《水轮机调节的基本概述与工作原理》

合集下载

水轮机调节ppt课件

水轮机调节ppt课件
10
水轮机的调节系统具有以下特点: 水轮机的工作流量较大,水轮机及其导水机构的尺寸也较大, 需要较大的力才能推动导水机构,因此,调速器需要有放大元件 和强大的执行元件(即前述的接力器)。 水轮发电机组以水为发电介质,水有较大的密度,同时,水电 站的输水道一般较长,其中的水体有较大的质量,水轮机调节过 程中的流量变化将引起很大的压力变化(即水锤),从而给水轮机 调节带来很大困难。 对于轴流转桨式水轮机的导叶和转轮叶片、水斗式水轮机的喷 嘴和折流板、带减压阀的混流式水轮机等,需增加一套协调机构, 对两个对象进行调节,使调节更为困难。
11
02
水轮机调节的基本概念
12
12
水轮机调节系统的组成元件及各元件的相互关系可见下图
导水机构
水能 QH
机组
执行元件
放大元件
电能 UIf
给 定 f
f
测量元件
反馈元件
水轮机调节系统方框图
13
13
图中的方块表示水轮机调节系统的元件: 箭头表示元件间信号的传递关系: 箭头朝向方块表示信号的输入, 箭头离开方块表示信号的输出,前一个元件的输出是后一个元件的
各参数随时间的变化情况,及在经过一段时间以后是否能达到 新的平衡状态(即稳定工况),与调节系统的特性有关,这种特性 称调节系统的动特性。
若在经过一段时间之后系统能够达到新的平衡状态,那么新平 衡状态与原平衡状态的关系,即各参数是否能回复到初始状态, 亦与调节系统的特性有关,这种特性称调节系统的静特性。
例如: 电能频率的变化将引起用电设备电动机的转速变化,从
而影响电钟计时的准确性、车床加工零件的精度、布匹纤维 的均匀性等等。我国规定的电力系统频率为50Hz,其偏差, 大系统不得超过±O.2Hz,小系统不得超过±0.5Hz。

第一章 水轮机调节的基本原理

第一章 水轮机调节的基本原理

电网
水力发电生产过程:
压力引水 水库 道
发电机
功率 整流 屏 L=0 机械液
水轮机
励磁 调节 器
调 速 器
压执行 机构
尾水
频率与机组转速的关系(电机学而知):f p n 60 f——发电机输出交流电频率,Hz; p——发电机的磁极对数; n——发电机的转速,r/min 。 p对于加工好的机组是一个常数(定值),因此f只与n有关(正比)。 水轮机调节的基本任务:要保证频率在规定的范围内,就要根 据电力系统负荷的变化不断地调节水轮发电机组的有功功率的输出, 并维持机组转速在规定的范围内。
(二)缓冲装置:又称软反馈元件, 主要用于调速系统反馈校正,其性 能好坏直接关系到调速系统的稳定, 是调速器的重要部件之一。 组成:壳体、主动活塞、从动活 塞、节流孔、弹簧等。
节流孔是上、下腔唯一的通道,调整节流孔大小可以调节油流阻力。 主接力器活塞杆通过杠杆、拉杆等作用于主动活塞,从动活塞通过拉杆、杠杆作用于 引导阀针塞。 1)主动活塞没有受到接力器反馈锥体反馈作用时,主、从动活塞都处于相对中间位 置,从动活塞的上端没有位移输出; 2)主动活塞受到接力器反馈锥体反馈作用而向下移动时,由于油是不可压缩液体, 且活塞下腔的油不能马上由节流孔进入上腔,因此下腔油压升高,迫使从动活塞上移,输 出一个位移信号,并作用于引导阀针塞,同时压缩弹簧。下腔压力油经节流孔进入活塞上 腔,在弹簧恢复力作用下,经过一段时间,上、下腔压力平衡,从动活塞逐渐回复到中间 位置,使输出位移消失。反之,当主动活塞受力上移时,主动活塞下部产生真空,由于上 腔油来不及通过节流孔到下腔,从动活塞被向下吸引,产生一个向下的位移,并作用于针 塞向下移动。随后在弹簧恢复力作用下,上腔的油通过节流孔流入下腔,从动活塞回复中 间位置,输出位移信号消失。 缓冲装置输出位移只在调节过程中存在,调节过程结束后,反馈位移自动消失,因此 这种反馈称为软反馈或暂态反馈。

