泰勒公式例题
泰勒公式求极限题目
泰勒公式求极限题目以泰勒公式求极限计算是近代数学上一个重要的课题。
它不仅可以帮助我们计算复杂的函数表达式的极限,而且可以更深入地探讨数学中的各类概念。
本文旨在介绍如何用泰勒公式求极限,分析它的使用场景。
泰勒公式是由18世纪英国数学家约翰科斯特泰勒提出的。
它是一种应用多项式近似来分析函数曲线的算法。
其具体形式为:$ f(x)=f(a)+frac{f(a)(x-a)}{1!}+frac{f(a)(x-a)^2}{2!}+frac{ f(a)(x-a)^3}{3!}+cdots+frac{f^{(n)}(a)(x-a)^n}{n!}+O((x-a)^ {n+1})$其中$f(x)$为函数的导数,$f(x)$为二阶导数,$f^{(n)}$为n 阶导数,$n$为任意正整数,$O$表示无穷小项。
泰勒公式可以帮助我们计算函数的极限,这是其最重要的应用之一。
当$a$是函数$f(x)$在$x=a$时的上下极限时,若$f(x)$在$x$的邻域内可以用泰勒公式来近似,则$f(x)$的极限存在,并且等于: $ displaystyle lim_{x to a} f(x) =f(a)+frac{f(a)(x-a)}{1!}+frac{f(a)(x-a)^2}{2!}+frac{f(a)(x-a)^3}{3!}+cdots+frac{f^{(n)}(a)(x-a)^n}{n!} $事实上,泰勒公式的应用不仅仅局限于求极限这一类。
它也可以用来分析函数表达式在不同区间内的变化趋势,以及用来证明某一函数及其极限的准确性等。
比如,当我们需要证明某一函数及其极限的准确性时,可以首先用泰勒公式以多项式的形式表示出来,然后比较形式之间的差距,最后结论出给定的函数及其极限是否满足条件。
此外,泰勒公式也可以用来求函数表达式在某一区间内的变化趋势。
下面我们将以一维函数为例,详细分析如何运用泰勒公式。
在这里,我们拟定一维函数$f(x)=sin(x)$,它在$[-3,3]$区间内变化如下:当$ -3 leq x leq -2 $时,由于函数有一个拐点,所以函数值随着$x$增大而减小。
泰勒公式用于一些函数极限问题 (1)
泰勒公式用于一些函数极限问题约定分别用f k和g k来记f(k)(0)和g(k)(0),k=0,1,2,···.命题1设f(x)和g(x)都在0点处4次可导,f0=g0=0,f1=g1=1,则lim x→0f(g(x))−g(f(x))x4=18(︀f2g22−f22g2)︀+112(f3g2−f2g3).例1在命题1中,取f(x)=ln(1+x),g(x)=−ln(1−x),可得lim x→0ln[1−ln(1−x)]+ln[1−ln(1+x)]x4=112.例2在命题1中,取f(x)=1−e−x,g(x)=e x−1,可得lim x→02−e1−e x−e1−e−xx4=−112.命题2设f(x)和g(x)都在0点的某邻域中5次可导,f0=g0=0,f1=g1=1,则lim x→0f(g(x))+f−1(g(x))−g(f(x))−g(f−1(x))x5=38(︀f22g22−f32g2)︀+14(︀f2f3g2−f22g3)︀.例3在命题2中,取f(x)=e x−1,g(x)=−ln(1−x),可得lim x→0x1−x+ln(2−e x)+ln[1−ln(1−x)]+ln[1−ln(1+x)]x5=−14.命题3设f(x)和g(x)都在0点的某邻域中5次可导,f0=g0=0,f1=g1=1,则lim x→0f(g(x))+g−1(f−1(x))−g(f(x))−f−1(g−1(x))x5=38(︀f2g32−f32g2)︀+14(︀f2f3g2+f3g22−f2g2g3−f22g3)︀.例4在命题3中,取f(x)=ln(1+x),g(x)=−ln(1−x),可得lim x→0ln[1−ln(1−x)]+ln[1−ln(1+x)]+2−e1−e x−e1−e−xx5=0.注进一步的计算可得lim x→0ln[1−ln(1−x)]+ln[1−ln(1+x)]+2−e1−e x−e1−e−xx6=772.1命题4设f(x)和g(x)都是(−δ,δ)中的奇函数且都在0点处7次可导,f1=g1=1,则lim x→0f(g(x))−g(f(x))x7=172(︀f3g23−f23g3)︀+1360(f5g3−f3g5).例5在命题4中,取f(x)=tan x,g(x)=sin x,可得lim x→0tan(sin x)−sin(tan x)x7=130.命题5设f(x)和g(x)都是(−δ,δ)中的奇函数且都在(−δ,δ)中9次可导,f1=g1=1,则lim x→0f(g(x))+f−1(g(x))−g(f(x))−g(f−1(x))x9=5216(︀f23g23−f33g3)︀+1216(︀f3f5g3−f23g5)︀.例6在命题5中,取f(x)=tan x,g(x)=sin x,可得lim x→0tan(sin x)+arctan(sin x)−sin(tan x)−sin(arctan x)x9=19.命题6设f(x)和g(x)都是(−δ,δ)中的奇函数且都在(−δ,δ)中9次可导,f1=g1=1,则lim x→0f(g(x))+g−1(f−1(x))−g(f(x))−f−1(g−1(x))x9=5216(︀f3g33−f33g3)︀+1216(︀f3f5g3+f5g23−f3g3g5−f23g5)︀.例7在命题6中,取f(x)=tan x,g(x)=sin x,可得lim x→0tan(sin x)+arcsin(arctan x)−sin(tan x)−arctan(arcsin x)x9=118.2。
泰勒公式 典型例题
例1 用泰勒公式,证明:当x>1时,.
证设,则f (x)当x>1时有二阶导数,且.
将f (x)点x=1处依泰勒公式展开,得
即
由于,故f (x)>0,即.
从而
例2 设f (x)在[a, b]上连续,在(a, b)内二阶可导,若,则在
(a, b)内至少有一点,使
证由泰勒公式,得
令,代入得
相减,得
设
则
例3 验证当时,按公式
计算的近似值,所产生的误差小于0.01;并求的近似值,使误差小于0.01.
解因为公式右边是的三阶麦克劳林公式,故误差
又已知,从而,故
误差
例4 求函数按(x-4)的幂展开的带有拉格朗日型余项的三阶泰勒公式.
解由于,故
因此
其中介于x与4之间.
例5 利用泰勒公式求极限
解
例6 求函数在x = 0处的n阶导数(n≥3)
解由f (x)和的麦克劳林公式
比较的系数得
故
五、练习题
1、应用三阶泰勒公式求下列各数的近似值,并估计误差.
(1) (2) sin18°
(答:(1) ;(2) 0.3090,误差为)
2、设函数f (x)在(-1, 1)内具有二阶连续导数,且,试证:对于任
意非零,存在唯一的,使成立,且.
(提示:拉格朗日中值定理、泰勒公式)
3、求函数的带有拉格朗日型余项的三阶麦克劳林公式.
(答:)
4、利用泰勒公式求极限
(答:)
5、求函数的带有皮亚诺型余项的n阶麦克劳林公式
(答:)
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。
用泰勒公式求极限的例题
用泰勒公式求极限的例题
利用泰勒公式求函数极限的一般方法。
(当然洛必达法则+等价无穷小替换仍是求函数极限的首先方法,泰勒公式通常用来处理“疑难杂症”。
)
含根号的复合函数的极限。
常见函数的麦克劳林公式见下文:
高等数学入门——常见函数的泰勒公式的推导与总结
四、对例1的一些补充说明。
在利用泰勒公式求极限时经常涉及o项的运算,其实就是利用四则运算或变量代换法求泰勒公式,其方法见下文:
高等数学入门——求泰勒公式的四则运算法和变量代换法
五、含复合三角函数的极限。
六、含幂指函数的极限(请思考余项是如何处理的)。
七、利用泰勒公式求数列极限的一般方法(注意用泰勒公式求数列极限时通常是不必事先转化为函数极限的)。
八、利用泰勒公式求数列极限的典型例题。
泰勒公式求极限典型例题
泰勒公式求极限典型例题若将函数f(x)随x的取值从某一个数a取到正无穷大时,函数f(x)取得的值p趋于某一个定值L,则称L为函数f(x)在x=a取极限,记作lim x→a f(x)=L,其中L称为极限值,a称为极限点,f(x)称为极限函数。
泰勒公式是求极限的一种常用方法,其公式有无限项式求和形式: lim x→a f(x)=f(a)+f(a)(x-a)+ (1/2)f(a)(x-a)2 +(1/6)f(a)(x-a)3 + ... + (1/n!)(f^(n)(a)(x-a)n+ ...其中f^(n)(a)是函数f(x)的n阶导数。
这里以典型例子来说明如何使用泰勒公式求极限:例题1:求lim x→0 sinx/x的极限。
解:由泰勒公式可知:lim x→0 sinx/x = f(0)+f(0)(x-0)+ (1/2)f(0)(x-0)2 + ...经过求导可知:f(0) = 0, f(0) = 1, f(0) = 0,所以lim x→0 sinx/x = 1例题2:求lim x→1 (x^3-1)/(x-1)的极限。
解:由泰勒公式可知:lim x→1 (x^3-1)/(x-1) = f(1)+f(1)(x-1)+ (1/2)f(1)(x-1)2 + ...经过求导可知:f(1) = 0, f(1) = 3, f(1) = 6,所以lim x→1 (x^3-1)/(x-1) = 3以上就是使用泰勒公式求极限的一般步骤,当函数f(x)的几阶导数可以计算出来时,就可以采用此方法来求极限了。
泰勒公式可以用来计算出大多数复杂函数的极限,对求极限有很大的帮助,它可以帮助我们分析复杂的函数关系,也可以帮助我们理解函数在某一点的取值情况,并由此分析函数在该点处的连续性等特征。
泰勒公式并非万能,有时候你会遇到函数f(x),其函数的某阶导数不存在,这也就意味着我们无法用泰勒公式来计算该函数的极限,或者某些次高阶导数取值很大,这就会使得该项在求极限的过程中的贡献很大,这时候、泰勒公式就可能不太准确。
泰勒公式例题
泰勒公式及其应用等价无穷小在求函数极限中的应用及推广泰勒公式及其应用1 引言泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 2 预备知识定义2.1]1[ 若函数f 在0x 存在n 阶导数,则有'''200000()()()()()()1!2!f x f x f x f x x x x x =+-+-+()000()()(())!n n n f x x x o x x n +-+-(1)这里))((0n x x o -为佩亚诺型余项,称(1)f 在点0x 的泰勒公式.当0x =0时,(1)式变成)(!)0(!2)0(!1)0()0()()(2'''n nn x o x n f x f x f f x f +++++= ,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2]2[ 若函数 f 在0x 某邻域内为存在直至 1+n 阶的连续导数,则''()'20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x R x n =+-+-++-+ ,(2)这里()n R x 为拉格朗日余项(1)10()()()(1)!n n n f R x x x n ξ++=++,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒公式.当0x =0时,(2)式变成''()'2(0)(0)()(0)(0)...()2!!n nn f f f x f f x x x R x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:12)!1(!!21+++++++=n xn xx n e n x x x e θ .)()!12()1(!5!3sin 221253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)!nnn x x x x x o x n =-+-++-+.)(1)1(32)1ln(1132++++-+-+-=+n n n x o n x x x x x . )(1112n n x o x x x x+++++=- +-++=+2!2)1(1)1(x m m mx x m . 定理2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得00)(μ=x f .3 泰勒公式的应用 3.1 利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限,就能简捷地求出.例3.1 求极限2240cos lim x x x e x -→-.分析:此为0型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和22x e -分别用泰勒展开式代替,则可简化此比式.解 由244cos 1()2!4!x x x o x =-++,222242()21()22x x x e o x --=-++得2444422111cos ()()()4!22!12x x ex o x x O x --=-+=-+⋅, 于是244244001()cos 112limlim 12x x x x O x x e x x -→→-+-==-. 例3.2极限1sin 2lim sin cos xx xx x x x xe →0---- .分析:此为0型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和sinx,xe分别用泰勒展开式代替,则可简化此比式.解: 由1sin 2x x x x e ---=233331()())2626x x o o x x x x x ++++-1-x-(x-+=34333()()6126o o x xxx x ++=+,3233sin cos ()(1())62x x x o x o x x x x -x =-+--+33()3o xx =+于是1sin 2lim sin cos xx x x x x x x e →0----3333()162()3o o x x x x +==+例3.3利用泰勒展开式再求极限 。
