垂径定理及其推论完整ppt课件

合集下载

《垂径定理推论》课件

《垂径定理推论》课件

04
答案4
圆上一点P(a,b)到圆心的距离公 式为sqrt((a - h)^2 + (b - k)^2) 。解析:利用两点之间的距离公 式,我们知道点P到圆心的距离 等于点P的横坐标与圆心横坐标 之差的平方和加上点P的纵坐标 与圆心纵坐标之差的平方和的平 方根。
06
总结与展望
本节课的总结
知识要点回顾 垂径定理推论的基本概念和定理表述。
能力目标
能够运用垂径定理及其推 论解决实际问题,提高数 学应用能力。
情感态度与价值观
培养学生对数学的兴趣和 热爱,增强数学学习的自 信心和成就感。
02
垂径定理推论的基本概念
定义与性质
定义
垂径定理推论是关于圆的定理, 它描述了从圆心到圆上任一点的 连线(即半径)与通过该点的圆 的切线之间的关系。
性质
对定理的深入理解
定理的证明过程
深入理解垂径定理推论的证明过程,可以帮助我们更好地掌握其内涵和应用。通 过逐步推导和解析,可以更清晰地理解定理的逻辑和严密性。
定理的几何意义
垂径定理推论不仅是一个数学定理,还具有深刻的几何意义。通过图形演示和实 例分析,可以更直观地理解其在解决实际问题中的应用。
对定理的推广与改进
05
习题与解答
习题
题目1
题目2
若圆心到直线的距离为d,圆的半径为r, 则直线被圆所截得的弦长为多少?
已知圆的方程为x^2 + y^2 = r^2,求圆 上一点P(a,b)到直线x=h的距离公式。
题目3
题目4
若直线l与圆相切于点A,且直线l的方程为 Ax + By + C = 0,求点A到直线l的距离公 式。
垂径定理推论在几何问题解决中的应用实例。

垂径定理及推论 课件

垂径定理及推论 课件

①④ ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的 ①⑤ ②③④ 另一条弧.
② ②④ ②⑤
①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.
①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且 ①③④ 平分弦和所对的另一条弧.
③④ ①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于 ③⑤ ①②④ 弦,并且平分弦所对的另一条弧.
B 由 ① CD是直径 ③ AM=BM
可推得
D
②CD⊥AB,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
垂径定理及逆定理
C
① CD是直径
,④A⌒C=B⌒C,
②⑤AC⌒DD=⊥B⌒DA.B, ③ AM=BM,
条件 结论


A M└
B
●O
①② ③④⑤ 垂直于弦的直径平分弦,并且平分弦所的两条弧. ①③ ②④⑤ 平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两D 条弧.
垂径定理
垂径定理
• 定理: 垂直于弦的直径平分弦,并且平分弦 所对的两条弧.
C
A
B
M└
●O
题设
D 由 ① CD是直径 可推得 ② CD⊥AB
结论
③AM=BM,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
垂径定理的逆定理
平分弦(不.是直径)的直径 垂直于弦,并且平 分弦所不对是的直两径条弧.
C
A
┗●
M
●O
④⑤ ①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.
垂径定理的推论
• 如果圆的两条弦互相平行,那么这两条弦所夹的弧相 等吗?
1.两条弦在圆心的同侧 2.两条弦在圆心的两侧