水轮机调速器结构及工作原理

水轮机调速器结构及工作原理

水轮机调速器结构及工作原理水轮机调速器是水轮机系统中的重要设备,其主要功能是控制水轮机的转速,以满足不同负载工况下的运行要求。

本文将从结构和工作原理两个方面介绍水轮机调速器的基本知识。

一、水轮机调速器的结构水轮机调速器一般由调速机构、液压控制系统和电气控制系统三部分组成。

1. 调速机构调速机构是水轮机调速器的核心部分,它通过改变水轮机的导叶开度来调节水轮机的转速。

调速机构主要由调节器、传动装置和导叶机构组成。

调节器是水轮机调速器的关键部件,它通过接收输入信号,控制传动装置的运动,从而改变导叶的开度。

常见的调节器有液压调节器和电动调节器两种。

传动装置是将调节器的运动转化为导叶运动的装置,常见的传动装置有丝杠传动和液压传动两种。

导叶机构是通过传动装置将调节器的运动传递给导叶,改变导叶的开度。

导叶机构主要由导叶轴、导叶臂和导叶组成。

2. 液压控制系统液压控制系统是水轮机调速器的控制部分,它通过控制液压元件的工作状态,实现对调速机构的控制。

液压控制系统一般由液压泵站、液压缸和液压阀组成。

液压泵站负责提供液压能源,液压缸负责执行调速机构的运动,液压阀负责控制液压缸的工作状态。

3. 电气控制系统电气控制系统是水轮机调速器的辅助部分,它通过控制电气元件的工作状态,实现对液压控制系统的控制。

电气控制系统一般由控制柜、传感器和执行器组成。

控制柜负责接收输入信号和控制输出信号,传感器负责感知水轮机的运行状态,执行器负责执行控制柜的输出信号。

二、水轮机调速器的工作原理水轮机调速器的工作原理主要是通过调节水轮机的导叶开度来改变水轮机的转速。

当负载增加时,调速器接收到输入信号后,调节器会发出相应的指令,通过传动装置将运动转化为导叶的运动,导叶的开度逐渐增大。

导叶开度增大会减小水轮机叶片与水流的夹角,使水轮机的输出功率增加,从而使转速稳定在设定值附近。

当负载减小时,调速器接收到输入信号后,调节器会发出相应的指令,通过传动装置将运动转化为导叶的运动,导叶的开度逐渐减小。

水轮机调节

水轮机调节
精品资料
2、水轮机调节原理 调节流量的途径:
反击式:通过改变(gǎibiàn)导叶开度a0 ,ZZ:同时改 变(gǎibiàn)叶片转角
冲击式:通过改变(gǎibiàn)喷嘴开度(针阀行程)。 水轮机调节的定义:
随着电力系统负荷变化,水轮机相应地改变 (gǎibiàn)导叶开度(或针阀行程),使机组转速恢复并 保持为额定转速的过程,称为水轮机调节。
精品资料
(3)电液转换器(步进电机)结构原理及 作用
电液转换器的作用是将电气部分信号输出 的综合信号,转换成具有一定操作(cāozuò) 力的机械位移信号或具有一定压力的流量信 号。
电液转换器有电气位移转换信号和液压放 大两部分组成。
精品资料
工作线圈:实现控制(kòngzhì)操作 线圈
振荡线圈:防止卡阻,提高工作可靠性
精品资料
(2)油压设备 当油压降低(jiàngdī)到正常工作油压下限
(2.3~2.7MPa)时,油泵自动启动,将回油箱 内的油泵入压力油罐,油压达到正常工作油 压上限时,油泵停止工作。 (3)接力器 接力器是调速器的执行元件,控制导叶开度, 改变流量,大型电站设两个或两个以上接力 器。
精品资料
油压装置(zhuāngzhì)
电液转换器中一般有两个线圈,一个工作 线圈,一个振荡线圈。工作线圈通的是工作电 流,振荡线圈通入振荡电流。通入工作电流后 ,使控制(kòngzhì)套产生位移,使下一级随 动。振荡电流使线圈和控制(kòngzhì)套产生 微小振动,以提高控制(kòngzhì)套的灵敏度 ,防止卡阻。
精品资料
(4)紧急停机电磁阀 属于(shǔyú)保护设施之一 动作的条件:机组运行中,几乎所有