泰勒公式例题
泰勒公式及其应用等价无穷小在求函数极限中的应用及推广泰勒公式及其应用1 引言泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 2 预备知识定义2.1]1[ 若函数f 在0x 存在n 阶导数,则有'''200000()()()()()()1!2!f x f x f x f x x x x x =+-+-+()000()()(())!n n n f x x x o x x n +-+-(1)这里))((0n x x o -为佩亚诺型余项,称(1)f 在点0x 的泰勒公式.当0x =0时,(1)式变成)(!)0(!2)0(!1)0()0()()(2'''n nn x o x n f x f x f f x f +++++= ,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2]2[ 若函数 f 在0x 某邻域内为存在直至 1+n 阶的连续导数,则''()'20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x R x n =+-+-++-+ ,(2)这里()n R x 为拉格朗日余项(1)10()()()(1)!n n n f R x x x n ξ++=++,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒公式.当0x =0时,(2)式变成''()'2(0)(0)()(0)(0)...()2!!n nn f f f x f f x x x R x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:12)!1(!!21+++++++=n xn xx n e n x x x e θ .)()!12()1(!5!3sin 221253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)!nnn x x x x x o x n =-+-++-+.)(1)1(32)1ln(1132++++-+-+-=+n n n x o n x x x x x . )(1112n n x o x x x x+++++=- +-++=+2!2)1(1)1(x m m mx x m . 定理2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得00)(μ=x f .3 泰勒公式的应用 3.1 利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限,就能简捷地求出.例3.1 求极限2240cos lim x x x e x -→-.分析:此为0型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和22x e -分别用泰勒展开式代替,则可简化此比式.解 由244cos 1()2!4!x x x o x =-++,222242()21()22x x x e o x --=-++得 2444422111cos ()()()4!22!12x x ex o x x O x --=-+=-+⋅, 于是244244001()cos 112limlim 12x x x x O x x e x x -→→-+-==-. 例3.2极限1sin 2lim sin cos xx xx x x x xe →0---- .分析:此为0型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和sinx,xe分别用泰勒展开式代替,则可简化此比式.解: 由1sin 2xx x x e---=233331()())2626x x o o x x x x x ++++-1-x-(x-+=34333()()6126o o x xxx x ++=+,3233sin cos ()(1())62x x x o x o x x x x -x =-+--+33()3o xx =+于是1sin 2lim sin cos x x x x x x x x e →0----3333()162()3o o x x x x +==+例3.3利用泰勒展开式再求极限 。
专项练习:证明不等式之泰勒展式和拉格朗日中值定理
证明不等式之泰勒展式和拉格朗日中值定理【典型例题】例1.已知函数f (x )=ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f (x )的极小值点.(ⅰ)证明:12<a <1;(ⅱ)求f (x )在区间(-∞,π)上的零点个数;(2)若a =1,f (x )x =1-x π 1+x π 1-x 2π 1+x 2π 1-x 3π 1+x 3π ⋯1-x n π 1+xn π ⋯,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n x 2n (2n )!+⋯,n ∈N *.证明:112+122+132+⋯+1n2+⋯=π26.例2.已知函数f(x)=x2+ln x-ax.(1)求函数f(x)的单调区间;(2)若f(x)≤2x2,对x∈[0,+∞)恒成立,求实数a的取值范围;(3)当a=1时,设g x =xe x2-f x -x-1.若正实数λ1,λ2满足λ1+λ2=1,x1,x2∈(0,+∞)(x1≠x2),证明:g(λ1x1+λ2x2)<λ1g(x1)+λ2g(x2).例3.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x33!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f(x)=m sin x,若区间[a,b]满足当f(x)定义域为[a,b]时,值域也为[a,b],则称为f(x)的“和谐区间”,(ⅰ)m=1时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由;(ⅱ)m=-2时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由.例4.给出以下三个材料:①若函数f(x)可导,我们通常把导函数f (x)的导数叫做f(x)的二阶导数,记作f (x).类似地,二阶导数的导数叫做三阶导数,记作f (x),三阶导数的导数叫做四阶导数⋯⋯一般地,n-1阶导数的导数叫做n阶导数,记作f(n)(x)=[f(n-1)(x)]′,n≥4.②若n∈N*,定义n!=n×(n-1)×(n-2)×⋯×3×2×1.③若函数f(x)在包含x0的某个开区间(a,b)上具有n阶的导数,那么对于任一x∈(a,b)有g(x)=f(x0)+f (x0)1!(x-x0)+f (x0)2!(x-x0)2+f (x0)3!(x-x0)3+⋯+f(n)(x0)n!(x-x0)n,我们将g(x)称为函数f(x)在点x=x0处的n阶泰勒展开式.例如,y=e x在点x=0处的n阶泰勒展开式为1+x+12x2+⋯+1n!x n.根据以上三段材料,完成下面的题目:(1)求出f1(x)=sin x在点x=0处的3阶泰勒展开式g1(x),并直接写出f2(x)=cos x在点x=0处的3阶泰勒展开式g2(x);(2)比较(1)中f1(x)与g1(x)的大小.(3)已知y=e x不小于其在点x=0处的3阶泰勒展开式,证明:x≥0时,e x+sin x+cos x≥2+2x.例5.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数F(x)表示成F(x)=d(x-b)(x-c) (a-b)(a-c)+e(x-a)(x-c)(b-a)(b-c)+f(x-a)(x-b)(c-a)(c-b)的形式.(1)若a=1,b=2,c=3,d=4,e<f,把F(x)的二次项系数表示成关于f的函数G(f),并求G(f)的值域(此处视e为给定的常数,答案用e表示);(2)若a<b<c,d>0,e<0,f>0,求证:a+b<d(b2-c2)+e(c2-a2)+f(a2-b2)d(b-c)+e(c-a)+f(a-b)<b+c.例6.用拉格朗日中值定理证明不等式:x1+x<ln(1+x)<x(x>0).例7.已知函数f (x )=mx 3+nx 2(m 、n ∈R ,m ≠0)的图象在(2,f (2))处的切线与x 轴平行.(1)求n ,m 的关系式并求f (x )的单调减区间;(2)证明:对任意实数0<x 1<x 2<1,关于x 的方程:f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解;(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f (x )是在闭区间[a ,b ]上连续不断的函数,且在区间(a ,b )内导数都存在,则在(a ,b )内至少存在一点x 0,使得f (x 0)=f (b )-f (a )b -a.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:当0<a <b 时,b -a b<ln b a <b -a a (可不用证明函数的连续性和可导性).例8.已知f (x )=23x 3-2x 2+cx +4,g (x )=e x -e 2-x +f (x ),(1)若f (x )在x =1+2处取得极值,试求c 的值和f (x )的单调增区间;(2)如图所示,若函数y =f (x )的图象在[a ,b ]连续光滑,试猜想拉格朗日中值定理:即一定存在c ∈(a ,b ),使得f (c )=f (b )-f (a )b -a,利用这条性质证明:函数y =g (x )图象上任意两点的连线斜率不小于2e -4.xyabcA By =f x【同步练习】一、单选题1.十八世纪早期,英国数学家泰勒发现了公式sin x=x-x33!+x55!-x77!+⋯+-1n-1x2n-12n-1!+⋯,(其中x∈R,n∈N*,n!=1×2×3×⋯×n,0!=1),现用上述公式求1-12!+14!-16!+⋯+-1n-112n-2!+⋯的值,下列选项中与该值最接近的是()A.sin57°B.sin36°C.sin33°D.sin30°2.公元1715年英国数学家布鲁克·泰在他的著作中陈述了“泰勒公式”,如果满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值构建一个多项式来近似表达这个函数.泰勒公式将一些复杂函数近似地表示为简单的多项式函数,使得它成为分析和研究许多数学问题的有力工具,例如:e x=+∞n=0x nn!=x0 0!+x11!+x22!+x33!+⋯+x nn!+⋯,其中x∈R,n∈N*,试用上述公式估计e的近似值为(精确到0.001)()A.1.647B.1.649C.1.645D.1.6463.