27.3(2)-垂径定理及其推论PPT课件

27.3(2)-垂径定理及其推论PPT课件


⌒⌒
AM= MB
⌒⌒
AN= NB
8
推论3:
如果一条直线是弦的垂直平分线, 那么这条直线经过圆心,并且平分这条 弦所对的弧。
2021/7/23
9
M
垂径定理推论4
O
A
③ AC=BC ④ A⌒N= N⌒B
2021/7/23
C B
N
①直线MN过圆心O
② MN⊥AB
10
推论4: 如果一条直线平分弦和弦所对的一
5
M
垂径定理推论2
O
C A
N
1.直线MN过圆心
4.
⌒⌒
AN= NB
2021/7/23
B
③②MAA⌒CNM=⊥=BM⌒ACBB
6
推论2 如果圆的直径平分弦所对的一条弧
那么这条直径垂直平分这条弦。
2021/7/23
7
M
垂径定理推论3
O
A
② MN⊥AB ③ AC=BC
2021/7/23
C B
N
①直线MN过圆心O
14
填空:如图,在⊙O中
(1)若MN⊥AB,MN为直径;则
( ),( ),( );
(2)若AC=BC,MN为直径;AB不是直径,则
( ),( ),( );
(3)若MN⊥AB,AC=BC,则
( ),( ),( );
(4)若弧AM=弧BM,MN为直径,则
( ),( ),( )。
A
C
M
M D
C B
AB被点D平分.
N
2021/7/23
17
条弧,那么这条直线经过圆心,并且垂 直于这条弦。
2021/7/23

第3课--垂径定理及其推论幻灯片课件

第3课--垂径定理及其推论幻灯片课件
第3课--垂径定理及其推论
1. 如图,直径CD⊥AB,AB=6,OE=4,求⊙O的半径. 5
方法总结:构造由____半__径______、_____半__弦_____、____弦__心__距____ 组成的直角三角形,用_____勾__股__定__理_____求解.
2. 如图,半径OD⊥AB,弦AB=16,CD=4,求⊙O的半径.
∵ C为弦AB的中点, ∴ 半径OD⊥AB. ∴ AC=1 AB= 1 ×10=5. 连接 OA2,设OA=2 OD=x, 在Rt△OAC中,CO=x-1, ∵ OC 2+AC 2=OA 2, ∴ (x-1)2+52=x2. ∴ x=13. ∴ ⊙O半径为13.
6. 如图,D为»A B 的中点,⊙O半径为10,CD=4,求AB的长. 16
菱形 提示:∵AC垂直平分OB, ∴AC⊥OB,PO=PB. ∴PA=PC. ∴四边形OABC为平行四边形. ∵AC⊥OB, ∴四边形OABC为菱形.
四、拓展提升
13.如图,在⊙O中,AB∥A′B′.求证 ¼ AA' B¼B'.
过O作OE⊥AB交AB于C,交A′B′于D,交⊙O于E,
∵AB∥A′B′
二、垂径定理的推论
平分弦(不是直径)的直径________弦,并且________弦所对的弧. ∵________________, ∴________________
________________ ________________.
5. (例1)如图,C为弦AB的中点,CD=1,AB=10,求⊙O半径.
最大深度. 18 cm 提示:过O作OC⊥AB,垂足为C, 延长CO交⊙O于D. 在Rt△OBC中,OB=13 cm BC= 1 AB=12 cm

垂径定理推论ppt课件

垂径定理推论ppt课件
垂径定理
C
.
O
E
A
B
D
;.
1
观察并回答
(1)两条直径AB、CD,CD平分AB吗? (2)若把直径AB向下平移,变成非直径的弦,弦AB是否一定被直径 CD平分?
C B
O
C
B O
A D
AD
思考:当非直径的弦AB与直径CD有什么位置关系时,弦AB有可能被直径CD平分?
2
如图,AB是⊙垂O径的定一理条:弦垂,直作于直弦径的C直D,径使平C分D弦⊥,AB并,且垂足为E . (1)这个图形平是分轴弦对所称对图的形两吗条?弧如.果是,它的对称轴是什么?
C
D
B
11
垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
题设
(1)过圆心

(2)垂直于弦
结论

(3)平分弦
(4)平分弦所对的优弧
(5)平分弦所对的劣弧
12
垂径定理的逆定理
如图,在下列五个条件中:
① CD是直径,


④AC = BC,
② CD⊥AB,
⌒ ⑤ AD = BD.源自③ AM=BM, ⌒8
练一练:试 金 石
如图,已知在⊙O中,弦AB的长为8厘米,圆 心O到AB的距离为3厘米,求⊙O的半径。
A
E B
.
O
解:连结OA。过O作OE⊥AB,垂足为E,
则OE=3厘米,AE=BE。
∵AB=8厘米
∴AE=4厘米
在Rt AOE中,根据勾股定理有OA=5厘米 ∴⊙O的半径为5厘米。
9
若CD为圆O的直径,弦AB⊥CD于点E,
Ramming foundation

