初中数学中考模拟题测试卷及答案

合集下载

河北省邯郸市馆陶县2023-2024学年九年级中考模拟数学试题(含详解)

河北省邯郸市馆陶县2023-2024学年九年级中考模拟数学试题(含详解)

2024 年河北省初中毕业生升学文化课模拟考试数 学试 卷注意事项:1.本试卷共8页,总分120分,考试时长120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡的相应位置.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.5.考试结束时,请将本试卷和答题卡一并交回.一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,是轴对称图形的是( )2.将算式 |14−13|可以变形为( )A.14−13B.13+14C.−14−13D.13−143.小李准备从A 处前往B 处游玩,根据图1所示,能够准确且唯一确定B 处位置的描述是( )A.点 B 在点 A 的南偏西 48°方向上B.点 B 在距点A4 km 处C.点 B 在点 A 的南偏西48°方向上4k m 处D.点 B 在点A 的北偏西48°方向上 4k m 处4.若 3ᵐ⁺²=9,则m=( )A.-1B.0C.1D.25.如图2,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形).已知地面阴影(圆形)的直径为1.5米,桌面距地面1米.若灯泡距离桌面2米,则桌面的直径为( )A.0.25米B.0.5米C.0.75米D.1米6.实数 1200用科学记数法表示为n102.1⨯,则n2102.1⨯表示的原数为( )A.1 200 000 B.120 000C.14 400 000 D.1 440 0007.如图3,在正方形木框ABCD 中,AB=10cm,将其变形,使∠A=60°,则点 D,B 间的距离为( )A.102cmB.103cmC.10 cmD.20cm8.若m是关于x 的不等式-2x+3>7的一个解,则对于 m的值下列判断可能正确的是( )A.2<m<3B.-1<m<0C.-2≤m≤-1D.-6<m<-49.我国古代的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两……”意思是:“今有生丝30斤,干燥后损耗3斤 12 两(我国古代1斤等于 16 两)……”据此,若得到14斤干丝,需使用生丝x斤,则正确的是( )A.依题意,得3030−3+1216=x14B.依题意,得3030−3−1216=x14C.需使用生丝14037斤D.得到14斤干丝,需损耗生丝2021斤10.已知8−m12=2,则m=( )A.4B.2C.1D.1211.如图4,一根直的铁丝AB=20cm,欲将其弯折成一个三角形,在同一平面内操作如下:①量出AP=5cm;②在点 P 右侧取一点 Q,使点 Q 满足 PQ>5 cm;③将AP向右翻折,BQ向左翻折.若要使A,B 两点能在点M 处重合,则 PQ的长度可能是( )A.12 cmB.11 cmC.10 cmD.7 cm12.如图5-1,使用尺规经过直线l外的点 P 作已知直线l的平行线,作图痕迹如图5-2:下列关于图中的四条弧线①、②、③、④的半径长度的说法中,正确的是( )A.弧②、③的半径长度可以不相等B.弧①的半径长度不能大于 AP的长度C.弧④以 PA的长度为半径D.弧③的半径可以是任意长度13.对于分式M=m+2m+3,有下列结论:结论一:当m=-3时,M=0;结论二:当M=-1时,m=-2.5;结论三:若m>-3,则M>1.其中正确的结论是( )A.结论一B.结论二C.结论二、结论三D.结论一、结论二14.用相同尺寸的长方形纸板制作一个无盖的长方体纸盒.先在纸板上画出其表面展开图(需剪掉阴影部分),两种裁剪方案如图6-1和图6-2所示,图中A ,B ,C 均为正方形:下列说法正确的是( )A.方案 1中的 a=4B.方案2中的b=6C.方案1所得的长方体纸盒的容积小于方案 2所得的长方体纸盒的容积D.方案1所得的长方体纸盒的底面积与方案2所得的长方体纸盒的底面积相同15.有一段平直的公路AB ,A 与B 间的距离是50m.现要在该路段安装一个测速仪,当车辆经过A 和B 处时分别用光照射,并将这两次光照的时间差t(s)输入程序后,随即输出此车在AB 段的平均速度v(km/h),则v 与t 间的关系式为( ) A.v =50tB.v =180tC.v =1259tD.v =360t16.问题情境:如图7-1,在△ABC 中,AB=AC=8,BC=8 3,AD 是BC 边上的中线.如图7-2,将点C 沿EF 折叠后与点 D 重合,将顶点 B 沿GH 折叠,使得顶点 B 与点F 重合,GF 与DE 交于点K.若设△GHF 的面积为S ₁,四边形 GKEA 的面积为S ₂,则 S ₁和 S ₂ 的值分别为( )A.932,43 B.932,23 C.934,43 D.934,23二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第 1个空2分,第2,3个空各1分)17.已知a,b 互为相反数,则. ab +a²的值为 .18.如图8,从家到公园有A ₁,A ₂ 两条路线可走,从公园到超市有 B ₁,B ₂ 两条路线可走,现让小明随机选择一条从家出发经过公园到达超市的行走路线,那么恰好选到经过路线 A ₁ 与 B ₂的概率是 .19.如图9,在正五边形 ABCDE中,.AB=2,点M是AB 的中点,连接DM,点 P 在边BC上(不与点 C 重合),将.△CDP沿PD 折叠得到△QDP.(1)∠DQP=(2)当点 Q落在 DM 上时,∠DPQ=___________;(3)AQ 的最小值为 .三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)若A+3x²−5x+3=−x²+3x−2.(1)求多项式 A;(2)判断多项式A的值是否是正数,并说明理由.21.(本小题满分9分)如图10,整数m,n,t在数轴上分别对应点M,N,T.(1)若m,n互为相反数,描出原点O的位置并求t 的值;(2)当点 T为原点,且:m−n+□=−3时,求“□”所表示的数.22.(本小题满分9分)某校为了解学生对“党史知识”的掌握情况,进行“学党史”知识竞赛(满分100分),并随机抽取5 0名学生的测试成绩作为样本进行研究,将成绩分组为A:50≤x<60,B:60≤x<70,C:70≤x<80,D:80≤x<90,E:90≤x≤100,进行整理,得到不完整的频数分布直方图,如图11所示,且C组成绩从小到大排列如下:70,71,72,72,74,77,78,78,,79,79,79.(1)通过计算,补全频数分布直方图;(2)在这个样本中,中位数是78.5分,设被“”盖住的成绩为a分,求a的值;(3)已知这个样本的平均数是78分,若又加入一名学生的成绩为78分,将这名学生的成绩计入样本后,判断新的样本平均数和方差与原样本相比是否发生改变.23.(本小题满分 10分)图 12 是小李同学设计的一个动画示意图,光点从点 P(2,1)发出,其经过的路径为抛物线G: y=a(x−ℎ)²+k的一部分,并落在水平台子上的点Q(4,1)处,其达到的最大高度为2,光点在点Q处被反弹后继续向前沿抛物线L:y=−2x²+bx+c的一部分运行,已知台子的长.AB=4,AQ=1,点 M 是AB 的中点.(1)求抛物线G的对称轴及函数表达式;(2)若光点被弹起后,落在台子上的BM之间(不含端点),求 b所有的整数值.李阿姨正在练习扇子舞,如图13-1,她握住扇子的端点 Q,将扇子绕点 Q在平面内逆时针旋转一周.佳佳认真观察扇子的运动,画出示意图(图 13-2),研究其中的数学问题.经测量可得 OQ=36cm,∠POQ=120°,扇形 QO'M 从O'M 与OP 重合的状态开始绕点Q 逆时针旋转,点 P 的对应点为点M.(1)当点O'落在弧 PQ 上时,求∠O'QO的度数,并判断点 O 是否在直线MO′上;(2)当O'Q 所在直线与扇形POQ第一次相切时,求点 O'经过的路径的长;(3)连接OM,当扇形 QO'M 转动一周时,求 OM 的取值范围.25.(本小题满分 12分)如图14,在平面直角坐标系中,点 N(n-1,n+3),M(2,0),A(-10,-1),B(4,6),连接AB,在线段AB上的整数点(横、纵坐标都为整数的点)处设置感应灯,当有点落在整点处,或从点 M发出光线(射线 MN)照射到线段AB上的整数点时,该处的感应灯会亮.(1)求线段 AB所在直线的函数解析式;(2)当点 N在线段AB 上时,请通过计算说明点 N(n-1,n+3)是否会使感应灯亮;(3)若线段上的感应灯被射线 MN分为两部分,并且两部分感应灯的个数相同(不包括边界上的点),求n的取值范围.如图15-1,在四边形ABCD中,AB‖CD,∠CBA=2∠A,点 P 从点 C 开始以每秒1个单位长度的速度在射线CD上运动,连接PB 并延长,将射线PB 绕点P 逆时针旋转,旋转角总与∠C相等,当旋转后的=k,DM=y,点 P 的运动时间为ts.射线与射线 DA 相交时,设交点为 M.令CBCD(1)当点 P 在线段CD 上(点 P 不与端点重合)时,求证:∠PBC=∠DPM.(2)如图15-2,当k=1,且点 P 在线段CD 上(点 P 不与端点重合)时,在线段CB上截取CG=CP,连接PG,求证:GP=DM.,且点 P 在 CD 的延长线上时,已知tan C=22,BC=3,①求出 y与t的函(3)如图15-3,当k=34数关系式;②若BP,AD交于点H,已知△HMPO△BPC,,直接写出t的值.数学模拟试题参考答案说明:1.在阅卷过程中,如考生还有其他正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.一、选择题(本大题共16 个小题,共38分.1~6小题各 3分,7~16小题各2分)题号12345678答案A D C B D A C D 题号910111213141516答案BBDcBCBA1.A解:由轴对称图形的概念知,选 A.2.D解:: 14<13,∴|14−13|==13−14.3.C解:准确且唯一确定位置的描述是点 B 在点 A 的南偏西48°方向上4k m 处,故选 C.4.B解:由: 3ᵐ⁺²=9,得 3ᵐ×3²=3²,∴3ⁿ=3²÷3²=3⁰,故m=0.5.D解:构造几何模型如图:依题意知BC=1.5米,AF=2米,AG=3米,由△DAE∽△BAC 得 DE BC =AF ΛG ,即 DE 1.5=23,得 DE=1 米,即桌面的直径为1 米.6.A解:: ∴1200=1.2×10³,∴n =3,∴1,2×10²ⁿ=1,2×10⁶=1200000.7.C解:如图,连接DB,∵AD=AB=10cm,∠A=60°,∴△ABD 为等边三角形,∴BD=AB=10cm.8.D解:-2x+3>7的解集为x<-2,只有-6<m<-4可能正确,故选D.9.B解:依题意,得 3030−3−1216=x14,解得x=16,16-14=2(斤),∴若得到14斤干丝,则需使用生丝16斤,损耗生丝2斤.10.B解: ∵m 12=8−2=2,∴m =2÷12=2.11.D解:设 PQ=x cm,则BQ=(15-x) cm,根据三角形三边关系可得 x−5<15−x,x +5>15−x,解得5<x<10.故选 D.12.C解:该作图过程中,弧①的半径长度为任意长;弧②、③的半径长度相等,且大于 12EF 的长;弧④以 PA 的长度为半径.只有 C 选项正确.13.B解: |M−1=m +2m +3−1=−1m +3.∵m >−3时, −1m +3<0,故M<1,结论三不正确;m=-3,分式无意义;M=-1时,m=-2.5,故选 B.14.C解:方案1:a=12÷4=3,所折成的无盖长方体的底面积为3×3=9.容积为5×9=45.方案2:b=4,所折成的无盖长方体的底面积为4×2=8.容积为6×8=48.故选 C.15.B解:∵速度=路程/时间, 1m/s =3.6km/ℎ,∴v =180t.16.A解:∵AB=AC=8,BC=8 3,AD 是BC 边上的中线,F 为 DC 的中点,∴FC =14 :BC =23,BD =43, :AD =AB 2−BD 2=4.∵BH =HF,∴2BH +23=83∴BH =33.易知 1BG;HωBAD,∴+BHBD =CHAD ,∴3343=GH4,GH =3,∴∴S 1=12HF ×GH =932.由折叠易知∠EDC=∠C,∠GFB=∠B.∵AB=AC,∴∠B=∠C,∴∠EDC=∠B,∠GFB=∠C,∴DE∥AB,GF∥AC,∴四边形GKEA 为平行四边形.易得 BD =CD =12BC =43,DF =CF =23,DE =AE =12AB =4,∴EF =42−(23)2=2.过点 F 作 FM⊥CE 于点M.∵S EFC =12FE ⋅FC =12CE ⋅FM, ∴CE ⋅FM =2×23=43. ∵S 2=AE ⋅FM,AE =CE,∴S 2=43.二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第1个空 2分,第2,3个空各1分)17.0解: ab +a²=a (b +a )."a ,b 互为相反数,∴b+a=0,∴原式=0.18. 14解:从家到公园,再到超市的路线有 A ₁与B ₁,A ₁ 与 B ₂,A ₂与 B ₁,A ₂ 与 B ₂共四种,则恰好选到经过路线 A ₁ 与 B ₂ 的概率是 14.19.(1)108 (2)45 (3)5−1解:(1)∵五边形的内角和为( (5−2)×180°=540°,∴∠C=∠DQP=∠CDE=108°.(2)如图1,由图形的轴对称可知,∠CDM =∠EDM =12∠CDE =54∘,∠CDP =∠QDP =12∠CDM =27∘,∴∠DPQ=180°-∠DQP-∠QDP=180°-108°-27°=45°.(3)∵CD=QD,∴点Q 在以D 为圆心,2 为半径的圆上,如图2. 连接AD,交圆D 于点Q,此时AQ 最短,此时点 B,P 重合,∠CPD=∠DPQ=∠QBA=36°,∴∠DBA=∠BQA=72°,∴△ABQ∽△ADB, ∴ABDA =AQAB ,∴22+AQ =AQ 2,∴AQ =5−1.三、解答题(本大题共7个小题,共72分)20.解: (1)A =−x²+3x−2−(3x²−5x +3)=−4x²+8x−5.……………………………………………………………5分(2)多项式A 的值不会是正数,………………………………………………6分理由如下:A= =−4x²+8x−5=−4(x²−2x )−5=−4(x²−2x +1−1)−5=−4(x−1)²−-1. ∵−4(x−1)²≤0, ∴−4(x−1)²−1<0,∴多项式A 的值不会是正数.…………………………………………………………………9分21.解:(1)∵m,n 互为相反数,∴m+n=0,即点 M,N 到原点的距离相等,∴ 原点的位置如图所示:……………………………………4分则t=-1.…………………………………………………………………………………………5分(2)∵点 T 为原点,则m=-2,n=4.∵m-n+□=-3,∴--2-4+□=-3,∴□=3.……………………………………………………………………………………9分22.解:(1)∵50-7-9-12-6=16.补全统计图如下:…………………………………………3分(2)∵样本容量为50,7+9+12=28,∴中位数落在C组.将样本数据从小到大排列,则中位数是第25,26 个数的平均数,a+792=78.5.解得a=78.即a的值为78.……………………………………………………………………………………7分(3)平均数不变,方差改变………………………………………………9分23.解:(1)点 P(2,1),点 Q(4,1)是抛物线上的一对对称点,∴对称轴为直线x=3.…………………………………………………………………………2分∵抛物线G 达到的最大高度为2,所以y=a(x−3)²+2,将点 P(2,1)代入,得1=a×(2−3)²+2,解得a=-1,∴抛物线G的函数表达式为y=−(x−3)²+2.…………………………………5分(2)∵AB=4,AQ=1,∴BQ=3.又 Q(4,1),∴点B(7,1),点M(5,1),………………………………………………………………………7分∴当点 Q(4,1)与点 M(5,1)是抛物线上的一对对称点时,−b2×(−2)=4+52=92,∴b=18.…8分当点 Q(4,1)与点 B(7,1)是抛物线上的一对对称点时,−b2×(−2)=4+72=112,∴b=22,…9分∴18<b<22,∴b所有的整数值为19,20,21.………………………………………………10分24.解:(1)如图1,连接OO',∵OO′=QO′=QO,∴△OQO′为等边三角形,∴∠OQO′=∠OO′Q=60°.………………………………………3分∵∠POQ=∠MO′Q=120°,∴∠MO′O=∠MO′Q+∠OOQ=120°+60°=180°,∴点O在直线MO'上.…………………………………………………………………………5分(2)当扇形 QO'M 的半径(O′Q所在直线与扇形POQ 第一次相切时,如图2,则∠OQO′=90°,∴l(x)=18π(cm).………………………………………………………………………8分=90×36π180(3)根据题意可知旋转中心为点 Q,MQ 为定值,∴当扇形 QO'M 旋转一周时,点 M的轨迹是以点Q 为圆心,MQ 的长为半径的一个圆.如图3,向两侧延长QO,分别交大圆Q于点 A,B,∴OA,OB的长分别为 MQ 的最小值和最大值.连接PQ,如图4,过点 O 作OE⊥PQ 于点 D,交PQ 于点E,∴PD =12PQ,∠POE =12∠POQ =60∘,∴PD =OP sin60∘=36×32=183(cm ),∴PQ =2×183=363(cm ),∴OA =(363−36)cm,OB =(363+36)cm,∴OM 的取值范围为(363−36)cm ≤OM ≤(363+36)cm.…10分25.解:(1)设线段AB 所在直线的解析式为y=kx+b.∵经过点A(-10,-1),B(4,6), ∴−1=−10k +b,6=4k +b,解得 k =12,b =4,∴线段 AB 所在直线的函数解析式为 y =12x +4.……………………4分(2)当点 N(n-1,n+3)在直线 AB 上时,n +3=12(n−1)+4,解得n=1,∴点 N(0,4),∴点 N(0,4)为线段 AB 上的整数点,∴当点N 在线段AB 上时,点N(n-1,n+3)会使感应灯亮.…………………………………8分(3)直线AB 的函数表达式为y= 12x+4,A(-10,-1),B(4,6),∴线段AB 上的整数点有(-10,-1),(-8,0),(-6,1),(-4,2),(-2,3),(0,4),(2,5),(4,6)共8个,其中(-4,2),(-2,3)为中间两个整数点,为临界点.当射线MN 经过(-4,2),(2,0)时,直线MN 的函数表达式为 y =−13x +23,将点 N(n-1,n+3)代入得 n +3=−13(n−1)+23,解得 n =−32.同理可得,当射线MN 经过(-2,3),(2,0)时,直线 MN 的函数表达式为 y =−34x +32,将点 N(n-1,n+3)代入得 n +3=−34(n−1)+32,解得 n =−37,∴符合条件的n 的取值范围为 −32<n <−37. …12分26.(1)证明:∵∠DPB=∠C+∠PBC,∴∠DPM+∠BPM=∠C+∠PBC.∵∠BPM=∠C,∴∠PBC=∠DPM.………………………………………………2分(2)当k=1,且点 P 在线段CD 上时,CB=CD,CG=CP,∴∠CGP =12(180∘−∠C ),CB−CG =CD−CP,即GB=PD.∵AB∥CD,∴∠C+∠CBA =180°.∴∠CBA =2∠A,∴∠A =12(180∘−∠C ),∴∠CGP =∠A.∵AB∥CD,∴∠A+∠ADC =180°.∵∠CGP+∠BGP=180°,∴∠BGP=∠ADC.又∵∠PBC=∠DPM,∴△BGP≌△PDM,∴GP=DM.………………………………………8分(3)①如图,在射线CB 上截取( CG =CP,连接PG,过点 G 作( GE ⊥CP,,垂足为点 E.由(1)的推理可知 ∠PBC =∠KPM,∴∠GBP =∠DPM.由(2)的推理可知 ∠CGP =∠A.∵AB‖CD,∴∠PDM=∠A,∴∠CGP =∠PDM,∴△BGP △PDM,∴BG PD =PG DM .∵在 Rt△ECG 中, tan C =22,CG =CP =t,∴CE =13t,EG =223t,∴PE =23t,∴PG =233t.由题意得,BC=3,CD=4,DM=y,∴t−3t−4=233ty ,∴y =23t 2−83t3t−9. ………………………………………………11分circle223+3.…………………………………………………13分解:记 PG 与AB 相交于点 N.∵△HMP∽△BPC,∴∠CPB=∠PMD.∵△BGP∽△PDM,∴∠BPG=∠PMD,∴∠CPB=∠BPG.∵AB∥CD,∴∠CPB=∠PBA,∴∠BPG=∠PBA,∴PN=BN.易得∠BGN=∠BNG,∴BN=PN=BG=t-3.∵ABCD,∴BC CG =PN PG ,∴3t =t−323t 3,∴t =23+3.。