化→发电机调速器动作→发电机的转速恢

水轮机调速器

水轮机调速器

水轮机调速器引言水轮机调速器是一种用于调节水轮机转速的装置。

水轮机是一种将水能转化为机械能的装置,广泛应用于水电站发电和工业生产中。

水轮机调速器的主要功能是根据负荷变化调节水轮机转速,以维持发电系统的稳定运行。

本文将介绍水轮机调速器的工作原理、常见类型以及应用领域。

工作原理水轮机调速器的工作原理基于负荷-速度特性曲线。

当负荷增加时,水轮机的速度会下降。

为了维持发电系统的稳定运行,水轮机调速器会通过调节水轮机的水量来使其速度恢复到设定值。

在水轮机调速器中,水量的调节通常是通过控制水轮机的导叶开度来实现的。

当负荷增加时,水轮机调速器增大导叶开度,增加水量,从而提高水轮机的转速。

相反,当负荷减小时,水轮机调速器减小导叶开度,减少水量,使水轮机转速降低。

常见类型机械式调速器机械式调速器是最早出现的水轮机调速器类型之一。

它通过机械装置来调节导叶的开度,从而控制水轮机的水量。

机械式调速器的优点是结构简单,可靠性高。

然而,由于机械传动存在摩擦和磨损的问题,机械式调速器的调节精度较低,响应速度较慢。

因此,在现代化的水轮机系统中,机械式调速器的应用逐渐减少。

液压式调速器液压式调速器是目前广泛应用于水轮机调速的一种技术。

它采用液压传动来调节导叶开度,实现对水量的精确控制。

液压式调速器具有调节精度高、响应速度快的优点,可以更好地适应负荷的变化。

液压式调速器通常由液压系统、传感器和控制器组成。

电子式调速器电子式调速器是近年来发展起来的一种水轮机调速器类型。

它采用电子控制技术来实现对水轮机的调速。

电子式调速器具有调节精度高、响应速度快、可编程性强等优点。

它可以通过设置不同的控制模式和参数,适应不同的工况要求。

电子式调速器还可以与其他自动控制系统进行集成,实现智能化的调速控制。

应用领域水轮机调速器广泛应用于水电站和工业生产中。

在水电站中,水轮机调速器是调节水轮机转速的关键设备,直接影响到电网负荷的稳定性和电能发电的效率。

在工业生产中,水轮机调速器用于调节水轮机的转速,控制生产线的运行速度。

水轮机调节的基本概念

水轮机调节的基本概念

水轮机调节系统的新技术和新应用
智能控制技术:实现水轮机调节的自动化和智能化 远程监控技术:实现水轮机调节的远程监控和故障诊断 节能技术:提高水轮机调节的效率和节能效果 环保技术:减少水轮机调节对环境的影响实现绿色环保
水轮机调节系统的挑战和机遇
挑战:技术难度大需要不断研发和创新 挑战:市场竞争激烈需要不断提高产品质量和性能 机遇:绿色能源需求增长水轮机调节系统市场前景广阔 机遇:政策支持有利于水轮机调节系统的推广和应用
03 水轮机调节的种类
机械调节
机械调节原理:通过改变水轮机叶 片角度或导叶开度来调节流量
机械调节特点:响应速度快、调节 精度高、稳定性好
添加标题
添加标题
添加标题
添加标题
机械调节方式:叶片角度调节、导 叶开度调节、桨叶调节等
机械调节应用:广泛应用于水电站、 泵站等水轮机调节系统中
电气调节
原理:通过改变发电机的励磁电流来调节水轮机的转速 优点:响应速度快调节精度高 缺点:需要额外的励磁设备成本较高 应用:适用于大中型水轮机特别是调频调峰场合
感谢您的观看
汇报人:
调速器:控制水轮机转速的 装置
水轮机:将水流的动能转化 为机械能的设备
控制系统:实现水轮机调节 的自动化控制
传感器:监测水轮机运行状 态的设备
执行器:根据控制信号调整 水轮机运行状态的设备
水轮机调节的基本原理
水轮机调节的目的是控制水流量以保持稳定的发电量 水轮机调节的基本原理是通过改变水轮机的叶片角度改变水流量 水轮机调节的基本原理是通过改变水轮机的叶片角度改变水流量 水轮机调节的基本原理是通过改变水轮机的叶片角度改变水流量
水力发电站:调节水轮机转速控制发 电量
水力发电站:调节水轮机转速控制发 电量

水轮机调节原理及调速器选择演示教学

水轮机调节原理及调速器选择演示教学
又: M tQ H M t Q H
要使 C,一般不能改变H和效率η,而是通过 改变Q而达到改变主动力矩Mt的目的。
❖ 调节流量的途径: 反击式:通过改变导叶开度a0 ,ZZ:同时改变叶 片转角。
冲击式:通过改变喷嘴开度。
❖ 水轮机调节的定义: 随着电力系统负荷变化,水轮机相应地改变导叶 开度(或针阀行程),使机组转速恢复并保持为额定 转速的过程,称为水轮机调节。
五、调速器的类型与系列
(一) 类型 1、按调速器元件结构分: ❖ 机械液压(机调):信号测量、信号综合、信号反馈
均由机械环节完成。现在很少使用。 ❖ 电气液压(电调):用电气回路代替机调中的机械元
件。调节性能优良,灵敏度和精确度高,成本低, 便于安装调整。目前还有不少电站在使用。 ❖ 微机调速器:用工业控制计算机代替电子调速器, 赋予了调速器更多的控制功能,性能更优良。
❖ 放大机构:(引导阀+辅助接力器、主配阀+主接力 器,二级放大):位移变化→油压变化。
❖ 反馈机构:缓冲器和杠杆机构,当调节使=时,反 馈信号使调节停止。
❖ 油压设备的作用:供给调速器压力油,传递操作力。 由压力油罐、回油箱、油泵、输油管、附件等组成。
❖ 额定工作油压分为两种:有的电站采用低油压,为 2.5MPa;有的电站采用高油压,为4.0MPa。
四、水轮机调节系统的组成
❖ 调速器的作用: 以转速偏差为依据,迅速自动地调节导叶开度,已 达到改变出力恢复转速的目的。
❖ 水轮机自动调节系统: 调速柜+油压设备+接力器。其中中小型水轮机调速 器将这三部分组合成一个整体,称为组合式,运行 方便。
调速系统
油压装置
调速柜主要有以下几个部分组成:
❖ 测量机构:测量机组转速偏差,并把偏差信号转变 为位移信号,然后输出。