计算器是如何计算sin x,cos x,πx,ln x,x等函数值的呢?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x=x-x3 3!+x55!-x77!+⋯,cos x=1-x22!+x44!-x66!+⋯,其中n!=1×2×⋯×n,英国数学家泰勒发现了这些公式,可以看出,右边的项用得越多,计算得出的sin x和cos x的值也就越精确.运用上述思想,可得到sinπ2+1的近似值为()A.0.50B.0.52C.0.54D.0.56二、填空题4.英国数学家泰勒(1685-1731)以发现泰勒公式和泰勒级数闻名于世,由泰勒公式,我们得到e=1+1 1!+12!+13!+⋯+1n!+eθ(n+1)!(其中e为自然对数的底数,0<θ<1,n!=n×n-1×n-2×...×2×1),其拉格朗日余项是R n=eθ(n+1)!.可以看出,右边的项用得越多,计算得到的e的近似值也就越精确.若3(n+1)!近似地表示e的泰勒公式的拉格朗日余项R n,R n不超过11000时,正整数n的最小值是_____三、解答题5.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)证明:e x +sin x +cos x ≥2+2x .6.在高等数学中,我们将y=f x 在x=x0处可以用一个多项式函数近似表示,具体形式为:f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),以上公式我们称为函数f x 在x=x0处的泰勒展开式.(1)分别求e x,sin x,cos x在x=0处的泰勒展开式;(2)若上述泰勒展开式中的x可以推广至复数域,试证明:e iπ+1=0.(其中i为虚数单位);(3)若∀x∈0,32,e a sin x>x+1恒成立,求a的范围.(参考数据ln52≈0.9)7.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x3 3!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f x =m sin x,若区间a,b满足当f x 定义域为a,b时,值域也为a,b,则称为f x 的“和谐区间”.(i)m=1时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由;(ii)m=-2时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由.8.计算器是如何计算sin x,cos x,e x,ln x,x等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x=x-x33!+x55!-x77!+⋯,cos x=1-x22!+x44!-x66!+⋯,其中n!=1⋅2⋅3⋅⋯⋅n.英国数学家泰勒(B.Taylor,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得到的sin x和cos x的值也就越精确.例如,我们用前三项计算sin0.9,就得到sin0.9≈0.9-(0.9)3 3!+(0.9)55!≈0.78342075.像这些公式已被编入计算器内,计算器利用足够多的项就可确保其显示值是精确的.试用你的计算器计算sin0.9,并与上述结果进行比较.9.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)已知y =e x 不小于其在点x =0处的3阶泰勒展开式,证明:e x +sin x +cos x ≥2+2x .10.已知函数f x =ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f x 的极小值点.①证明:12<a <1;②求f x 在区间-∞,π 上的零点个数;(2)若a =1,f x x =1-x π 1+x π 1-x 2π 1-x 3π 1+x 3π ⋅⋅⋅1-x n π 1+xn π⋅⋅⋅,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋅⋅⋅+-1 n x 2n2n !+⋅⋅⋅n ∈N * ,证明:112+122+132+⋅⋅⋅+1n 2+⋅⋅⋅=π2611.英国数学家泰勒发现了如下公式:sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1×2×3×4×5×⋯×n .这些公式被编入计算工具,计算工具计算足够多的项就可以确保显示值的精确性.比如,用前三项计算cos0.3,就得到cos0.3≈1-0.322!+0.344!=0.9553375.试用你的计算工具计算cos0.3,并与上述结果比较.四、双空题12.记f (n )(x )为函数f (x )的n 阶导数且f 2 x =f x ,f n x =f n -1 x n ≥3,n ∈N * .若f (n )(x )存在,则称f x n 阶可导.英国数学家泰勒发现:若f (x )在x 0附近n +1阶可导,则可构造T n x =f x 0 +f x 0 1!x -x 0 +f 2 x 0 2!x -x 0 2+⋯+f n x 0 n !x -x 0 n(称为n 次泰勒多项式)来逼近f (x )在x 0附近的函数值.据此计算f (x )=e x 在x 0=0处的3次泰勒多项式为T 3(x )=_________;f (x )=-1x在x 0=-1处的10次泰勒多项式中x 3的系数为_________证明不等式之泰勒展式和拉格朗日中值定理【典型例题】例1.已知函数f (x )=ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f (x )的极小值点.(ⅰ)证明:12<a <1;(ⅱ)求f (x )在区间(-∞,π)上的零点个数;(2)若a =1,f (x )x =1-x π 1+x π 1-x 2π 1+x 2π 1-x 3π 1+x 3π ⋯1-x n π 1+xn π ⋯,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n x 2n (2n )!+⋯,n ∈N *.证明:112+122+132+⋯+1n2+⋯=π26.【解析】解:(1)证明:(ⅰ)由题意得:f (x )=ln a (1-x )e -x +a cos x (a >0),因为x =0为函数f (x )的极值点,所以f (0)=ln a +a =0,令g (x )=ln x +x (x >0),则g (x )=1x+1>0,g (x )在(0,+∞)上单调递增,因为g (1)>0,g 12=ln 12+12=ln e 2<0,所以g (x )=ln x +x (x >0)在12,1上有唯一的零点a ,所以12<a <1;(ⅱ)由(ⅰ)知:ln a =-a ,f (x )=a (sin x -xe -x ),f (x )=a [cos x -(1-x )e -x ],①当x ∈(-∞,0)时,由a >0,-1≤cos x ≤1,1-x >1,e -x >1得:f (x )<0,所以f (x )在(-∞,0)上单调递减,f (x )>f (0)=0,所以f (x )在区间(-∞,0)上不存在零点;②当x ∈(0,π)时,设h (x )=cos x -(1-x )e -x ,则h (x )=(2-x )e -x -sin x ,1°若x ∈0,π2,令m (x )=(2-x )e -x -sin x ,则m (x )=(x -3)e -x-cos x <0,所以m (x )在0,π2 上单调递减,因为m (0)=2>0,m π2 =2-π2 e -π2-1<0;所以存在α∈0,π2,满足m (α)=0,当x ∈(0,α)时,m (x )=h (x )>0,h (x )在(0,α)上单调递增;当x ∈α,π2时,m (x )=h(x )<0,h (x )在α,π2 上单调递减;2°若x ∈π2,2,令φ(x )=(2-x )e -x ,x ∈π2,2 ,则φ (x )=(x -3)e -x <0,所以φ(x)在区间π2,2上单调递减,所以φ(x)<φπ2 =2-π2e-π2<1e,又因为sin x≥sin2=sin(π-2)>sin π6=12,所以h (x)=(2-x)e-x-sin x<0,h(x)在π2,2上单调递减;3°若x∈(2,π),则h (x)=(2-x)e-x-sin x<0,h(x)在(2,π)上单调递减;由1°2°3°得,h(x)在(0,α)上单调递增,h(x)在(α,π)单调递减,因为h(α)>h(0)=0,h(π)=(π-1)e-π-1<0,所以存在β∈(α,π)使得h(β)=0,所以当x∈(0,β)时,f (x)=h(x)>0,f(x)在(0,β)上单调递增,f(x)>f(0)=0,当x∈(β,π)时,f (x)=h(x)<0,f(x)在(β,π)上单调递减,因为f(β)>f(0)=0,f(π)<0,所以f(x)在区间(β,π)上有且只有一个零点;综上,f(x)在区间(-∞,π)上的零点个数为2个;(2)因为sin xx =1-x2π21-x24π21-x232π2⋯1-x2n2π2⋯①对cos x=1-x22!+x44!-x66!+⋯+(-1)n x2n(2n)!+⋯,两边求导得:-sin x=-x1!+x33!-x55!+⋯+(-1)n x2n-1(2n-1)!+⋯,sin x=x1!-x33!+x55!+⋯+(-1)n-1x2n-1(2n-1)!+⋯,所以sin xx=1-x23!+x45!+⋯+(-1)n-1x2n-2(2n-1)!+⋯②比较①②式中x2的系数,得:-13!=-1π2112+122+132+⋯+1n2+⋯所以112+122+132+⋯+1n2+⋯=π26.例2.已知函数f(x)=x2+ln x-ax.(1)求函数f(x)的单调区间;(2)若f(x)≤2x2,对x∈[0,+∞)恒成立,求实数a的取值范围;(3)当a=1时,设g x =xe x2-f x -x-1.若正实数λ1,λ2满足λ1+λ2=1,x1,x2∈(0,+∞)(x1≠x2),证明:g(λ1x1+λ2x2)<λ1g(x1)+λ2g(x2).【解析】解:(1)f′(x)=2x+1x-a=2x2-ax+1x,x>0,△=a2-8,①a≤22时,f′(x)≥0恒成立,故函数f(x)在(0,+∞)递增,无递减区间,②a >22时,f ′(x )>0⇒0<x <a -a 2-84或x >a +a 2-84,故函数f (x )在0,a -a 2-84 ,a +a 2-84,+∞ 递增,在a -a 2-84,a +a 2-84递减,综上,a ≤22时,函数f (x )在(0,+∞)递增,无递减区间,a >22时,函数f (x )在0,a -a 2-84 ,a +a 2-84,+∞ 递增,在a -a 2-84,a +a 2-84递减,(2)f (x )≤2x 2,对x ∈[0,+∞)恒成立,即x ∈[0,+∞)时,a ≥ln xx-x 恒成立,令F (x )=ln x x -x ,(x >0),则F ′(x )=1-ln x -x 2x 2,令G (x )=1-ln x -x 2(x >0),则G ′(x )=-1x-2x <0,∴G (x )在(0,+∞)递减且G (1)=0,∴x ∈(0,1)时,G (x )>0,F ′(x )>0,F (x )递增,当x ∈(1,+∞),G (x )<0,F ′(x )<0,F (x )递减,∴F (x )max =F (1)=-1,综上,a 的范围是[-1,+∞).