中招考试数学模拟试卷(附有答案)

中招考试数学模拟试卷(附有答案)

中招考试数学模拟试卷(附有答案)(满分:120分考试时间:120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。

在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分.211.|−16|的相反数是()A. 16B. −16C. 6D. −62.下列运算正确的是()A. x6+x6=2x12B. a2⋅a4−(−a3)2=0C. (x−y)2=x2−2xy−y2D. (a+b)(b−a)=a2+b23.在计算器上按键:显示的结果为()A. −5B. 5C. −25D. 254.把Rt△ABC与Rt△CDE放在同一水平桌面上摆放成如图所示的形状使两个直角顶点重合两条斜边平行若∠B=25°∠D=58°则∠BCE的度数是()A. 83°B. 57°C. 54°D. 33°5.下列由左到右的变形属于因式分解的是()A. (x+2)(x−2)=x2−4B. x2+4x−2=x(x+4)−2C. x2−4=(x+2)(x−2)D. x2−4+3x=(x+2)(x−2)+3x6.如图抛物线y=ax2+bx+c的对称轴是x=1下列结论:7.①abc>0②b2−4ac>0③8a+c<0④5a+b+2c>8.正确的有()A. 4个B. 3个C. 2个D. 1个9.如图从一张腰长为90cm顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗)则该圆锥的底面半径为()A. 15cmB. 12cmC. 10cmD. 20cm10.夏季来临某超市试销A B两种型号的风扇两周内共销售30台销售收入5300元A型风扇每台200元B型风扇每台150元问A B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台B型风扇销售了y台则根据题意列出方程组为()A. {x+y=5300200x+150y=30 B. {x+y=5300150x+200y=30C. {x+y=30200x+150y=5300 D. {x+y=30150x+200y=530011.若甲乙两弹簧的长度ycm与所挂物体质量xkg之间的函数表达式分别为y=k1x+b1和y=k2x+b2如图所示所挂物体质量均为2kg时甲弹簧长为y1乙弹簧长为y2则y1与y2的大小关系为()A. y1>y2B. y1=y2C. y1<y2D. 不能确定12.如图正方形ABCD的边长为4点E在边AB上BE=1∠DAM=45°点F在射线AM上且AF=√2过点F作AD的平行线交BA的延长线于点H CF与AD相交于点G连接EC EG EF.下列结论:①△ECF的面积为17②△AEG的周长为8③EG2=2DG2+BE2.其中正确的是()A. ①②③B. ①③C. ①②D. ②③二填空题:本大题共8小题其中11-14题每小题3分15-18题每小题3分共28分.只要求填写最后结果.(本大题共8小题共24.0分)13.若关于x的二次三项式x2+(m+1)x+16可以用完全平方公式进行因式分解则m=_______.14.纳米是一种长度单位1纳米=10−9米.已知某种植物花粉的直径约为20800纳米则用科学记数法表示该种花粉的直径约为______米15.已知x1x2…x10的平均数是a x11x12…x30的平均数是b则x1x2…x30的平均数是____________.16.函数y=(3−m)x+n(m,n为常数m≠3)若2m+n=1当−1≤x≤3时函数有最大值2则n=______.17.如图矩形ABCD中AB=2BC=√2E为CD的中点连接AE BD交于点P过点P作PQ⊥BC于点Q则PQ=______.18.19.21. 如图 长方体的底面边长均为3cm 高为5cm 如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B 那么所用细线最短需要______cm .22.23.24. 如图 在平面直角坐标系中 点A 1 A 2 A 3 … A n 在x 轴上 点B 1 B 2 B 3 …B n 在直线y =√33x 上.若A 1(1,0) 且△A 1B 1A 2 △A 2B 2A 3 … △A n B n A n +1都是等边三角形 从左到右的小三角形(阴影部分)的面积分别记为S 1 S 2 S 3 … S n 则S 2021可表示为______________.三 解答题:本大题共7小题 共62分.解答要写出必要的文字说明 证明过程或演算步骤.25. (8分)(1)先化简(1+2x−3)÷x 2−1x 2−6x+9 再从不等式组{−2x <43x <2x +4的整数解中选一个合适的x 的值代入求值.26.27.28.29.30.31.32.(2)计算:|−4|−2cos60°+(√3−√2)0−(−3)2.33.(8分)如图AB是⊙O的直径点C是⊙O上一点(与点A B不重合)过点C作直线PQ使得∠ACQ=∠ABC.34.(1)求证:直线PQ是⊙O的切线.35.(2)过点A作AD⊥PQ于点D交⊙O于点E若⊙O的半径为2sin∠DAC=1求图中阴影部分的面积.236.37.38.39.40.41.42.43.(8分)某校为了了解全校学生线上学习情况随机选取该校部分学生调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:44.频数分布表45.学习时间分组46.频数47.频率48.A组(0≤x<1)49.950.m51.B组(1≤x<2)52.1853.0.354.C组(2≤x<3)55.1856.0.357.D组(3≤x<4)58.n59.0.260.E组(4≤x<5)61.362.0.05(1)频数分布表中m=______ n=______ 并将频数分布直方图补充完整(2)若该校有学生1000名现要对每天学习时间低于2小时的学生进行提醒根据调查结果估计全校需要提醒的学生有多少名?(3)已知调查的E组学生中有2名男生1名女生老师随机从中选取2名学生进一步了解学生居家学习情况.请用树状图或列表求所选2名学生恰为一男生一女生的概率.22.(8分)数学兴趣小组到黄河风景名胜区测量炎帝塑像的高度.如图所示炎帝塑像DE在高55m的小山EC上在A处测得塑像底部E的仰角为34°再沿AC方向前进21m到达B处测得塑像顶部D的仰角为60°求炎帝塑像DE的高度.(精确到1m参考数据:sin34°≈0.56 cos34°=0.83tan34°≈0.6723(8分)天水市某商店准备购进A B两种商品A种商品每件的进价比B种商品每件的进价多20元用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A B两种商品共40件其中A种商品的数量不低于B 种商品数量的一半该商店有几种进货方案?(3)“五一”期间商店开展优惠促销活动决定对每件A种商品售价优惠m(10<m<20)元B种商品售价不变在(2)的条件下请设计出m的不同取值范围内销售这40件商品获得总利润最大的进货方案.24(10分)如图抛物线y=x2+bx+c经过点(3,12)和(−2,−3)与两坐标轴的交点分别为AB C它的对称轴为直线l.(1)求该抛物线的表达式(2)P是该抛物线上的点过点P作l的垂线垂足为D E是l上的点.要使以P D E为顶点的三角形与△AOC全等求满足条件的点P点E的坐标.25.(12分)如图在矩形ABCD中AB=20点E是BC边上的一点将△ABE沿着AE折叠点B刚好落在CD边上点G处点F在DG上将△ADF沿着AF折叠点D刚好落在AG上点H处此时S△GFH:S△AFH=2:3(1)求证:△EGC∽△GFH(2)求AD的长(3)求tan∠GFH的值.参考答案1..【答案】B【解析】解:|−16|的相反数即16的相反数是−16.故选:B.根据只有符号不同的两个数互为相反数可得一个数的相反数.本题考查了相反数绝对值在一个是数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:A原式=2x6不符合题意B原式=a6−a6=0符合题意C原式=x2−2xy+y2不符合题意D原式=b2−a2不符合题意故选:B.各项计算得到结果即可作出判断.此题考查了整式的混合运算熟练掌握运算法则是解本题的关键.3.【答案】A【解析】【分析】本题考查了计算器−数的开方解决本题的关键是认识计算器.根据计算器的功能键即可得结论.【解答】解:根据计算器上按键−√1253=−5所以显示结果为−5.故选:A.4.【答案】B【解析】解:过点C作CF//AB∴∠BCF=∠B=25°.又AB//DE∴CF//DE.∴∠FCE=∠E=90°−∠D=90°−58°=32°.∴∠BCE=∠BCF+∠FCE=25°+32°=57°.故选:B.过点C作CF//AB易知CF//DE所以可得∠BCF=∠B∠FCE=∠E根据∠BCE=∠BCF+∠FCE即可求解.本题主要考查了平行线的判定和性质解决角度问题一般借助平行线转化角此题属于“拐点”问题过拐点处作平行线是此类问题常见辅助线.5.【答案】C【解析】解:A(x+2)(x−2)=x2−4是整式的乘法运算故此选项错误B x2+4x−2=x(x+4)−2不符合因式分解的定义故此选项错误C x2−4=(x+2)(x−2)是因式分解符合题意.D x2−4+3x=(x+2)(x−2)+3x不符合因式分解的定义故此选项错误故选:C.直接利用因式分解的定义分别分析得出答案.此题主要考查了因式分解的意义正确把握分解因式的定义是解题关键.6.【答案】B【解析】【分析】本题考查的是二次函数图象与系数的关系掌握二次函数的性质灵活运用数形结合思想是解题的关键.根据抛物线的开口方向对称轴与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0根据抛物线的对称轴在y轴右边可得:a b异号所以b>0根据抛物线与y轴的交点在正半轴可得:c>0∴abc<0故①错误∵抛物线与x轴有两个交点∴b2−4ac>0故②正确∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴所以−b2a=1可得b=−2a由图象可知当x=−2时y<0即4a−2b+c<0∴4a−2×(−2a)+c<0即8a+c<0故③正确由图象可知当x=2时y=4a+2b+c>0当x=−1时y=a−b+c>0两式相加得5a+b+2c>0故④正确∴结论正确的是②③④3个故选:B.7.【答案】A【解析】解:过O作OE⊥AB于E∵OA=OB=90cm∠AOB=120°∴∠A=∠B=30°∴OE=12OA=45cm∴弧CD的长=120π×45180=30π设圆锥的底面圆的半径为r则2πr=30π解得r=15.故选:A.根据等腰三角形的性质得到OE的长再利用弧长公式计算出弧CD的长设圆锥的底面圆的半径为r根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长得到r然后利用勾股定理计算出圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长.8.【答案】C【解析】 【分析】本题直接利用两周内共销售30台 销售收入5300元 分别得出等式进而得出答案. 此题主要考查了由实际问题抽象出二元一次方程组 正确得出等量关系是解题关键. 【解答】解:设A 型风扇销售了x 台 B 型风扇销售了y 台 则根据题意列出方程组为:{x +y =30200x +150y =5300故选C .9.【答案】A【解析】解:∵点(0,4)和点(1,12)在y 1=k 1x +b 1上 ∴得到方程组:{4=b 112=k 1+b 1解得:{k 1=8b 1=4∴y 1=8x +4.∵点(0,8)和点(1,12)代入y 2=k 2x +b 2上 ∴得到方程组为{8=b 212=k 2+b 2解得:{k 2=4b 2=8.∴y 2=4x +8.当x =2时 y 1=8×2+4=20 y 2=4×2+8=16 ∴y 1>y 2. 故选:A .将点(0,4)和点(1,12)代入y 1=k 1x +b 1中求出k 1和b 1 将点(0,8)和点(1,12)代入y 2=k 2x +b 2中求出k 2和b 2 再将x =2代入两式比较y 1和y 2大小.本题考查了一次函数的应用 待定系数法求一次函数关系式 比较函数值的大小 熟练掌握待定系数法求一次函数关系式是解题的关键.10.【答案】C【解析】解:如图在正方形ABCD中AD//BC AB=BC=AD=4∠B=∠BAD=90°∴∠HAD=90°∵HF//AD∴∠H=90°∵∠HAF=90°−∠DAM=45°∴∠AFH=∠HAF.∵AF=√2∴AH=HF=1=BE.∴EH=AE+AH=AB−BE+AH=4=BC ∴△EHF≌△CBE(SAS)∴EF=EC∠HEF=∠BCE∵∠BCE+∠BEC=90°∴∠HEF+∠BEC=90°∴∠FEC=90°∴△CEF是等腰直角三角形在Rt△CBE中BE=1BC=4∴EC2=BE2+BC2=17∴S△ECF=12EF⋅EC=12EC2=172故①正确过点F作FQ⊥BC于Q交AD于P∴∠APF=90°=∠H=∠HAD∴四边形APFH是矩形∵AH=HF∴矩形AHFP是正方形∴AP=PF=AH=1同理:四边形ABQP是矩形∴PQ=AB=4BQ=AP=1FQ=FP+PQ=5CQ=BC−BQ=3∵AD//BC∴△FPG∽△FQC∴FPFQ=PGCQ∴15=PG3∴PG=3 5∴AG=AP+PG=8 5在Rt△EAG中根据勾股定理得EG=√AG2+AE2=175∴△AEG的周长为AG+EG+AE=85+175+3=8故②正确∵AD=4∴DG=AD−AG=125∴DG2+BE2=14425+1=16925∵EG2=(175)2=28925≠16925∴EG2≠DG2+BE2故③错误∴正确的有①②故选:C.先判断出∠H=90°进而求出AH=HF=1=BE.进而判断出△EHF≌△CBE(SAS)得出EF=EC ∠HEF=∠BCE判断出△CEF是等腰直角三角形再用勾股定理求出EC2=17即可得出①正确先判断出四边形APFH是矩形进而判断出矩形AHFP是正方形得出AP=PF=AH=1同理:四边形ABQP是矩形得出PQ=4BQ=1FQ=5CQ=3再判断出△FPG∽△FQC得出FPFQ =PGCQ求出PG=35再根据勾股定理求得EG=175即△AEG的周长为8判断出②正确先求出DG=125进而求出DG2+BE2=16925再求出EG2=28925≠16925判断出③错误即可得出结论.此题主要考查了正方形的性质和判断全等三角形的判定和性质相似三角形的判定和性质勾股定理求出AG是解本题的关键.11.【答案】7或−9【解析】【分析】本题考查了公式法分解因式熟练掌握完全平方公式的结构特点是解题的关键.根据完全平方公式第一个数为x第二个数为4中间应加上或减去这两个数积的两倍.【解答】依题意得(m+1)x=±2×4x解得:m=7或−9.故答案为:7或−9.12.【答案】2.08×10−5【解析】解:20800纳米×10−9=2.08×10−5米.故答案为:2.08×10−5.绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数一般形式为a×10−n其中1≤|a|<10n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【答案】14【解析】【分析】此题考查了求概率用到的知识点为:概率=所求情况数与总情况数之比熟知概率的定义是解答此题的关键.根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数然后根据概率公式即可得出答案.【解答】解:同时抛掷两枚质地均匀的硬币一次共有正正正反反正反反四种等可能的结果两枚硬币都是正面向上的有1种所以两枚硬币都是正面向上的概率应该是14.故答案为:1414.【答案】10a+20b30【解析】【分析】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数利用平均数的定义利用数据x1x2…x10的平均数为a x11x12…x30的平均数为b可求出x1+x2+⋯+x10=10a x11+x12+⋯+x30=20b进而即可求出答案.【解答】解:因为数据x1x2…x10的平均数为a则有x1+x2+⋯+x10=10a因为x11x12…x30的平均数为b则有x11+x12+⋯+x30=20b∴x1x2…x30的平均数=10a+20b.30故答案为10a+20b30.15.【答案】−115【解析】 【分析】需要分类讨论:3−m >0和3−m <0两种情况 结合一次函数图象的增减性解答。

2024年中考数学模拟试卷及答案

2024年中考数学模拟试卷及答案

20
21
22
23
-6-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
x+3≥-2,
5.在数轴上表示不等式组ቊ
的解集,正确的
7-x>5
是( C )
【解析】解不等式x+3≥-2,得x≥-5,解不等式7-
x>5,得x<2,∴-5≤x<2,只有C项符合题意.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4
5
6
7
8
9
10
C.80°
11
12
13
14
15
16
D.85°
17
18
19
20
21
22
23
-8-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
【解析】∵AC∥DF,∠A=45°,∴∠FGB=∠A=
45°.∵∠DEF=90°,∠D=60°,∴∠F=180°-
∠DEF-∠D=180°-90°-60°=30°(依据:三角
知某电阻式粮食水分测量仪的内部电路如图1所示,将粮食放在湿
敏电阻R1上,使R1的阻值发生变化,其阻值随粮食水分含量的变化
关系如图2所示.观察图象,下列说法不正确的是(
D)
A.当没有粮食放置时,R1的阻值为40 Ω
B.R1的阻值随着粮食水分含量的增大而减小
C.该装置能检测的粮食水分含量的最大值是12.5%
16
17
18
19
20
21
22
23
-14-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)