3.3 垂径定理 课件 2023-2024学年 北师大版数学九年级下册

3.3 垂径定理  课件   2023-2024学年 北师大版数学九年级下册

*3.3 垂径定理
续表
(1)定理中的“垂径”可以是直径、半径或过圆心的直线(线段),其 本质是“过圆心”; 特别提醒 (2)“平分弦所对的两条弧”是指既平分弦所对的优弧(如图中的
),又平分弦所对的劣弧(如图中的 )
-2-
*3.3 垂径定理
2. 垂径定理的推论
文字描述 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧 如图,直径 CD 与非直径的弦 AB
的是 ( )
A. CM=DM B.
C. ∠ACD=∠ADC D. OM=MB
(第 1 题图)
(第 2 题图)
2. 如图所示,⊙O 的半径为 13,弦 AB 的长度是 24,ON⊥AB,垂足为 N,
则 ON= ( )
A. 5
B. 7
C. 9
D. 11
-1-
*3.3 垂径定理
3.(教材 P76,习题 T2 变式)如图,AE 是⊙O 的直径,半径 OD 垂直于 弦 AB,垂足为 C,AB=8 cm,CD=2 cm,求 BE 的长.
∴AN= AB=12, 在 Rt△AON 中, ∵AO=13,∴ON=
=5.
3. 解:∵ 半径 OD 垂直于弦 AB,垂足为 C, AB=8 cm,∴AC= AB=4 cm,
设 CO=x cm,则 AO=DO=(x+2)cm,在 Rt△AOC 中,AO2=CO2+AC2, ∴(x+2)2=x2+42,解得 x=3,即 CO=3 cm. ∵AO=EO,AC=CB,OC 为△ABE 的中位线,∴BE=2CO=6 cm. 4. D 提示:一条直线经过圆心,平分弦所对的劣弧,根据垂径定理及其推论可 知,它垂直平分这条弦,并且平分弦所对的优弧. 5. 120 提示:∵ 弦 AC 与半径 OB 互相平分,∴OA=AB,∵OA=OB,∴△OAB 是 等边三角形,∴∠AOB=60°,∴∠AOC=2∠AOB=120°.

垂径定理PPT课件(人教版)

垂径定理PPT课件(人教版)
37.4m
7.2m
A
C
D
B
R
O
ห้องสมุดไป่ตู้广探索 二
⊙O半径为10,弦AB=12,CD=16, 且AB∥CD.求AB与CD之间的距离.
A C
B D
.
A
B
.
C
D
课堂小结
C
O
A
A
E
B
D
A
O
D
B
D
B
O
C
A
C
CB
D
A
O
O
C
B
• 两条辅助线:
半径 弦心距
A
• 一个Rt△:半径 半弦 弦心距
r2 d 2 (a)2 2
在⊙O中,直径CD⊥弦AB
A
① AB是直径 ② CD⊥AB
C
P

D
③ CP=DP
可推得

⌒ AC
=
⌒ AD
O

⌒⌒ BC = BD
B
垂径定理的变式图形一
在⊙O中,半径 OB⊥弦CD
C
① OB是半径 可推得 ② OB⊥CD
③CP=DP,
④ ⌒BC=⌒BD.
O P
D
B
垂径定理的变式图形二
在⊙O中,OP⊥弦CD于P点 C
O P
D
① OP过圆心 ② OP⊥CD
可推得
③CP=DP,
在下列图形中,你能否利用垂径定理找到相等的线 段或相等的圆弧
C
C
B
E
A
O
A
E
B
D C
O
A
E
B
D
A

