光谱选择规则

合集下载

多电子原子光谱-- 电偶极跃迁的选择定则

多电子原子光谱-- 电偶极跃迁的选择定则
LS耦合:
0 ∆S = ∆L = 0, ±1 ∆J = 0, ±1 ( J = 0 → J = 0除外) ∆M J = 0, ±1 (当∆J = 0时,M J = 0 → M J = 0除外)
jj耦合
∆j = 0, ±1 (跃迁电子) ∆J = 0, ±1 ( J = 0 → J = 0除外) ∆M = 0, ±1 (当∆J = 0时,M = 0 → M = 0除外) J J J
X射线不带电、很强的穿透性、直 线传播、使照相底片感光、使气 体电离奇特性质等。
The Nobel Prize in Physics 1901
§4.5原子的内层能级和特征X射线—X射线的波性 X射线是电磁波
晶体衍射 1912年,劳厄建议,鉴于晶体内部原子间距与X射 线的波长数量级相同,同时规则排列,可以当作 三维光栅,做晶体衍射实验。
(波长10-3 nm~1nm)
Max von Laue (1879 -1960)
实验:W. Friedrich, P. Knipping
劳厄斑
The Nobel Prize in Physics 1914
§4.5原子的内层能级和特征X射线—X射线的能谱
晶体衍射 1912年,小布拉格提出一种更简便的晶体衍射方法。 规则排列的原子形成布拉格平面,X射线从相邻平面 散射,形成干涉。
1 1 − 2 2 2 3
0.9
0.8
Lα线
L = ν R ( Z − 7.4) 2

0.7

0.6
Cr FeCu
0.5 20
Mo
40
W
Z
60
80
K线和L线的莫塞莱图
根据实验测量的特征线波数,从莫塞莱图上就可以标识元素的种类, 所以特征谱又称为标识谱。

光谱项 综合解析

光谱项 综合解析
东北师范大学 化学学院
2.6.2 多电子原子的状态及量子数
多电子原子中,电子之间的相互作用是非常复杂的,但大 致可以归纳为以下几种相互作用: 电子轨道运动间的相互作用; 电子自旋运动间的相互作用; 轨道运动与自旋运动间的相互作用; 1. 角动量的耦合方案 j j j-j 耦合 l1 , s1 →j1 ; l2 , s2 →j2 j1 , j2→J ※ L-S耦合 L,S →J l1,l2→L ;s1,s2 →S
4. 证明波函数的正交性
5. 求类氢离子某一轨道径向部分的极大、极小值 6. 某些原子(或离子)的薛定鄂方程
7. 原子的斯莱脱波函数
8. 斯莱脱法计算轨道能、电离能 9. 由原子组态推出光谱项、基谱支项
10.由光谱项判断电子排布
2.5 原子光谱和光谱项
2.5.1 原子光谱
原子中的电子一般都处于基态,当原子受到外来作用 时,它的一个或几个电子会吸收能量跃迁到较高能级,使 原子处于能量较高的新状态,即激发态。 激发态不稳定,原子随即跃迁回到基态。与此相应的 是原子以光的形式或其他形式将多余的能量释放出来。 当某一原子由高能级 E2 跃迁到低能级 E1 时,发射出 与两能级之差相应的谱线,其波数表达为下列两项之差:
0 0
0
0
-1
-2
-1
-2
mLmax 2, Lmax 2 L, (2L 1) 5
(2)总自旋角动量MS
MS
S ( S 1)
两电子体系S的可能取值
S s1 s2 , s1 s2 1,..., s1 s2
ms称为总自旋磁量子数
M Sz mS
mS ms i S, (S 1), ,(S 1), (S ) 共(2S 1)个 mS