模拟中考数学试题及答案

模拟中考数学试题及答案

模拟中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √4D. 1/3答案:B2. 已知函数y=2x+1,当x=3时,y的值为:A. 7B. 5C. 3D. 1答案:A3. 一个长方形的长是宽的两倍,如果宽增加2米,长减少2米,面积不变,那么原来长方形的长是:A. 4米B. 6米C. 8米D. 10米答案:B4. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 平行四边形B. 正五边形C. 不规则多边形D. 圆答案:D6. 一个圆的半径是3厘米,那么它的周长是:A. 18.84厘米B. 9.42厘米C. 6.28厘米D. 3.14厘米答案:A7. 一个等腰三角形的底边长为6厘米,底角为45度,那么它的高是:A. 3厘米B. 4厘米C. 6厘米D. 9厘米答案:B8. 以下哪个选项是二次函数的一般形式?A. y=ax^2+bx+cB. y=ax^2+bxC. y=a(x+b)(x+c)D. y=ax+b答案:A9. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A10. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题3分,共30分)11. 一个数的立方根是2,那么这个数是______。

答案:812. 一个数的倒数是1/4,那么这个数是______。

答案:413. 一个三角形的内角和是______度。

答案:18014. 一个等差数列的首项是3,公差是2,那么它的第五项是______。

答案:1115. 一个等比数列的首项是2,公比是3,那么它的第三项是______。

答案:1816. 一个直角三角形的两直角边长分别是3和4,那么它的斜边长是______。

答案:517. 一个圆的直径是10厘米,那么它的面积是______平方厘米。

初三模拟试题及答案数学

初三模拟试题及答案数学

初三模拟试题及答案数学一、选择题(本题共10小题,每小题3分,满分30分)1. 若a、b、c是△ABC的三边长,且a²+b²+c²=ab+ac+bc,那么△ABC的形状是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 不等边三角形2. 已知x²-5x-6=0的两根为x₁和x₂,则x₁+x₂的值为()A. 5B. -5C. 6D. -63. 某商品原价为a元,打八折后售价为b元,那么商品的折扣率为()A. 80%B. 20%C. 25%D. 75%4. 已知函数y=kx+b(k≠0)的图象经过点(1,2)和(-1,0),则k和b的值分别为()A. k=2,b=1B. k=-2,b=1C. k=2,b=-1D. k=-2,b=-15. 一个数的相反数是-3,这个数是()A. 3B. -3C. 0D. 66. 若x=2是方程x²-3x+2=0的根,则方程的另一个根是()A. 1B. 2C. -1D. 07. 已知抛物线y=ax²+bx+c(a≠0)的对称轴为x=-1,那么抛物线与x轴的交点个数为()A. 0B. 1C. 2D. 无法确定8. 已知a、b、c是△ABC的三边长,且满足a²+b²=c²,那么△ABC的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形9. 已知方程x²-6x+8=0的两个根为x₁和x₂,则x₁x₂的值为()A. 8B. 6C. 2D. 110. 已知一个等腰三角形的两边长分别为3和5,那么这个等腰三角形的周长为()A. 11B. 13C. 16D. 14二、填空题(本题共5小题,每小题3分,满分15分)11. 已知等腰三角形的底边长为6,腰长为5,则该三角形的周长为________。

12. 已知函数y=2x+3与y=-x+4的交点坐标为(________,________)。

2023_2024学年福建省莆田市七年级上册数册中考模拟测试卷(附答案)

2023_2024学年福建省莆田市七年级上册数册中考模拟测试卷(附答案)

2023_2024学年福建省莆田市七年级上册数册中考模拟测试卷一.选择题(共10小题,每小题4分,共40分)1.-2023的相反数是( )A .B .C .D .202320231-2023-202312.下列方程是一元一次方程的是( )A .B .C .D .2x 2-1=012x =-1x y +=11x 2=+3.下列各组中,不是同类项的是( )A .与25B .与C .与D .与25ab -ba20.2a b 215a b -23a b 32a b-4.若,则x 等于( )5x =A .-5B .5C .±5D .0或55.已知等式,则下列等式中不一定成立的是( )a b =A .a-1=b-1B .C .D . a b c c=ac bc =220a b -=6.数轴上点B 表示的数是3,点C 到点B 的距离为2个单位长度,则点C 表示的数为( )A .1B .5C .1或5D .3或27.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算的过程.按照这种方法,图(2)()34+-表示的过程应是在计算( )A .B .C .D .(5)(2)-+-(5)2-+5(2)+-52+8.按照如图所示的计算程序,若x =2,则输出的结果是( )A.-14B.-26C.﹣16D.269.如图,两个正方形的面积分别为36,25,两阴影部分的面积分别为a,b(a>b),则a-b等于( )A.11B.12C.9D.1010.如图,周长为6个单位长度的圆上的六等分点分别为A,B,C,D,E,F,点A落在2的位置,将圆在数轴上沿负方向滚动,那么落在数轴上-2025的点是( )A.点C B.点D C.点ED.点F二.填空题(共6小题,每小题4分,共24分)11.中国高铁领先世界,2023年5月10日中国高铁累计安全行驶9280000000公里,能够环绕地球约23.2万圈,数据9280000000用科学记数法表示为 .12.写出一个系数是2023,且只含x,y两个字母的三次单项式是 .13.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于 .14.若x+2y=1,则2x+4y-5的值是 .15.在初中数学文化节游园活动中,被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m.王小明抽取到m的题目如图所示,他运用所学知识,很快就完成了这个比赛,则.167416.我们知道,任意一个正整数x 都可以进行这样的分解:x =m ×n (m ,n 是正整数,且m ≤n ),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m ×n 是x的最佳分解,并规定:.若一个两位正整数t (t =10a +b ,1≤a ≤b ≤9,a ,b 为正整()n mx f =数),交换其个位上的数字与十位上的数字,得到的新数减去原数所得的差为54,则的最大值为 .()f t 三.解答题(共9小题,共86分)17.(8分)计算:. ()222583313÷--⨯⎪⎭⎫ ⎝⎛-+-18.(8分)解方程:.8x3141x 2--=-19.(8分)先化简,再求值:,其中,()()222223324ab a b ab ab a b ab -+--+1a =-.2b =20.(8分)有理数a ,b ,c 在数轴上的位置如图所示,化简:|b -c|+|a +b|-|c -a|.21.已知a 、b 互为相反数,c 、d 互为倒数,m 是绝对值等于2的数,求:的值.2++-++a bm cda b c 22.我国首个空间实验室“天宫一号”顺利升空.全国人民信受鼓舞,某校开展了火箭模型制作比赛,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用a 、b 的代数式表示该截面的面积S ;(2)当a =2cm ,b =2.5cm 时,求这个截面的面积.23.(10分)已知多项,.231A x x =-+()2222B kx x x =-+-(1)当时,求A 的值;=1x -(2)小华认为无论取何值,的值都无法确定.小明认为可以找到适当的数,使代数式k A B -k 的值是常数.你认为谁的说法正确?请说明理由.A B -24.(12分)一般情况下,对于数和,(“≠”不等号),但是对于某些特殊a b 2424a b a b ++≠+的数和,.我们把这些特殊的数和,称为“理想数对”,记作.例a b 2424a b a b++=+a b ,a b如当,时,有,那么(1,4)就是“理想数对”.1a =4b =-()14142424+--+=+(1)(3,12),(-2,4)可以称为“理想数对”的是 .(2)如果(2,x )是“理想数对”,求x 的值;(3)若(m ,n )是“理想数对”,求的值.()12m 4m 67n 8m 4n 93--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---25.(14分)【背景知识】数轴是初中数学的一个重要工具,如图,若数轴上点A 、点①B 表示的数分别为a ,b ,则线段的长(点到点的距离)可表示为.()b a >AB A B b a -【问题情境】数轴上三点表示的数分别为,其中A 在原点左侧,距原点A B C ,,a b c ,,个单位,是最大的负整数,在原点右侧,且,如图,动点从A 出发,以4b C 9AC =②M 每秒个单位长度的速度沿数轴向左匀速运动,与此同时,过点从点出发,以每秒个单N C 2位长度速度沿数轴向右匀速运动,一只电子狗从出发,以每秒个单位长度的速度沿数轴Q B 向右匀速运动,设移动时向为秒.(0)t >【问题探究】(1)___________,___________,___________;=a b =c =(2)在运动过程中,的值不随的变化而变化,请求出的值;4MN aMQ +a (3)如果在处竖立一块挡板,当电子狗到达时,被挡板弹回,以同样的速度向相反的方C Q C 向运动.问:当为何值时,电子狗到的距离相等?并求出此时电子狗的位置.Q M N ,Q答案与试题解析一.选择题1-5. D A D C B 6-10. C C B A D二.填空题11.9.28×10912.2023xy 2(答案不唯一)13.-114.-315.3916..74三.解答题17.解:()222583313÷--⨯⎪⎭⎫ ⎝⎛-+-=415819⨯-+-=528--=528-18.解:8x3141x 2--=-2(2x-1)= 8-(3-x )4x-2 =8-3+x 4x-x =5+23x =7x 37=19.,22210a b ab -解:原式22226226123ab a b ab ab a b ab-+-+-=,210a b ab =-将,代入得:原式.1a =-2b =()()221021122⨯--⨯-=⨯=20.-2b解:由数轴可得a <0,b >0,c >0,b-c <0,c-a >0,a+b <0,则| b -c |+|a +b |-|c -a |=-b+c-a-b-c+a =-2b .21.(1)∵m 是绝对值等于2的数,∴m=±2.又∵a 、b 互为相反数,c 、d 互为倒数∴a+b=0,cd=1∴=2++-++a b m cd a b c 20(2)10c+±-+=041+-=.22.(1),(2)18 cm 2.222S ab a =+解:(1)截面面积: S =;()2211222222ab a a a b ab a +++=+(2)当a =2cm .b =2.5cm 时,222S ab a =+2=22 2.522⨯⨯+⨯=18(cm 2);答:这个截面的面积为18cm 2.23.(1)5(2)小明说法对,理由见解析(1)解:把,代入得:1x =-231A x x =-+,()()223131115A x x =-+=⨯---+=故A 的值为5;(2)解:小明说法对;()2222312251A B x x kx x x k x -=-+-++-=--当,即时,,50k -=5k =1-=-A B 故小明说法对.24. (1)(3,-12) (2)(3) 8-12-解:(1)对于数对(3,-12),有()234212341223-=+-+=-+因此(3,-12)是“理想数对”对于数对(2,-4),,,04422=+-314242=++-310≠所以(-2,4)不是“理想数对”。

2024年山东省东营市东营区胜利第一初级中学中考模拟考试数学试卷(含解析)

2024年山东省东营市东营区胜利第一初级中学中考模拟考试数学试卷(含解析)

2024年山东省东营市东营区胜利一中中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列各组数中,互为相反数的是( )A. ―(―2)和2B. 1和―2 C. ―(+3)和+(―3) D. ―(―5)和―|+5|22.如图所示的几何体,若每个小正方体的棱长为2,则左视图的面积为( )A. 24B. 20C. 10D. 163.下列计算正确的是( )A. (x+2y)(x―2y)=x2―2y2B. (―x+y)(x―y)=x2―y2C. (2x―y)(x+2y)=2x2―2y2D. (―x―2y)(―x+2y)=x2―4y24.如图,已知直线a、b、c相交于A、B、C三点,则下列结论:①∠1与∠2是同位角;②内错角只有∠2与∠5;③若∠5=130°,则∠4=130°;④∠2<∠5;正确的个数是( )A. 1B. 2C. 3D. 45.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是( )A. 6cmB. 7cmC. 8cmD. 9cm6.周日早晨,妈妈送张浩到离家1000m的少年宫,用时20分钟.妈妈到了少年宫后直接返回家里,还是用了20分钟.张浩在少年宫玩了20分钟的乒乓球,然后张浩跑步回家,用了15分钟.如图中,正确描述张浩离家时间和离家距离关系的是( )A. B.C. D.7.某列车提速前行驶400km与提速后行驶500km所用时间相同,若列车平均提速20km/ℎ,设提速后平均速度为x km/ℎ,所列方程正确的是( )A. 400x =500x+20B. 400x=500x―20C. 400x―20=500xD. 400x+20=500x8.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A. 15B. 25C. 35D. 459.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D是AC的中点,连接BD交AC于点E,连接OE,且∠OEB=45°,若OB=10,则OE的长为( )A. 6B. 33C. 25D. 21010.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是( )A. 12B. 24C. 36D. 48第II卷(非选择题)二、填空题:本题共6小题,每小题3分,共18分。

2024年中考数学模拟测试试卷(带有答案)

2024年中考数学模拟测试试卷(带有答案)
A. B. C. D.
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:

∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数

∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.

数学中考模拟试卷与答案解析(共五套)

数学中考模拟试卷与答案解析(共五套)

数学中考模拟试卷与答案解析(共五套)数学中考模拟试卷与答案解析(共五套)试卷一一、选择题1. 已知函数f(x) = 3x + 2,求f(4)的值。

A. 10B. 14C. 16D. 20答案:B解析:将4代入函数中,得到f(4) = 3(4) + 2 = 14。

2. 若正方形的边长为a,其面积为36平方厘米,则a的值是多少?A. 4B. 6C. 8D. 10答案:C解析:设正方形的边长为a,则 a × a = 36,解得 a = 6。

3. 已知△ABC中,∠B = 60°,AB = 5,BC = 2√3,则AC的值是多少?A. 4B. 5C. 6D. 8答案:B解析:根据余弦定理,AC² = AB² + BC² - 2AB · BC · cos∠B代入已知条件,得到AC² = 5² + (2√3)² - 2 × 5 × 2√3 × 0.5化简得 AC² = 25 + 12 - 10√3 = 37 - 10√3利用近似计算,AC ≈ 5.24,取整得AC ≈ 5。

二、填空题1. 线段AB的中点坐标为(2, -3),若 A 的坐标为(5, 1),则B的坐标为。

答案:(-1, -7)解析:由中点公式可得,线段AB的中点坐标为 (2, -3) = [(x₁ +x₂)/2, (y₁ + y₂)/2]代入已知条件 (5, 1)的坐标,得到 (2, -3) = [(5 + x₂)/2, (1 + y₂)/2]解方程组得 x₂ = -1,y₂ = -7,即 B 的坐标为(-1, -7)。

2. 已知等差数列的首项为3,公差为5,计算该等差数列的前5项和。

答案:65解析:等差数列的前5项和可以通过数列求和公式 Sn = n/2 × (a₁ + an) 求得。

代入已知条件,得到 S₅ = 5/2 × (3 + a₅)由等差数列通项公式 aₙ = a₁ + (n - 1)d,代入公差d = 5,得到 a₅= 3 + 5 × (5 - 1) = 23代入 a₅的值,得到 S₅ = 5/2 × (3 + 23) = 65。

中考数学模拟测试题(附有答案)

中考数学模拟测试题(附有答案)

中考数学模拟测试题(附有答案)(满分:120分考试时间120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。