水轮机概论及工作原理

水轮机概论及工作原理
1. 设计制造方面: 合理选型,叶型流线设 计,表面光滑,抗空蚀钢衬(不锈钢)。
2. 工程措施:合理选择安装高程,采取防 沙、排沙措施,防止有害泥沙进入水轮机。
3. 运行方面:避开低负荷、低水头运行, 合理调度,必要时向尾水管补气。
40
水轮机的吸出高度
汽蚀系数 吸出高度 水轮机安装高程
41
汽蚀系数
水能→机械能→电能
5
水轮机的工作参数
1.工作水头 ,又称净水头,等于毛水头减去引水系统水头损失。
差。
毛水头也叫装置水头,等于水电站上下游水位
2.流量
表示水流在单位时间内通过水轮机的 体积。
3.功率
输入功率为水流对水轮机每秒钟付出的机械能。
轮机的出力。
输出功率为水轮机轴输出的机械功率,也叫水
通常所说的水轮机功率,指水轮机输出功率。
按推力轴承位置分:立式发电机又分为悬式和 伞式两种。
推力轴承位于转子上方的发电机称为悬式发电机, 它适用于转速在100r/min以上。
推力轴承位于转子下方的发电机称为伞式发电机, 无上导的称为全伞式,有上导的称为半伞式,它适 用于转速在150r/min以下。
按冷却方式分:可分为空气冷却和水冷却两种 。
2
容积式:依靠运动元件改变 工作容积来实现能量转化 。
(2)按结构分
叶片式 :依靠高速旋转叶片 与流体之间力的相互作用来 转换能量,又称透平机械 。
3
■水力原动机:以水流为原动力,并将水流能
( 水轮机 ) 流
量转换为机械能的装置,水
水流能量
经过水力原动机时,
将减少。
■水力工作机:将机械能转换为液体的能量,
适用范围:适用H: 2~25m,小型河床电站。

水轮机概论及工作原理

水轮机概论及工作原理

水轮机概论及工作原理水轮机是一种将水的能量转化为机械能的装置,广泛应用于水力发电和工业生产中。

水轮机的工作原理基于流体静力学原理和动力学原理,通过水流的压力和流速来驱动轮盘的转动。

水轮机的主要组成部分包括定子、转子和导水管道。

定子是需要安装在导水管道上的一种装置,用于引导水流并控制水流的压力和方向。

转子是水轮机的核心部分,由轮盘和转轴组成。

轮盘上面通常有多个叶片,可以根据水流的压力和流速来转动。

转轴将转动的动能传输给发电机或其他机械装置。

根据水轮机叶片的形状和布局方式,可以将水轮机分为多种类型,其中最常见的是水轮机和斜流水轮机。

水轮机:水轮机采用径流式布置,叶片通过水流的冲击和冲击力矩来转动轮盘。

流入水轮机的水流方向垂直于轮盘的转动轴线,水流经过叶片后冲击轮盘的另一侧。

水轮机适用于大流量、低水头的水力资源,如河流和瀑布。

斜流水轮机:斜流水轮机采用斜流式布置,水流的方向与轮盘的转动轴线呈45度角。

水流沿着叶片倾斜的方向经过水轮机,通过叶片的转动转变为轮盘的旋转动能。

斜流水轮机适用于中等流量、中等水头的水力资源,如河流和水库。

水轮机的工作过程可以概括为以下几个步骤:1.水流的引导:水轮机的定子通过导水管道将水流导向叶片区域。

定子具有特定的形状和角度,能够使水流以一定的速度和方向进入叶片。

2.水流的转向:水进入叶片区域后,受到叶片的作用发生方向的变化。

叶片的形状和布局可以改变水流的流向,并且通过冲击叶片产生冲击力矩来推动轮盘的转动。

3.转动轮盘:当水流对叶片施加冲击力矩时,叶片就会开始转动轮盘。

转动轮盘的速度取决于水流的流速和压力,以及叶片的形状和数量。

4.能量转移:转动轮盘的动能可以进一步转移到发电机或其他机械装置。

发电机将机械能转化为电能,用于供电;或者机械装置可以利用转动的动力进行生产。

总体上,水轮机利用水的能量来推动转子旋转,将水流的动能转化为机械能。

水轮机具有高效、可持续的特点,在水力资源丰富的地区广泛应用,为社会经济的发展提供了重要的能源支持。

第一张水轮机调节的基础

第一张水轮机调节的基础

第一章水轮机调节的基本概念§1-1 水电站的生产过程图1-1 典型水电站示意图从图1-1我们可以看到,为了利用河流的能量来发电,必须在建设水电站的地点集中河段的落差,用筑坝的方式实现。

通过压力引水道输送水能到水轮机,将水能转变成机械能。

水轮机作为交流发电机的原动力,带动发电机旋转,将机械能转变为电能。

这种电能自发电机输出送往电网,然后电能又被送到用户,用户根据自己的需要,将电能转变成各种形式的能量:机械能、光能、热能等等。

可以看出,水电站生产的全过程是水、机、电的联合生产过程,如图1-2所示。

图1-2 水电站生产过程图60pnf §1-2 水轮机调节系统简介水轮机调节系统由被控制系统(调节对象)和被控制系统(调节器)所组成,对水电站而言,调节器就是调速器。

由于水电站是一个水、机、电综合系统,一方面机组与压力引水道有水力上的联系,另一方面又与电力系统有电气上的联系。

因而调节对象包括机组(水轮机和发电机)、引水道和电网。

根据调节对象的各组成单元和调速器之间的关系,可以画出水轮机调节系统如图1-3所示。

§1-3 水轮机调节的任务水轮发电机组将水能转变成电能供工业、农业、商业及人民生活等使用。

用户在用电过程中除要求供电安全可靠外,对电网电能质量也有十分严格的要求。

按我国电力部门规定,电网的额定频率为50Hz (赫兹),大电网(容量大于3000MW )允许的频率偏差为±0.2Hz ,小电网(容量小于3000MW )允许的频率偏差为±0.5。

