人教版八年级上册数学 全等三角形专题练习(word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上册数学 全等三角形专题练习(word 版 一、八年级数学轴对称三角形填空题(难) 1.在直角坐标系中,O 为坐标原点,已知点 A (1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点 P 的坐标为_____________.

【答案】5(0,5),(0,4),0,

4⎛⎫ ⎪⎝⎭

【解析】

【分析】

有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,求出OA 即可;②以A 为圆心,以OA 为半径画弧交y 轴于P ,求出OP 即可;③作OA 的垂直平分线交y 轴于C ,则AC =OC ,根据勾股定理求出OC 即可.

【详解】

有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,则OA =OD =22125+=;

∴D (0,5);

②以A 为圆心,以OA 为半径画弧交y 轴于P ,OP =2×y A =4,

∴P (0,4);

③作OA 的垂直平分线交y 轴于C ,则AC =OC ,

由勾股定理得:OC =AC =()2212OC +-,

∴OC =54

, ∴C (0,54

); 故答案为:5(0,5),(0,4),0,

4⎛

⎫ ⎪⎝⎭.

【点睛】

本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.

2.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD,当△AOD是等腰三角形时,求α的角度为______

【答案】110°、125°、140°

【解析】

【分析】

先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则

∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可.

【详解】

解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,

则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,

∴b﹣d=10°,

∴(60°﹣a)﹣d=10°,

∴a+d=50°,

即∠DAO=50°,

分三种情况讨论:

①AO=AD,则∠AOD=∠ADO,

∴190°﹣α=α﹣60°,

∴α=125°;

②OA=OD,则∠OAD=∠ADO,

∴α﹣60°=50°,

∴α=110°;

③OD=AD,则∠OAD=∠AOD,

∴190°﹣α=50°,

∴α=140°;

所以当α为110°、125°、140°时,三角形AOD是等腰三角形,

故答案为:110°、125°、140°.

【点睛】

本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.

3.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将

△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.

【答案】2.

【解析】

【分析】

【详解】

过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,

∵∠B=60°,BE=BD=4,

∴△BDE是等边三角形,

∵△B′DE≌△BDE,

∴B′F=1

B′E=BE=2,DF=23,

2

∴GD=B′F=2,

∴B′G=DF=23,

∵AB=10,

∴AG=10﹣6=4,

∴AB′=27.

考点:1轴对称;2等边三角形.

∠内任意一点,OP=5 cm,点M和点N分别是射线OA和射线4.如图,点P是AOB

++的最小值是5 cm,则AOB

OB上的动点,PN PM MN

∠的度数是__________.

【答案】30°

【解析】

试题解析:分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,

分别交OA 、OB 于点M 、N ,连接OC 、OD 、PM 、PN 、MN ,如图所示:

∵点P 关于OA 的对称点为D ,关于OB 的对称点为C ,

∴PM=DM ,OP=OD ,∠DOA=∠POA ;

∵点P 关于OB 的对称点为C ,

∴PN=CN ,OP=OC ,∠COB=∠POB ,

∴OC=OP=OD ,∠AOB=

12

∠COD , ∵PN+PM+MN 的最小值是5cm ,

∴PM+PN+MN=5,

∴DM+CN+MN=5,

即CD=5=OP ,

∴OC=OD=CD , 即△OCD 是等边三角形,

∴∠COD=60°,

∴∠AOB=30°.

5.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .

【答案】128︒

【解析】

【分析】

连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,

ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则

∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.

【详解】

连接CE ,

∵线段AB ,DE 的垂直平分线交于点C ,

∴CA=CB ,CE=CD ,

∵72ABC EDC ∠=∠=︒=∠DEC ,

∴∠ACB=∠ECD=36°,

∴∠ACE=∠BCD ,

在∆ACE 与∆BCD 中,

∵CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩

∴∆ACE ≅

∆BCD (SAS ), ∴∠AEC=∠BDC ,

设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,

∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,

∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.

故答案是:128︒.

相关文档
最新文档