人教版八年级上册数学 全等三角形专题练习(word版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级上册数学 全等三角形专题练习(word 版 一、八年级数学轴对称三角形填空题(难) 1.在直角坐标系中,O 为坐标原点,已知点 A (1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点 P 的坐标为_____________.
【答案】5(0,5),(0,4),0,
4⎛⎫ ⎪⎝⎭
【解析】
【分析】
有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,求出OA 即可;②以A 为圆心,以OA 为半径画弧交y 轴于P ,求出OP 即可;③作OA 的垂直平分线交y 轴于C ,则AC =OC ,根据勾股定理求出OC 即可.
【详解】
有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,则OA =OD =22125+=;
∴D (0,5);
②以A 为圆心,以OA 为半径画弧交y 轴于P ,OP =2×y A =4,
∴P (0,4);
③作OA 的垂直平分线交y 轴于C ,则AC =OC ,
由勾股定理得:OC =AC =()2212OC +-,
∴OC =54
, ∴C (0,54
); 故答案为:5(0,5),(0,4),0,
4⎛
⎫ ⎪⎝⎭.
【点睛】
本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.
2.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD,当△AOD是等腰三角形时,求α的角度为______
【答案】110°、125°、140°
【解析】
【分析】
先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则
∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可.
【详解】
解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,
则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,
∴b﹣d=10°,
∴(60°﹣a)﹣d=10°,
∴a+d=50°,
即∠DAO=50°,
分三种情况讨论:
①AO=AD,则∠AOD=∠ADO,
∴190°﹣α=α﹣60°,
∴α=125°;
②OA=OD,则∠OAD=∠ADO,
∴α﹣60°=50°,
∴α=110°;
③OD=AD,则∠OAD=∠AOD,
∴190°﹣α=50°,
∴α=140°;
所以当α为110°、125°、140°时,三角形AOD是等腰三角形,
故答案为:110°、125°、140°.
【点睛】
本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.
3.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将
△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.
【答案】2.
【解析】
【分析】
【详解】
过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,
∵∠B=60°,BE=BD=4,
∴△BDE是等边三角形,
∵△B′DE≌△BDE,
∴B′F=1
B′E=BE=2,DF=23,
2
∴GD=B′F=2,
∴B′G=DF=23,
∵AB=10,
∴AG=10﹣6=4,
∴AB′=27.
考点:1轴对称;2等边三角形.
∠内任意一点,OP=5 cm,点M和点N分别是射线OA和射线4.如图,点P是AOB
++的最小值是5 cm,则AOB
OB上的动点,PN PM MN
∠的度数是__________.
【答案】30°
【解析】
试题解析:分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,
分别交OA 、OB 于点M 、N ,连接OC 、OD 、PM 、PN 、MN ,如图所示:
∵点P 关于OA 的对称点为D ,关于OB 的对称点为C ,
∴PM=DM ,OP=OD ,∠DOA=∠POA ;
∵点P 关于OB 的对称点为C ,
∴PN=CN ,OP=OC ,∠COB=∠POB ,
∴OC=OP=OD ,∠AOB=
12
∠COD , ∵PN+PM+MN 的最小值是5cm ,
∴PM+PN+MN=5,
∴DM+CN+MN=5,
即CD=5=OP ,
∴OC=OD=CD , 即△OCD 是等边三角形,
∴∠COD=60°,
∴∠AOB=30°.
5.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .
【答案】128︒
【解析】
【分析】
连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,
ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则
∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.
【详解】
连接CE ,
∵线段AB ,DE 的垂直平分线交于点C ,
∴CA=CB ,CE=CD ,
∵72ABC EDC ∠=∠=︒=∠DEC ,
∴∠ACB=∠ECD=36°,
∴∠ACE=∠BCD ,
在∆ACE 与∆BCD 中,
∵CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩
,
∴∆ACE ≅
∆BCD (SAS ), ∴∠AEC=∠BDC ,
设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,
∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,
∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.
故答案是:128︒.