《垂径定理》课件

《垂径定理》课件

答案:3cm
解析:根据垂径定理,圆心到弦的垂线段就是圆心到弦中点的距离,再根据勾股定 理求解。
习题二
题目:已知圆O的半径为5cm,弦AB的长为6cm,则圆心O到弦AB的距 离为 _______.
答案:4cm
解析:根据垂径定理,圆心到弦的垂线段就是圆心到弦中点的距离,再 根据勾股定理求解。
习题三
01
02
CATALOGUE
垂径定理的表述
定理的文字表述
垂径定理
垂直于弦的直径平分该弦,并且 平分弦所对的两条弧。
解释
如果一条直径垂直于一条弦,那 么这条直径会平分这条弦,并且 平分弦所对的两条弧。
定理的图形表述
图形示例
可以画出一个圆和经过圆心的一条弦 ,然后画一条垂直于该弦的直径,用 以展示垂径定理。
03
这种方法需要学生掌握相似三角形的 性质和判定方法,适合数学基础较好 的学生理解和掌握。
04
CATALOGUE
垂径定理的应用
在几何作图中的应用
确定圆的中心
利用垂径定理,我们可以确定一个圆 的中心,只需在圆上任取两点,然后 通过这两点作垂直平分线,两条垂直 平分线的交点即为圆心。
作圆的切线
利用垂径定理,我们可以找到一个圆 的切线。在圆上任取一点,然后通过 这一点作圆的切线,切线与过圆心的 垂线交于一点,该点即为切点。
《垂径定理》ppt课 件
目录
• 引言 • 垂径定理的表述 • 垂径定理的证明 • 垂径定理的应用 • 垂径定理的变式 • 习题与解答
01
CATALOGUE
引言
什么是垂径定理
垂径定理
垂径定理是平面几何中一个重要的定理,它描述了垂直于弦的直径与弦之间的 关系。具体来说,如果一条直径垂直于一条弦,则这条直径将该弦平分,并且 平分该弦所对的弧。

《垂径定理》优秀ppt课件2024新版

《垂径定理》优秀ppt课件2024新版

判断四边形形状问题
判断平行四边形
利用垂径定理证明四边形两组对 边分别平行,从而判断四边形为
平行四边形。
判断矩形和正方形
在平行四边形基础上,利用垂径定 理证明两组对角相等或邻边相等, 进而判断四边形为矩形或正方形。
判断梯形
通过垂径定理证明四边形一组对边 平行且另一组对边不平行,从而判 断四边形为梯形。
利用垂径定理将方程转化为标准形式 判别式判断根的情况
求解根的具体数值
判断二次函数图像与x轴交点问题
利用垂径定理判断交点个数 确定交点的横坐标
结合图像分析交点性质
解决不等式组解集问题
利用垂径定理确定不 等式组的解集范围
结合图像直观展示解 集
分析解集的端点情况
05
垂径定理拓展与延伸
推广到三维空间中直线与平面关系
《垂径定理》优 秀ppt课件
目录
• 垂径定理基本概念与性质 • 垂径定理证明方法 • 垂径定理在几何问题中应用 • 垂径定理在代数问题中应用 • 垂径定理拓展与延伸 • 总结回顾与课堂互动环节
01
垂径定理基本概念与性质
垂径定义及性质
垂径定义
从圆上一点向直径作垂线,垂足 将直径分成的两条线段相等,且 垂线段等于半径与直径之差的平 方根。
在直角三角形中,利用勾 股定理和已知条件进行推 导和证明。
解析法证明
建立坐标系
以圆心为原点建立平面直角坐标系, 将圆的方程表示为$x^2+y^2=r^2$ 。
求解交点
联立垂径方程和圆的方程,求解交点 坐标,进而证明垂径定理。
垂径表示
设垂径的两个端点分别为$(x_1, y_1)$ 和$(x_2, y_2)$,则垂径的方程可表示 为$y-y_1=frac{y_2-y_1}{x_2-x_1}(xx_1)$。

垂径定理及其推论课件

垂径定理及其推论课件

B
于点C.
3. 作AC、BC的
垂直平分线.
4. 三条垂直平分线
交于一点O.
O
点O就是A⌒B的圆心.
第十六页,共30页。
第十七页,共30页。
你 能 破 镜
重A

吗?
m
n
C
B
O
作法:
作弦AB、AC及它们的垂直平分线m、n,交 于O点;以O为圆心,OA为半径作圆. 依据:
弦的垂直平分线经过圆心,并且平分弦所 对的两条弧.
长为16cm,圆心O到AB的距离为 6cm,求⊙O的半径.
E
B