在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分. 211.下列实数中有理数是()A. √12B. √13C. √14D. √152.下列计算正确的是()A. a3+a2=a5B. a3÷a2=aC. 3a3⋅2a2=6a6D. (a−2)2=a2−43.如图AB//CD点E F在AC边上已知∠CED=70°∠BFC=130°则∠B+∠D的度数为()A. 40°B. 50°C. 60°D. 70°(第3题图)4.如图是我们数学课本上采用的科学计算器面板利用该型号计算器计算√23cos35°按键顺序正确的是()A.B.C.D.5.如图二次函数y=ax2+bx+c的图象的对称轴为x=−12且经过点(−2,0)下列说法错误的是()A. bc<0B. a=bC. 当x1>x2≥−12时D. 不等式ax 2+bx +c <0的解集是−2<x <32(第5题图)6. 《九章算术》是古代中国第一部自成体系的数学专著 其中《卷第八方程》记载:“今有甲乙二人持钱不知其数 甲得乙半而钱五十 乙得甲太半而亦钱五十 问甲 乙持钱各几何?”译文是:今有甲 乙两人持钱不知道各有多少 甲若得到乙所有钱的12 则甲有50钱 乙若得到甲所有钱的23 则乙也有50钱.问甲 乙各持钱多少?设甲持钱数为x 钱 乙持钱数为y 钱 列出关于x y 的二元一次方程组是( )A. {x +2y =5032x +y =50B. {x +12y =5023x +y =50B. C. {x +12y =5032x +y =50D. {x +23y =5012x +y =507. 如图 直角坐标系中 以5为半径的动圆的圆心A 沿x 轴移动 当⊙A 与直线l :y =512x 只有一个公共点时 点A 的坐标为( )A. (−12,0)B. (−13,0)C. (±12,0)D. (±13,0)(第7题图)8. 已知反比例函数y =bx 的图象如图所示 则一次函数y =cx +a 和二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A. B.C. D.9. 对于任意的有理数a b 如果满足a 2+b 3=a+b 2+3那么我们称这一对数a b 为“相随数对” 记为(a,b).若(m,n)是“相随数对” 则3m +2[3m +(2n −1)]=( ) A. −2B. −1C. 2D. 310. 如图 在正方形ABCD 中 E F 分别是AB BC 的中点 CE DF 交于点G 连接AG.下列结论:①CE =DF ②CE ⊥DF ③∠AGE =∠CDF.其中正确的结论是( ) A. ①② B. ①③ C. ②③ D. ①②③(第10题图)第Ⅱ卷(非选择题 共90分)二 填空题:本大题共8小题 其中11-14题每小题3分 15-18题每小题4分 共28分.只要求填写最后结果.11. “先看到闪电 后听到雷声” 那是因为在空气中光的传播速度比声音快.科学家发现 光在空气里的传播速度约为3×108米/秒 而声音在空气里的传播速度大约为3×102米/秒 在空气中声音的速度是光速的_______倍.(用科学计数法表示) 12. 分解因式:ax 2+2ax +a =______.13. “共和国勋章”获得者 “杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻 中国境外种植面积达800万公顷.某村引进了甲 乙两种超级杂交水稻品种 在条件(肥力 日照 通风…)不同的6块试验田中同时播种并核定亩产 统计结果为:x 甲−=1042kg/亩 s 甲2=6.5 x 乙−=1042kg/亩 s 乙2=1.2 则______ 品种更适合在该村推广.(填“甲”或“乙”)14. 从不等式组{x −3(x −2)≤42+2x 3≥x −1的所有整数解中任取一个数 它是偶数的概率是______.15. 如图 △ABC 中 ∠B =30° 以点C 为圆心 CA 长为半径画弧 交BC 于点D 分别以点A D 为圆心大于12AD 的长为半径画弧两弧相交于点E 作射线CE 交AB 于点F FH ⊥AC 于点H.若FH =√2 则BF 的长为______.16.如图从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形则此扇形的面积为______dm2.17.如图在Rt△OAB中∠AOB=90°OA=OB AB=1作正方形A1B1C1D1使顶点A1B1分别在OA OB上边C1D1在AB上类似地在Rt△OA1B1中作正方形A2B2C2D2在Rt△OA2B2中作正方形A3B3C3D3…依次作下去则第n个正方形A n B n C n D n的边长是______.(15题图)(16题图)(17题图)18.已知正方形ABCD的边长为3E为CD上一点连接AE并延长交BC的延长线于点F过点D作DG⊥AF交AF于点H交BF于点G N为EF的中点M为BD上一动点分别连接MC MN.若S△DCGS△FCE =14则MN+MC的最小值为______.(18题图)三解答题:本大题共7小题共62分.解答要写出必要的文字说明证明过程或演算步骤.19.(本题满分8分第(1)题3分第(2)题5分)(1)计算:(π−2021)0−3tan30°+|1−√3|+(12)−2.(2)先化简再求值:x−3x2−8x+16÷x−3x2−16−xx−4其中x=√2+4.20.(本题满分8分)为引导学生知史爱党知史爱国某中学组织全校学生进行“党史知识”竞赛该校德育处随机抽取部分学生的竞赛成绩进行统计将成绩分为四个等级:优秀良好一般不合格并绘制成两幅不完整的统计图.(第20题图)根据以上信息解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩在扇形统计图中表示“一般”的扇形圆心角的度数为______(2)将条形统计图补充完整(3)该校共有1400名学生估计该校大约有多少名学生在这次竞赛中成绩优秀?(4)德育处决定从本次竞赛成绩前四名学生甲乙丙丁中随机抽取2名同学参加全市“党史知识”竞赛请用树状图或列表法求恰好选中甲和乙的概率.21.(本题满分8分)如图△ABC内接于⊙O AB是⊙O的直径E为AB上一点BE=BC延长CE交AD于点D AD=AC.(1)求证:AD是⊙O的切线(2)若tan∠ACE=1OE=3求BC的长.3(第21题图)22.(本题满分8分)某工厂生产并销售A B两种型号车床共14台生产并销售1台A型车床可以获利10万元如果生产并销售不超过4台B型车床则每台B型车床可以获利17万元如果超出4台B型车床则每超出1台每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时完成以下两个问题:①请补全下面的表格:②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元问:生产并销售B型车床多少台?(2)当0<x≤14时设生产并销售A B两种型号车床获得的总利润为W万元如何分配生产并销售AB两种车床的数量使获得的总利润W最大?并求出最大利润.23.(本题满分8分)如图在景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度测得斜坡AB=105米坡度i=1:2在B处测得电梯顶端C的仰角α=45°求观光电梯AC的高度.(参考数据:√2≈1.41√3≈1.73√5≈2.24.结果精确到0.1米)(第23题图)24.(本题满分10分)已知正方形ABCD E F为平面内两点.(第24题图)【探究建模】(1)如图1当点E在边AB上时DE⊥DF且B C F三点共线.求证:AE=CF【类比应用】(2)如图2当点E在正方形ABCD外部时DE⊥DF AE⊥EF且E C F三点共线.猜想并证明线段AE CE DE之间的数量关系【拓展迁移】(3)如图3当点E在正方形ABCD外部时AE⊥EC AE⊥AF DE⊥BE且D F E三点共线DE与AB交于G点.若DF=3AE=√2求CE的长.x2+bx+c与坐标轴交于A(0,−2)B(4,0) 25.(本题满分12分)如图在平面直角坐标系中抛物线y=12两点直线BC:y=−2x+8交y轴于点C.点D为直线AB下方抛物线上一动点过点D作x轴的垂线垂足为G DG分别交直线BC AB于点E F.x2+bx+c的表达式(1)求抛物线y=12(2)当GF=1时连接BD求△BDF的面积2(3)①H是y轴上一点当四边形BEHF是矩形时求点H的坐标②在①的条件下第一象限有一动点P满足PH=PC+2求△PHB周长的最小值.(第25题图)参考答案与解析1.【答案】C【解析】解:A.√12=√22不是有理数不合题意B.√13=√33不是有理数不合题意C.√14=12是有理数符合题意D.√15=√55不是有理数不合题意故选:C.2.【答案】B【解析】解:a3a2不是同类项因此不能用加法进行合并故A项不符合题意根据同底数幂的除法运算法则a3÷a2=a故B项符合题意根据单项式乘单项式的运算法则可得3a3⋅2a2=6a5故C项不符合题意根据完全平方公式展开(a−2)2=a2−4a+4故D项不符合题意.故选:B.3.【答案】C【解析】解:∵∠BFC=130°∴∠BFA=50°又∵AB//CD∴∠A+∠C=180°∵∠B+∠A+∠BFA+∠D+∠C+∠CED=360°∴∠B+∠D=60°故选:C.4.【答案】B【解析】解:根据计算器功能键正确的顺序应该是B.故选:B.5.【答案】D【解析】解:由图象可得b>0c<0则bc<0故选项A正确∵该函数的对称轴为x=−12∴−b2a =−12化简得b=a故选项B正确∵该函数图象开口向上 该函数的对称轴为x =−12 ∴x ≥−12时 y 随x 的增大而增大当x 1>x 2≥−12时 y 1>y 2 故选项C 正确 ∵图象的对称轴为x =−12 且经过点(−2,0) ∴图象与x 轴另一个交点为(1,0)不等式ax 2+bx +c <0的解集是−2<x <1 故选项D 错误 故选:D .6.【答案】B【解析】解:设甲 乙的持钱数分别为x y 根据题意可得:{x +12y =5023x +y =50故选:B .7.【答案】D【解析】解:当⊙A 与直线l :y =512x 只有一个公共点时 直线l 与⊙A 相切 设切点为B 过点B 作BE ⊥OA 于点E 如图∵点B 在直线y =512x 上 ∴设B(m,512m) ∴OE =−m在Rt △OEB 中 tan∠AOB =BEOE =512. ∵直线l 与⊙A 相切 ∴AB ⊥BO .在Rt△OAB中tan∠AOB=ABOB =512.∵AB=5∴OB=12.∴OA=√AB2+OB2=√52+122=13.∴A(−13,0).同理在x轴的正半轴上存在点(13,0).故选:D.8.【答案】D【解析】解:∵反比例函数的图象在二四象限∴b<0A∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限A错误B∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾B错误C∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾C错误D∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限D正确.故选:D.9.【答案】A【解析】解:因为(m,n)是“相随数对”所以m2+n3=m+n2+3所以3m+2n6=m+n5即9m+4n=0所以3m+2[3m+(2n−1)]=3m+2[3m+2n−1]=3m+6m+4n−2=9m+4n−2=0−2=−2故选:A.10.【答案】D【解析】解:∵四边形ABCD是正方形∴AB=BC=CD=AD∠B=∠BCD=90°∵E F分别是AB BC的中点∴BE=12AB CF=12BC∴BE=CF在△CBE与△DCF中{BC=CD∠B=∠BCD BE=CF∴△CBE≌△DCF(SAS)∴∠ECB=∠CDF CE=DF故①正确∵∠BCE+∠ECD=90°∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF故②正确∴∠EGD=90°在Rt△CGD中取CD边的中点H连接AH交DG于K ∴HG=HD=12CD∴Rt△ADH≌Rt△AGH(HL)∴AG=AD∴∠AGD=∠ADG∵∠AGE+∠AGD=∠ADG+∠CDF=90°∴∠AGE=∠CDF故③正确故选:D .11.【答案】1×10−6【解析】【解答】解:3×102米/秒÷(3×108)米/秒=10−6故答案为1×10−6.12.【答案】a(x +1)2【解析】解:ax 2+2ax +a=a(x 2+2x +1)--(提取公因式)=a(x +1)2.--(完全平方公式)13.【答案】乙【解析】解:∵x 甲−=1042kg/亩 x 乙−=1042kg/亩 s 甲2=6.5s 乙2=1.2∴x 甲−=x 乙− S 甲2>S 乙2∴产量稳定 适合推广的品种为乙故答案为:乙.14.【答案】25 【解析】解:∵{x −3(x −2)≤4①2+2x3≥x −1②由①得:x ≥1由②得:x ≤5∴不等式组的解集为:1≤x ≤5∴整数解有:1 2 3 4 5∴它是偶数的概率是25.故答案为25.15.【答案】2√2【解析】解:过F 作FG ⊥BC 于G由作图知 CF 是∠ACB 的角平分线∵FH ⊥AC 于点H.FH =√2∴FG=FH=√2∵∠FGB=90°∠B=30°.∴BF=2FG=2√2故答案为:2√2.16.【答案】2π【解析】解:连接AC∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形即∠ABC=90°∴AC为直径即AC=4dm AB=BC(扇形的半径相等)∵AB2+BC2=22∴AB=BC=2√2dm∴阴影部分的面积是90⋅π⋅(2√2)2360=2π(dm2).故答案为:2π.17.【答案】13n【解析】解:法1:过O作OM⊥AB交AB于点M交A1B1于点N如图所示:∵A1B1//AB∴ON⊥A1B1∵△OAB为斜边为1的等腰直角三角形∴OM=12AB=12又∵△OA1B1为等腰直角三角形∴ON=12A1B1=12MN∴ON:OM=1:3∴第1个正方形的边长A1C1=MN=23OM=23×12=13同理第2个正方形的边长A2C2=23ON=23×16=132则第n个正方形A n B n D n C n的边长13n法2:由题意得:∠A=∠B=45°∴AC1=A1C1=C1D1=B1D1=BD1AB=1∴C1D1=13AB=13同理可得:C2D2=13A1B1=132AB=132依此类推C n D n=13n.故答案为13n.18.【答案】2√10【解析】解:∵四边形ABCD是正方形∴A点与C点关于BD对称∴CM=AM∴MN+CM=MN+AM≥AN∴当A M N三点共线时MN+CM的值最小∵AD//CF∴∠DAE=∠F∵∠DAE+∠DEH=90°∵DG⊥AF∴∠CDG+∠DEH=90°∴∠DAE=∠CDG∴∠CDG=∠F∴△DCG∽△FCE∵S△DCGS△FCE =14∴CDCF =12∵正方形边长为3∴CF=6∵AD//CF∴ADCF =DECE=12∴DE=1CE=2在Rt△CEF中EF2=CE2+CF2∴EF=√22+62=2√10∵N是EF的中点∴EN=√10在Rt△ADE中EA2=AD2+DE2∴AE=√32+12=√10∴AN=2√10∴MN+MC的最小值为2√10故答案为:2√10.19.(1)【答案】解:(π−2021)0−3tan30°+|1−√3|+(12)−2=1−3×√33+√3−1+4=1−√3+√3−1+4=4.(2)【答案】解:原式=x−3(x−4)2⋅(x+4)(x−4)x−3−xx−4=x+4x−4−xx−4=4x−4.把x=√2+4代入原式=√2+4−4=2√2.20.【答案】40108°【解析】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名)则在条形统计图中成绩“一般”的学生人数为:40−10−16−2=12(名)∴在扇形统计图中成绩“一般”的扇形圆心角的度数为:360°×1240=108°故答案为:40108°(2)把条形统计图补充完整如下:(3)1400×1040=350(名)即估计该校大约有350名学生在这次竞赛中成绩优秀(4)画树状图如图:共有12种等可能的结果恰好选中甲和乙的结果有2种∴恰好选中甲和乙的概率为212=16.21.【答案】解:(1)∵AB是⊙O的直径∴∠ACB=90°即∠ACE+∠BCE=90°∵AD=AC BE=BC∴∠ACE=∠D∠BCE=∠BEC又∵∠BEC=∠AED∴∠AED+∠D=90°∴∠DAE=90°即AD⊥AE∵OA是半径∴AD是⊙O的切线(2)由tan∠ACE=13=tan∠D可设AE=a则AD=3a=AC ∵OE=3∴OA=a+3AB=2a+6∴BE=a+3+3=a+6=BC在Rt△ABC中由勾股定理得AB2=BC2+AC2即(2a+6)2=(a+6)2+(3a)2解得a1=0(舍去)a2=2∴BC=a+6=8.22.【答案】解:(1)①由题意得生产并销售B型车床x台时生产并销售A型车床(14−x)台当x>4时每台B型车床可以获利[17−(x−4)]=(21−x)万元.故答案应为:14−x21−x②由题意得方程10(14−x)+70=[17−(x−4)]x解得x1=10x2=21(舍去)答:生产并销售B型车床10台(2)当0<x≤4时总利润W=10(14−x)+17x整理得W=7x+140∵7>0∴当x=4时总利润W最大为7×4+140=168(万元)当x>4时总利润W=10(14−x)+[17−(x−4)]x整理得W=−x2+11x+140∵−1<0=5.5时总利润W最大∴当x=−112×(−1)又由题意x只能取整数∴当x=5或x=6时∴当x=5时总利润W最大为−52+11×5+140=170(万元)又∵168<170∴当x=5或x=6时总利润W最大为170万元而14−5=914−6=8答:当生产并销售A B两种车床各为9台5台或8台6台时使获得的总利润W最大最大利润为170万元.23.【答案】解:过B作BM⊥水平地面于M BN⊥AC于N如图所示:则四边形AMBN是矩形∴AN=BM BN=MA∵斜坡AB=105米坡度i=1:2=BMAM∴设BM=x米则AM=2x米∴AB=√BM2+AM2=√x2+(2x)2=√5x=105∴x=21√5∴AN=BM=21√5(米)BN=AM=42√5(米)在Rt△BCN中∠CBN=α=45°∴△BCN是等腰直角三角形∴CN=BN=42√5(米)∴AC=AN+CN=21√5+42√5=63√5≈141.1(米)答:观光电梯AC的高度约为141.1米.24.【答案】(1)证明:如图1中∵四边形ABCD是正方形∴DA=DC∠A=∠ADC=∠DCB=∠DCF=90°∵DE⊥DF∴∠EDF=∠ADC=90°∴∠ADE=∠CDF在△DAE和△DCF中{∠ADE=∠CDF DA=DC∠A=∠DCF∴△DAE≌△DCF(ASA)∴AE=CF.(2)解:结论:EA+EC=√2DE.理由:如图2中连接AC交DE于点O过点D作DK⊥EC于点K DJ⊥EA交EA的延长线于点J.∵四边形ABCD是正方形△DEF是等腰直角三角形∴∠DAO=∠OEC=45°∵∠AOD=∠EOC∴△AOD∽△EOC∴AOEO =ODOC∴AOOD =OEOC∵∠AOE=∠DOC∴△AOE∽△DOC∴∠AEO=∠DCO=45°∴∠DEJ=∠DEK∵∠J=∠DKE=90°ED=ED∴△EDJ≌△EDK(AAS)∴EJ=EK DJ=DK∵∠J=∠DKC=90°DJ=DK DA=DC∴Rt△DJA≌Rt△DKC(HL)∴AJ=CK∴EA+EC=EJ−AJ+EK+CK=2EJ∵DE=√2EJ∴EA+EC=√2DE.(3)解:如图3中连接AC取AC的中点O连接OE OD.∵四边形ABCD是正方形AE⊥EC∴∠AEC=∠ADC=90°∵OA=OC∴OD=OA=OC=OE∴A E C D四点共圆∴∠AED=∠ACD=45°∴∠AEC=∠DEC=45°由(2)可知AE+EC=√2DE∵AE⊥AF∴∠EAF=90°∴∠AEF=∠AFE=45°∴AE=AF=√2∴EF=√2AE=2∵DF=3∴DE=5∴√2+EC=5√2∴EC=4√2.25.【答案】解:(1)∵抛物线y=12x2+bx+c过A(0,−2)B(4,0)两点∴{c=−28+4b+c=0解得{b=−32 c=−2∴y=12x2−32x−2.(2)∵B(4,0)A(0,−2)∴OB=4OA=2∵GF⊥x轴OA⊥x轴在Rt△BOA和Rt△BGF中tan∠ABO=OAOB =GFGB即24=12GB∴GB=1∴OG=OB−GB=4−1=3当x=3时y D=12×9−32×3−2=−2∴D(3,−2)即GD=2∴FD=GD−GF=2−12=32∴S△BDF=12⋅DF⋅BG=12×32×1=34.(3)①如图1中过点H作HM⊥EF于M ∵四边形BEHF是矩形∴EH//BF EH=BF∴∠HEF=∠BFE∵∠EMH=∠FGB=90°∴△EMH≌△FGB(AAS)∴MH=GB EM=FG∵HM=OGOB=2∴OG=GB=12∵A(0,−2)B(4,0)x−2∴直线AB的解析式为y=12a−2)设E(a,−2a+8)F(a,12由MH=BG得到a−0=4−a∴a=2∴E(2,4)F(2,−1)∴FG=1∵EM=FG∴4−y H=1∴y H=3∴H(0,3).②如图2中BH=√OH2+OB2=√32+42=5∵PH=PC+2∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7要使得△PHB的周长最小只要PC+PB的值最小∵PC+PB≥BC∴当点P在BC上时PC+PB=BC的值最小∵BC=√OC2+OB2=√82+42=4√5∴△PHB的周长的最小值为4√5+7.第21页共21页。

