控制系统中的应用
典型的数字P1D 控制系统如图3所示,图中SP(t)是给定值PV(t)为反馈量,C(t)为输出值,PID 控制器的输入输出关系可表示为:
1()1()()()0de t M t Kc e t e t dt Td Ti dt ⎡⎤=++⎰⎢⎥⎣⎦
由于每次处理工件的温度、外型及重量不同,PID 的参数会发生变化,不能再程序中一次确定。
所以在这里采用简易PID 控制,通过自调谐功能,自动计算出社和的PID 常数,解决了PID 控制中参数确定难的问题。
选择快速响应时,容易发生过调:选择慢速响应,没有过调产生,响应速度慢。
在反馈控制部分的软件程序设计上主要采用PID 控制算法,由于过早地引入积分作业容易产生饱和,产生过大的超调量,为了克服这一缺点,可以采用积分分离的PID 控制算法,这样既保持了积分的作用,又减少了超调量,使控制性能有较大的改善。
在偏差大时不进行积分,仅当偏差的绝对值小于一预定的门限值a 时才进行积分累加。
这样既防止了偏差大时有过大的控制量,也避免了过积分现象。
在PLC 控制系统中,系统通过PID 控制指令实现的。
进入PLC 的连续时间信号,必须经过采样和整量化后,变成数字量,方能进入存储器和寄存器,而在PLC 中的计算和处理,不论是积分还是微分,只能用数值计算去逼近。
当采样周期相当短时,用求和代替积分,用差商代替微商,使PID 算法离散化,将描述连续时间PID 算法的微分方程,变为描述连续时间PID 算法的差分方程。
PID 的子程序流程图如图3所示,根据实际检测到得温度值和设定温度比较,求出相应的温度偏差值E ,根据E 与a 的比较判断采用PID 算法或是PD 算法,
随后进行算法处理,求出控制值。
PID 控制根据指令指定单元确定动作方向,执行运算。
RSLogix500中的PID 指令为:
东北大学秦皇岛分校课程设计报告用纸
指令功能:比例、积分和微分指令是一条输出指令,该指令采用过程循环以控制诸如温度、压力、液位、流量或流速等物理性质的过程量。
指令说明:PID指令通常用于闭环控制。
它从模拟量输入通道采集信号,经过PID运算后,提供一个模拟量输出信号作为反映,一是一个过程量稳定在一个期望点。
PID方程决定了输出和输入信号的关系为
式中,E为输出信号对期望点的偏移量;Kc为比例系数,也叫开环增益;Ti为积分时间常数;Td为微分时间常数;Output为PID运算输出;Bias为给输出加上的一个偏移量。
当输入信号偏移期望点越大,这个Bias偏移量值越大。
另外,可再加上一个Bias偏移量(可看作偏移Offset)作为运算的结果输出,它使得被控过程量快速、平滑、超调量小的向期望点靠近(只要PID参数选择合适)。
第7页
5..总结
电阻炉温度控制系统采用成熟的PLC 技术,采用软硬件结合,较好的解决了传统加热炉温控系统中出现的问题。
本实验采用了Micrologix1500可编程控制器,很好的实现了电阻炉温度的自动调节,涉及到的方法简单,设计便捷有效,精度高,工作可靠易于拓展,集成在PLC 内部的PID 指令使用简单易于上手,针对我国大部分的电阻炉用户来说本系统将是一个比较理想的温度控制系统。
参考文献:
[
1] 李凤阁 佟为明主编,《电气控制鱼可编程控制器应用技术》,机械工业出版
社,2007.8
[2]
邓李 主编,《ControllLogix 系统使用手册》,机械工业出版社,2007.10 [3] 吴波 张静,《PLC 在热处理电阻炉温度控制系统设计中的应用》,China
Academic Journal Electronic Publishing House ,2006,27(6)
东北大学秦皇岛分校课程设计报告用纸 第 9 页 附录:电阻炉温度自动控制系统梯形图程序
PID 参数设置。