对我国的中小电网来说,系统负荷波动有时会达到其总容量的5%~10%,而且即使是大的电力系统,其负荷波动也往往会达到其总容量的2%~3%。

电力系统负荷的变化,导致了系统频率的波动。

水轮机调节的任务就是解决如何能使机组转速(频率)保持在额定值附件的某个范围之内。

水轮发电机组能否满足上述要求呢? 发电机组所产生的电流频率由下式确定: (1-1)式(1-1)中:f ——电流的频率(Hz );图1-3 水轮机调节系统g t M M dtd J-=ω30nπω=ωηρQH M t =n ——发电机转速(r/min ); p ——发电机磁极对数。

水轮机调节的基本概念讲解

水轮机调节的基本概念讲解
1.水轮机调节系统
水轮机控制系统 hydraulic turbine control systems:
用来检测被控参量(转速、功率、水位、流量等)与给定参量的偏差, 并将它们按一定特性转换成主接力器行程偏差的一些设备所组成的系统。
被控制系统 controlled system:
由水轮机控制系统控制的系统,它包括水轮机、引水和泄水系统、装有 电压调节器的发电机及其所并入的电网。
所以,在一定的机组工况下,只有调节流量Q和效率 η ,才能调节水 轮机转矩,达到调节目的。从最终效果来看,水轮机调节的任务是维持 水轮发电机组转速(频率)在额定值附近的允许范围内。然而,从实质 上讲,只有当水轮机调节器相应地调节水轮机导水机构开度(从而调节 水轮机流量Q)和水轮机轮叶的角度(从而调节水轮机效率),使,才 能使机组在一个允许的稳定转速(频率)下运行。从这个意义上讲,水 轮机调节的实质就是:根据偏离额定值的转速(频率)差信号,调节水 轮机的导水机构和轮叶机构,维持水轮发电机组功率与负荷功率的平衡。
水轮机调节的基本概念 和
数字式(微机)电液调速器
一、水轮机调节的基本概念
1.水轮机调节系统 2.水轮机调节的任务 3.水轮机微机调速器的原理 4.静态特性 5.动态特性
二、数字式(微机)电液调速器
1.微机调速器的结构 2.静态特性 3.动态特性 4.控制功能
一、水轮机调节的基本概念
器的主要作用是根据偏离机组频率(转速)额定值的偏差,调 节水轮机导叶和轮叶机构,维持机组水力功率与电力功率平 衡,使机组频率(转速)保持在额定频率(转速)附近的允许范 围之内。这时的水轮机调速器主要是一个机组频率(转速)调 节器。 现代水电厂和电力系统,对水轮机调速器的性能及功能提出 了新的和更严格的要求。

水轮机调速系统的工作原理ppt课件

水轮机调速系统的工作原理ppt课件
当系统负荷升高同理。
p 0
0 p 0
上节课知识回顾:
问题:
如果系统负荷降低, 接力器调节导水机构,还 没有使Mt=Mg,硬反馈 就使针塞与转动套回到了 相对中间位置,调节系统 会如何动作?
系统会多次调整, 最终停止。
p 0
0 p 0
上节课知识回顾:
结论:
有差调节:经过一个调节 过程后,机组转速不能回 到原来的转速下平衡,而 是回到一个新的转速实现 平衡。
作业:
三、总结
1、调速系统是如何引入软反馈与硬反馈的? 引入后起到了什么作用、存在什么问题?
第三节 水轮机调速系统的工作原理 1、什么是单调节调速系统?
2、系统组成:离心摆、引导阀、辅助接力器与主配 压阀、主接力器、反馈锥体、调差机构P16、转速 调整机构P17、硬反馈杠杆、缓冲装置(软反馈元 件)。
第三阶段: 转速下降,引导阀转动套随之下移,此时,缓 冲阀上下腔油压在节流孔作用下已达平衡,从 动活塞在自身弹簧回复力作用下向下回中,通 过连杆作用,带动引导阀针塞下移,与转动套 回到相对中间位置。
但由于所有环节都没有使接力器左移(即增加 水轮机有效进水流量),因此:
机组转速继续降低……进入下一个调节周期
k端上移-- f端下移
---缓冲装置主动
活塞受向下的力,
使从动活塞上移,
推动引导阀针塞上
k
移与转动套回到相
对中间位置以上,
使接力器停止移动。
使Mt = Mg
接力器停止移动
后,受活塞弹簧
及节流孔排油的
作用,主、从动
活塞逐渐向中间
位置回复,同时
k
使引导阀针塞稍
有下移。
引导阀针塞下移 的结果是什么?

水轮机调速器的工作原理

水轮机调速器的工作原理

水轮机调速器的工作原理水轮机调速器是水力发电厂中非常重要的设备,它的主要作用是控制水轮机的转速,以确保水轮机在各种工况下都能稳定运行。

水轮机调速器的工作原理涉及到液压控制、机械传动和自动调节等多个方面,下面我们将详细介绍其工作原理。

首先,水轮机调速器通过调节导叶的开度来控制水流进入水轮机的量,从而控制水轮机的转速。

导叶的开度由液压控制系统来实现,液压控制系统通过控制液压阀来调节液压缸的工作状态,进而改变导叶的开度。

当需要提高水轮机的转速时,液压控制系统会使液压缸伸出,导叶打开,增加水流量;相反,当需要降低水轮机的转速时,液压控制系统会使液压缸缩回,导叶关闭,减少水流量。

这样,水轮机的转速就能够得到有效地调节。

其次,水轮机调速器还包括了机械传动系统,用于传递导叶的开度到水轮机转子上。

机械传动系统通常由齿轮、链条或传动带等组成,它们能够将液压控制系统调节的导叶开度准确地传递给水轮机转子,从而实现转速的调节。

这样,液压控制系统和机械传动系统共同协作,保证了水轮机调速器的准确性和可靠性。

此外,水轮机调速器还具有自动调节功能,能够根据水轮机的负荷变化自动调节水轮机的转速。

当负荷增加时,水轮机调速器会自动增加导叶的开度,增加水流量,以提高水轮机的转速;相反,当负荷减小时,水轮机调速器会自动减小导叶的开度,减少水流量,以降低水轮机的转速。