分子吸收光谱的跃迁规则

分子吸收光谱的跃迁规则

分子吸收光谱的跃迁规则1.引言1.1 概述引言部分是文章中的开端,主要是对主题进行简单介绍和提出问题。

在这篇文章中,引言部分的概述应该涉及到分子吸收光谱的基本概念和其在化学和物理学领域的重要性。

以下是可能的概述内容:引言分子吸收光谱是研究分子结构和电子能级跃迁等领域中的重要技术和工具。

随着科学技术的进步,人们对于分子电子能级跃迁规律的研究也日益深入。

分子吸收光谱的跃迁规则在此过程中起到了关键作用。

本文旨在探讨分子吸收光谱的跃迁规则,通过研究和总结现有的理论和实验结果,深入了解分子吸收光谱的基本原理和其在实际应用中的意义。

本文将首先概述分子吸收光谱的跃迁规则的基本概念和研究内容。

然后,重点介绍跃迁规则的基本原理,包括分子电子能级的结构和分子光谱的选择定则。

最后,通过总结已有的研究成果,我们将对分子吸收光谱的跃迁规则进行归纳总结,并探讨其在实际应用中的重要性。

通过对分子吸收光谱的跃迁规则的深入研究,我们可以更好地理解分子的内部结构和性质,推进分子光谱学的发展,为化学、物理学领域的相关研究提供有力支持。

同时,跃迁规则的应用在药物研究、材料科学等领域也具有重要意义。

因此,深入探讨分子吸收光谱的跃迁规则,对于推动科学技术的发展和应用具有重要的意义。

通过本文的阐述,我们的目的是提高读者对分子吸收光谱的跃迁规则的理解,并促进相关领域的研究进展。

接下来的章节将分别介绍跃迁规则的基本概念和原理,以及总结跃迁规则在实际应用中的意义。

希望本文能为读者提供全面的了解和深入思考的机会。

1.2文章结构文章结构部分的内容可以包括以下内容:文章的结构是指文章中各个部分、章节的组织和安排方式。

一个清晰的结构能够使读者更好地理解、消化文章内容,并且能够更好地表达作者的意思。

本文的结构主要分为引言、正文和结论三个部分。

引言部分主要包括概述、文章结构和目的。

概述部分介绍了分子吸收光谱跃迁规则的基本概念和背景,为读者提供了整个文章的背景信息。

激光拉曼散射光谱知识

激光拉曼散射光谱知识

凡是具有对称中心 的分子,它们的红外吸 收光谱与拉曼散射光谱 没有频率相同的谱带一 一互相排斥定则由于拉 曼与红外光谱具有互补 性,因而二者结合使用 能够得到更丰富的信息。
高分子的红外二向色性及拉曼去偏振度
在聚酰胺-6的红外光谱中,某些谱带显示了 明显的二向色性特性。
它们是NH伸缩振动(3300cm-1)、CH2伸缩振动 (3000-2800cm-1)、酰胺I(1640cm-1)及配胺 Ⅱ(1550cm-1)吸收和酰胺Ⅲ(1260cm-1和1201cm- 1)吸收谱带。
对于一般红外及拉曼 光谱,可用以下几个 经验规则判断:
1、互相排斥规则
凡有对称中心的分子, 若有拉曼活性,则红 外是非活性的;若有 红外活性,则拉曼是 非活性的;
2、互相允许规则
凡无对称中心的分子,除属于点 群D5h, D2h和O的分子外.都有 一些既能在拉曼散射中出现,又 能在红外吸收中出现的跃迁。若 分子无任何对称性,则它的红外 和拉曼光谱就非常相似。
拉曼光谱中,完全自由取向的分子所散
射的光也可能是偏振的,因此一般在拉曼光 谱中用退偏振比(或称去偏振度)ρ表征分子 对称性振动模式的高低。
= I
I
ρ<3/4的谱带称为偏振谱带, 表示分子有较高的对称振动 模式;ρ=3/4的谱带称为退 偏振谱带,表示分子的对称 振动模式较低。
式中I∥和I┴——分别代 表与激光电矢量相垂直 和相平行的谱线的强度
◆ 分子对称骨架振 动的红外信息很少 见到。故拉曼光谱 和红外光谱虽产生 的机理不同,但它 们能相互补充,较 完整地获得分子振 动能级跃迁的信息。
拉曼光谱仪
便携式拉曼光谱仪
1.激光器功率: 150 - 200 mW 或 300 - 400 mW* 通过调整可以获得高能量输出 2.光谱范围: 300 - 3900 cm-1 3.像素: 14 µ m x 200 µ m (2048 像素) 4.分辨率: < 6 cm-1 5.光谱覆盖 ~ 200 cm-1 ~2400 cm-1 (785 nm /808 nm激发

配合物的电子光谱

配合物的电子光谱

二、配体内部的电子光谱
配体内电子从低能级的分子轨道跃迁到高能级的分 子轨道,可以出现这种谱带。形成配合物后,这些 谱带仍保留在配合物光谱中, 但从原来的位置稍微 有一点移动。
1. 配体内部光谱的类型 ① n→* 处于非键轨道的孤对电子到最低未占据 的空轨道σ*反键轨道的跃迁。 水、醇、胺、卤化物等配体常发生这类跃迁。
分子中的价电子吸收了光源能量后,从低能级的分 子轨道跃迁到高能级分子轨道所需要的能量与波长 成反比。
E E2 E1 h h
一、电子光谱的特点
c

①为带状光谱。这是因为电子跃迁时伴随有不同 振动精细结构能级间的跃迁。 ②在可见光区有吸收,但强度不大。但在紫外区, 常有强度很大的配体内部吸收带。
取值:L的值总是0、正整数 作用:L反映多电子原子中电子间的排斥作用。 例如:对于2个p电子,由于l1=l2=1,计算L的值 可为:2,1,0。
例如:对于2个d电子,由于l1=l2=2,计算L的值 可为:4,3,2,1,0。
3. 总角动量量子数J L—S偶合 计算:J由L和S按下列规则计算:
J ( L S ), ( L S 1), ( L S 2), L S
d2组态45种可能的电子排布式
2 ×× 1 ml 0 -1 -2 ML 4 2 0 -2 -4 3 2 1 0 1 0 -1 -1 -2 -3 MS 0 0 0 0 0 1,0,0,-1 1,0,0,-1 1,0,0,-1 1,0,0,-1 1,0,0,-1 1,0,0,-1 1,0,0,-1 1,0,0,-1 1,0,0,-1 1,0,0,-1
+3 +2 +1 0 -1 -2 -3
1 1 1 1 1 1 1