(3)证明:当a =1时,g (x )=xe -(ln x -x )-x -1=xe x -ln x -x -1=e x -x -1,g ′(x )=e x -1>0(x >0),不妨设0<x 1<x 2,下先证:存在ξ∈(x 1,x 2),使得g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1),构造函数H (x )=g (x )-g (x 1)-g (x 2)-g (x 1)x 2-x 1(x -x 1),显然H (x 1)=H (x 2),且H ′(x )=g ′(x )-)-g (x 2)-g (x 1)x 2-x 1,则由导数的几何意义可知,存在ξ∈(x 1,x 2),使得H ′(ξ)=g ′(ξ)-)-g (x 2)-g (x 1)x 2-x 1=0,即存在ξ∈(x 1,x 2),使得g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1),又g ′(x )=e x -1为增函数,∴g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1)>g ′(x 1)(x 2-x 1),即g (x 2)>g (x 1)+g ′(x 1)(x 2-x 1),设x 3=λ1x 1+λ2x 2(λ1+λ2=0),则x 1-x 3=(1-λ1)x 1-λ2x 2,x 2-x 3=(1-λ2)x 2-λ1x 1,∴g (x 1)>g (x 3)+g ′(x 3)(x 1-x 3)=g (x 3)+g ′(x 3)[(1-λ1)x 1-λ2x 2]①,g (x 2)>g (x 3)+g ′(x 3)(x 2-x 3)=g (x 3)+g ′(x 3)[(1-λ2)x 2-λ1x 1]②,由①×λ1+②×λ2得,λ1g (x 1)+λ2g (x 2)>g (x 3)=g (λ1x 1+λ2x 2),即g (λ1x 1+λ2x 2)<λ1g (x 1)+λ2g (x 2).例3.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x33!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f(x)=m sin x,若区间[a,b]满足当f(x)定义域为[a,b]时,值域也为[a,b],则称为f(x)的“和谐区间”,(ⅰ)m=1时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由;(ⅱ)m=-2时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由.【解析】(1)证明:由已知当x∈0,π2时,sin x>x-x33!,得sin xx>1-x26>1-π226=1-π224>12,所以当x∈0,π2时,sin x x>12.(2)(i)m=1时,假设存在,则由-1≤f(x)≤1知-1≤a<b≤1,注意到1<π2,故[a,b]⊆-π2 ,π2,所以f(x)在[a,b]单调递增,于是f(a)=af(b)=b,即a,b是方程sin x=x的两个不等实根,易知x=±π2不是方程的根,由已知,当x∈0,π2时,sin x<x,令x=-t,则有t∈-π2 ,0时,sin(-t)<-t,即sin t>t,故方程sin x=x只有一个实根0,故f(x)不存在和谐区间.(ii)m=-2时,假设存在,则由-2≤f(x)≤2知-2≤a<b≤2,若a,b≥0,则由[a,b]⊆[0,π),知f(x)≤0,与值域是[a,b]⊆[0,π)矛盾,故不存在和谐区间,同理,a,b≤0时,也不存在,下面讨论a≤0≤b,若b≥π2,则0,π2⊆[a,b],故f(x)最小值为-2,于是a=-2,所以-π2 ,π2⊆[a,b],所以f(x)最大值为2,故b=2,此时f(x)的定义域为[-2,2],值域为[-2,2],符合题意.若b<π2,当a≤-π2时,同理可得a=-2,b=2,舍去,当a>-π2时,f(x)在[a,b]上单调递减,所以a=-2sin bb=-2sin a,于是a+b=-2(sin a+sin b),若b>-a即a+b>0,则sin b>sin(-a),故sin b+sin a>0,-2(sin a+sin b)<0,与a+b=-2(sin a+sin b)矛盾;若b<-a,同理,矛盾,所以b>-a,即b2=sin b,由(1)知当x∈0,π2时,sin x>x2,因为b∈0,π2,所以b=0,从而,a=0,从而a=b,矛盾,综上所述,f(x)有唯一的和谐区间[-2,2].例4.给出以下三个材料:①若函数f(x)可导,我们通常把导函数f (x)的导数叫做f(x)的二阶导数,记作f (x).类似地,二阶导数的导数叫做三阶导数,记作f (x),三阶导数的导数叫做四阶导数⋯⋯一般地,n-1阶导数的导数叫做n阶导数,记作f(n)(x)=[f(n-1)(x)]′,n≥4.②若n∈N*,定义n!=n×(n-1)×(n-2)×⋯×3×2×1.③若函数f(x)在包含x0的某个开区间(a,b)上具有n阶的导数,那么对于任一x∈(a,b)有g(x)=f(x0)+f (x0)1!(x-x0)+f (x0)2!(x-x0)2+f (x0)3!(x-x0)3+⋯+f(n)(x0)n!(x-x0)n,我们将g(x)称为函数f(x)在点x=x0处的n阶泰勒展开式.例如,y=e x在点x=0处的n阶泰勒展开式为1+x+12x2+⋯+1n!x n.根据以上三段材料,完成下面的题目:(1)求出f1(x)=sin x在点x=0处的3阶泰勒展开式g1(x),并直接写出f2(x)=cos x在点x=0处的3阶泰勒展开式g2(x);(2)比较(1)中f1(x)与g1(x)的大小.(3)已知y=e x不小于其在点x=0处的3阶泰勒展开式,证明:x≥0时,e x+sin x+cos x≥2+2x.【解析】(1)解:因为f1(x)=sin x,则f1 (x)=cos x,f1 (x)=-sin x,f1 (x)=-cos x,所以f1 (0)=1,f1 (0)=0,f1 (0)=-1,故g1(x)=sin0+11!(x-0)+02!(x-0)2+-13!(x-0)3,即g1(x)=x-16x3,同理可得,g2(x)=1-12x2;(2)解:由(1)可知,f1(x)=sin x,g1(x)=x-16x3,令h(x)=f1(x)-g1(x)=sin x-x+16x3,则h (x)=cos x-1+12x2,则h (x)=-sin x+x,h (x)=1-cos x≥0,所以h (x)在R上单调递增,又h (0)=0,故当x<0时,h (x)<0,故h (x)单调递减,当x>0时,h (x)>0,故h (x)单调递增,所以h (x)的最小值为h (0)=1-1+0=0,所以h (x)≥0,故h(x)在R上单调递增,又h(0)=0,所以当x<0时,h(x)<0,当x>0时,h(x)>0,综上所述,当x<0时,f1(x)<g1(x);当x=0时,f1(x)=g1(x);当x>0时,f1(x)>g1(x).(3)证明:令φ(x)=f2(x)-g2(x)=cos x-1+12x2,则φ (x)=-sin x+x,所以φ (x)=1-cos x≥0.则φ (x)在R上单调递增,又φ (0)=0,所以φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以φ(x)≥φ(0)=0,即cos x≥1-12x2,因为y=e x在点x=0处的3阶泰勒展开式为:1+x+12x2+16x3,所以e x≥1+x+12x2+16x3,又y=sin x在x=0处的3阶泰勒展开式为:x-16x3,当x≥0时,sin x≥x-16x3,所以当x≥0时,e x+sin x+cos x≥1+x+12x2+16x3+x-16x3+1-12x2≥2+2x,故e x+sin x+cos x≥2+2x(x≥0).例5.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数F(x)表示成F(x)=d(x-b)(x-c) (a-b)(a-c)+e(x-a)(x-c)(b-a)(b-c)+f(x-a)(x-b)(c-a)(c-b)的形式.(1)若a=1,b=2,c=3,d=4,e<f,把F(x)的二次项系数表示成关于f的函数G(f),并求G(f)的值域(此处视e为给定的常数,答案用e表示);(2)若a<b<c,d>0,e<0,f>0,求证:a+b<d(b2-c2)+e(c2-a2)+f(a2-b2)d(b-c)+e(c-a)+f(a-b)<b+c.【解析】(1)解:由题意G(f)=d(a-b)(a-c)+e(b-a)(b-c)+f(c-a)(c-b)=4-1×(-2)+e1×(-1)+f2×1=12f-e+2,又f>e,所以G(f)>12e-e+2=-12e+2,当e≤4时,G(f)>-12e+2≥0,则G(f)的值域是-12e+2,+∞;当e>4时,-12e+2<0,所以G(f)的值域是-12e+2,0∪(0,+∞).(2)证明:因为a<b<c,d>0,e<0,f>0,所以d(b-c)+e(c-a)+f(a-b)<0,(a+b)[d(b-c)+e(c-a)+f(a-b)]=d(b-c)(a+b)+e(c-a)(a+b)+f(a2-b2) =d(b-c)([(b+c)+(a-c)]+e(c-a)[(c+a)+(b-c)]+f(a2-b2)=d(b2-c2)+e(c2-a2)+f(a2-b2)+d(b-c)(a-c)+e(c-a)(b-c),因为a<b<c,d>0,e<0,f>0,所以d(b-c)(a-c)>0,e(c-a)(b-c)>0,所以(a+b)[d(b-c)+e(c-a)+f(a-b)]>d(b2-c2)+e(c2-a2)+f(a2-b2),所以a+b<d(b2-c2)+e(c2-a2)+f(a2-b2) d(b-c)+e(c-a)+f(a-b),(b+c)[d(b-c)+e(c-a)+f(a-b)]=d(b2-c2)+e(c-a)(b+c)+f(a-b)(b+c) =d(b2-c2)+e(c-a)(c-a+b-a)+f(a-b)(a+b+c-a)=d(b2-c2)+e(c2-a2)+f(a2-b2)+e(c-a)(b-a)+f(a-b)(c-a),因为a<b<c,d>0,e<0,f>0,所以e(c-a)(b-a)<0,f(a-b)(c-a)<0,所以(b+c)[d(b-c)+e(c-a)+f(a-b)]<d(b2-c2)+e(c2-a2)+f(a2-b2),所以b+c>d(b2-c2)+e(c2-a2)+f(a2-b2) d(b-c)+e(c-a)+f(a-b),综上,原不等式成立.例6.用拉格朗日中值定理证明不等式:x1+x<ln(1+x)<x(x>0).【解析】证明:设g(t)=ln t,t∈(a,b),则g(x)符合拉格朗日中值定理的条件,即存在t0∈(a,b),使g′(t0)=g(b)-g(a) b-a,因为g′(t)=1t,由t∈(a,b),0<a<b,可知g ′(t )∈1b ,1a,b -a >0,即1b <g ′t 0)=g (b )-g (a )b -a <1a ,可得1b <g (b )-g (a )b -a =ln b -ln a b -a<1a ,即有b -a b<ln b a <b -aa ,令b a=1+x ,可得x =ba-1,即有x1+x<ln (1+x )<x (x >0).例7.已知函数f (x )=mx 3+nx 2(m 、n ∈R ,m ≠0)的图象在(2,f (2))处的切线与x 轴平行.(1)求n ,m 的关系式并求f (x )的单调减区间;(2)证明:对任意实数0<x 1<x 2<1,关于x 的方程:f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解;(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f (x )是在闭区间[a ,b ]上连续不断的函数,且在区间(a ,b )内导数都存在,则在(a ,b )内至少存在一点x 0,使得f (x 0)=f (b )-f (a )b -a.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:当0<a <b 时,b -a b <ln b a <b -a a (可不用证明函数的连续性和可导性).【解析】解:(1)因为f (x )=3mx 2+2nx ,------(1分)由已知有f (2)=0,所以3m +n =0即n =-3m ------(2分)即f (x )=3mx 2-6mx ,由f (x )>0知mx (x -2)>0.