2024年广东省中考数学模拟卷及答案

2024年广东省中考数学模拟卷及答案

2024年广东省初中数学中考模拟卷(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.单项式-35ab³d²的系数是()A.-3 B.-5C.- 35D.352.已知点A(2,b)与点B(a,4)关于原点对称,则a﹣b=( )A.﹣2 B.2 C.-4 D.63.下列运算正确的是()A.2﹣=√3B.(a2)3=a5C.2a2•a=a3D.(a+1)2=a2+a+1 4.若点A(-1,a),B(1,b),C(2,c)在反比例函数y=-2xx的图象上,则a,b,c的大小关系是( ) A. a<b<c B. b<a<c C. b<c<a D. a<c<b5.若关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9 B.94C.D.-946.如图所示,水平放置的几何体的俯视图是()A. B. C. D.7.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是()A.60 B.60πC.120 D.120π8.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是()A.29B.C.79D.599.如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=3,则S△ABC=.A.12 B.6 C.9 D.1010.如图,在菱形ABCD中,AB =4,BD=7.若M、N分别是边ADBC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为()A .3B .√10C .9√15D .√152二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2xy 2﹣2x = .12.如图,OA ,OB 是⊙O 的两条半径,点C 在⊙O 上,若∠C =30°,则的∠AOB 度数为 .13.2023年第四季度,某中小企业实现营业收入1.48百万元,将“1.48百万”用科学计数法表示为 .14.如图,直线//,130,240a b °°∠=∠=,且AD AC =,则3∠的度数是 .15.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB ∥x 轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2024次旋转结束时,点A 的坐标为 .三、解答题(本大题共9小题,满分75分.)16.(4分)计算:-|√3-5|+2sin60°-(π-6)0-417.(5分)解不等式组�2(3xx −1)≤−2xx +7 ①3xx+52≥53+2xx ②18. (8分)先化简,再求值:(1+)÷,其中a=+1.19.(8分)2021年3月29日,卫建委发布了《新冠疫苗接种指南》,某中学为了解九年级学生对新冠疫苗知识的了解情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解:B类--比较了解;C类--一般了解;D类--不了解,现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;补全条形统计图;(2)D类所对应扇形的圆心角的大小为 ;若该校九年级学生共有1000名,根据以上抽样结果估计该校九年级学生对新冠疫苗知识非常了解的约有名.(3)已知调查的该班第一组学生中有2名男生1名女生,老师随机从该组中选取2名学生进一步了解其家庭成员接种情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率。

2024年湖北省荆楚初中联盟中考模拟数学试题(五)(含答案)

2024年湖北省荆楚初中联盟中考模拟数学试题(五)(含答案)

荆楚初中联盟2024年中考数学模拟卷(五)(本试卷共6页,满分120分,考试时间120分钟)★祝考试顺利★注意事项:1.考生答题全部在试题卷上.2.请学生将自己的姓名、班级用0.5毫米的黑色墨水签字笔填写在试卷的密封区.一、选择题(共10题,每题3分,共30分.在每题给出的四个选项中,只有一项符合题目要求)1.下面四种化学仪器的示意图是轴对称图形的是( )A .B .C .D .2.Chat GPT 是一种基于深度学习的自然语言处理模型,它的参数量巨大.截止2024年1月Chat GPT 的参数量已经超过200亿.用科学计数法表示这个数字为( )A .B .C .D .3.下列运算正确的是()A . B . C . D .4.为了解学生的身体素质状况,国家每年都会进行中小学生身体素质抽测.在今年的抽测中,某校九年级二班随机抽取了10名男生进行引体向上测试,他们的成绩(单位:个)如下:7,11,10,11,6,14,11,10,11,9.根据这组数据判断下列结论中错误的是()A .这组数据的众数是11B .这组数据的中位数是10C .这组数据的平均数是10D .这组数据的方差是4.65.不等式组的解集在同一条数轴上表示正确的是( )A . B .C .D .6.“抖空竹”是我国非物质文化遗产,某中学将此运动引人特色大课间,某同学“抖空竹”的一个瞬间如图所示,将图1抽象成图2的数学问题:在平面内,.若,则的度数为()820010⨯9210⨯920010⨯10210⨯2=22(1)1a a +=+()325a a =2322a a a ⋅=32123m m -<⎧⎨-<⎩AB CD ∥50,85BAE DCE ∠=︒∠=︒AEC ∠图1图2A . B . C . D .7.一次函数的值随x 的增大而增大,则点所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限8.如图,AB 为的直径,直线CD 与相切于点C ,连接AC ,若,则的度数为( )A . B . C . D .9.如图1,点P 从的顶点B 出发,沿匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中曲线部分为轴对称图形,M 为最低点,则的周长是( )图1图2A .12 B .16 C .18D .2410.已知二次函数有以下结论:①对任意实数m ,都有与对应的函数值相等;②无论a 取何值,此函数的图象必过两个定点;③若此函数图象与x 轴有两不同交点A ,B ,且,则;④若,对应的y 的整数值有3个,则或.其中正确的个数是( )A .4B .3C .2D .1二、填空题(共5题,每题3分,共15分)11.因式分解:____________.12.如图,在中,AC 的垂直平分线交BC 于点D ,交AC 于点E ,.若,则DC 的长是____________.115︒125︒135︒145︒(21)2y m x =-+(,)P m m -O e O e 50ACD ∠=︒BAC ∠30︒40︒50︒60︒ABC △B C A →→ABC △224(0)y ax ax a =+-≠11x m =-21x m =--AB >08a <<21x -≤≤-32a -<≤-23a ≤<24x x -=ABC △B ADB ∠=∠4AB =13.学校安排一项综合实践活动,要求测量两栋楼之间的距离.已知对面的楼高为,小明从点A 观测对面楼顶部的仰角为,观测楼底部的俯角为,则这两栋楼之间的距离为____________.(参考数据:)14.如图,电路图上有三个开关A 、B 、C 和一个小灯泡,同时闭合开关A 、B 或A 、C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是____________.15.如图,在平行四边形ABCD 中,,点E 是AD 上一动点,将沿B E 折叠得到,当点恰好落在EC 上时,DE 的长为____________.三、解答题(共9题,共75分。

山东省菏泽市2024届九年级下学期中考模拟数学试卷(含解析)

山东省菏泽市2024届九年级下学期中考模拟数学试卷(含解析)

菏泽市二0二四年初中学业水平考试(模拟)数学试题本试卷共4页,共24个题。

满分120分,时间120分钟。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、考生号和座号填写在答题卡和试卷规定的位置上。

考试结束后,将试卷和答题卡一并交回。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第I 卷选择题部分(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.1.下面四个数中,最小的是()A .(1)--B .2(0.2)-C .|3|--D .13-2.2020年12月3日.中共中央政治局常务委员会召开会议,听取脱贫攻坚总结评估汇报.中共中央总书记习近平主持会议并发表重要讲话.指出经过8年持续奋斗,我们如期完成了新时代脱贫攻坚目标任务,现行标准下农村贫困人口全部脱贫,贫困县全部摘帽,消除了绝对贫困和区域性整体贫困,近1亿贫困人口实现脱贫,取得了令全世界刮目相看的重大胜利.将100000000用科学记数法表示为()A .80.110⨯B .7110⨯C .8110⨯D .81010⨯3.如图几何体中,主视图是三角形的是()A .B .C .D .4.如图,将矩形纸片ABCD 沿AC 折叠,使点B 落到点B '处,2∠等于()第4题图A .1∠B .21∠C .901︒-∠D .9021︒-∠5.如图是护士统计一位病人的体温变化图,这位病人在16时的体温约是()第5题图A .37.8C ︒B .38C ︒C .38.7C ︒D .39.4C︒6.如图,AB 是半圆O 的直径,,2,30,AC AD OC CAB E ==∠=︒为线段CD 上一个动点,连接OE ,则OE 的最小值为()第6题图A B .1C D .27.二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+和反比例函数c y x=在同一平面直角坐标系中的图象可能是()第7题图A .B .C .D .8.正ABC △的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A B C →→的方向运动,到达点C 时停止,设运动时间为x (秒),2y PC =,则y 关于x 的函数的图像大致为()第8题图A .B .C .D .第II 卷非选择题部分(共96分)二、填空题:本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.9.已知3m n +=,则226m n n -+=______.10.若代数式12x-有意义,则实数x 的取值范围是______.11.如图,是一张撕掉一个角的四边形纸片,根据图中所标示的数据,可得被撕掉的A ∠大小为______.第11题图12.如图,两半圆的圆心点1O 、2O 分别在直角ABC △的两直角边AB 、AC 上,直径分别为AB 、CD ,如果两半圆相外切,且10AB AC ==,那么图中阴影部分的面积为______.第12题图13.设实数,,a b c 满足:2223,4a b c a b c ++=++=,则222222222a b b c c a c a b +++++=---______.14.直角坐标系中,函数y =和3y x =-的图象分别为直线12,l l ,过2l 上的点131,3A ⎛⎫- ⎪ ⎪⎝⎭作x 轴的垂线交1l 于点2A ,过点2A 作y 轴的垂线交2l 于点3A ,过点3A 作x 轴的垂线交1l 于点4,A ⋯依次进行下去,则点2020A 的横坐标为______.第14题图三、解答题:本题共78分,把解答和证明过程写在答题卡的相应区域内.15.(6分)(1)解分式方程:214124x x -=--;(2)计算:10181tan 603-⎛⎫-++-︒ ⎪⎝⎭16.(5分)解不等式组53(1)92151132x x x x --<⎧⎪-+⎨-≤⎪⎩,并在数轴上表示出其解集.。

中考数学模拟试卷(含有答案)

中考数学模拟试卷(含有答案)

中考数学模拟试卷(含有答案)一.单选题。

(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×107 4.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx -1的图象向上平移2个单位长度后经过点(2,3),则k 的值是( )A.1B.﹣1C.﹣2D.29.如图,在△ABC 中,AB=AC=2BC=4,以点B 为圆心,BC 长为半径画弧,与AC 交于点D ,则线段CD 的长为( )A.12B.1C.43 D.210.二次函数y=﹣x 2+2x+8的图像与x 轴交于B ,C 两点,点D 平分BC ,若在x 轴上侧的A 点为抛物线的动点,且∠BAC 为锐角,则AD 的取值范围是( )A.3<AD ≤9B.3≤AD ≤9C.4<AD ≤10D.3≤AD ≤8 二.填空题。