光谱选择规则范文

光谱选择规则范文

光谱选择规则范文在光谱选择规则中,主要包括电子跃迁的选择规则和振动、旋转跃迁的选择规则。

首先,我们来看电子跃迁的选择规则。

在原子或分子中,电子跃迁的选择规则主要由角动量守恒原理决定。

电子的角动量由自旋角动量和轨道角动量组成。

根据角动量守恒原理,电子跃迁前后总的角动量量子数必须守恒,即跃迁前后的自旋角动量和轨道角动量之和保持不变。

因此,对于自旋角动量量子数s和轨道角动量量子数l,跃迁前后满足以下条件:△s=0△l=±1其中,△s表示自旋角动量量子数的变化,△l表示轨道角动量量子数的变化。

这两个条件意味着电子跃迁前后自旋角动量和轨道角动量的变化必须满足相应的限制。

另外,还有一个额外的限制是选择定则的不变性,即跃迁前后的选择定则不变。

其次,我们来看振动、旋转跃迁的选择规则。

在原子或分子的振动、旋转跃迁中,其选择规则由偶极矩守恒原理决定。

偶极矩是描述分子中正负电荷分布差异的物理量,与分子的几何形状和电子云分布有关。

偶极矩守恒原理要求跃迁前后分子的偶极矩保持不变,即跃迁前后的分子结构和电荷分布保持不变。

因此,振动、旋转跃迁的选择规则可以表示为:∆v=±1(其中∆v表示振动量子数的变化)∆J=0,±1(其中∆J表示旋转量子数的变化)其中,∆v表示振动量子数的变化,∆J表示旋转量子数的变化。

这两个条件意味着跃迁前后振动量子数和旋转量子数的变化必须满足相应的限制,以满足偶极矩守恒原理。

除了上述的选择规则,还有一些其他的选择规则在特定情况下也发挥作用。

例如,选择规则受到电场和磁场的影响,即电场选择规则和磁场选择规则。

在有外加电场或磁场存在时,选择规则可能会受到约束,导致特定跃迁被禁止或选择。

总结起来,光谱选择规则包括电子跃迁的选择规则和振动、旋转跃迁的选择规则。

在电子跃迁中,选择规则由角动量守恒原理决定;在振动、旋转跃迁中,选择规则由偶极矩守恒原理决定。

这些选择规则对于解释和预测原子或分子的光谱特性起着重要作用,对于研究原子或分子的能级结构、电子云分布和分子结构有着重要意义。

光谱项综合解析

光谱项综合解析

原子光谱项
整个原子的运动状态应是各个电子所处的轨道和自旋状 态的总和。但这些描述状态的量子数是近似处理得到的, 既不涉及电子间的相互作用,也不涉及轨道和自旋的相互 作用,不能表达原子整体的运动状态,故不能和原子光谱 直接联系。
与原子光谱联系的是原子的能态。每一个原子能态对 应一个光谱项,应由一套原子的量子数L、S、J来描述。
2
M LZ
mL
h
2
h
MS
S(S 1)
2
h M SZ mS 2
MJ
J (J 1) h 2
M JZ
mJ
h
2
2.6.3原子光谱项的推导
光谱项的概念:
给定一个组态(每个电子的n和l都确定)如C原子np2,可以产 生体系的若干种微观状态(np2有15种状态),把其中L和S相
同的微观状态,合称为一个 “谱项”,记为 2S+1L。并且
自洽场模型
18.原子光谱选律
小结 基本计算和应用
1. 解氢原子及类氢离子的s态方程 2. 求本征态、本征值、平均值 3. 求电子出现在某个球内或球壳内的几率(只写公式) 4. 证明波函数的正交性 5. 求类氢离子某一轨道径向部分的极大、极小值 6. 某些原子(或离子)的薛定鄂方程 7. 原子的斯莱脱波函数 8. 斯莱脱法计算轨道能、电离能 9. 由原子组态推出光谱项、基谱支项 10.由光谱项判断电子排布
sssssss??szsmm?ms称为总自旋磁量子数szs1121???????isssmmsssssm共个s称为总自旋磁量子数maxmaxsms33总角动量mjj1jmjj?j称为总角动量量子数1jlslsls?mj称为总磁量子数jzjmm?11jmjjjj????原子的量子数符号角动量表达式原子的角量子数l原子的磁量子数ml原子的自旋量子数s2hmmllz1hssm21hllml原子的自旋量子数s原子的自旋磁量子数ms原子的总量子数j原子的总磁量子数mj21ssms21hjjmj2hmmssz2hmmjjz263原子光谱项的推导给定一个组态每个电子的n和l都确定如c原子np2可以产生体系的若干种微观状态np2有15种状态把其中l和s相同的微观状态合称为一个谱项记为2s1l并且光谱项的概念