O
解:连结OA.过O作OE⊥AB,垂足为E, 则OE=3cm,AE=BE. ∵AB=16cm ∴AE=8cm 在Rt△AOE中,根据勾股定理有OA=10cm ∴⊙O的半径为10cm.
第二十六页,共30页。
4、如图,CD是⊙O的直径,弦AB⊥CD于E,
① 直径过圆心 ③ 平分弦
⑤ 平分弦所对的劣弧
② 垂直于弦
⑤ 平分弦所对的劣弧
① 直径过圆心
③ 平分弦 ④ 平分弦所对优弧
(4)垂直于弦并且平分弦所对的一条弧的 直径过圆心,并且平分弦和所对的另一条弧.
第八页,共30页。
③ 平分弦 ④ 平分弦所对优弧
① 直径过圆心
② 垂直于弦 ⑤ 平分弦所对的劣弧
第十八页,共30页。
垂径定理三角形
有哪些等量关系?
d+h=r
rd h a
第十九页,共30页。
在a,d,r,h
中,已知其中任意 两个量,可以求出
其它两个量.
课堂小结
1. 圆是轴对称图形
任何一条直径所在的直线都是它的对称轴.

《垂径定理》课件1

《垂径定理》课件1
通过计算或观察图像,确定函数的最值。
判断函数单调性
利用垂径定理确定函数图 像的对称轴,进而判断函 数在不同区间的单调性。
结合函数的导数,分析函 数在不同区间的增减性。
通过比较函数值或观察图 像,确定函数的单调区间。
分析函数图像特征
利用垂径定理确定函数图像的对称轴,分 析图像的对称性。
结合函数的奇偶性,分析图像关于原点的 对称性。
其他领域应用举例
航海和航空导航
在航海和航空导航中,垂径定理可以用于计算航向和距离。通过观察天体(如太阳、星星)的位置和角度,可以 利用垂径定理确定航行方向和距离,实现准确的导航。
地理测量
垂径定理在地理测量中也有应用。例如,在测量地球表面上两点之间的距离时,可以利用垂径定理计算出大圆距 离,这是一种更精确的距离测量方法。
建立平面直角坐标系
以圆心为原点,以过圆心的直线为x轴 建立平面直角坐标系。
设圆的方程和弦的方程
联立方程求解
将两个方程联立,消去y得到关于x的 二次方程,由根与系数的关系可得垂 线平分弦的结论。
设圆的方程为x^2 + y^2 = r^2,设 弦所在直线的方程为y = kx + b。
向量法证明
1 2
定义向量 设圆心为O,弦的两个端点分别为A和B,垂足为 C,则向量OC垂直于向量AB。
利用向量数量积的性质 由向量数量积的性质可知,OC·AB = 0,即 |OC|·|AB|·cos90° = 0,由此可推出垂线平分弦。
3
利用向量加法的性质 由向量加法的性质可知,向量OA + 向量OB = 2 向量OC,由此可推出垂线平分弦。
03
垂径定理在几何问题中应用
求解三角形问题
利用垂径定理求解直角三角形中的边长和角度