这种自动调节功能能够使水轮机在不同负荷下都能够稳定运行,保证了水力发电厂的正常供电。

总之,水轮机调速器的工作原理涉及液压控制、机械传动和自动调节等多个方面,通过这些方面的协作,水轮机调速器能够准确、可靠地控制水轮机的转速,保证水力发电厂的正常运行。

希望本文能够对水轮机调速器的工作原理有所帮助,谢谢阅读!。

水轮机的调节

水轮机的调节
第四章 水轮机调节
第一节 水轮调节的基本概念
一、

水轮机调节任务
电压变化→发电机电压调节系统完成 (自动)使U=U 系统负荷变化 频率变化f ,f =k (p,n),p不变,只有 调节转速n→f 稳定(f=50Hz),水轮机调 速器完成。 水轮机调节的任务: 1、随外界负荷的变化,迅速改变机组的出力。 2、保持机组转速和频率变化在规定范围内。 3、启动、停机、增减负荷,负荷分配。
二、水轮机调节原理
(一)、原理:水轮发电机组的运动方程式为 d Mt Mg J dt Mt :水轮机主动力矩(水流推动叶片做功); Mg :发电机的阻力矩(发电机定子对转子的作 用力矩,与Mt相反); J :机组惯性矩; ω :角速度;


(1) 当Mt = Mg 时, dω/dt =0,ω=常数 (2) N↓(负荷)→ Mt >Mg → dω/dt > 0 →n↑ (3) N↑(负荷)→Mt <Mg → dω/dt < 0→n↓ 所以当负荷变化时,应调节Mt ,使Mt = Mg dω/dt =0, n维持额定转速, f=50Hz
3、按大小(容量) 大型:活塞直径80mm以上 中型:操作功10000Nm~30000Nm 小型:操作功小于10000Nm,特小: 小于3000Nm
(二)、调速器系列(反击式水轮机)
由三部分组成: 第一部分:基本特性和类型 大型: 无代号 中小型带油压装置:Y 特小:T 机械液压:无代号 电动调节:D 单 调:无代号 双 调:S 调速器:T
调速器的工作原理
四、调速器的类型与系列
(一)、类型 1、按调速器元件结构分: 机械液压(机调)和电气液压(电调) 电调比机调的优越性:调节性能优良,灵敏 度和精确度高,成本低,便于安装调整。 电气液压:在自动控制部分用电气元件代替 机调中的机械元件。