光谱选择规则

光谱选择规则

按角动量
的跃迁是不允许的。
10
综上所述,辐射跃迁选择定则是能量守 恒定律、角动量守恒定律、宇称守恒定 律的体现, 这是选择定则的物理本质。
11
辐射跃迁中宇称也不变。
7
5.选择规则与守恒定律的关系
原子的辐射跃迁指原子发射或吸收光子的跃迁, 是电磁 相互作用的过程, 应遵守能量守恒、动量守恒、角动量 守恒、宇称守恒等守恒定律。我们从以下几个方面分 析:
1.玻尔的频率条件与能量、动量守恒
玻尔的频率条件hv=En-Em是能量守恒的体现,但 未考虑动量, 若考虑到动量守恒, 则原子发射光子后有 反冲, 从而具有一定的功能, 故严格的能量守恒关系式 为En-Em=hv+Ek,其中Ek为原子发射光子后的动能, 由 动量守恒定律可得Ek远小于hv,故Ek可以忽略。玻尔 的频率条件hv=En-Em实质是原子发射和吸收光子时频 率的选择定则。
1
简介
1、选择定则表明并非任何两能级之间的辐射跃迁都是 可能的,只有遵从选择定则的能级之间的辐射跃迁才 是可能的 ;
2、选择定则是确定原子光谱结构的重要规律。选择定 则可以从量子力学推导出来,它是角动量守恒定律和 宇称守恒定律的结果;
3、单价原子的选择定则是量子数满足Δi=±1,ΔJ=0, ±1;多电子原子(LS耦合)的选择定则是为奇性态为 偶性态,以及量子数满足ΔS=0,ΔL=0,±1 ,ΔJ= 0,±1(除去J=0→J=0)。
2
1. J 、 M 的选择规则
由于电偶极矩算符
是k=1不可约张
量算符之和,由W-E定理得,在耦合表象
中,当
跃迁矩阵元
。故上
面两式称为j、m的选择规则。
3
2.宇称选择定则
因为电偶级算符为奇宇称,所以要使得 不为零,在电偶极跃迁

第五节电子光谱

第五节电子光谱

在弱配位场中的分裂及能量变化情况。可用于解释自
旋允许的电子跃迁光谱。
T-S图:
描述弱场和强场中各能量状态变化的情况。可用于 解释所有可能的电子跃迁.
⑴.Orgel图
a.d1,d4,d6和d9组态(单电子或拟单电子组态)
电子组态
d10 d1, d9 d2 , d8 d3 , d7 d4 , d6 d5
其中(1)和(2)是配合物显色的主要原因
3.过渡金属配合物电子光谱的特点
(1).通常是带状光谱(非线性光谱) 因为电子从基态能级向激发态能级跃迁时伴随有不 同的振动精细结构能级间的跃迁。 (2).配合物大多在可见区有吸收但强度不大(通常其摩
尔吸光系数A<102 ), 而在紫外区却常有强度很大的
配体内部吸收带(A=104 ~105)。
1.原子和自由离子的微观态与光谱项
①.电子组态: 指明每个轨道上的电子数目的符号。 如 p3, d4 ②.微观态: 某一给定的电子组态中, 电子对轨道的各种占据 方式叫做该组态的微观态。
如:d1电子组态的微观态 轨道角量子数l=2, 角量子在磁场的分量有2l+1个 取向, 即磁量子数m的取值有5个: ±2, ±1,0。 即一个d电子可排布在轨道角动量取向不同的5个轨道 上。由于自旋角动量在磁场方向上的分量有两个取向 (自旋量子数 ms=±1/2),所以,这一个d电子有十种 排布方式,即有10种微观态。
2.电子光谱类型
根据电子跃迁的机制,可将配合物的电子光谱
分为三种类型:
配位场光谱(由d-d跃迁产生)
电荷迁移光谱(简称荷移光谱) 配位体内的电子光谱(配位体光谱)
(1).配位场光谱
过渡金属配合物中, 由于金属离子的d轨道能级发 生分裂,当它吸收可见区或紫外区某一波段的光时, d电子便可从较低的能态跃迁+S1, L+S2, „„︱LS︱

仪器分析第04章 原子吸收(荧光)光谱

仪器分析第04章 原子吸收(荧光)光谱

N
1 2 k
(K 为激发态寿命或电子在高能 级上停留的时间,10-7-10-8 s)
原子在基态和激发态的寿命是有限的。电子在基态停留的时间长, 在激发态则很短。由海森堡测不准(Heisenberg Uncertainty principle) 原理,这种情况将导致激发态能量具有不确定的量,该不确定量使谱线 具有一定的宽度N (10-5nm),即自然宽度。 该宽度比光谱仪本身产生的宽度要小得多,只有极高分辨率的仪器 才能测出,故可勿略不计。
K d