(共24分)11.因式分解:m 2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是 .(第12题图) (第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为 .14.已知m 是关于x 的方程x 2-2x -3=0的一个根,则m 2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x 表示餐桌的张数,y 表示椅子的把数,请你写出椅子数y (把)与餐桌数x (张)之间的函数关系式 .(第15题图) (第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分)1.(4分)给出四个实数.2.0.﹣1.其中负数是()A.B.2 C.0 D.﹣1 2.(4分)移动台阶如图所示.它的主视图是()A.B.C.D.3.(4分)计算a6•a2的结果是()A.a3B.a4C.a8D.a124.(4分)某校九年级“诗歌大会”比赛中.各班代表队得分如下(单位:分):9.7.8.7.9.7.6.则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.(4分)在一个不透明的袋中装有10个只有颜色不同的球.其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球.是白球的概率为()A.B.C.D.6.(4分)若分式的值为0.则x的值是()A.2 B.0 C.﹣2 D.﹣5 7.(4分)如图.已知一个直角三角板的直角顶点与原点重合.另两个顶点A.B的坐标分别为(﹣1.0).(0.).现将该三角板向右平移使点A与点O重合.得到△OCB′.则点B的对应点B′的坐标是()A.(1.0)B.(.)C.(1.)D.(﹣1.)8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆.刚好坐满.设49座客车x 辆.37座客车y辆.根据题意可列出方程组()A.B.C.D.9.(4分)如图.点A.B在反比例函数y=(x>0)的图象上.点C.D 在反比例函数y=(k>0)的图象上.AC∥BD∥y轴.已知点A.B 的横坐标分别为1.2.△OAC与△ABD的面积之和为.则k的值为()A.4 B.3 C.2 D.10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理.如图所示的矩形由两个这样的图形拼成.若a=3.b=4.则该矩形的面积为()A.20 B.24 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣5a=.12.(5分)已知扇形的弧长为2π.圆心角为60°.则它的半径为.13.(5分)一组数据1.3.2.7.x.2.3的平均数是3.则该组数据的众数为.14.(5分)不等式组的解是.15.(5分)如图.直线y=﹣x+4与x轴、y轴分别交于A.B两点.C 是OB的中点.D是AB上一点.四边形OEDC是菱形.则△OAE的面积为.16.(5分)小明发现相机快门打开过程中.光圈大小变化如图1所示.于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形.若PQ所在的直线经过点M.PB=5cm.小正六边形的面积为cm2.则该圆的半径为cm.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:(﹣2)2﹣+(﹣1)0.(2)化简:(m+2)2+4(2﹣m).18.(8分)如图.在四边形ABCD中.E是AB的中点.AD∥EC.∠AED =∠B.(1)求证:△AED≌△EBC.(2)当AB=6时.求CD的长.19.(8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店.该市蛋糕店数量的扇形统计图如图所示.其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店.请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率.决定在该市增设蛋糕店.在其余蛋糕店数量不变的情况下.若要使甲公司经营的蛋糕店数量达到全市的20%.求甲公司需要增设的蛋糕店数量.20.(8分)如图.P.Q是方格纸中的两格点.请按要求画出以PQ为对角线的格点四边形.(1)画出一个面积最小的▱P AQB.(2)画出一个四边形PCQD.使其是轴对称图形而不是中心对称图形.且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.21.(10分)如图.抛物线y=ax2+bx(a≠0)交x轴正半轴于点A.直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x =2.交x轴于点B.(1)求a.b的值.(2)P是第一象限内抛物线上的一点.且在对称轴的右侧.连接OP.BP.设点P的横坐标为m.△OBP的面积为S.记K=.求K关于m的函数表达式及K的范围.22.(10分)如图.D是△ABC的BC边上一点.连接AD.作△ABD的外接圆.将△ADC沿直线AD折叠.点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°.cos∠ADB =.BE=2.求BC的长.23.(12分)温州某企业安排65名工人生产甲、乙两种产品.每人每天生产2件甲或1件乙.甲产品每件可获利15元.根据市场需求和生产经验.乙产品每天产量不少于5件.当每天生产5件时.每件可获利120元.每增加1件.当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元.求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下.增加生产丙产品.要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品).丙产品每件可获利30元.求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(14分)如图.已知P为锐角∠MAN内部一点.过点P作PB⊥AM 于点B.PC⊥AN于点C.以PB为直径作⊙O.交直线CP于点D.连接AP.BD.AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB.ED.当tan∠MAN=2.AB=2时.在点P的整个运动过程中.①若∠BDE=45°.求PD的长.②若△BED为等腰三角形.求所有满足条件的BD的长.(3)连接OC.EC.OC交AP于点F.当tan∠MAN=1.OC∥BE时.记△OFP的面积为S1.△CFE的面积为S2.请写出的值.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数.2.0.﹣1.其中负数是:﹣1.故选:D.【点评】此题主要考查了实数.正确把握负数的定义是解题关键.2.【分析】根据从正面看得到的图形是主视图.可得答案.【解答】解:从正面看是三个台阶.故选:B.【点评】本题考查了简单组合体的三视图.从正面看得到的图形是主视图.3.【分析】根据同底数幂相乘.底数不变.指数相加进行计算.【解答】解:a6•a2=a8.故选:C.【点评】此题主要考查了同底数幂的乘法.关键是掌握同底数幂的乘法的计算法则.4.【分析】将数据重新排列后.根据中位数的定义求解可得.【解答】解:将数据重新排列为6、7、7、7、8、9、9.所以各代表队得分的中位数是7分.故选:C.【点评】本题主要考查中位数.解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列.如果数据的个数是奇数.则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数.则中间两个数据的平均数就是这组数据的中位数.5.【分析】根据概率的求法.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有10个小球.其中白球有2个.∴摸出一个球是白球的概率是=.故选:D.【点评】此题主要考查了概率的求法.如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.6.【分析】分式的值等于零时.分子等于零.【解答】解:由题意.得x﹣2=0.解得.x=2.经检验.当x=2时.=0.故选:A.【点评】本题考查了分式的值为零的条件.注意.分式方程需要验根.7.【分析】根据平移的性质得出平移后坐标的特点.进而解答即可.【解答】解:因为点A与点O对应.点A(﹣1.0).点O(0.0). 所以图形向右平移1个单位长度.所以点B的对应点B'的坐标为(0+1.).即(1.).故选:C.【点评】此题考查坐标与图形变化.关键是根据平移的性质得出平移后坐标的特点.8.【分析】本题中的两个等量关系:49座客车数量+37座客车数量=10.两种客车载客量之和=466.【解答】解:设49座客车x辆.37座客车y辆.根据题意可列出方程组.故选:A.【点评】考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时.要注意抓住题目中的一些关键性词语.找出等量关系.列出方程组.9.【分析】先求出点A.B的坐标.再根据AC∥BD∥y轴.确定点C.点D的坐标.求出AC.BD.最后根据.△OAC与△ABD的面积之和为.即可解答.【解答】解:∵点A.B在反比例函数y=(x>0)的图象上.点A.B 的横坐标分别为1.2.∴点A的坐标为(1.1).点B的坐标为(2.).∵AC∥BD∥y轴.∴点C.D的横坐标分别为1.2.∵点C.D在反比例函数y=(k>0)的图象上.∴点C的坐标为(1.k).点D的坐标为(2.).∴AC=k﹣1.BD=.∴S△OAC=(k﹣1)×1=.S△ABD=•×(2﹣1)=.∵△OAC与△ABD的面积之和为.∴.解得:k=3.故选:B.【点评】本题考查了反比例函数系数k的几何意义.解决本题的关键是求出AC.BD的长.10.【分析】欲求矩形的面积.则求出小正方形的边长即可.由此可设小正方形的边长为x.在直角三角形ACB中.利用勾股定理可建立关于x的方程.利用整体代入的思想解决问题.进而可求出该矩形的面积.【解答】解:设小正方形的边长为x.∵a=3.b=4.∴AB=3+4=7.在Rt△ABC中.AC2+BC2=AB2.即(3+x)2+(x+4)2=72.整理得.x2+7x﹣12=0.而长方形面积为x2+7x+12=12+12=24∴该矩形的面积为24.故选:B.【点评】本题考查了勾股定理的证明以及运用和一元二次方程的运用.求出小正方形的边长是解题的关键.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】提取公因式a进行分解即可.【解答】解:a2﹣5a=a(a﹣5).故答案是:a(a﹣5).【点评】考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式.可以把这个公因式提出来.从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.12.【分析】根据弧长公式直接解答即可.【解答】解:设半径为r.2.解得:r=6.故答案为:6【点评】此题考查弧长公式.关键是根据弧长公式解答.13.【分析】根据平均数的定义可以先求出x的值.再根据众数的定义求出这组数的众数即可.【解答】解:根据题意知=3.解得:x=3.则数据为1、2、2、3、3、3、7.所以众数为3.故答案为:3.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.14.【分析】先求出不等式组中每一个不等式的解集.再求出它们的公共部分即可.【解答】解:.解①得x>2.解②得x>4.故不等式组的解集是x>4.故答案为:x>4.【点评】考查了解一元一次不等式组.一元一次不等式组的解法:解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【分析】延长DE交OA于F.如图.先利用一次函数解析式确定B (0.4).A(4.0).利用三角函数得到∠OBA=60°.接着根据菱形的性质判定△BCD为等边三角形.则∠BCD=∠COE=60°.所以∠EOF=30°.则EF=OE=1.然后根据三角形面积公式计算.【解答】解:延长DE交OA于F.如图.当x=0时.y=﹣x+4=4.则B(0.4).当y=0时.﹣x+4=0.解得x=4.则A(4.0).在Rt△AOB中.tan∠OBA==.∴∠OBA=60°.∵C是OB的中点.∴OC=CB=2.∵四边形OEDC是菱形.∴CD=BC=DE=CE=2.CD∥OE.∴△BCD为等边三角形.∴∠BCD=60°.∴∠COE=60°.∴∠EOF=30°.∴EF=OE=1.△OAE的面积=×4×1=2.故答案为2.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b.(k≠0.且k.b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣.0);与y轴的交点坐标是(0.b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.16.【分析】设两个正六边形的中心为O.连接OP.OB.过O作OG⊥PM.OH⊥AB.由正六边形的性质及邻补角性质得到三角形PMN为等边三角形.由小正六边形的面积求出边长.确定出PM的长.进而求出三角形PMN的面积.利用垂径定理求出PG的长.在直角三角形OPG中.利用勾股定理求出OP的长.设OB=xcm.根据勾股定理列出关于x的方程.求出方程的解即可得到结果.【解答】解:设两个正六边形的中心为O.连接OP.OB.过O作OG ⊥PM.OH⊥AB.由题意得:∠MNP=∠NMP=∠MPN=60°.∵小正六边形的面积为cm2.∴小正六边形的边长为cm.即PM=7cm.∴S△MPN=cm2.∵OG⊥PM.且O为正六边形的中心.∴PG=PM=cm.OG=PM=.在Rt△OPG中.根据勾股定理得:OP==7cm.设OB=xcm.∵OH⊥AB.且O为正六边形的中心.∴BH=x.OH=x.∴PH=(5﹣x)cm.在Rt△PHO中.根据勾股定理得:OP2=(x)2+(5﹣x)2=49. 解得:x=8(负值舍去).则该圆的半径为8cm.故答案为:8【点评】此题考查了正多边形与圆.熟练掌握正多边形的性质是解本题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简3个考点.在计算时.需要针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据完全平方公式和去括号法则计算.再合并同类项即可求解.【解答】解:(1)(﹣2)2﹣+(﹣1)0=4﹣3+1=5﹣3;(2)(m+2)2+4(2﹣m)=m2+4m+4+8﹣4m=m2+12.【点评】本题主要考查了实数的综合运算能力.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.18.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形.推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC.∴∠A=∠BEC.∵E是AB中点.∴AE=EB.∵∠AED=∠B.∴△AED≌△EBC.(2)解:∵△AED≌△EBC.∴AD=EC.∵AD∥EC.∴四边形AECD是平行四边形.∴CD=AE.∵AB=6.∴CD=AB=3.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识.解题的关键是正确寻找全等三角形解决问题.属于中考常考题型.19.【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量.再用总数量乘以甲公司数量占总数量的比例可得;(2)设甲公司增设x家蛋糕店.根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.【解答】解:(1)该市蛋糕店的总数为150÷=600家.甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店.由题意得:20%×(600+x)=100+x.解得:x=25.答:甲公司需要增设25家蛋糕店.【点评】本题主要考查扇形统计图与一元一次方程的应用.解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系.并据此列出方程.20.【分析】(1)画出面积是4的格点平行四边形即为所求;(2)画出以PQ为对角线的等腰梯形即为所求.【解答】解:(1)如图①所示:(2)如图②所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知.对应角都相等都等于旋转角.对应线段也相等.由此可以通过作相等的角.在角的边上截取相等的线段的方法.找到对应点.顺次连接得出旋转后的图形.也考查了轴对称变换.21.【分析】(1)根据直线y=2x求得点M(2.4).由抛物线的对称轴及抛物线上的点M的坐标列出关于a、b的方程组.解之可得;(2)作PH⊥x轴.根据三角形的面积公式求得S=﹣m2+4m.根据公式可得K的解析式.再结合点P的位置得出m的范围.利用一次函数的性质可得答案.【解答】解:(1)将x=2代入y=2x.得:y=4.∴点M(2.4).由题意.得:.∴;(2)如图.过点P作PH⊥x轴于点H.∵点P的横坐标为m.抛物线的解析式为y=﹣x2+4x.∴PH=﹣m2+4m.∵B(2.0).∴OB=2.∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m.∴K==﹣m+4.由题意得A(4.0).∵M(2.4).∴2<m<4.∵K随着m的增大而减小.∴0<K<2.【点评】本题主要考查抛物线与x轴的交点.解题的关键是掌握待定系数法求函数解析式及一次函数的性质等知识点.22.【分析】(1)由折叠得出∠AED=∠ACD、AE=AC.结合∠ABD =∠AED知∠ABD=∠ACD.从而得出AB=AC.据此得证;(2)作AH⊥BE.由AB=AE且BE=2知BH=EH=1.根据∠ABE =∠AEB=∠ADB知cos∠ABE=cos∠ADB==.据此得AC=AB=3.利用勾股定理可得答案.【解答】解:(1)由折叠的性质可知.△ADE≌△ADC.∴∠AED=∠ACD.AE=AC.∵∠ABD=∠AED.∴∠ABD=∠ACD.∴AB=AC.∴AE=AB;(2)如图.过A作AH⊥BE于点H.∵AB=AE.BE=2.∴BH=EH=1.∵∠ABE=∠AEB=∠ADB.cos∠ADB=.∴cos∠ABE=cos∠ADB=.∴=.∴AC=AB=3.∵∠BAC=90°.AC=AB.∴BC=3.【点评】本题主要考查三角形的外接圆.解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.23.【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式.用x表示总利润利用二次函数性质讨论最值.【解答】解:(1)由已知.每天安排x人生产乙产品时.生产甲产品的有(65﹣x)人.共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上.增加x人.利润减少2x元每件.则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x;(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10.x2=70(不合题意.舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负整数∴取x=26时.m=13.65﹣x﹣m=26即当x=26时.W最大值=3198答:安排26人生产乙产品时.可获得的最大利润为3198元.【点评】本题以盈利问题为背景.考查一元二次方程和二次函数的实际应用.解答时注意利用未知量表示相关未知量.24.【分析】(1)由PB⊥AM、PC⊥AN知∠ABP=∠ACP=90°.据此得∠BAC+∠BPC=180°.根据∠BPD+∠BPC=180°即可得证;(2)①由∠APB=∠BDE=45°、∠ABP=90°知BP=AB=2.根据tan∠BAC=tan∠BPD==2知BP=PD.据此可得答案;②根据等腰三角形的定义分BD=BE、BE=DE及BD=DE三种情况分类讨论求解可得;(3)作OH⊥DC.由tan∠BPD=tan∠MAN=1知BD=PD.据此设BD=PD=2a、PC=2b.从而得出OH=a、CH=a+2b、AC=4a+2b.证△ACP∽△CHO得=.据此得出a=b及CP=2a、CH=3a、OC=a.再证△CPF∽△COH.得=.据此求得CF=a、OF=a.证OF为△PBE的中位线知EF=PF.从而依据=可得答案.【解答】解:(1)∵PB⊥AM、PC⊥AN.∴∠ABP=∠ACP=90°.∴∠BAC+∠BPC=180°.又∠BPD+∠BPC=180°.∴∠BPD=∠BAC;(2)①如图1.∵∠APB=∠BDE=45°.∠ABP=90°.∴BP=AB=2.∵∠BPD=∠BAC.∴tan∠BPD=tan∠BAC.∴=2.∴BP=PD.∴PD=2;②当BD=BE时.∠BED=∠BDE.∴∠BPD=∠BPE=∠BAC.∴tan∠BPE=2.∵AB=2.∴BP=.∴BD=2;当BE=DE时.∠EBD=∠EDB.∵∠APB=∠BDE、∠DBE=∠APC.∴∠APB=∠APC.∴AC=AB=2.过点B作BG⊥AC于点G.得四边形BGCD是矩形.∵AB=2、tan∠BAC=2.∴AG=2.∴BD=CG=2﹣2;当BD=DE时.∠DEB=∠DBE=∠APC.∵∠DEB=∠DPB=∠BAC.∴∠APC=∠BAC.设PD=x.则BD=2x.∴=2.∴.∴x=.∴BD=2x=3.综上所述.当BD=2、3或2﹣2时.△BDE为等腰三角形;(3)如图3.过点O作OH⊥DC于点H.∵tan∠BPD=tan∠MAN=1.∴BD=PD.设BD=PD=2a、PC=2b.则OH=a、CH=a+2b、AC=4a+2b.∵OC∥BE且∠BEP=90°.∴∠PFC=90°.∴∠P AC+∠APC=∠OCH+∠APC=90°.∴∠OCH=∠P AC.∴△ACP∽△CHO.∴=.即OH•AC=CH•PC.∴a(4a+2b)=2b(a+2b).∴a=b.即CP=2a、CH=3a.则OC=a.∵△CPF∽△COH.∴=.即=.则CF=a.OF=OC﹣CF=a.∵BE∥OC且BO=PO.∴OF为△PBE的中位线.∴EF=PF.∴==.【点评】本题主要考查圆的综合问题.解题的关键是掌握圆周角定理、相似三角形的判定与性质、中位线定理、勾股定理及三角函数的应用等知识点.。

中考数学模拟考试卷(附有答案)

中考数学模拟考试卷(附有答案)

中考数学模拟考试卷(附有答案)(满分:120分 ;考试时间:120分钟)第I 卷(选择题)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.﹣15的绝对值是( ) A .5 B .﹣5 C .﹣15 D .152.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 33.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为( )A .55°B .50°C .45°D .40°第3题 第6题 第7题4.若在“正三角形、平行四边形、圆、正六边形”这四种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( )A .14B .12C .34D .15.若点()2,1A a b -+在第二象限,则点()3,2B a b -+在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-5,2).若反比例函数y =k x(x >0)的图象经过点A ,则k 的值为( )A .-5B .-10C .5D .10 7.如图,∠O 的弦AB =8,M 是弦AB 上的动点,若OM 的最小值是3,则∠O 的半径是( ) A .4 B .5 C .6 D .78.如图,在矩形ABCD 中4AB BC ==,E 为BC 的中点,连接,,,AE DE P Q 分别是,AE DE 上的点,且PE DQ =.设EPQ ∆的面积为y ,PE 的长为x ,则y 关于x 的函数关系式的图象大致是 ( )A .B .C .D .9.如图,在△ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当的长为半径作弧,两弧分别交于E ,F ,作直线EF ,D 为BC 的中点,M 为直线EF 上任意一点.若BC =4,△ABC 面积为10,则BM +MD 长度的最小值为( )A .52B .3C .4D .510.如图,在正方形ABCD 中,对角线,AC BD 相交于点O ,点E 在BC 边上,且CE=2BE ,连接AE 交BD 于点G ,过点B 作BF AE ⊥于点F ,连接OF 并延长,交BC 于点M ,过点O 作OP OF ⊥交DC 于占N ,94MONC S =四边形现给出下列结论:∠13GE AG = ∠sin 10BOF ∠= ∠5OF = ∠OG BG = 其中正确的结论有( )A .①②③B .②③④C .①②④D .①③④第II 卷(非选择题)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为___.12.因式分解:244ax ax a -+=______.13.临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是2.58m ,方差分别是:22 0.075,0.04s s ==甲乙,这两名同学成绩比较稳定的是_______________(填“甲”或“乙”).14.如果关于x 的一元二次方程230x x k -+=有两个相等的实数根,那么实数k 的值是________. 15.如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为___.第15题 第16题 第17题16.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D 处,无人机测得操控者A 的俯角为37°,测得点C 处的俯角为45°.又经过人工测得操控者A 和教学楼BC 距离为57米,则教学楼BC 的高度为______米.(注:点A ,B ,C ,D 都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) 17.如图,在平面直角坐标系xOy 中,A (8,0),∠O 半径为3,B 为∠O 上任意一点,P 是AB 的中点,则OP 的最小值是____.18.如图,在平面直角坐标系中,12OA = 130AOx ∠=︒ 以1OA 为直角边作12Rt OA A △,并使1260AOA ∠=︒,再以12A A 为直角边作123Rt A A A △,并使21360A A A ∠=︒,再以23A A 为直角边作234Rt A A A △,并使32460A A A ∠=︒…按此规律进行下去,则2020A 的坐标是_______.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:.2012cos301(2019)2π-⎛⎫-+︒-+- ⎪⎝⎭ (2)解不等式组:.20.(8分)某校对九年级学生进行“综合素质”评价,评价的结果分为A (优秀)、B (良好)、C (合格)、D (不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)B (良好)等级人数所占百分比是______________________;(2)在扇形统计图中,C (合格)等级所在扇形的圆心角度数是___________________;(3)请补充完整条形统计图;(4)若该校九年级学生共1000名,请根据以上调查结果估算:评价结果为A (优秀)等级或B (良好)等级的学生共有多少名?21.(8分)如图,在直角坐标系中,直线y 1=ax+b 与双曲线y 2=k x(k≠0)分别相交于第二、四象限内的A (m ,4),B (6,n )两点,与x 轴相交于C 点.已知OC =3,tan∠ACO =23. (1)求y 1,y 2对应的函数表达式;(2)求∠AOB 的面积;(3)直接写出当x <0时,不等式ax+b >k x的解集.22.(8分)某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同. (1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?23.(8分)如图,AB 为∠O 的直径,在AB 的延长线上,C 为∠O 上点,AD ⊥CE 交EC 的延长线于点D ,若AC 平分∠DAB .(1)求证:DE 为∠O 的切线;(2)当BE =2,CE =4时,求AC 的长.24.(10分)如图,已知二次函数2y x bx c =-++的图象经过点()1,0A - ()3,0B 与y 轴交于点C .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使PAB ABC ∠=∠,若存在请写出点P 的坐标,并说明理由.若不存在,请说明理由.25.(12)分如图,在矩形ABCD 中,6AB cm = 8BC cm = 如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为2/cm s 和1/cm s ,FQ BC ⊥,分别交AC , BC 于点P 和Q ,设运动时间为()04ts t <<.(1)连接EF ,若运动时间t=_______s 时,EF =(2)连接EP ,当EPC 的面积为23cm 时,求t 的值(3)若EQP ADC ∽△△,求t 的值参考答案1.【答案】D 2.【答案】B 3.【答案】D 4.【答案】C 5.【答案】A6.【答案】D 7.【答案】B 8.【答案】C 9.【答案】D 10.【答案】D11.8210-⨯ 12.()221a x - 13.乙 14.94 15.8π 16.13 17.5218.(0,101013-)19.【答案】(1)原式=+1+1=6. (2)∠可化简为:,,∠;∠可化简为:,∠ ∠ 不等式的解集为. 21.【答案】解:(1)4=4010%, 40-18-8-4=10,; 10100%=25%40⨯ 故答案为:25%;(2)8360=7240⨯︒︒,故答案为:72°;(3)如图所示:(4)由题意得:1810100070040+⨯=(名);答:评价结果为A等级或B等级的学生共有700名.22.【答案】解:(1)设直线y1=ax+b与y轴交于点D;在Rt∠OCD中,OC=3,tan∠ACO=.∠OD=2,即点D(0,2);把点D(0,2),C(0,3)代入直线y1=ax+b得;b=2,3a+b=0,解得,a=﹣;∠直线的关系式为y1=﹣x+2;把A(m,4),B(6,n)代入y1=﹣x+2得,m=﹣3,n=﹣2;∠A(﹣3,4),B(6,﹣2);∠k=﹣3×4=﹣12;∠反比例函数的关系式为y2=﹣,因此y1=﹣23x+2,y2=﹣12x;(2)由S∠AOB=S∠AOC+S∠BOC=×3×4+×3×2=9.(3)由图象可知,当x<0时,不等式ax+b>的解集为x<﹣3.(1)根据OC=3,tan∠ACO=,可求直线与y轴的交点坐标,进而求出点A、B的坐标,确定两个函数的关系式;(2)由S∠AOB=S∠AOC+S∠BOC,进行计算即可;(3)由函数的图象直接可以得出,当x<0时,不等式ax+b>的解集.23.【答案】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料;根据题意,得100080030x x=+;解得x=120;经检验,x=120是所列方程的解;当x=120时,x+30=150;答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台;根据题意,得150a+120(20﹣a)≥2800;解得a≥40 3;∠a是整数;∠a≥14;答:至少购进A型机器人14台.24.【答案】解:(1)连接OC;∠AC平分∠OAD;∠∠DAC=∠OAC;∠OC=OA;∠∠OAC=∠OCA;∠∠OCA=∠DAC;∠OC∠AD;∠∠ADC=∠OCE;∠AD∠CE;∠∠ADC=90°;∠∠OCE =90°;∠OC∠ED;∠OC 是∠O 的半径;∠DE 是∠O 的切线. (2)设∠O 的半径为r; 在Rt∠OCE 中(r +2)2=r 2+42;∠r =3;∠OC∠AD;∠∠EOC∠∠EAD; ∠OC OE AD AE=; ∠358AD =; ∠AD =245; ∠由勾股定理可知:DE =325; ∠CD =DE ﹣CE =125; 在Rt∠ADC 中;由勾股定理可知:AC =525.【答案】(1)∠二次函数2y x bx c =-++的图象经过点A(-1,0),B(3,0);∠10930b c b c --+=⎧⎨-++=⎩; 解得:23b c =⎧⎨=⎩;∠抛物线的解析式为:2y x 2x 3=-++; (2)存在,理由如下: 当点P 在x 轴下方时;如图,设AP 与y 轴相交于E;令0x =,则3y =; ∠点C 的坐标为(0,3); ∠A(-1,0),B(3,0); ∠OB=OC=3,OA=1; ∠∠ABC=45︒;∠∠PAB=∠ABC=45︒; ∠∠OAE 是等腰直角三角形; ∠OA=OE=1;∠点E 的坐标为(0,-1); 设直线AE 的解析式为1y kx =-; 把A(-1,0)代入得:1k =-; ∠直线AE 的解析式为1y x =--; 解方程组2123y x y x x =--⎧⎨=-++⎩; 得:1110x y =-⎧⎨=⎩(舍去)或2245x y =⎧⎨=-⎩;∠点P 的坐标为(4,5-); 当点P 在x 轴上方时;如图,设AP 与y 轴相交于D;同理,求得点D 的坐标为(0,1);同理,求得直线AD 的解析式为1y x =+;解方程组2123y x y x x =+⎧⎨=-++⎩; 得:1110x y =-⎧⎨=⎩(舍去)或2223x y =⎧⎨=⎩; ∠点P 的坐标为(2,3);综上,点P 的坐标为(2,3)或(4,5-) 25.【答案】解:(1)由题意得:2,,BE t DF t ==矩形ABCD ,,FQ BC ⊥∴ 四边形FQCD 为矩形,83,6,QC DF t EQ t FQ CD ∴===-== 由勾股定理可得:()(222836,t -+=()28336,t ∴-=836t ∴-=或836,t -=- 23t ∴=或14,3t = 04t << 143t ∴=不合题意,舍去,取2.3t s =故答案为:23. (2)由题意知,2BE t = DF t = 82CE t =- CQ t = 在Rt ABC 中,3tan 4AB ACB BC ∠== 在Rt CPQ 中,3tan 4PQ PQ ACB CQ t ∠=== ∠34PQ t = ∠EPC 的面积为23cm ; ∠()113823224EPC S CE PQ t t =⋅=⨯-⨯=△ 2440,t t ∴-+=∠122t t ==,即t 的值为2 (3)∠四边形ABCD 是矩形 ∠//AD BC∠CAD ACB ∠=∠ ∠EQP ADC ∽△△ ∠CAD PEQ ∠=∠ ∠ACB PEQ ∠=∠ ∠EQ CQ =∠2CE CQ =由(2)知CQ t =,82CE t =- ∠822t t -=∠2t =,即t 的值为2。