当m >0时得x <0或x >2,f (x )的减区间为(0,2);-----(3分)当m <0时得:0<x <2,f (x )的减区间为(-∞,0)和(2,+∞);-----(4分)综上所述:当m >0时,f (x )的减区间为(0,2);当m <0时,f (x )的减区间为(-∞,0)和(2,+∞);-----(5分)(2)∵f (x 2)-f (x 1)x 2-x 1=m (x 21+x 22+x 1x 2-3x 1-3x 2),------------(6分)∴f ′(x )-f (x 2)-f (x 1)x 2-x 1=0,可化为3x 2-6x -x 21-x 22-x 1x 2+3x 1+3x 2=0,令h (x )=3x 2-6x -x 21-x 22-x 1x 2+3x 1+3x 2----(7分)则h (x 1)=(x 1-x 2)(2x 1+x 2-3),h (x 2)=(x 2-x 1)(x 1+2x 2-3),即h (x 1)h (x 2)=-(x 1-x 2)2(2x 1+x 2-3)(x 1+2x 2-3)又因为0<x 1<x 2<1,所以(2x 1+x 2-3)<0,(x 1+2x 2-3)<0,即h (x 1)h (x 2)<0,-----------(8分)故h (x )=0在区间(x 1,x 2)内必有解,即关于x 的方程f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解-----(9分)(3)令g (x )=ln x ,x ∈(a ,b ),-----------(10分)则g (x )符合拉格朗日中值定理的条件,即存在x 0∈(a ,b ),使g (x 0)=g (b )-g (a )b -a =ln b -ln ab -a-----------(11分)因为g ′(x )=1x ,由x ∈(a ,b ),0<a <b 可知g ′(x )∈1b ,1a,b -a >0-----(12分)即1b <g ′(x 0)=g (b )-g (a )b -a =ln b -ln a b -a =ln bab -a<1a ,∴b -a b<ln b a <b -a a -----(14分)例8.已知f (x )=23x 3-2x 2+cx +4,g (x )=e x -e 2-x +f (x ),(1)若f (x )在x =1+2处取得极值,试求c 的值和f (x )的单调增区间;(2)如图所示,若函数y =f (x )的图象在[a ,b ]连续光滑,试猜想拉格朗日中值定理:即一定存在c ∈(a ,b ),使得f (c )=f (b )-f (a )b -a,利用这条性质证明:函数y =g (x )图象上任意两点的连线斜率不小于2e -4.xyabcA By =f x【解析】解:(1)f ′(x )=2x 2-4x +c ,(1分)依题意,有f (1+2)=0,即c =-2(1+2)2+4(1+2)=-2.(2分)∴f (x )=23x 3-2x 2-2x +4,f ′(x )=2x 2-4x -2.令f ′(x )>0,得x <1-2或x >1+2,(5分)从而f (x )的单调增区间为:(-∞,1-2]及[1+2,+∞);(6分)(2)f (c )=f (b )-f (a )b -a;g (x )=e x -e 2-x +f (x )=e x -e 2-x +23x 3-2x 2-2x +4,(7分)g ′(x )=e x+e2-x+2x 2-4x -2(9分)=e x+e 2ex +2(x -1)2-4≥2e x ⋅e 2e x +2⋅0-4=2e -4.(12分)由(2)知,对于函数y =g (x )图象上任意两点A 、B ,在A 、B 之间一定存在一点C (c ,g ′(c )),使得g ′(c )=K AB ,又g ′(x )≥2e -4,故有K AB =g ′(c )≥2e -4,证毕.(14分)【同步练习】一、单选题1.十八世纪早期,英国数学家泰勒发现了公式sin x =x -x 33!+x 55!-x 77!+⋯+-1 n -1x 2n -12n -1 !+⋯,(其中x ∈R ,n ∈N *,n !=1×2×3×⋯×n ,0!=1),现用上述公式求1-12!+14!-16!+⋯+-1 n -112n -2 !+⋯的值,下列选项中与该值最接近的是()A.sin57°B.sin36°C.sin33°D.sin30°【答案】C【解析】因为sin x =x -x 33!+x 55!-x 77!+⋯+(-1)n -1x 2n -1(2n -1)!+⋯,则(sin x )=cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n -1x 2n -2(2n -2)!+⋯,当x =1时,则有cos1=1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯,又cos1=sin π2-1 ,则1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯=sin π2-1 ≈sin0.57=sin 0.57×180π °≈sin32.7°≈sin33°,故选∶C .2.公元1715年英国数学家布鲁克·泰在他的著作中陈述了“泰勒公式”,如果满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值构建一个多项式来近似表达这个函数.泰勒公式将一些复杂函数近似地表示为简单的多项式函数,使得它成为分析和研究许多数学问题的有力工具,例如:e x=+∞n =0x nn !=x 00!+x 11!+x 22!+x 33!+⋯+x n n !+⋯,其中x ∈R ,n ∈N *,试用上述公式估计e 的近似值为(精确到0.001)()A.1.647 B.1.649 C.1.645 D.1.646【答案】B【解析】由题意可知,结果只需精确到0.001即可,令x =0.5,取前6项可得:e =+∞n =00.5n n ! ≈5n =00.5n n ! =0.500!+0.511!+0.522!+0.533!+0.544!+0.555!=1+0.5+0.252+0.1256+0.062524+0.03125120≈1.649所以e 的近似值为1.649,故选:B .3.计算器是如何计算sin x ,cos x ,πx ,ln x ,x 等函数值的呢?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1×2×⋯×n ,英国数学家泰勒发现了这些公式,可以看出,右边的项用得越多,计算得出的sin x 和cos x 的值也就越精确.运用上述思想,可得到sin π2+1 的近似值为()A.0.50 B.0.52C.0.54D.0.56【答案】C【解析】由题意可得,sin π2+1=cos1,故cos1=1-122!+144!-166!+⋯=1-12+124-1720+⋯≈1-0.5+0.041-0.001+⋯=0.54.故选:C .二、填空题4.英国数学家泰勒(1685-1731)以发现泰勒公式和泰勒级数闻名于世,由泰勒公式,我们得到e =1+11!+12!+13!+⋯+1n !+e θ(n +1)!(其中e 为自然对数的底数,0<θ<1,n !=n ×n -1 ×n -2 ×...×2×1),其拉格朗日余项是R n =e θ(n +1)!.可以看出,右边的项用得越多,计算得到的e 的近似值也就越精确.若3(n +1)!近似地表示e 的泰勒公式的拉格朗日余项R n ,R n 不超过11000时,正整数n 的最小值是_____【答案】6【解析】依题意得3n +1 !≤11000,即n +1 !≥3000,5+1 !=6×5×4×3×2×1=720<3000,6+1 !=7×6×5×4×3×2×1=5040>3000,所以n 的最小值是6.故答案为:6三、解答题5.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)证明:e x +sin x +cos x ≥2+2x .【解析】(1)∵f 1x =cos x ,f 2x =-sin x ,f 3x =-cos x ,∴f 10 =1,f 20 =0,f 30 =-1,∴g 1x =sin0+11!x -0 +02!x -0 2+-13!x -0 3,即g 1x =x -16x 3;同理可得:g 2x =1-12x 2;(2)由(1)知:f 1x =sin x ,g 1x =x -16x 3,令h x =f 1x -g 1x =sin x -x +16x 3,则h x =cos x -1+12x 2,∴h x =-sin x +x ,h x =1-cos x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0,h x 单调递减;当x ∈0,+∞ 时,h x >0,h x 单调递增;∴h x min =h 0 =1-1+0=0,∴h x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0;当x ∈0,+∞ 时,h x >0;综上所述:当x <0时,f 1x <g 1x ;当x =0时,f 1x =g 1x ;当x >0时,f 1x >g 1x ;(3)令φx =f 2x -g 2x =cos x -1+12x 2,则φ x =-sin x +x ,∴φ x =1-cos x ≥0,∴φ x 在R 上单调递增,又φ 0 =0,∴φx 在-∞,0 上单调递减,在0,+∞ 上单调递增,∴φx ≥φ0 =0,即cos x ≥1-12x 2;∵y =e x 在点x =0处的4阶泰勒展开式为:1+x +12x 2+16x 3+124x 4,∴e x =1+x +12x 2+16x 3+124x 4≥1+x +12x 2+16x 3,当且仅当x =0时取等号,①当x ≥0时,由(2)可知,sin x ≥x -16x 3,当且仅当x =0时取等号,所以e x +sin x +cos x ≥1+x +12x 2+16x 3 +x -16x 3 +1-12x 2 =2+2x ;②当x<0时,设F x =e x+sin x+cos x-2-2x,F0 =0,F x =e x+cos x-sin x-2=e x+2cos x+π4-2,F x =e x-sin x-cos x,当x∈-1,0,由(2)可知sin x<x-16x3,所以,F x =e x-sin x-cos x>1+x+12x2+16x3+16x3-x-cos x=1-cos x+16x23+2x>0,即有F x <F 0 =0;当x∈-∞,-1时,F x =e x+2cos x+π4-2<1e+2-2<12+2-2<0,所以,x<0时,F x 单调递减,从而F x >F0 =0,即e x+sin x+cos x>2+2x.综上所述:e x+sin x+cos x≥2+2x.6.在高等数学中,我们将y=f x 在x=x0处可以用一个多项式函数近似表示,具体形式为:f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),以上公式我们称为函数f x 在x=x0处的泰勒展开式.(1)分别求e x,sin x,cos x在x=0处的泰勒展开式;(2)若上述泰勒展开式中的x可以推广至复数域,试证明:e iπ+1=0.(其中i为虚数单位);(3)若∀x∈0,32,e a sin x>x+1恒成立,求a的范围.(参考数据ln52≈0.9)【解析】(1)因为函数f x 在x=x0处的泰勒展开式为f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),所以e x,sin x,cos x在x=0处的泰勒展开式分别为:e x=1+x+12!x2+⋯+1n!x n+⋯,sin x=x-13!x3+15!x5+⋯+(-1)n-1(2n-1)!x2n-1+⋯,cos x=1-12!x2+14!x4+⋯+(-1)n(2n)!x2n+⋯;(2)证明:把e x在x=0处的泰勒展开式中的x替换为ix,可得e ix=1+(ix)+12!(ix)2+13!(ix)3+14!(ix)4+⋯+1n!(ix)n+⋯=1-12!x2+14!x4+⋯+(-1)n(2n)!x2n+⋯+i⋅x-13!x3+15!x5+⋯+(-1)n-1(2n-1)!x2n-1+⋯=cos x+i⋅sin x,所以e iπ=cosπ+i⋅sinπ=-1,即e iπ+1=0;(3)由sin x在x=0处的泰勒展开式,先证∀x∈0,32,sin x>x-16x3,令f(x)=sin x-x+16x3,f′(x)=cos x-1+12x2,f′′(x)=x-sin x,f (x)=1-cos x,易知f (x)>0,所以f′′(x)在0,32上单调递增,所以f′′(x)>f′′(0)=0,所以f′(x)在0,3 2上单调递增,所以f′(x)>f′(0)=0,所以f(x)在0,3 2上单调递增,所以f(x)>f(0)=0,再令g(x)=x-16x3-ln(x+1),x∈0,32,易得g′(x)=-12x(x-1)(x+2)x+1,所以g(x)在(0,1)上单调递增,在1,3 2上单调递减,而g(0)=0,g32=1516-ln52>0,所以∀x∈0,3 2,g(x)>0恒成立,当a≥1时,a sin x≥sin x>x-16x3>ln(x+1) ,所以e a sin x>x+1成立,当a<1时,令h(x)=a sin x-ln(x+1),x∈0,3 2,易求得h (0)=a-1<0,所以必存在一个区间(0,m),使得h(x)在(0,m)上单调递减,所以x∈(0,m)时,h(x)<h(0)=0,不符合题意.