e 2
mc
N0 f
式中,e为电子电荷;m为电子质量;f为振子强度,它是受到激发的每个原 子的平均电子数,与吸收几率成正比。
此式说明,在一定条件下,“积分吸收”只与基态原子数N0成正比 而与频率及产生吸收线的轮廓无关。只要测得积分吸收值,即可求出基 态原子数或浓度。因此 AAS 法是一种不需要标准比较的绝对分析方法。 积分吸收就是将原子吸收线轮廓所包含的吸收系数进行积分(即吸 收曲线下的总面积)。
因此,尽管原子吸收现象早在18世纪就被发现,但一直未用 于分析。直到1955年,Alan Walsh 提出以“峰值吸收”来代替“ 积分吸收”。从此,积分吸收难于测量的困难得以“间接”地解 决。
25
2. 峰值吸收 1955年,Walsh 指出,在温度不太高时,当发射线和吸收线满足以 下两个条件,即: 带宽 e a ; e a 中心波长一致 当e a时,发射线很窄,发射线的轮廓可认为是一个矩形,则 在发射线的范围内各波长的吸收系数近似相等,即K=K0(K ,积分吸 收系数;K0 ,峰值吸收系数),因此可以“峰值吸收”代替“积分吸收 ”:
同样频率的光辐射,其对应的谱线称为共振发射线。

ARL系列直读光谱仪检测数据计算规则及应用

ARL系列直读光谱仪检测数据计算规则及应用

ARL系列直读光谱仪检测数据计算规则及应用摘要本文主要讲述了ARL系列光谱仪检测结果的具体计算过程及原理,从检测被测样品的光谱强度到最终转化为实际检测结果,及各个计算过程中对检测结果带来的影响,以及如何利用这些计算过程对检测结果的影响,提高检测水平。

关键词ARL系列直读光谱,内标,光谱强度,检测曲线1.概述直读光谱技术现今已被应用于众多行业,其快速准确的分析特点,在金属产品生产,成分检测领域起到越来越重要的作用。

Thermo Fisher scientificInc(美国热电仪器集团公司)旗下的赛默飞世尔科技有限公司出品的ARL3460/4460系列光电直读光谱仪,是国内保有量最多的直读光谱仪系列之一。

在传统理解中,光谱仪检测样品成分是用标准样品的中元素的被测强度及其对应的浓度绘制曲线,通过这条曲线对其它被测样品的浓度进行计算。

ARL系列光谱仍遵循这一基本规则,但在实际计算中,添加了众多的步骤,使结果更加准确。

并其每一步都有自己的作用及运算规则,对最终结果也有不同的影响。

2.ARL系列光谱仪检测数据的计算规则ARL系列光谱仪的检测数据通常要通过要以下10个步骤最终得出。

1采集仪器测定强度 RII(Raw Intensity Instrument)2采集强度RII与设定的内标元素强度相比得到比强度 RNI (Intensity after Ratio with the Internal Standard)3比强度RNI经过标准化曲线计算得到曲线校准强度 SCI(Intenity after Standardization/Drift Correction)4 曲线校准强度SCI经响应曲线计算后得到响应强度 RCI (Intensityafter Detector Response Curve Correction)5响应强度RCI选择相应基本曲线 LS(Line Selection)6响应强度RCI带入基本曲线计算得到元素含量 BCC (Concentration after Base Curve Calculation)7计算其他元素对被测元素造成的干扰 CRC (Correction of Raw Concentration)8归一化到100%的计算 N1 (Normalisation to 100%)9归一化后得校正计算 PNC (Post-Normalisation Correction)10基体元素重新计算之后得到最终含量既检测结果 MRE (Matrix Element Recalculation)下面就各个步骤分别详述。

谱学原理5-7章

谱学原理5-7章

(e) C6H6;
线 性 分 子:3N-5 非 线 性 分 子:3N-6
分子 HCl HCO PbCl2 XeF6 C6H6
振动 模式
1
3
3 15 30
2. 典型的O-H伸缩振动频率为3600 cm-1.
问典型的18O-D伸缩振动频率是多少?
1 k 2
力常数与同位素取代无关
18OD OH
7. 线性分子A2B在600, 1300, 和2200 cm-1 具有强的红外吸
收. 请问该分子的原子顺序是ABA还是AAB? 为什么?
A
B
A
A
B
A
红外光谱的选择定则是分子的偶极矩的变化不为零

即:
d dx 0
A
B
A
若该线性分子为ABA,对称伸缩振动不改变其偶极矩,
无红外活性,没有红外吸收峰,而反对称伸缩振动和
A~1B1, ~a 3B1 B~1A1, ~b3A1
1b1 是最高占据轨道(HOMO) 4a1 是最低空轨道(LUMO)
17
H2CO分子轨道和电子态
C2v E A1 1 A2 1 B1 1 B2 1
C2 v(xz) v’(yz)
11
1
z
1 -1 -1 1 -1 -1
-1
Rz
-1 x, Ry
1 y,
x2, y2 ,z2 xy xz yz
(b) 锥型SF4 (C4v)
x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4, x5, y5, z5
(I ) 15, (C4) 1, (C2) 1, (V ) 3, (d ) 1
系数是1
3A1 A2 2B1 B2 4E trans A1 E;rot A2 E