垂径定理及其推论52331ppt课件

垂径定理及其推论52331ppt课件

最新课件
6
垂径定理的推论1
② 垂直于弦 ③ 平分弦
C
① 直径过圆心 ④ 平分弦所对优弧 ⑤ 平分弦所对的劣弧
O E A
D
已知:AB是弦,CD平分AB,CD ⊥AB, 求证:CD是直径,A⌒D=B⌒D,A⌒C=B⌒C
B
(3)弦的垂直平分线 经过圆心,并且平 分弦所对的两条弧.
最新课件
7
② 垂直于弦 ④ 平分弦所对优弧
C
O
E
A
B
D
最新课件
21
3.垂径定理的推论
条件 结论
命题
①③ ②④⑤ 平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧.
①④ ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对
①⑤ ②③④ 的另一条弧.
②③ ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.
②④ ①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平 ②⑤ ①③④ 分弦和所对的另一条弧.
B
D
(2)平分弦所对的一条弧的直径,垂直平 分弦,并且平分弦所对的另一条弧.
最新课件
5
垂径定理的推论1
① 直径过圆心 ⑤ 平分弦所对的劣弧
C
③ 平分弦 ④ 平分弦所对优弧 ② 垂直于弦
O E A
D
已知:CD是直径,AB是弦,并且A⌒D=B⌒D 求证:CD平分AB,CD ⊥AB,A⌒C=BC⌒
B
(2)平分弦所对的一条弧的直径,垂直平 分弦,并且平分弦所对的另一条弧.
③ 平分弦 ⑤ 平分弦所对的劣弧
① 直径过圆心 ② 垂直于弦 ④ 平分弦所对优弧
(5)平分弦并且平分弦所对的一条弧的直径过 圆心,垂直于弦,并且平分弦所对的另一条弧 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
且平分弦所对的两条弧
已知:如图:AB是⊙O的一条弦.
C
求证CD:是A直M径=B,且MCDA⊥⌒CA=BB⌒,C垂, 足A⌒为DM=B.⌒D.
A
M└
●O
B
证明:连接OA,OB
∵OA=OB,OM⊥AB
符号语言: D
∴AM=BM. ∴点A和点B关于CD对称.
如图∵ CD是直径,
∵⊙O关于直径CD对称,
CD⊥AB,
作直径CD,使CD⊥AB,垂足为M.
(1)下图是轴对称图形吗?如果是,其对称轴是什么?
(2)你能发现图中有哪些等量关系?与同伴说 说你的想法和理由.
C
等量关系:
A M└ ●O
B
AM=BM
⌒⌒
AC =BC,
⌒⌒
AD =BD.
D
你能用一句话表达上述
结论吗?
精品课件
4
垂径定理:垂直于弦的直径平分这条弦,并
C
A
M
B

O
D
精品课件
9
典例精析
例2 已知:如图,在
以O为圆心的两个同心圆
O.
中,大圆的弦AB交小圆
于C,D两点。
A C ED B
求证:AC=BD。
证明:过O作OE⊥AB,垂足为E, 则AE=BE,CE=DE。
AE-CE=BE-DE。
所以,AC=BD
精品课件
10
思考:
• 如果圆的两条弦互相平行,那么这两条弦所夹的弧相 等吗?
解:过点O作OE⊥AB,垂足为E,
E
B
.O
连结OA。则OE=3 ∵AB=8,
∴AE=BE=4
在RtAOE中,根据勾股定理得
OA A2 E O2 E3 2 4 2 5
∴⊙O的半径为5厘米。
精品课件
8
变式训练
如图,在⊙O中,CD是直径,
AB是弦,且CD⊥AB,已知CD = 20,
CM = 4,求AB。
①直径过圆心 ②垂直于弦
题设
③平分弦
④平分弦所对的优弧
⑤平分弦所对的劣弧
精品课件 结论
13
垂径定理的推论1
① 直径过圆心 ③ 平分弦
C
② 垂直于弦 ④ 平分弦所对优弧 ⑤ 平分弦所对的劣弧
已知:CD是直径,AB是弦,CD平分AB
O E
求证:CD⊥AB,A⌒D=B⌒D,A⌒C=B⌒C
A
B
D
(1)平分弦(不是直径)的直径垂直于弦, 并且平分弦所对的两条弧.
17
判断
(1)垂直于弦的直线平分弦,并且平分弦所对的 弧…………………………………………..( × )
(2)弦所对的两弧中点的连线,垂直于弦,并且 经过圆心……………………………………..( √ ) (3)圆的不与直径垂直的弦必不被这条直径平 分…………………………………………...( × ) (4)平分弦的直径垂直于弦,并且平分弦所对的 两条弧………………………………………( × )
B
D
(2)平分弦所对的一条弧的直径,垂直平 分弦,并且平分弦所对的另一条弧.
精品课件
16
注意
根据垂径定理与推论可知对于一个圆和 一条直线来说。如果具备
(1)过圆心 (2)垂直于弦 (3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧
上述五个量中的已知任何两个量都可推 出其他三个量。
精品课件
B
圆中一个重
CD⊥AB,
要的结论,三
∴AM=BM,
A⌒C =B⌒C, A⌒D=B⌒D.
种语言要相
互转化,形成 整体,才能运 用自如.
精品课件
6
看下列图形,能否使用垂径定理?为什么?
zxxkw
学科网
学 科网
E
E
E
精品课件
7
典例精析
例1 如图,已知在⊙O中,弦
AB的长为8厘米,圆心O到AB的 A 距离为3厘米,求⊙O的半径。
∴当圆沿着直径CD对折时,点A与点B
重合,A⌒C和B⌒C重合, A⌒D和B⌒D重合.
∴AM=BM,
A⌒C = B⌒C,
∴A⌒C