2024年湖南省中考数学全真模拟试卷含参考答案

2024年湖南省中考数学全真模拟试卷含参考答案

湖南省2024年初中学业水平考试模拟试卷数学温馨提示:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;4.本学科试卷共26个小题,考试时量120分钟,满分120分.一、选择题(在下列各题的四个选项中,只有一项是符合题意的. 请在答题卡中填涂符合题意的选项. 本大题共10个小题,每小题3分,共30分)1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.《九章算术》中著有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若把气温为零上5°C记作+5℃,则−3℃表示气温为()A.零上5°C B.零下5°C C.零上3°C D.零下3°C2.下列计算正确的是()A.aa3+aa2=aa3B.aa3⋅aa2=aa6C.(aa2)3=aa5D.aa6÷aa2=aa43.某种芯片每个探针单元的面积为0.00000164cm2,0.00000164用科学记数法可表示为()A.1.64×10−6B.1.64×10−5C.16.4×10−7D.0.164×10−54.“科学用眼,保护视力”是青少年珍爱生命的具体表现.某校随机抽查了50名八年级学生的视力情况,得到的数据如下表:视力 4.7以下 4.7 4.8 4.9 4.9以上人数 5 7 10 16 12则本次调查中视力的众数和中位数分别是()A.4.9和4.8 B.4.9和4.9 C.4.8和4.8 D.4.8和4.95.已知直线aa∥bb,将一块含30°角的直角三角板(∠BBBBBB=30°,∠BBBBBB=90°)按如图所示的方式放置,并且顶点BB,BB分别落在直线aa,bb上,若∠1=20°,则∠2的度数是()A.20°B.30°C.40°D.50°6.五星红旗是中华人民共和国国旗,旗上的五颗五角星及其相互关系象征着中国共产党领导下的革命人民大团结.五角星是由五个每个顶角为36°的等腰三角形组成,既美观又蕴含着数学知识,如图将五角星绕其旋转中心按顺时针旋转一定角度,线段BBBB恰好与线段BBCC重合,则该旋转角的度数是()A.144°B.108°C.72°D.36°第5题图第6题图7.将正偶数按下表排成5列:第一列 第二列 第三列 第四列 第五列第一行 2 4 6 8 第二行 16 14 12 10 第三行 18 20 22 24 第四行 32 30 28 26 ……根据上面规律,2024应在( )A .125行,3列B .125行,2列C .253行,5列D .253行,3列8.函数yy =2xx 的图象与过原点的直线l 交于A 、B 两点,现过A 、B 分别作x 、y 轴的平行线,相交于C 点.则△BBBBBB 的面积为( ) A .2B .12C .4 D .149.动点PP 在等边ΔBBBBBB 的边BBBB 上,BBBB =4,连接PPBB ,BBCC ⊥PPBB 于CC ,以BBCC 为一边作等边△BBCCAA ,AACC 的延长线交BBBB 于FF ,当AAFF 取最大值时,PPBB 的长为( ) A .2B .74C .2√3D .√2+1210.若关于xx 的方程|xx 2−4xx +3|=xx +tt 恰有三个根,则tt 的值为( )A .−1B .−1或−34C .−1或−12D .−34或−12二、填空题(本大题共8小题,每小题3分,共24分) 11.若函数yy =√xx+5xx+2有意义,则自变量取值范围为 . 12.已知点MM 的坐标为(−3,−5),则关于原点对称的点的坐标为 .13.如图,有一个亭子地基是半径为8米的正六边形,则地基的面积为 平方米.第8题图 第9题图第13题图 第14题图 第15题图第17题图第18题图三、解答题(本大题共8小题,第19-20题每小题6分,第21-22题每小题8分,第23-24题每小题9分,第25-26题每小题10分,共66分)19.计算:2cos30°+(π−3.14)0−|1−√3|+�−13�−1.20.先化简,再求值:�2−4xx−1�⋅xx2−xx xx2−6xx+9,其中xx=4.21.为落实“双减”政策,优化作业管理.某中学在八年级随机抽取部分学生对作业完成时间进行调查,调查他们每天完成书面作业的时间t(单位:分钟)按照完成时间分成五组:A组“tt≤45”;B组“45<tt≤60”;C组“60<tt≤75”;D组“75<tt≤90”;E组“tt>90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)本这次调查的总人数为________人,请补全条形统计图;(2)A组人数占本次调查人数的百分比是________;(3)在扇形统计图中,B组所对应的圆心角度数为________度.22.某小区在进行老旧小区改造的过程中,为了方便老人行走,决定对一段斜坡进行改造.如图,BBBB⊥BBBB,测得BBBB=5米,BBBB=12米,现将斜坡的坡角改为15°,即∠BBCCBB=15°(此时点B、C、D在同一直线上).(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,结果精确到0.1m),求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).23.第一届茶博会在海丝公园举行,全国各地客商齐聚于此,此届茶博会主题“精彩闽茶•全球共享”.一采购商看中了铁观音和大红袍这两种优质茶叶,并得到如表信息:铁观音大红袍总价/元2 5 1800质变/A kg3 1 1270(1)求每千克铁观音和大红袍的进价;(2)若铁观音和大红袍这两种茶叶的销售单价分别为450元/kg、260元/kg,该采购商准备购进这两种茶叶共30kg,进价总支出不超过1万元,全部售完后,总利润不低于2660元,该采购商共有几种进货方案?(均购进整千克数)(利润=售价﹣进价)24.如图,在▱BBBBBBCC中,BBBB,BBCC交于点OO,点AA,FF在BBBB上,BBFF=BBAA.(1)求证:四边形AABBFFCC是平行四边形;(2)若∠BBBBBB=∠CCBBBB,求证:四边形AABBFFCC是菱形.25.如图(1)所示,已知在△BBBBBB中,BBBB=BBBB,OO在边BBBB上,点FF为边OOBB中点,为以OO为圆心,BBOO为半径的圆分别交BBBB,BBBB于点CC,AA,连接AAFF交OOCC于点EE.(1)如果OOEE=CCEE,求证:四边形BBAAEECC为平行四边形;(2)如图(2)所示,连接OOAA,如果∠BBBBBB=90°,∠OOFFAA=∠CCOOAA,BBOO=8,求边OOBB的长;(3)连接BBEE,如果△OOBBEE是以OOBB为腰的等腰三角形,且BBOO=OOFF,求OOOO OOOO的值.26.我们约定:关于x的反比例函数yy=aa+bb xx称为一次函数yy=aaxx+bb的“次生函数”,关于x的二次函数yy= aaxx2+bbxx−(aa+bb)称为一次函数yy=aaxx+bb的“再生函数”.(1)按此规定:一次函数yy=xx−3的“次生函数”为:______,“再生函数”为:______;(2)若关于x的一次函数yy=xx+bb的“再生函数”的顶点在x轴上,求顶点坐标;(3)若一次函数yy=aaxx+bb与其“次生函数”交于点(1,−2)、�4,−12�两点,其“再生函数”与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.①若点CC(1,3),求∠BBBBCC的正切值;②若点E在直线xx=1上,且在x轴的下方,当∠BBBBAA=45°时,求点E的坐标.参考答案与解析一、选择题题号 1 2 3 4 5 6 7 8 9 10 选项 D D A B D A D C C B1.D【详解】解:气温为零上5℃记作+5℃,则−3℃表示气温为零下3℃,故选:D.2.D【详解】解:A. aa3+aa2=2aa3,计算错误;B. aa3⋅aa2=aa5,计算错误;C. (aa2)3=aa6,计算错误;D. aa6÷aa2=aa4,计算正确;故选D.3.A【详解】解:0.00000164=1.64×10−6,故选:A.4.B【详解】解:视力为4.9的出现人数为16,最多,∴众数是4.9,∵样本容量为50,∴中位数是第25,26名同学的视力数据和的一半,∴中位数是4.9+4.92=4.9,∴众数是4.9,中位数是4.9,故选:B.5.D【详解】解:∵aa∥bb,∴∠1+∠BBBBBB=∠2(两直线平行,内错角相等),∵∠1=20°,∠BBBBBB=30°,∴∠2=20°+30°=50°.故选:D.6.A【详解】如图,∵五角星为轴对称图形,∴∠OOBBCC=12×36°=18°,∠OOCCBB=12×36°=18°,∴∠BBOOCC=180°−18°−18°=144°,∵将五角星绕其旋转中心按顺时针旋转一定角度,线段AB恰好与线段CD重合,∴∠BOD为旋转角,即旋转角为144°.故选:A.7.D【详解】正偶数依次排列,2024是第1012个数根据分析中的规律,每个循环是8个数字,则1012÷8=126⋯4因此,第1012个数(即2024)是完成126个循环后,再往后数4个数的位置 一个循环是2行,故126个循环是第252行再往后4个数字,故是253行,第5列数字(第一个数字空缺),故选D8.C【详解】解:由于点A 、B 在反比例函数图象上关于原点对称, △BBBBBB 的面积等于两个三角形加上一个矩形的面积和, 则△BBBBBB 的面积=12kk +12kk +kk =2kk =2×2=4.故选:C .9.C【详解】解:如图,分别连接BBFF ,AABB ,作BBEE ∥BBCC ,交AAFF 的延长线于EE , ∵△BBBBBB 和△BBCCAA 是等边三角形,∴BBBB =BBBB ,BBCC =BBAA ,∠BBBBBB =∠CCBBAA =60°, ∴∠BBBBCC =∠AABBBB .在△BBBBCC 和△BBBBAA 中,�BBBB =BBBB∠BBBBCC =∠BBBBAA BBCC =BBAA ,∴△BBBBCC ≌△BBBBAA (SAS ),∴∠BBCCBB =∠BBAABB ,BBCC =BBAA , ∵BBCC ⊥PPBB , ∴∠BBCCBB =90°, ∴∠BBAABB =90°. ∵∠BBAACC =60°, ∴∠BBAACC =30°, ∵BBEE ∥BBCC ,∴∠EE =∠FFCCBB =30°, ∴∠EE =∠BBAAEE =30°, ∴BBEE =BBAA , ∴BBCC =BBEE .在△BBCCFF 和△BBEEFF 中,�∠BBCCFF =∠EE∠BBFFCC =∠BBFFEE BBCC =BBEE ,∴△BBCCFF ≌△BBEEFF (AAS ), ∴BBFF =FFBB , ∵BBBB =BBBB , ∴点FF 为BBBB 中点, ∴BBFF ⊥BBBB , ∴∠BBFFBB =90°,∴∠BBFFBB +∠BBAABB =180°, ∴BB ,FF ,BB ,AA 四点共圆,∴当AAFF 取最大值时,则AAFF 等于直径BBBB ,∵AAFF 为直径,∴∠FFBBAA =∠FFBBAA =90°, ∴四边形BBFFBBAA 为矩形, ∵∠FFBBBB =30°, ∴∠BBBBAA =60°, ∴点CC 在BBBB 上, ∵BBCC ⊥PPBB 于CC , ∴PP ,CC 两点重合,此时PP 为BBBB 中点,BBPP ⊥BBBB , ∴BBPP =PPBB =2. ∵BBBB =4,∴PPBB =√BBBB 2−BBPP 2=2√3. 故选:C .10.B【详解】∵|xx 2−4xx +3|=xx +tt ,∴xx 2−4xx +3=xx +tt 或xx 2−4xx +3=−xx −tt ,整理得xx 2−5xx +3−tt =0①或xx 2−3xx +3+tt =0②, 设方程①的判别式为Δ1,方程②的判别式为Δ2, 若原方程恰有三个根,则有三种可能: (1)�Δ1=25−4(3−tt )>0Δ2=9−4(3+tt )=0 ,∴�tt >−134tt =−34 , ∴tt =−34,此时,|xx 2−4xx +3|=xx −34,∴xx 2−4xx +3=xx −34或xx 2−4xx +3=−xx +34, 解得xx =5±√102,或xx 1=xx 2=32,∴满足题意的t 的值是tt =−34;(2)�Δ1=25−4(3−tt )=0Δ2=9−4(3+tt )>0 ,∴�tt =−134tt <−34,∴tt =−134, 当tt =−134时,|xx 2−4xx +3|=xx −134,∴xx 2−4xx +3=xx −134或xx 2−4xx +3=−xx +134,解得xx 1=xx 2=52,或xx =3±√102,∵xx −134≥0,∴xx ≥134,但xx =3±√102<134,不满足题意,舍去;(3)�Δ1=25−4(3−tt )>0Δ2=9−4(3+tt )>0 ,且两方程恰有一个相同的根,∴�tt >−134tt <−34, ∴−134<tt <−34,设相同的根为mm ,则�mm 2−5mm +3−tt =0mm 2−3mm +3+tt =0,解得�mm 1=1tt 1=−1,�mm 2=3tt 2=−3 , 当tt =−1时,|xx 2−4xx +3|=xx −1,解得xx =1或2或4,符合题意;当tt =−3时,|xx 2−4xx +3|=xx −3,解得xx =0或2或3,但此时xx −3>0,三个解均不合题意,舍去; 综上所述,tt 的值为−1或−34.故选B .二、填空题11.xx ≥−5且xx ≠−2/xx ≠−2且xx ≥−5 【详解】∵函数yy =√xx+5xx+2有意义, ∴xx +5≥0且xx +2≠0, 解得xx ≥−5且xx ≠−2,故答案为:xx ≥−5且xx ≠−2.12.(3,5)【详解】解:关于原点对称的点的坐标特征为横、纵坐标全变为相反数, 故点MM 的坐标为(−3,−5),则关于原点对称的点的坐标为(3,5), 故答案为:(3,5).13.96√3【详解】解:由题意可得:∠BBOOBB =16×360°=60°,OOBB =OOBB =8米, ∴△OOBBBB 是等边三角形,∴BBBB =8米, ∵OOPP ⊥BBBB ,∴BBPP =BBPP =4米,∴OOPP =√82−42=4√3(米),∴正六边形的面积为6×12×BBBB ×OOPP =6×12×8×4√3=96√3(平方米). 故答案为:96√3.14.600ππ【详解】解:BBCC =BBBB −BBCC =45−30=15(cm ), 扇面的面积为:SS =120ππ×AABB 2360−120ππ×AAOO 2360=120ππ×452360−120ππ×152360=600ππ(cm 2).故答案为:600ππ.BBBB=5,设BBCC =xx ,则CCEE =CCAA =4−xx ,在Rt △BBCCEE 中,由勾股定理得:32+(4−xx )2=xx 2,解得:xx =258, ∴BBCC =258,∴菱形BBBBBBCC 的面积=BBCC ⋅BBEE =12×BBBB ×BBCC =258×3=758=12×5×BBCC , 即BD 的长是:154,故答案为:154.三、解答题19.【详解】解:原式=2×√32+(π−3.14)0−|1−√3|+�−13�−1=√3+1−(√3−1)+(−3) =−220.【详解】解:�2−4xx−1�⋅xx 2−xxxx 2−6xx+9 =(2xx −2xx −1−4xx −1)⋅xx (xx −1)(xx −3)2 =2(xx −3)xx −1⋅xx (xx −1)(xx −3)2 =2xx xx −3 当xx =4时,原式=2xx xx−3=2×44−3=821.【详解】(1)解:这次调查的学生人数是:25÷25%=100(人)如图,D 组的人数为:100−10−20−25−5=40(人).(2)A 所占的百分比为:10÷100×100%=10%.(3)B 组所占的圆心角是:360°×20100=72°. 22.【详解】解:∵在Rt △BBCCBB 中,∠BBCCBB =15°,BBBB =5,∴BBCC =AABB tan∠AAOOAA =5tan15°≈50.27≈18.52(米), ∴CCBB =CCBB −BBBB =18.52−12=6.52≈6.5(米),答:斜坡改进后的起点CC 与原起点BB 距离约为6.5米.23.【详解】(1)解:设每千克铁观音的进价是x 元,每千克大红袍的进价是y 元,根据题意得:�2xx +5yy =18003xx +yy =1270 ,解得:�xx =350yy =220 , 答:每千克铁观音的进价是350元,每千克大红袍的进价是220元;(2)设购进m千克铁观音,则购进(30−mm)千克大红袍,根据题意得:�350mm+220(30−mm)≤10000(450−350)mm+(260−220)(30−mm)≥2660,解得:733≤mm≤34013,又∵m为正整数,∴m可以为25,26,∴该采购商共有2种进货方案.24.【详解】(1)证明:∵四边形ABCD为平行四边形,∴BBOO=BBOO,BBOO=CCOO,∵BBFF=BBAA,∴BBFF−BBOO=BBAA−BBOO,即AAOO=FFOO,∴四边形AABBFFCC是平行四边形.(2)∵四边形ABCD为平行四边形,∴BBBB∥BBCC,∴∠CCBBBB=∠BBBBBB,∵∠BBBBBB=∠CCBBBB,∴∠CCBBBB=∠CCBBBB,∴CCBB=CCBB,∴四边形ABCD为菱形,∴BBBB⊥BBCC,即AAFF⊥BBCC,∵四边形AABBFFCC是平行四边形,∴四边形AABBFFCC是菱形.25.【详解】(1)证明:∵BBBB=BBBB∴∠BBBBBB=∠BB∵OOCC=OOBB∴∠OOCCBB=∠BBBBBB,∴∠BB=∠OOCCBB∴OOCC∥BBBB,∵FF是OOBB的中点,OOEE=CCEE,∴FFEE是△OOBBCC的中位线,∴FFEE∥BBBB,即EEAA∥BBCC,∴四边形BBAACCEE是平行四边形;(2)解:∵∠OOFFAA=∠CCOOAA,BBOO=8,点FF边OOBB中点,设∠OOFFAA=∠CCOOAA=αα,OOFF=FFBB=aa,则OOAA=OOBB=2aa由(1)可得OOCC∥BBBB∴∠BBAAOO=∠CCOOAA=αα,∴∠OOFFAA=∠BBAAOO=αα,又∵∠BB=∠BB∴△BBAAOO∽△BBFFAA,∴AAEE AAAA=AAOO AAEE即BBAA2=BBOO⋅BBFF,∵∠BB=90°,在Rt△BBAAOO中,BBAA2=AAOO2−BBOO2,∴AAOO2−BBOO2=BBOO×BBFF,∴(2aa)2−82=8×(8+aa)解得:aa=1+√33或aa=1−√33(舍去)∴OOBB=2aa=2+2√33;(3)解:①当OOEE=OOBB时,点EE与点CC重合,舍去;②当BBEE=OOBB时,如图所示,延长BBEE交BBBB于点P,∵点FF是OOBB的中点,BBOO=OOFF,∴BBOO=OOFF=FFBB,设BBOO=OOFF=FFBB=aa,∵OOEE∥BBBB∴△BBEEOO∽△BBPPBB,∴OOOO AAAA=OOBB AABB=2aa3aa=23,设OOEE=2kk,BBPP=3kk,∵OOEE∥BBAA∴△FFOOEE∽△FFBBAA,∴OOOO AAEE=OOAA AAAA=aa2aa=12,∴BBAA=2OOEE=4kk,∴PPAA=BBAA−BBPP=kk,连接OOAA交PPEE于点QQ,∵OOEE∥PPAA,∴△QQPPAA∽△QQEEOO∴OOOO AAEE=QQOO AAQQ=OOQQ EEQQ=2kk kk=2,∴PPQQ=13aa,QQEE=23aa,AAQQ=23aa,OOQQ=43aa在△PPQQAA与△BBQQOO中,PPQQ=13aa,BBQQ=BBEE+QQEE=2aa+23aa=83aa,∴AAQQ OOQQ=QQEE BBQQ=14,又∠PPQQAA=∠BBQQOO,∴△PPQQAA∽△OOQQBB,∴AAEE OOBB=14,∴kk2aa=14,∴aa=2kk,∵OOCC=OOBB=2aa,OOEE=2kk,∴OOOO OOOO=2kk2aa=kk aa=12.26.【详解】(1))∵一次函数y=x -3的a =1,b =-3,∴y =x -3的“次生函数”为y =−2xx ,∴y =x -3的“再生函数”为y =x 2-3x +2,(2)∵y =x +b 的“再生函数”为:y =x 2+bx -(1+b ),又∵y =x 2+bx -(1+b )的顶点在x 轴上,∴b 2+4(1+b )=0,∴解得:b 1=b 2=-2,∴y =x 2-2x +1=(x -1)2,∴顶点坐标为:(1,0);(3)①∵y =ax +b 与其“次生函数”的交点为:(1,-2)、(4,−12),∴�−2=aa +bb −12=4aa +bb ,解得:�aa =12bb =−52 , ∴一次函数的解析式为y =12xx −52,∴y =12xx −52的“再生函数”为:y =12xx 2−52xx +2 令y =0,则12xx 2−52xx +2=0 解得:x 1=1,x 2=4,∴A (1,0),B (4,0),C (0,2),如图,过点C 作CH ∥x 轴交直线x =1于点H ,∵D (1,3),C (0,2),∴CH =DH =1,∴∠CDH =45°,又∵AD =AB =3,∴∠ADB =45°,∴∠CDB =90°,∵CD =√12+12=√2,BD =√32+32=3√2, ∴tan ∠BBBBCC =AAOO BBOO =√23√2=13; ②如图,∵∠CBE =∠ABD =45°,∴∠ABE =∠CBD ,又∵∠EAB =∠CDB =90°,∴△CBD ∽△EBA ,∴AAOO BBOO =AAEE AABB =13, ∴AAEE 3=13, ∴AE =1∴E (1,-1).。