水轮机调速器的工作原理

水轮机调速器的工作原理

水轮机调速器的工作原理
水轮机调速器是一种用于控制水轮机转速的装置,它可以根据负载的变化自动调节水轮机的转速,以保持稳定的输出功率。

水轮机调速器的工作原理是通过控制水轮机的进水量来实现调速的。

水轮机调速器通常由调速器本体、调速器控制系统和水轮机控制系统三部分组成。

调速器本体是调节水轮机进水量的主要部件,它由调节阀、调节杆、传动机构和反馈机构等组成。

调速器控制系统是用于控制调速器本体的电气系统,它可以根据负载的变化自动调节水轮机的转速。

水轮机控制系统则是用于控制水轮机的进水量和出水量的系统,它可以根据调速器控制系统的指令来控制水轮机的运行状态。

水轮机调速器的工作原理是基于反馈控制原理的。

当负载增加时,调速器控制系统会检测到负载的变化,并向调速器本体发送指令,调节阀会自动打开,增加水轮机的进水量,从而提高水轮机的转速,以保持稳定的输出功率。

反之,当负载减少时,调速器控制系统会向调速器本体发送指令,调节阀会自动关闭,减少水轮机的进水量,从而降低水轮机的转速,以保持稳定的输出功率。

水轮机调速器的工作原理非常简单,但它对于水轮机的运行稳定性和效率有着非常重要的作用。

通过自动调节水轮机的转速,可以保证水轮机在不同负载下都能够保持稳定的输出功率,从而提高水轮
机的运行效率和使用寿命。

因此,在水力发电厂等需要使用水轮机的场合,水轮机调速器是必不可少的装置。

水轮机调节

水轮机调节

(5)阀组(安全阀、逆止阀、减载阀)
安全阀的作用是保证压力油罐内油 压不超过允许值,防止油泵与压力油罐 过载。
减载阀的作用是保证油泵电动机在 低负载下启动,缩短启动时间,减少启 动电流。
逆止阀用来防止压力油罐内的压力 油在油泵停止运行时倒流
6、调速器的类型与系列
(1)按调速器元件结构分
• 机械液压(机调):信号测量、信号综合、信号反馈 均由机械环节完成。现在很少使用。
二 调节系统的特性
1、调节系统的静态特性
(1)无差调节:调节前后 机组转速不变,如图5-1a。 (2)有差调节:调节前后 机组转速有一小的偏差, 如图5-1b。
对单机运行的机组,才有可能采取无差调节的方式; 多台机组并列运行时,各台机组反应时间和动作快慢 不同,需采用有差调节的运行方式。
(2)有差调节
(3)电液转换器(步进电机)结构原 理及作用
电液转换器的作用是将电气部分信号 输出的综合信号,转换成具有一定操作 力的机械位移信号或具有一定压力的流 量信号。
电液转换器有电气位移转换信号和液 压放大两部分组成。
工作线圈:实现控制操作 线圈
振荡线圈:防止卡阻,提高工作可靠性
电液转换器中一般有两个线圈,一个工作 线圈,一个振荡线圈。工作线圈通的是工作电 流,振荡线圈通入振荡电流。通入工作电流后 ,使控制套产生位移,使下一级随动。振荡电 流使线圈和控制套产生微小振动,以提高控制 套的灵敏度,防止卡阻。
成一个整体,称为组合式,运行方便。
(1)调速柜主要有以下几个部分组成:
• 测量机构:测量机组转速偏差,并把偏差信 号转变为位移信号,然后输出。
• 放大机构:(引导阀+辅助接力器、主配阀+主 接力器,二级放大):位移变化→油压变化。