3光谱分析——精选推荐

3光谱分析——精选推荐
获得样品发射光谱的示意图
• 光谱定性分析的基本原理:
每一种元素的原子及离子激发以后,都能 辐射出一组表征该元素的特征光谱线。其中有 一条或数条辐射的强度最强,最容易被检出, 所以也常称做最灵敏线。如果样品中有某些元 素存在,那么只要在合适的激发条件下,样品 就会辐射出这些元素的特征谱线,在感光板的 相应位置L就会出现这些谱线。一般根据元素 灵敏线的出现与否就可以确定样品中是否有这 些元素存在。
① 紫外、可见吸收光谱
紫外、可见光谱是物质在紫外、可见辐射作用下分 子外层电子在电子能级间跃迁而产生的,故又称为电 子光谱。由于分子振动能级跃迁与转动能级跃迁所需 能量远小于分子电子能级跃迁所需能量,故在电子能 级跃迁的同时伴有振动能级与转动能级的跃迁,即电 子能级跃迁产生的紫外、可见光谱中包含有振动能级 与转动能级跃迁产生的谱线,也即分子的紫外、可见 光谱是由谱线非常接近甚至重叠的吸收带组成的带状 光谱。
② 红外吸收光谱
红外吸收光谱是物质在红外辐射作用下分 子振动能级跃迁而产生的,由于同时伴有分子 转动能级跃迁,因而红外吸收光谱又称振-转动 光谱,也是由吸收带组成的带状光谱。
红外辐射与物质相互作用产生红外吸收光 谱,必须有分子偶极矩的变化。只有发生偶极 矩变化的分子振动,才能引起可观测到的红外 吸收光谱带,称这种分子振动为红外活性的, 反之则称为非红外活性的。
分子能级示意图 A、B:电子能级; V’、V’’:振动能级;J’、J’’:转动能级
同一电子能级因振动能量不同分为若干振动能级;而同一 振动能级又因转动能量不同分为若干转动能级。
② 分子轨道与电子能级 按分子轨道理论,原子形成分子后,电子不
再定域在个别原子内,而是在遍及整个分子范围 内运动;而且每个电子都可看做是在原子核和其 余电子共同提供的势场作用下在各自的轨道(分 子轨道)上运动。分子轨道可近似用原子轨道的 线性组合表示。分子轨道可分为成键轨道与反键 轨道,成键分子轨道能量较参与组合的原子轨道 能量低,而反键分子轨道能量则高于参与组合的 原子轨道能量。

仪器分析原子发射光谱法

仪器分析原子发射光谱法

△E = E2-E1 = hυ= hc/λ Na (1s)2 (2s)2 (2p)6 (3s)1, 3p1、3d1、4s1、4p1、4d1、4f1、 ……
每一条发射谱线的波长取决于跃迁前后两个能级(E2, E1)的差。由于各种元素的原子具有不同的核外电子结构, 根据光谱选律,特定元素的原子可产生一系列不同波长的特 征光谱(组)。原子的能级是量子化的,原子光谱是线状光 谱。通过光谱的辨认和谱线强度的测量可进行元素的定性、 定量分析,这就是原子发射光谱法(AES)。
原子光谱是原子外层电子在不同能级间跃迁的结果。在量 子力学中,电子的运动状态可用四个量子数, 即主量子数n、 角量子数l、磁量子数ml和自旋量子数ms来描述。
主量子数n表示核外电子离核的远近,n值越大,电子的能 量越高,电子离核越远。n值取为1,2,3,…任意正整数。
角量子数l 表示电子在空间不同角度出现的几率,即电子云 的形状,也代表电子绕核运动的角动量。 l 取小于n的整数, 0,1,2,…,n-1。相对应的符号是什么?
在n、L、S、J四个量子数中,n、L、S 确定后,原子 的能级也就基本确定了,所以根据n、L、S 三个量子数 就可以得出描述原子能级的光谱项:
n2S+1L
式中2S+1叫做谱项的多重性。在L≥S 时,2S+1就是内 量子数J可取值的数目,也就是同一光谱项中包含的J 值相同、能量相近的能量状态数。习惯上将多重性为1、 2、3的光谱项分别称作单重态、双重态和三重态。把J 值不同的光谱项称为光谱支项。用下式表示:
1、光源 将试样中的元素转变为原子(或离子) 的过程称为原子化。原子化、激发和发射是在 光源中进行的。
原子发射光谱分析使用的仪器设备主要包括 激发光源和光谱仪两个部分。

红外光谱的选择规则

红外光谱的选择规则

红外光谱的选择规则红外光谱(IR)是一种非常重要的分析工具,用于研究分子结构和化学键的振动模式。

以下是红外光谱的选择规则,主要涉及以下几个方面:1.偶极矩的变化偶极矩的变化是红外光谱选择规则的一个重要因素。

在分子振动过程中,若分子的偶极矩发生变化,则会产生红外吸收。

因此,对于具有较大偶极矩变化的振动模式,其对应的红外吸收峰通常较强。

2.振动能级的跃迁分子在振动过程中,若发生振动能级的跃迁,则会产生红外吸收。

一般来说,低能级的跃迁对应较小的波数,而高能级的跃迁对应较大的波数。

因此,可以根据红外光谱的波数大小来判断振动能级的跃迁情况。

3.键的极性键的极性对红外光谱的吸收峰位置和强度有一定影响。

对于具有强极性的化学键,其对应的红外吸收峰通常在较低的波数处。

4.取代基的影响取代基对红外光谱的影响主要表现在两个方面:一是取代基的质量和大小会影响化学键的振动频率,从而影响红外吸收峰的位置;二是取代基的极性也会影响红外光谱的吸收强度。