综上所述,a≥1.7.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x3 3!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f x =m sin x,若区间a,b满足当f x 定义域为a,b时,值域也为a,b,则称为f x 的“和谐区间”.(i)m=1时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由;(ii)m=-2时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由.【解析】(1)由已知当x∈0,π2时,sin x>x-x33!,得sin x x >1-x 26>1-π226=1-π224>12,所以当x ∈0,π2 时,sin x x >12.(2)(i )m =1时,假设存在,则由-1≤f x ≤1知-1≤a <b ≤1,注意到1<π2,故a ,b ⊆-π2,π2 ,所以f x 在a ,b 单调递增,于是f a =af b =b,即a ,b 是方程sin x =x 的两个不等实根,易知x =±π2不是方程的根,由已知,当x ∈0,π2时,sin x <x ,令x =-t ,则有t ∈-π2,0 时,sin -t <-t ,即sin t >t ,故方程sin x =x 只有一个实根0,故f x 不存在“和谐区间”.(ii )m =-2时,假设存在,则由-2≤f x ≤2知-2≤a <b ≤2,若a ,b ≥0,则由a ,b ⊆0,π ,知f x ≤0,与值域是a ,b ⊆0,π 矛盾,故不存在“和谐区间”,同理,a ,b ≤0时,也不存在,下面讨论a ≤0≤b ,若b ≥π2,则0,π2⊆a ,b ,故f x 最小值为-2,于是a =-2,所以-π2,π2⊆a ,b ,所以f x 最大值为2,故b =2,此时f x 的定义域为-2,2 ,值域为-2,2 ,符合题意.若b <π2,当a ≤-π2时,同理可得a =-2,b =2,舍去,当a >-π2时,f x 在a ,b 上单调递减,所以a =-2sinb b =-2sin a ,于是a +b =-2sin a +sin b ,若b >-a 即a +b >0,则sin b >sin -a ,故sin b +sin a >0,-2sin a +sin b <0,与a +b =-2sin a +sin b 矛盾;若b <-a ,同理,矛盾,所以b =-a ,即b2=sin b ,由(1)知当x ∈0,π2 时,sin x >x 2,因为b ∈0,π2,所以b =0,从而,a =0,从而a =b ,矛盾,综上所述,f x 有唯一的“和谐区间”-2,2 .8.计算器是如何计算sin x ,cos x ,e x ,ln x ,x 等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1⋅2⋅3⋅⋯⋅n .英国数学家泰勒(B .Taylor ,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得到的sin x 和cos x 的值也就越精确.例如,我们用前三项计算sin0.9,就得到sin0.9≈0.9-(0.9)33!+(0.9)55!≈0.78342075.像这些公式已被编入计算器内,计算器利用足够多的项就可确保其显示值是精确的.试用你的计算器计算sin0.9,并与上述结果进行比较.【解析】用计算器计算sin0.9得sin0.9=0.783326909627,和数值0.78342075比较发现,通过sin0.9≈0.9-(0.9)33!+(0.9)55!≈0.78342075计算的答案只能精确到小数点后第3位.9.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)已知y =e x 不小于其在点x =0处的3阶泰勒展开式,证明:e x +sin x +cos x ≥2+2x .【解析】(1)∵f 1x =cos x ,f 2x =-sin x ,f 3x =-cos x ,∴f 10 =1,f 20 =0,f 30 =-1,∴g 1x =sin0+11!x -0 +02!x -0 2+-13!x -0 3,即g 1x =x -16x 3;。
巧用泰勒展开式解高考中函数不等式相关问题精选全文完整版
2014/12DAO HANGf(x)=f(x0)+f1(x0)1!(x-x0)+…+f n(x0)n!(x-x0)n+o((x-x0)n)(1)这里o((x-x0)n)为皮亚诺型余项,称(1)式为函数f(x)在点x0的泰勒公式。
当x0=0时,(1)式变成f(x)=f(0)+f1(0)1!x+f2(0)2!x2+…+f n(0)n! x n+0(x n)称此式为(带有皮亚诺余项的)麦克劳林公式。
泰勒公式形式2[1]:若函数f(x)在含有x0的某区间(a,b)内存在n+1阶导函数,则有f(x)=f(x0)+f1(x0)1!(x-x0)+…+f n(x0)n!(x-x0)n+R n(x)(2)这里R n(x)=f n+1(ξ)(n+1)!(x-x0)n+1(ξ在x0与x之间)为拉格朗日余项,称(2)式为函数f(x)在点x0的泰勒公式。
当x0=0时,(2)式变成f(x)=f(0)+f1(0)1!x+f2(0)2!x2+…+f n(0)n! x n+R n(x)称此式为(带有拉格朗日余项的)麦克劳林公式。
一、初步探究例1、(2012年辽宁高考数学理科第12题)若x∈[0,+不等式恒成立的是()1+x+x2(B)11+x√≤1-12x+14x2≥1-12x2(D)ln(1+x)≥x-18x2高考的标准答案是利用导数公式,通过函数的单来证明不等式恒成立。
f(x)=cosx-(1-12x2)=cosx-1+12x2′(x)=-sinx+x,所以g′(x)=-cosx+1≥0x∈[0,+∞)时,g(x)为增函数,所以g(x)=f′(x)≥g(0)=0≥f(0)=0∴cosx-(1-12x2)≥0即cosx≥1-12x2,:由泰勒展开式知cosx=1-x22!+x44!-…+(-1)n2n)缩后易得不等式cosx≥1-12x2恒成立。
2013年全国卷新课标Ⅱ理科第21题)已知函数x.(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0。
泰勒公式练习题
泰勒公式练习题一、选择题1. 泰勒公式的中心思想是将函数在某一点展开成无穷级数,以下哪个选项不是泰勒公式的特点?A. 展开点可以是函数的零点B. 展开形式是多项式C. 展开的级数是唯一的D. 展开点可以是任意实数2. 函数f(x)=e^x在x=0处的麦克劳林展开式是:A. 1+x+x^2/2!+x^3/3!+...B. 1-x+x^2-x^3+...C. 1+x-x^2+x^3-...D. 1+2x+3x^2+4x^3+...3. 以下哪个函数在x=0处的泰勒展开式是f(x)=x+x^2+x^3+...+x^n+...?A. f(x)=sin(x)B. f(x)=cos(x)C. f(x)=e^xD. f(x)=ln(1+x)二、填空题4. 函数f(x)=ln(1+x)在x=0处的泰勒展开式是______。
5. 函数f(x)=sin(x)在x=0处的泰勒展开式是______。
三、简答题6. 请简述泰勒公式与麦克劳林公式的区别。
四、计算题7. 求函数f(x)=cos(x)在x=0处的泰勒展开式,并计算其前三项。
8. 给定函数f(x)=x^2e^x,求其在x=0处的泰勒展开式,并计算其前三项。
五、证明题9. 证明函数f(x)=e^x在x=0处的泰勒展开式是1+x+x^2/2!+x^3/3!+...。
10. 证明函数f(x)=sin(x)在x=0处的泰勒展开式是x-x^3/3!+x^5/5!-...。
六、应用题11. 某工厂生产的产品数量随时间变化的函数为f(t)=100t^3-50t^2+10t+5,求在t=1时,利用泰勒公式估计f(1.1)的值。
12. 已知函数f(x)在x=0处的导数为1,二阶导数为2,三阶导数为3,四阶导数为4,求f(x)在x=0处的泰勒展开式,并计算其前四项。
七、讨论题13. 讨论泰勒公式在数学分析中的应用及其重要性。
八、综合题14. 给定函数f(x)=ln(1+x),求其在x=0处的泰勒展开式,并利用该展开式近似计算ln(1.1)的值。
泰勒公式在做等价替换时如何确定阶数
在求极限时,泰勒公式可以说是最牛叉的杀手锏了,理论上来说,只要运用得当,没有搞不定的极限。
但是好多同学在应用泰勒公式时,都弄不清楚应该展开到第几阶比较合适。
今天就来详细说一说这个问题。
还是用具体的题目来抛砖引玉吧。
下面是四道例题。
例1 求极限30(2)2lim sin x x e x x x→-++ 例2 求极限0sin (1)lim sin tan x x e x x x x x x→-+ 例3 已知当x 趋近于0时,22cos x x e--与b ax 为等价无穷小,求a,b例4 0sin tan limx x x x →-首先做个声明,上述有的题目除了可以用泰勒公式来做外还有其他方法,但本文探讨的是泰勒公式的用法,因此规定只用泰勒公式来做。
====================废话不多说,我们直接说重点。
一、泰勒公式求极限时,在分式中应遵循泰勒展开后,分子的阶数与分母同阶,或者比分母至少多一阶。
为什么说要至少多一阶呢,是因为有时候确实保证不了同阶嘛。
对应的题目就是例1与例2。
在例1中,分母可以做等价无穷小替换,为3x ,也就是说分母的阶数为3。
那么分子如果将x e 泰勒展开,就应该展开的第3阶。
如下: ()233126xx x e x o x =++++ 那么具体做法如下:()30233303330(2)2lim sin 1(2)226lim 1123lim 16x x x x e x x xx x x o x x x xx x x→→→-++⎛⎫++++-++ ⎪⎝⎭=-==----------------------------------在例2中,分母同样可以等价无穷小替换为3x 。
那么分子中将x e 和sinx 做泰勒展开,理应展开到第3阶即可。
如下:()233126xx x e x o x =++++ ()33sin 6x x x o x =-+ 但是我们注意到分子中是x e 与sinx 相乘,而sinx 展开的最低是以x 开始的,也就是说x e 展开后的任何一项与之相乘都会升高阶数,因此我们只需要将x e 展开到2阶级即可。
泰勒公式练习题
泰勒公式练习题泰勒公式练习题泰勒公式是微积分中的重要概念,它可以将一个函数在某一点附近的近似值表示为该点处的函数值及其各阶导数的线性组合。
本文将通过一些练习题来帮助读者更好地理解和应用泰勒公式。
1. 练习题一:计算函数在给定点的泰勒展开式考虑函数f(x) = sin(x),我们要计算它在x = 0处的泰勒展开式。
根据泰勒公式,我们可以得到:f(x) = f(0) + f'(0)x + f''(0)x^2/2! + f'''(0)x^3/3! + ...由于f(x) = sin(x),我们可以计算出f(0) = 0,f'(x) = cos(x),f''(x) = -sin(x),f'''(x) = -cos(x),以此类推。
将这些值代入泰勒展开式中,我们可以得到:f(x) = 0 + cos(0)x - sin(0)x^2/2! - cos(0)x^3/3! + ...简化后可得:f(x) = x - x^3/3! + x^5/5! - x^7/7! + ...这就是函数sin(x)在x = 0处的泰勒展开式。
2. 练习题二:计算函数在给定点的泰勒展开式的近似值考虑函数f(x) = ln(x),我们要计算它在x = 1处的泰勒展开式的近似值。
根据泰勒公式,我们有:f(x) = f(1) + f'(1)(x-1) + f''(1)(x-1)^2/2! + f'''(1)(x-1)^3/3! + ...由于f(x) = ln(x),我们可以计算出f(1) = 0,f'(x) = 1/x,f''(x) = -1/x^2,f'''(x) =2/x^3,以此类推。