初三数学中考模拟试卷(附详细答案)

初三数学中考模拟试卷(附详细答案)

初三数学中考模拟试卷(附详细答案)初三数学中考模拟试卷(附详细答案)题目一:选择题1. 下列选项中,与集合{a, b, c}等势的集合是()。

A. {1, 2, 3}B. {a, b, a}C. {a, b, c, d}D. {a, a, a}答案:B2. 等差数列的前三项分别是1,3,5,那么它的通项公式是()。

A. an = a1 + (n-1)dB. an = a1 + dC. an = 2a1 + (n-1)dD. an = 2a1 + d答案:A3. 已知集合A = {x | x是奇数,0 < x < 10},那么集合A的元素个数是()。

A. 5B. 6C. 7D. 8答案:A4. 以下哪个数是无理数()。

A. √4B. πC. 3D. 0.5答案:B5. 若2x - 5 = 7,则x的值是()。

A. -1B. 1C. 3D. 6答案:C题目二:填空题1. 题设如图所示,根据图示线段,其中AC与BD相交于点E,则AE : CE = _______。

A--------B| || * || |C--------D答案:1:32. 甲、乙两人分别从A、B两地同时出发,相向而行,甲速度2km/h,乙速度1km/h,相遇时他们共走了______千米。

答案:23. 若2x - 5 = 7,则x = _______。

答案:64. 将81用素因数分解的形式表示为3的指数幂,则为3^_______。

答案:4题目三:解答题1. 解方程5x + 3 = 23。

解答:首先,将方程变形为5x = 23 - 3。

然后,计算出5x = 20。

最后,求得x = 4。

2. 一条河流中,两艘船以相同的速度向上游驶过某一点,并从该点同时向下游驶离开。

若上游行驶时间是下游行驶时间的3倍,并已知下游行驶的距离是上游行驶距离的两倍,求上游和下游的速度比。

解答:设上游的速度为v,下游的速度为2v。

根据题意,下游的时间是上游时间的3倍,下游的距离是上游距离的两倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年中考数学模拟题※考试时间120分钟试卷满分150分编辑:志刚市加速度辅导学校:一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格.每小题3分,共24分)一、选择题(本大题有7题,每小题3分,共21分.每小题有四个选项,其中有且只有一个选项正确)1.下面几个数中,属于正数的是()A.3 B.12-C.D.0鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差4.已知方程||x2=,那么方程的解是()A.2x=B.2x=-C.1222x x==-,D.4x=5、如图(3),已知AB是半圆O的直径,∠BAC=32º,D是弧AC的中点,那么∠DAC的度数是()A、25ºB、29ºC、30ºD、32°6.下列函数中,自变量x的取值围是2x>的函数是()A.y=B.y=C.y=D.y=7.在平行四边形ABCD中,60B∠=,那么下列各式中,不能..成立的是()A.60D∠=B.120A∠=C.180C D∠+∠=D.180C A∠+∠=8.在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过()A.66厘米B.76厘米C.86厘米D.96厘米A.B.C.D.(第2题)二、填空题(每小题3分,共24分)9.2008年奥运圣火在的传递路线长是17400米,用科学记数法表示为 米. 10.一组数据:3,5,9,12,6的极差是 . 11= .12.不等式组2430x x >-⎧⎨-<⎩的解集是 .13.如图,在矩形空地上铺4块扇形草地.若扇形的半径均为r 米,圆心角均为90,则铺上的草地共有 平方米. 14.若O 的半径为5厘米,圆心O 到弦AB 的距离为3厘米,则弦长AB 为 厘米.15.如图,在四边形ABCD 中,P 是对角线BD 的中点,E F ,分别是AB CD ,的中点,18AD BC PEF =∠=,,则PFE ∠的度数是 .16.如图,点G 是ABC △的重心,CG 的延长线交AB 于D ,5cm GA =,4cm GC =,3cm GB =,将ADG △绕点D 旋转180得到BDE △,则DE = cm ,ABC △的面积= cm 2.三、解答题(每题8分,共16分) 17.已知131-=a ,131+=b ,求⎪⎪⎭⎫ ⎝⎛+a b b a ab 的值。

18.先化简,再求值2221x x xx x +-,其中2x =.四、解答题(每题10分,共20分)19.四大小、质地均相同的卡片上分别标有1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一(不放回),再从剩下的3中随机取第二.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(第14题)C F DBE AP(第16题) A B EG C D (第17题)(2)求取得的两卡片上的数字之积为奇数的概率. 20.如图,为了测量电线杆的高度AB ,在离电线杆25米的D 处,用高1.20米的测角仪CD 测得电线杆顶端A 的仰角22α=,求电线杆AB 的高.(精确到0.1米)参考数据:sin 220.3746=,cos 220.9272=,tan 220.4040=,cot 22 2.4751=. 五、解答题(每题10分,共20分)21.某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p (件)与每件的销售价x (元)满足关系:1002p x =-.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?22.(本题满分10分)已知一次函数与反比例函数的图象交于点(21)P -,和(1)Q m ,. (1)求反比例函数的关系式; (2)求Q 点的坐标;(3)在同一直角坐标系中画出这两个函数图象的示意图,并观察图象回答:当x 为何值时,一次函数的值大于反比例函数的值?六、解答题(每题10分,共20分)23.已知:如图,ABC △中,AB AC =,以AB 为直径的O 交BC 于点P ,PD AC⊥A B EC D α (第20题)于点D .(1)求证:PD 是O 的切线;(2)若1202CAB AB ∠==,,求BC 的值.24.已知:抛物线2(1)y x b x c =+-+经过点(12)P b --,. (1)求b c +的值;(2)若3b =,求这条抛物线的顶点坐标;(3)若3b >,过点P 作直线PA y ⊥轴,交y 轴于点A ,交抛物线于另一点B ,且2BP PA =,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)、七、解答题(本题12分)25已知:如图所示的一矩形纸片ABCD (AD AB >),将纸片折叠一次,使点A 与C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE . (1)求证:四边形AFCE 是菱形;(2)若10cm AE =,ABF △的面积为224cm ,求ABF △的周长; (3)在线段AC 上是否存在一点P ,使得22AE AC AP =?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.八、解答题(本题14分)26如图,在直角梯形OABD 中,DB OA ∥,90OAB ∠=,点O 为坐标原点,点A 在x(第23题)AE D C FB(第25题)轴的正半轴上,对角线OB AD ,相交于点M.2OA AB ==,:1:2BM MO =. (1)求OB 和OM 的值;(2)求直线OD 所对应的函数关系式; (3)已知点P 在线段OB 上(P 不与点O B ,重合),经过点A 和点P 的直线交梯形OABD 的边于点E (E 异于点A ),设OP t =,梯形OABD 被夹在OAE ∠的部分的面积为S ,求S 关于t 的函数关系式.中考数学模拟题数学试题参考答案及评分标准1.A 2.C 3.B 4.C 5.B 6.B 7.B 8 D9.41.7410⨯ 10.9 1112.23x -<< 13.2πr 14.8 15.1816.2,1817:答案:没有 18.解:原式2(1)(1)(1)x x x x x x+=+- 11x =- 当2x =时,原式1=. 19.解:(1)(2)P (积为奇数)16=. 20.解:在Rt ACE △中, tan AE CE α∴=⨯tan DB α=⨯25tan 22=⨯10.10≈10.10 1.2011.3AB AE BE AE CD ∴=+=+=+≈(米)答:电线杆的高度约为11.3米.21.解:根据题意得:(30)(1002)200x x --= 整理得:28016000x x -+=2(40)040x x ∴-=∴=,(元)100220p x ∴=-=(件)答:每件商品的售价应定为40元,每天要销售这种商品20件. 22.解:(1)设反比例函数关系式为ky x=, 反比例函数图象经过点(21)P --,.2k ∴=-.∴反比例函数关第式2y x =-.(2)点(1)Q m ,在2y x=-上, 2m ∴=-.(12)Q ∴-,.(3)示意图.当2x <-或01x <<时,一次函数的值大于反比例函数的值. 23.(1)证明:AB AC =, C B ∴∠=∠. 又OP OB =, OPB B ∠=∠C OPB ∴∠=∠. OP AD ∴∥ 又PD AC ⊥于D ,90ADP ∴∠=,2 3 41 3 41 2 41 2 31 2 3 4 第一次第二次 ABE C Dα(第20题)90DPO ∴∠=. PD ∴是O 的切线.(2)连结AP ,AB 是直径,90APB ∴∠=2AB AC ==,120CAB ∠=,60BAP ∴∠=.BP BC ∴=∴=.24.解:(1)依题意得:2(1)(1)(1)2b c b -+--+=-,2b c ∴+=-.(2)当3b =时,5c =-,2225(1)6y x x x ∴=+-=+- ∴抛物线的顶点坐标是(16)--,.(3)当3b >时,抛物线对称轴112b x -=-<-, ∴对称轴在点P 的左侧.因为抛物线是轴对称图形,(12)P b --,且2BP PA =.(32)B b ∴--,122b -∴-=-. 5b ∴=.又2b c +=-,7c ∴=-.∴抛物线所对应的二次函数关系式247y x x =+-.解法2:(3)当3b >时,112b x -=-<-, ∴对称轴在点P 的左侧.因为抛物线是轴对称图形,(12)P b --,,且2(32)BP PA B b =∴--,, 2(3)3(2)2b c b ∴---+=-.又2b c +=-,解得:57b c ==-,∴这条抛物线对应的二次函数关系式是247y x x =+-.解法3:(3)2b c +=-,2c b ∴=--,2(1)2y x b x b ∴=+---分BP x ∥轴,2(1)22x b x b b ∴+---=-即:2(1)20x b x b +-+-=.解得:121(2)x x b =-=--,,即(2)B x b =-- 由2BP PA =,1(2)21b ∴-+-=⨯.57b c ∴==-,∴这条抛物线对应的二次函数关系式247y x x =+-25.解:(1)连结EF 交AC 于O ,当顶点A 与C 重合时,折痕EF 垂直平分AC ,OA OC ∴=,90AOE COF ∠=∠=在平行四边形ABCD 中,AD BC ∥, EAO FCO ∴∠=∠, AOE COF ∴△∽△. OE OF ∴=分∴四边形AFCE 是菱形.(2)四边形AFCE 是菱形,10AF AE ∴==. 设AB x =,BF y =,90B ∠=,22100x y ∴+=2()2100x y xy ∴+-= ①又124242ABF S xy =∴=△,,则48xy =. ②由①、②得:2()196x y +=14x y ∴+=±,14x y +=-(不合题意舍去)ABF ∴△的周长为141024x y AF ++=+=.(3)过E 作EP AD ⊥交AC 于P ,则P 就是所求的点. 证明:由作法,90AEP ∠=,由(1)得:90AOE ∠=,又EAO EAP ∠=∠,AOE AEP ∴△∽△, AE AO AP AE∴=,则2AE AO AP = AE DCFBPO四边形AFCE 是菱形,12AO AC ∴=,212AE AC AP ∴=. 22AE AC AP ∴=26.解:(1)90OAB ∠=,24OA AB OB ==∴=, 12BM OM =,412OM OM -∴=,83OM ∴= (2)由(1)得:83OM =,43BM ∴=.DB OA ∥,易证12DB BM OA OM == 1DB ∴=,(1D . ∴过OD 的直线所对应的函数关系式是y =.(3)依题意:当803t <≤时,E 在OD 边上, 分别过E P ,作EF OA ⊥,PN OA ⊥,垂足分别为F 和N,tan PON ∠==60PON ∴∠=,12OP t ON t PN =∴==,,.直线OD 所对应的函数关系式是y =,∴设()E n 易证得APN AEF △∽△,PN ANEF AF∴=,1222tn-=- 整理得:422t t n n-=- 82n nt t ∴-=,(8)2n t t -=,28tn t∴=-分由此,1122228AOE t S OA EF t==⨯⨯-△,8(0)83S t t ∴=<-≤当843t <<时,点E 在BD 边上, 此时,ABE OABD S S S =-△梯形,DB OA ∥, 易证:EPB APO ∴△∽△BE BP OA OP ∴=,42BE tt-∴=2(4)t BE t -=112(4)422ABE t tSBE AB t t--==⨯⨯=⨯△1(4)4(12)2tt S t t --∴=+⨯⨯=⨯=+ 综上所述:8083843t tS t ⎧<⎪⎪-=⎨⎪<<⎪⎩≤(1)解法2:90OAB ∠=,2OA AB ==,易求得:304OBA OB ∠=∴=,(3)解法2:分别过E P ,作EF OA ⊥,PN OA ⊥,垂足分别为F 和N ,由(1)得,1302OBA OP t ON t PN ∠==∴==,,,, 即:122P t ⎛⎫⎪⎪⎝⎭,,又(20),,设经过A P ,的直线所对应的函数关系式是y kx b =+则12220tkb k b ⎧+=⎪⎨⎪+=⎩解得:k b== ∴经过A P ,的直线所对应的函数关系式是yx =+. 依题意:当803t <≤时,E 在OD边上,()E n ∴在直线AP 上,. .页脚44n t t∴-+=-- 整理得:2244tn t n t t -=-- 28t n t ∴=-S ∴=(803t <≤) 当843t <<时,点E 在BD 上,此时,点E坐标是(n ,因为E 在直线AP 上,+= 整理得:2244tn t t t +=--.82n nt t ∴-=. 48t n t-∴= 482(4)22t t BE n t t --=-=-=1(4)4(12)2t t S t t t--∴=+⨯⨯=⨯=-+综上所述:803843t S t t<=⎨⎪-+<<⎪⎩≤。

相关文档
最新文档