5.氢键的影响氢键的形成会影响分子间的相互作用,从而影响分子的振动模式和红外光谱的吸收峰。

例如,在形成氢键的情况下,某些原本较弱的红外吸收峰可能会增强。

6.官能团的特征频率不同的官能团在红外光谱中具有特征的红外吸收峰,这是由官能团的振动模式所决定的。

通过观察官能团的红外特征峰,可以推断出分子中存在的官能团类型。

7.分子结构的对称性分子结构的对称性会影响分子的振动模式和红外光谱的吸收峰。

对于具有对称结构的分子,其红外光谱的吸收峰通常比较尖锐;而对于不对称的分子结构,其红外光谱的吸收峰可能较宽。

第二-章-原子光谱项和分子光谱项

第二-章-原子光谱项和分子光谱项

2、 S1P1能级示意图
组态
谱项 1P
支项 1P1
态 MJ
+1 0
-1
(np)1[(n+1)s]1 3P
中心场近似
真实的电 子排斥能
3P2
3P1 3P0 自旋-轨道 相互作用
MJ
+2 +1 0 -1 -2
+1 0 -1 0
外加磁场
3、光谱基项 组态中,能量最低旳谱项。
4、光谱基项旳得到 (1)得到组态下全部谱项,再利用洪特规则
2、光谱项符号 给定电子组态下,只有当两个定态旳量子数L
和S都相同,能量才相同。
我们将同一组态给出旳具有相同L和S值旳一 组状态称为一种光谱项(或简称谱项),并用符号 2S+1L标识 (n 2S+1L标识)。 (2S+1称为多重度)
这么,当考虑真实旳电子静电排斥能时,原 本在中心场近似下一种电子组态分裂成若干光谱 项,不同光谱项旳能量不同,各能级用电子组态 和光谱项符号共同标识。
所以,一种p2组态产生旳谱项是1S、3P、1D。
****阐明**** (1)比较p1p1 和p2 旳谱项。
(2)一种技巧: 2个等价电子旳L+S=偶数规则。
(3)取得等价电子组态旳谱项比不等价电子 组态旳谱项难。
(4)P4(如O)与P2谱项相同。
四、光谱支项(level)和光谱支项旳推求
1、光谱支项旳定义和意义 原子中旳静电相互作用。原子中还存在
光谱支项 3P0、3P1、3P2。
例2:3S谱项 有L=0, S=1,所以J可为1,从而给出1个光谱支
项 3S1
例 3:钠D线(3p3s旳跃迁)旳精细构造,两 条谱线波长相差6Ǻ。

三维荧光光谱的特征区域选择方法

三维荧光光谱的特征区域选择方法

3 ) 凸点集合中的凸点数量小于设定阈值, 认 作为孤立集予以删 为该凸点集是由于噪声引起, 除, 剩余的凸点集构成候选区域; 4 ) 在候选区域中, 采用常规的前向选择法或 后向剔除法选择模型性能最优的区域 。 凸点的判定计算 三维荧光光谱是一个二元函数, 可以根据二 元凸函数判定定理
[4 ]
判定二元函数是否为凸函
2012 年 3 月
CHINESE JOURNAL OF LUMINESCENCE
Mar. , 2012
7032 ( 2012 ) 03034105 文章编号: 1000-
三维荧光光谱的特征区域选择方法
1* 1 2 杜树新 ,杜阳锋 ,袁之报 ( 1. 浙江大学工业控制技术国家重点实验室 工业控制研究所,浙江 杭州 310027 ; 2. 海南出入境检验检疫局,海南 海口 570311 )
三维荧光描述了荧光强度同时随激发波长和 发射波长变化的关系, 因此能完整地描述物质的荧 光特征, 是一种光谱指纹技术, 被广泛应用于水质
1226 ; 修订日期: 20120116 收稿日期: 2011“863 ” 基金项目: 国家自然科学基金( 60974111 ) ; 国家 计划( 2009AA04Z123 ) 资助项目 作者简介: 杜树新( 1967 - ) , 男, 浙江东阳人, 副教授, 博士, 主要从事模式识别与智能系统、 基于光谱分析的过程在线检测等的研究。
三维荧光光谱区域选择方法的基本思路
对三维荧光光谱数据的观察分析可以发现,
1 ) Байду номын сангаас用凸函数判定方法识别光谱数据中的
以及其他算法 ) , 但针对三维荧
光光谱的光谱区域选择的研究, 无论国内还是国 外都非常少。 实际上, 这些应用于近红外光谱的 光谱区域选择方法对光谱曲线有较好的效果 , 但 对光谱曲面是不适合的。 本文将数学中的二元凸函数判定和数据挖掘 中的聚类分析方法相结合, 提出了针对三维荧光 的光谱区域选择方法, 从而在应用三维荧光光谱 数据进行定量分析时只选择所选定的特征区域进 行建模或预测, 减少了定量模型的输入维数和增 加了光谱数据的信噪比, 提高了定量分析模型的 预测精度。 2. 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