将这些值代入泰勒展开式中,我们可以得到:f(x) = 0 + 1/(1)(x-1) - 1/(1^2)(x-1)^2/2! + 2/(1^3)(x-1)^3/3! + ...简化后可得:f(x) = (x-1) - (x-1)^2/2 + (x-1)^3/3 - ...这就是函数ln(x)在x = 1处的泰勒展开式的近似值。
泰勒公式及方向导数梯度习题
泰勒公式及方向导数、梯度习题 1. 将下列函数在指定点展成泰勒公式(1)xyz z y x z y x f 3),,(333-++=,在点(1, 1, 1); (2))1ln(),(y x y x f ++=,在点(0, 0)。
2. 设1|||,|0<<<y x ,试给出yx -+11arctan 的二次近似多项式。
3. 书上习题8 35.4. 求函数xyz z xy u -+=32在点(1,1,2)处沿方向l (其方向角分别为60°,45°,60°)的方向导数。
5. 设函数222222by ax cz u --=,求它在点(a , b , c )处的梯度。
1.将下列函数在指定点展成泰勒公式(1)xyz z y x z y x f 3),,(333-++=,在点(1, 1, 1);0)1,1,1(=f ,0|)33(|)1,1,1(2)1,1,1(=-='yz x f x, 0|)33(|)1,1,1(2)1,1,1(=-='xz yx f y , 0|)33(|)1,1,1(2)1,1,1(=-='xy z f z ,6|6|)1,1,1()1,1,1(==''x f xx,6|6|)1,1,1()1,1,1(==''y f yy 6|6|)1,1,1()1,1,1(==''z f zz3|)3(|)1,1,1()1,1,1(-=-=''z f xy3|)3(|)1,1,1()1,1,1(-=-=''y f xz3|)3(|)1,1,1()1,1,1(-=-=''x f yz 6|)1,1,1(33=∂∂x f ,6|)1,1,1(33=∂∂yf ,6|)1,1,1(33=∂∂zf, 3|)1,1,1(3-=∂∂∂∂z y x f 2323yx f yx f ∂∂∂=∂∂∂2323zx f zx f ∂∂∂=∂∂∂=02323=∂∂∂=∂∂∂=zy f zy f∴ 222)1(3)1(3)1(3),,(-+-+-=z y x z y x f )1)(1(3)1)(1(3)1)(1(3---------z y z x y x)1)(1)(1(3)1()1()1(333-----+-+-+z y x z y x(2))1ln(),(y x y x f ++=,在点(0, 0)。
泰勒公式证明等式例题
泰勒公式证明等式例题泰勒公式是高等数学中的一个重要内容,在证明等式方面有着广泛的应用。
下面咱们就通过一些例题来深入探讨一下泰勒公式在证明等式中的神奇之处。
先来说说泰勒公式是啥。
简单来讲,泰勒公式就是用多项式来近似表示一个函数。
比如对于一个函数 f(x),在某个点 x = a 处,它的泰勒展开式就是一系列幂函数的和。
咱们来看一个具体的例题,证明当 x 趋近于 0 时,sin x - x + x³ / 6 = o(x³) (这里 o(x³) 表示比 x³更高阶的无穷小)。
要证明这个等式,咱们就先写出 sin x 的泰勒展开式:sin x = x - x³ / 6 + x⁵ / 120 -... 。
然后把这个展开式代入到咱们要证明的式子中,得到:\[\begin{align*}&sin x - x + x³ / 6 \\=&(x - x³ / 6 + x⁵ / 120 -...) - x + x³ / 6 \\=&x - x³ / 6 + x⁵ / 120 -... - x + x³ / 6 \\=&x⁵ / 120 -...\end{align*}\]因为当 x 趋近于 0 时,x⁵ / 120 以及后面的更高次项都是比 x³更高阶的无穷小,所以就证明了 sin x - x + x³ / 6 = o(x³) 。
再来看另一个例子,证明当 x 趋近于 0 时,e^x - 1 - x - x² / 2 = o(x²) 。
e^x 的泰勒展开式是:e^x = 1 + x + x² / 2 + x³ / 6 +... 。
代入式子得:\[\begin{align*}&e^x - 1 - x - x² / 2 \\=&(1 + x + x² / 2 + x³ / 6 +...) - 1 - x - x² / 2 \\=&x³ / 6 +...\end{align*}\]同样,当 x 趋近于 0 时,x³ / 6 以及后面的项都是比 x²更高阶的无穷小,从而证明了等式。
泰勒公式及其应用典型例题
泰勒公式及其应用常用近似公式八1 +工,血mx(|"充分小),将复杂函数用简单的一次多项式函数近似地表示,这是一个进步。
当然这种近似表示式还较粗糙(尤其当廿1较大时),从下图可看出。
上述近似表达式至少可在下述两个方面进行改进:1、提高近似程度,其可能的途径是提高多项式的次数。
2、任何一种近似,应告诉它的误差,否则,使用者“ 心中不安”。
将上述两个想法作进一步地数学化:对复杂函数J3),想找多项式稣丈)来近似表示它。
自然地,我们希望必)尽可能多地反映出函数/(幻所具有的性态一一如:在某点处的值与导数值;我们还关心玖(")的形式如何确定;外(*)近似所产生的误差"【问题一】设/(工)在含工口的开区间内具有直到打斗1阶的导数,能否找出一个关于3■此)的n次多项式乩⑴二劣斗%(工-工°)+%3」工J +…+ %3 —工Q”①且pf它)*由6)3 = 0,1,…M)近似""•.)?【问题二】若问题一的解存在,其误差嵌)=了3)5工)的表达式是什么?一、【求解问题一】问题一的求解就是确定多项式的系数口D,口1,…*%。
次有■ J +仃1S -工u )斗占L )' +…+ &方-%)日•■勾=入(勺)P;(K)=及"*(应・^0 ) + 3^0-立淀 4 …+ ^a K(x -z0)M'}二^1 = P;(x0)PZ fx)= 2L% + 3 2% 3一利)+ 4 3 / (上一沔沪+ …+为伽一1)冬•知广’二2・y = p;(Q或@)=3 2 1 %+432 龟&-毛)+5 4 3 % Q-母)'+ …+叩(n-1)(n-T)(r-Jt^T-3二3,2,1,知=尸怜。
)上述工整且有规律的求系数过程,不难归纳出:一般地,有用(上―1)0 —•% = p 渲(气)=从而,得到系数计算公式:% =广3。
泰勒公式练习题
f (b) 0, 试证明存在一点 (a , b), 使得
证 分别在a点与b点应用泰勒公式 ,有
1 2 f ( a ) f ( a )( x a ) f ( )( x a ) f ( x) 1 2! 1 f (a ) f (1 ) ( x a )2 , (a 1 x ) 2!
( n 1 )
其中在x与b之间.
因为 f (b) f (b) f (b) f ( n 1) (b) 0, 所以
f ( x)
f
( n)
( ) ( ) n n f (a ) f ( a b ) , ( x b) , n! n!
( n)
又f (a ) 0, (a b)n 0, 故f ( n ) ( ) 0, (a , b).
上具有三阶连续在闭区间设函数内至少存在一点区间介于其中由麦克劳林公式有证明在开导数从而从而由介值性定理和最大值上必有最小值计算cosx的近似值使其精确到0005试确定x的适用范围
泰勒公式的应用 例1 证明 证
1 x (1 x 1 1 1 1 ( 1) x 2 2 2! 2 2 5 3 1 1 1 1 ( 1)( 2)(1 x ) 2 x 3! 2 2 2 5 3 x x2 1 (0 1) 1 (1 x ) 2 x 2 8 16 2 x x ( 1)( n) n 1 n 1 (0 1) 0 ). 1 x 1 (1 ( xx ) x (n 1) ! 2 8
4
4
4
例3
| f ( x ) | a , 设f ( x )在[0, 1]上有二阶导数,
泰勒展开练习题应用泰勒展开计算函数的近似值
泰勒展开练习题应用泰勒展开计算函数的近似值泰勒展开练习题:应用泰勒展开计算函数的近似值泰勒展开是微积分中常用的一种近似计算方法,它以泰勒级数为基础,将一个函数在某个点附近展开成一系列的项,从而可以用这些项的和来近似表示原函数。
本文将通过具体的练习题来介绍泰勒展开的应用,展示如何利用泰勒展开计算函数的近似值。
1. 练习题一:计算sin(x)的近似值我们以函数sin(x)为例,利用泰勒展开来计算它在某个点附近的近似值。
一般情况下,我们选择以x=0为展开点,泰勒展开公式为:sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...如果我们希望计算sin(0.1)的近似值,我们可以根据公式将前面几项计算出来,并将它们相加得到近似值。
2. 练习题二:计算e^x的近似值我们再来看一个计算指数函数e^x的近似值的例子。
e^x的泰勒展开公式为:e^x = 1 + x + x^2/2! + x^3/3! + x^4/4! + ...如果我们希望计算e^1的近似值,我们可以根据公式将前面几项计算出来,并将它们相加得到近似值。
3. 练习题三:计算ln(x+1)的近似值最后,我们来看一下如何计算对数函数ln(x+1)的近似值。
ln(x+1)的泰勒展开公式为:ln(x+1) = x - x^2/2 + x^3/3 - x^4/4 + ...如果我们希望计算ln(1.5)的近似值,我们可以根据公式将前面几项计算出来,并将它们相加得到近似值。
通过以上的练习题,我们可以看到,利用泰勒展开可以在一定程度上近似计算各种函数的值。
当展开点选取得当,并且计算所需的项数足够多时,我们可以得到较为准确的近似结果。
需要注意的是,泰勒展开只在展开点附近有效,越远离展开点,近似结果的准确度越低。
综上所述,泰勒展开是一种有效的函数近似计算方法。
通过选择合适的展开点以及计算所需的项数,我们可以利用泰勒展开来计算各种函数的近似值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰勒公式及其应用等价无穷小在求函数极限中的应用及推广泰勒公式及其应用1 引言泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 2 预备知识定义2.1]1[ 若函数f 在0x 存在n 阶导数,则有'''200000()()()()()()1!2!f x f x f x f x x x x x =+-+-+()000()()(())!n n n f x x x o x x n +-+-(1)这里))((0n x x o -为佩亚诺型余项,称(1)f 在点0x 的泰勒公式.当0x =0时,(1)式变成)(!)0(!2)0(!1)0()0()()(2'''n nn x o x n f x f x f f x f +++++= ,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2]2[ 若函数 f 在0x 某邻域内为存在直至 1+n 阶的连续导数,则''()'20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x R x n =+-+-++-+ ,(2)这里()n R x 为拉格朗日余项(1)10()()()(1)!n n n f R x x x n ξ++=++,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒公式.当0x =0时,(2)式变成''()'2(0)(0)()(0)(0)...()2!!n nn f f f x f f x x x R x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:12)!1(!!21+++++++=n xn xx n e n x x x e θ .)()!12()1(!5!3sin 221253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)!nnn x x x x x o x n =-+-++-+.)(1)1(32)1ln(1132++++-+-+-=+n n n x o n x x x x x . )(1112n n x o x x x x+++++=- +-++=+2!2)1(1)1(x m m mx x m . 定理 2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得00)(μ=x f .3 泰勒公式的应用 3.1 利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限,就能简捷地求出.例3.1 求极限2240cos lim x x x e x -→-.分析:此为0型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和22x e-分别用泰勒展开式代替,则可简化此比式.解 由244cos 1()2!4!x x x o x =-++,222242()21()22x x x e o x --=-++得2444422111cos ()()()4!22!12x x ex o x x O x --=-+=-+⋅, 于是244244001()cos 112limlim 12x x x x O x x e x x -→→-+-==-. 例3.2极限1sin 2lim sin cos xx xx x x x xe →0---- .分析:此为00型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和sinx, xe分别用泰勒展开式代替,则可简化此比式.解: 由1sin 2xx x x e---=233331()())2626x x o o x x x x x ++++-1-x-(x-+=34333()()6126o o x xxx x ++=+,3233sin cos ()(1())62x x x o x o x x x x -x =-+--+33()3o xx =+于是1sin 2lim sin cos xx x x x x x x e →0----3333()162()3o o x x x x +==+例3.3利用泰勒展开式再求极限 。