《水轮机调节的基本概述与工作原理》

《水轮机调节的基本概述与工作原理》
对于磁极对数已经固定的水轮发电机,其输出电能的频率 决定于机组的转速,因此,欲保持机组供电频率不变,则必须 维持机组转速不变。水轮发电机组的转速变化一般要求不得超 过±0.1%~±0.4 %。故水轮机调节的本任务可归纳为:
根据负荷的变化不断调节水轮发电机组的出力并维持机组 转速在规定范围内。
除以上的基本任务外,水轮机调节的任务尚有机组的起动、 并网和停机等。
调节系统除应满足稳定性的要求外,其过渡过程曲线还应该有比较好的 形状,即具有良好的品质。对过渡过程品质的要求概括起来有以下几个方面 :
(1)调节时间Tp要短(十几秒~几十秒,越小越好),即从被调节参数偏离 初始平衡状态达到新的平衡状态的时间要短。从理论上讲,过渡过程振荡的 完全消失要很长的时间,但对于实际工程,当转速n与额定转速n0的偏离值 小于(0.2%~O.4%)n0 ,即可认为进入新的平衡状态。
第四章 水轮机调节
第一节 水轮机调节的任务 第二节 水轮机调节的基本概念 第三节 水轮机调速器的工作原理 第四节 水轮机调速器的类型 第五节 油压装置
第一节 水轮机调节的任务
水轮发电机组将水能转换为电能,输送给电力系统, 供用户使用。电力系统向用户提供的电能应满足一定的质 量要求,频率和电压的变化不能太大,应保持在额定值附 近的某一范围内,否则将影响各用电部门的工作质量。例 如,电能频率的变化将引起用电设备电动机的转速变化, 从而影响电钟计时的准确性、车床加工零件的精度、布匹 纤维的均匀性等。我国规定的电力系统频率为50Hz,其偏 差,大系统不得超过±O.2Hz,小系统不得超过±0.5Hz。
二、调节系统的静特性 调节系统的静特性指稳定工况(平衡状态)时各参数之间的关
系,通常用机组转速n与出力N的关系表示。
调节系统的静特性有以下两种:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)水轮机的工作流量较大,水轮机及其导水机构的尺 寸也较大,需要较大的力才能推动导水机构,因此,调速器 需要有放大元件和强大的执行元件(即前述的接力器)。
(2)水轮发电机组以水为发电介质,与蒸汽等相比,水 有较大的密度,同时,水电站的输水道一般较长,其中的水 体有较大的质量,水轮机调节过程中的流量变化将引起很大 的压力变化(即水锤),从而给水轮机调节带来很大困难。
导水机构
水能 QH
机组执行元件ຫໍສະໝຸດ 放大元件电能 UIf
给 定 f
f
测量元件
反馈元件
水轮机调节系统方框图
在方块图4—1中,测量、加法、放大、执行和反馈元件总称 为自动调速器。导水机构包括机组在内,统称为调节对象。
调速器和调节对象构成水轮机自动调节系统。
水轮机调节系统以频率 f (亦即机组转速)为被调节参数,根 据实测 f 与给定值间的偏差调节导水机构的开度,从而改变机组 的出力和转速(频率),但要使改变后的频率符合给定值需要一个 调节过程,这个过程又称为调节系统的过渡过程,在这个过程中, 频率、开度等参数随时间不断变化。各参数随时间的变化情况, 及在经过一段时间以后是否能达到新的平衡状态(即稳定工况), 与调节系统的特性有关,这种特性称调节系统的动特性。若在经 过一段时间之后系统能够达到新的平衡状态,那么新平衡状态与 原平衡状态的关系,即各参数是否能回复到初始状态,亦与调节 系统的特性有关,这种特性称调节系统的静特性。下面将分别研 究水轮机调节系统的这两种特性。
(1) Mt=Mg ,水轮机的动力矩等于发电机的阻力矩, dω/dt=0,ω为一常数,机组以恒定转速运行。
(2) Mt>Mg,水轮机的动力矩大于发电机的阻力矩,当发电机 的负荷减小时会出现这种情况,此时dω/dt>0,机组转速上 升,在这种情况下,应对水轮机进行调节,减小流量,从而 减小Mt,以达到新的平衡状态。 (3) Mt < Mg,水轮机的动力矩小于发电机的阻力矩,当发电 机的负荷增加时会出现这种情况,此时dω/dt<0,机组转速 下降,在这种情况下,应增大水轮机的流量Q以达到Mt=Mg的新 的平衡状态。
(3)对于轴流转桨式水轮机的导叶和转轮叶片、水斗式 水轮机的喷嘴和折流板、带减压阀的混流式水轮机等,需增 加一套协调机构,对两个对象进行调节,使调节更为困难。
总之,水轮机的调节比其他原动机(如汽轮机等)的调节 要复杂和困难。
第二节 水轮机调节的基本概念
水轮机调节系统的组成元件及各元件的相互关系可用图 4—1的方块图表示。
图中的方块表示水轮机调节系统的元件,箭头表示元件 间信号的传递关系:箭头朝向方块表示信号的输入,箭头离开 方块表示信号的输出,前一个元件的输出是后一个元件的输入。 从图中可以看出,由导水机构输人的水能经机组转换成电能输 送给系统。电能的频率f(亦即机组的转速n)信号输入调速器的 测量元件,测量元件将频率f信号转化成位移(或电压)信号输 送给加法器(图中的⊕)并与给定的f值作比较,判定频率是否 有偏差和偏差的方向,根据偏差的情况通过放大器向执行元件 发出指令,执行元件根据指令改变导水机构的开度,反馈元件 则将导叶开度的变化情况反回给加法器,以检查开度变化是否 符合要求,如变化过头,则发出指令进行修正。
反击式水轮机调节流量的机构为导叶(转桨式水轮机 尚有转轮叶片);冲击式水轮机调节流量的机构为带针阀 的喷嘴。导叶和喷嘴的针阀由接力器操作,根据水轮机所 需流量的大小,改变导叶或喷嘴的开度。接力器的动作则 由调速器操纵,根据调速器的指令行事。
水轮机及其导水机构、接力器和调速器构成水轮机自 动调节系统。与其他原动机的调节系统相比,水轮机的调 节系统具有以下特点:
Mt
QH
(4—2)
式中, γ——水的容重; Q——水轮机的流量; H——水轮机的工作水头; η——水轮机的效率。 在γ、Q、H、η中,只有Q是易于改变的,因此,通常把Q
作为水轮机的被调节参数,
(1)Mt Mg,
d 0,
dt
C,
nne
(2)N Mg Mt Mg
d0 n
对于磁极对数已经固定的水轮发电机,其输出电能的频率 决定于机组的转速,因此,欲保持机组供电频率不变,则必须 维持机组转速不变。水轮发电机组的转速变化一般要求不得超 过±0.1%~±0.4 %。故水轮机调节的本任务可归纳为:
根据负荷的变化不断调节水轮发电机组的出力并维持机组 转速在规定范围内。
除以上的基本任务外,水轮机调节的任务尚有机组的起动、 并网和停机等。
调速系统
控制水电机组出力、事故紧急停机。
机组的转速变化可用以下基本动力方程表示
Mt
Mg
J
d
dt
(4-1)
式中,J—机组转动部分的惯性矩; ω—机组的旋转角速度,ω=2πn/60,弧度/
s,
n为机组转速,r/min; Mt—水轮机的主动力矩; Mg—发电机的阻力矩; t—时间。
水轮机的动力矩可用下式表示
dt
d
(3)N Mg Mt Mg
0 n dt
所以当负荷变化时,应调节Mt,使Mt=Mg,n=ne
又: MtQ H Mt Q H
要使 C ,一般不能改变H 和效率η,而是通过改
变Q 而达到改变主动力矩Mt的目的。
通过改变Q来改变水轮机的动力矩Mt。 比较式(4—2)和式(4—1),可能出现以下三种情况:
电力系统的负荷是不断变化的,包括一天之内的 周期性变化和以分秒计的短周期的非规律性变化。因 此,根据系统的要求和水轮发电机组出力变化灵活的 特点,水轮发电机组的出力需进行调节,其任务为:
电力系统的负荷图
(1)根据负荷图的安排,随着负荷的变化迅速改变机组的出力, 以满足系统的要求。
(2)担负系统短周期的不可预见的负荷波动,调整系统频率。
第四章 水轮机调节
第一节 水轮机调节的任务 第二节 水轮机调节的基本概念 第三节 水轮机调速器的工作原理 第四节 水轮机调速器的类型 第五节 油压装置
第一节 水轮机调节的任务
水轮发电机组将水能转换为电能,输送给电力系统, 供用户使用。电力系统向用户提供的电能应满足一定的质 量要求,频率和电压的变化不能太大,应保持在额定值附 近的某一范围内,否则将影响各用电部门的工作质量。例 如,电能频率的变化将引起用电设备电动机的转速变化, 从而影响电钟计时的准确性、车床加工零件的精度、布匹 纤维的均匀性等。我国规定的电力系统频率为50Hz,其偏 差,大系统不得超过±O.2Hz,小系统不得超过±0.5Hz。
相关文档
最新文档