2.拉波特定则与宇称守恒来自由电磁辐射理论知, 辐射按光子角动量的大小分为各 个极次, 按光子角动量和宇称的关系又分为电和磁两大 类, 分别为电偶极跃迁、电四极跃近、磁偶极跃迁、磁 四极跃迁等。而各种跃迁的选择定是不同的,在原子 物理学中所涉及的都是电偶极辐射,选择定则亦指此 类跃迁所遵守的法则,对电偶极跃迁, 光子的角动量和 宇称为 ,宇称守恒要求 , 因在电偶极跃迁中 ,就是要求:奇 宇称态 偶宇称态(拉波特定则),由该定则可知,
1. J 、 M 的选择规则

由于电偶极矩算符 是k=1不可约张 量算符之和,由W-E定理得,在耦合表象 中,当
跃迁矩阵元 面两式称为j、m的选择规则。 。故上
2.宇称选择定则

因为电偶级算符为奇宇称,所以要使得 不为零,在电偶极跃迁 下,必须宇称改变。自由原子的宇称, 不 管在什么耦合方式下都保持确定,在关 于j、m的选择规则推导中,与自旋、轨 道角动量的耦合方式无关,它们是由对 称性出发得出的,这样得到的选择定则 叫做严格的选择定则。
由以上四点可知,选择定则是有其适用条件和范 围的。宇称改变这一选择定则并非是辐射跃迁的普用 选择定则,它在磁偶极和电四极辐射跃迁中都是不成 立的。在磁偶极以及电四极辐射跃迁中遵从的是宇称 不变,宇称改变只是在单光子的电偶极辐射跃迁这个 范围内的严格的选择定则。其它量子数的选择定则也 依跃迁类型的不同而略有不同。另外现在激光发展很 快,双光子辐射跃迁成为可能, 在双光子的电偶极型 辐射跃迁中宇称也不变。
3. 自旋S的选择规则

当自旋与轨道作用可略去时,体系的波 函数可表为空间波函数与自旋波函数之 积,因电偶极算符并不作用于自旋波函 数, 所以 。
4.单电子原子轨道角量子数L 的选择定则

当原子的波函数可由单电子组态波函数 描写时,我们必须考虑到单电子原子的 波函数的宇称是取决于其l值的。要满足 宇称次变这个电属极跃迁的严格选择定 则,就禁止了 的跃迁,只有
奇偶性相同的电子组态形成的原子态无辐射跃迁。当 然同一电子组态形成的原子态间也无辐射跃迁。

3.对LS耦合
考虑自旋角动量与电磁辐射无关, 电磁辐射不改变自旋 状态, 故有 ,轨道角动量为 。

4.
J=0(J=0— J=0 除外)
的跃迁是不允许的。
按角动量

综上所述,辐射跃迁选择定则是能量守 恒定律、角动量守恒定律、宇称守恒定 律的体现, 这是选择定则的物理本质。
5.选择规则与守恒定律的关系
原子的辐射跃迁指原子发射或吸收光子的跃迁, 是电磁 相互作用的过程, 应遵守能量守恒、动量守恒、角动量 守恒、宇称守恒等守恒定律。我们从以下几个方面分 析: 1.玻尔的频率条件与能量、动量守恒 玻尔的频率条件hv=En-Em是能量守恒的体现,但 未考虑动量, 若考虑到动量守恒, 则原子发射光子后有 反冲, 从而具有一定的功能, 故严格的能量守恒关系式 为En-Em=hv+Ek,其中Ek为原子发射光子后的动能, 由 动量守恒定律可得Ek远小于hv,故Ek可以忽略。玻尔 的频率条件hv=En-Em实质是原子发射和吸收光子时频 率的选择定则。
辐射跃迁的选择规则
选择规则
原子能级之间辐射跃迁所遵从的规则。通常是指 电偶极辐射跃迁的选择定则 ,而电四极矩辐射、磁 偶极辐射以及更高级的辐射都比电偶极辐射要弱。
简介



1、选择定则表明并非任何两能级之间的辐射跃迁都是 可能的,只有遵从选择定则的能级之间的辐射跃迁才 是可能的 ; 2、选择定则是确定原子光谱结构的重要规律。选择定 则可以从量子力学推导出来,它是角动量守恒定律和 宇称守恒定律的结果; 3、单价原子的选择定则是量子数满足Δi=±1,ΔJ=0, ±1;多电子原子(LS耦合)的选择定则是为奇性态为 偶性态,以及量子数满足ΔS=0,ΔL=0,±1 ,ΔJ= 0,±1(除去J=0→J=0)。
相关文档
最新文档