解:,【注解】现在,我们可以彻底地说清楚下述解法的错误之处 因为,从而当时,,应为3.2 利用泰勒公式证明不等式当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.例3.2 当0x ≥时,证明31sin 6x x x ≥-.证明 取31()sin 6f x x x x =-+,00x =,则'''''''''(0)0,(0)0,(0)0,()1cos ,(0)0.f f f f x x f ====-≥带入泰勒公式,其中n =3,得31cos ()0003!x f x x θ-=+++,其中10<<θ. 故当0x ≥时,31sin 6x x x ≥-.3.3 利用泰勒公式判断级数的敛散性当级数的通项表达式是由不同类型函数式构成的繁难形式时,往往利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则. 3.3 利用泰勒公式判断广义积分的敛散性例3 5dx+∞判断广义积分∫的收敛性。
解:=2),2211(1)111221(),22o x x x -=+++!2211(1)111221(),22o x x x-=-++!22221111(1)(1)1111112222()1()22222o o x x x x x x --++++-++-}!!33223211lim 144x xx x →+∞=-+o(),因此=|-|由于53214x+∞∫收敛,所以5dx+∞∫的收敛 例3.3讨论级数1n ∞=∑的敛散性.分析:直接根据通项去判断该级数是正向级数还是非正向级数比较困难,因而也就无法恰当选择判敛方法,注意到11lnln(1)n n n+=+,若将其泰勒展开为1n 的幂的形式,,会使判敛容易进行.解 因为2341111111lnln(1)234n n nn n n nn+=+=-+-+<, 所以<所以0n u=>故该级数是正向级数. 又因为3212n =>==, 所以332211)22n u n n =<-=.因为31212n n∞=∑收敛,所以由正向级数比较判别法知原级数收敛.3.4 利用泰勒公式证明根的唯一存在性例3.4 设f(x)在[,)a +∞上二阶可导,且'()0,()0f a f a ><,对''(,),0x a f ∈+∞≤, 证明: ()0f x =在(,)a +∞内存在唯一实根. 分析:这里f(x)是抽象函数,直接讨论()0f x =的根有困难,由题设f(x)在[,)a +∞上二阶可导且'()0,()0f a f a ><,可考虑将f(x)在a 点展开一阶泰勒公式,然后设法应用戒指定理证明.证明 因为''()0f x ≤,所以'()f x 单调减少,又'()0f a <,因此x>a 时,''()()0f x f a <<,故f(x)在(,)a +∞上严格单调减少.在a 点展开一阶泰勒公式有''2()()()()()()()2f f x f a f a x a x a a x ξξ=+-+-<<由题设''()0,()0f a f ξ<≤,于是有lim x →∞=-∞,从而必存在b a >,使得()0f b <,又因为()0f a >,在[,]a b 上应用连续函数的介值定理,存在0(,)x a b ∈,使0()0f x =,由f(x)的严格单调性知0x 唯一,因此方程()0f x =在(,)a +∞内存在唯一实根. 3.5 利用泰勒公式判断函数的极值例3.5]4[ (极值的第二充分条件)设f 在0x 的某邻域);(0δx U 内一阶可导,在0x x =处二阶可导,且0)(0'=x f ,0)(0''≠x f .(i)若0)(0''<x f ,则f 在0x 取得极大值. (ii) 若0)(0''>x f ,则f 在0x 取得极小值. 证明 由条件,可得f 在0x 处的二阶泰勒公式))(()(!2)()(!1)()()(20200''00'0x x o x x x f x x x f x f x f -+-+-+=.由于0)(0'=x f ,因此200''0))](1(2)([)()(x x o x f x f x f -+=-.(*)又因0)(0''≠x f ,故存在正数δδ≤',当);('0δx U x ∈时,)(210''x f 与)1()(210''o x f +同号.所以,当0)(0''<x f 时,(*)式取负值,从而对任意);('0δx U x ∈有0)()(0<-x f x f ,即f 在0x 取得极大值.同样对0)(0''>x f ,可得f 在0x 取得极小值.3.6 利用泰勒公式求初等函数的幂级数展开式利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些较复杂的初等函数的幂级数展开式.例3.6 求211x x++的幂级数展开式. 解 利用泰勒公式231111xx x x -==++-369346791034679100(1)(1)1)2(1)[sin ]3n n x x x x x x x x x x x x x x x x x n x π∞=-++++=-+-+-+-+=+-++=3.7 利用泰勒公式进行近似计算利用泰勒公式可以得到函数的近似计算式和一些数值的近似计算,利用)(x f 麦克劳林展开得到函数的近似计算式为'''2(0)(0)()(0)(0)2!!n n f f f x f f x x x n ≈++++,其误差是余项()n R x .例3.7 计算Ln1.2的值,使误差不超过0.0001解 先写出f(x)=Ln(1+x)带拉格朗日型余项的麦克劳林展开式:231(1)(1)()23nn n x x x Ln x x R x n-+=-+++-+, 其中11(1)()(1)(1)n n n n x R x n ξ++-=++(ξ在0与x 之间).令2.0=x ,要使111(0.2)|()|(0.2)0.0001(00.2)(1)(1)n n n n R x n ξξ+++=<≤<<++ 则取5=n 即可.因此5ln1.20.20.020.002670.000400.000060.1823||0.0001R ≈-+-+=<其误差 当要求的算式不能得出它的准确值时,即只能求出其近似值,这时泰勒公式是解决这种问题的最好方法.例3.8 求210x e dx -⎰的近似值,精确到510-.解 因为21x e dx -⎰中的被积函数是不可积的(即不能用初级函数表达),现用泰勒公式的方法求21x e dx -⎰的近似值.在x e 的展开式中以2x -代替 x 得24221(1)2!!nx nx x e x n -=-+++-+逐项积分,得242111112000001(1)2!111111(1)32!52n 111111111310422161329936075600n x nn x x e dx dx x dx dx dx n n -=-+-+-+=-+-+-++=-+-+-+-+⎰⎰⎰⎰⎰!!上式右端为一个收敛的交错级数,由其余项()n R x 的估计式知 2711||0.0000157560011111110.7468363104221613299360x R e dx -≤<≈-+-+-+≈⎰所以3.8 利用泰勒公式求高阶导数在某些点的数值如果f(x)泰勒公式已知,其通项中的加项n x x )(0-的系数正是)(!10)(x f n n ,从而可反过来求高阶导数数值,而不必再依次求导.例3.9 求函数x e x x f 2)(=在x=1处的高阶导数)2()100()1(f . 解 设x=u+1,则e e u e u u g xf u u ⋅+=+==+2)1(2)1()1()()(,)0()1()()(n ng f =,u e 在u=0的泰勒公式为)(!100!99!9811001009998u o u u u u e u++++++= ,从而))(!100!99!981)(12()(10010099982u o u u u u u u e u g +++++++= ,而g(u)中的泰勒展开式中含100u 的项应为100100!100)0(u g ,从g(u)的展开式知100u 的项为100)!1001!992!981(u e ++,因此10101)0(),!1001!992!981(!100)0(100100⋅=++=e g e g , e g f 10101)0()1(100100==.3.9 利用泰勒公式求行列式的值若一个行列式可看做x 的函数(一般是x 的n 次多项式),记作f(x),按泰勒公式在某处0x 展开,用这一方法可求得一些行列式的值.例 3.10 求n 阶行列式D=xz z z y x z zyy x zy y y x (1)解 记D x f n =)(,按泰勒公式在z 处展开:nn n n n n z x n z x f z x z f z x z f z f x f )(!)()(!2)()(!1)()()()(2'''--+-+-+= ,(2)易知1)(0000000000--=-----=k k y z z y z y yz y y z y y z y y z D 阶(3)由(3)得,时都成立n k y z z z f k k ,,2,1,)()(1 =-=-.根据行列式求导的规则,有).)((1)(),(2)(,),()1()(),()(1'11'22'11'x x f x f x f x f x f n x f x nf x f n n n n ===-==---因为 于是)(x f n 在z x =处的各阶导数为21'')()(|)()(--=-===n n z x n n y z nz z nf z f z f ,3'1'''')()1()(|)()(--=--===n n z x n n y z z n n z nf z f z f ,… … … …z n n z f n n f z f z x n n n n 2)1()(2)1(|)(111 -=-===--12)1()()(⋅-= n n z f n n把以上各导数代入(2)式中,有nn n n n n z x n n n z x z n n n z x y z z n n z x y z z n y z z x f )(!12)1()()!1()21()()(!2)1()()(!1)()(12321-⋅-+---++-⋅--+--+-=----若y z =,有])1([)()(1y n x y x x f n n -+-=-,若y z ≠,有yz z x y y x z x f nn n ----=)()()(.4 总结本文主要介绍了泰勒公式以及它的九个应用,使我们对泰勒公式有了更深一层的理解,怎样应用泰勒公式解题有了更深一层的认识.,只要在解题训练中注意分析,研究题设条件及其形式特点,并把握上述处理规则,就能比较好地掌握利用泰勒公式解题的技巧.无穷小 极限的简单计算【教学目的】1、理解无穷小与无穷大的概念;2、掌握无穷小的性质与比较 会用等价无穷小求极限;3、不同类型的未定式的不同解法。