=BC,
⌒⌒
AD =BD精品. 课件
⌒⌒
AD = BD. 5
• 定理: 垂直于弦的直径平分弦, 并且平分弦所对的两条弧.
C
A M└ ●O
D
• 老师提示:
如图∵ CD是直径, • 垂径定理是
B
(2)平分弦所对的一条弧的直径,垂直平 分弦,并且平分弦所对的另一条弧.
精品课件
19
垂径定理的推论1
② 垂直于弦 ③ 平分弦
C
① 直径过圆心 ④ 平分弦所对优弧 ⑤ 平分弦所对的劣弧
O E A
D
已知:AB是弦,CD平分AB,CD ⊥AB, 求证:CD是直径,A⌒D=B⌒D,A⌒C=B⌒C
B
(3)弦的垂直平分线 经过圆心,并且平分 弦所对的两条弧.
精品课件
20
推论1的其他命题......
② 垂直于弦 ④ 平分弦所对优弧
精品课件
14
注意 为什么强调这里的弦不是直径?
M A
一个圆的任意两 条直径总是互相平分, C 但它们不一定互相垂 直.因此这里的弦如 果是直径,结论不一 定成立.
精品课件
O
D
B N
15
垂径定理的推论1
① 直径过圆心 ④ 平分弦所对优弧
C
③ 平分弦 ② 垂直于弦 ⑤ 平分弦所对的劣弧
O E A
已知:CD是直径,AB是弦,并且A⌒C=B⌒C 求证:CD平分AB,CD ⊥AB,A⌒D=B⌒D
鲁教版数学教材九年级下册 第五章 圆
学科网
5.3垂径定理
精品课件
1
复习提问:
圆是轴对称图形,经过圆
心的每一条直线都是它们
的对称轴
.
精品课件
2
看一看,猜一猜
C
C
.O
.O
A E
A
E
B
B
D
D
直径CD分弦AB所成的两条线段有什么变化?
AE≠BE
精品课件 AE=BE
3
做一做 • 如图:AB是⊙O的一条弦.
N
∴MN⊥CD。 ∴ A⌒M=B⌒M,C⌒M=D⌒M
(垂直于弦的直径,平分弦所对的两条弧)
A⌒M-C⌒M


BM
-D⌒M
∴A⌒C=B⌒D
精品课件
12
垂径定理 C
O
E
A
B
排列CD这组是五合直,条径会进,出行AB是弦, D 现多CD少⊥个A命B题?
AE=BE 将A题⌒C设=与B⌒C结论调换 过A来⌒D,=还B⌒D成立吗?
• 提示: 这两条弦在圆中位置有两种情况:
1.两条弦在圆心的同侧 2.两条弦在圆心的两侧
A
●O
B
A
B
●O
C
D
M
C
D
M
结论: 圆的两条平行弦所夹的弧相等.
精品课件
11
思考1讲解
1.两条弦在圆心的同侧

C A
已知:⊙O中,弦AB∥CD。
求证:A⌒C=B⌒D
证明:作直径MN⊥AB。
M
D B
.O
∵AB∥CD,
(5)圆内两条非直径的弦不能互相平分( √ )
(5) 平分弦所对的一条弧的直径一定平分这条弦
所对的另一条弧. ( √ ) 精品课件
18
垂径定理的推论1
① 直径过圆心 ⑤ 平分弦所对的劣弧
C
③ 平分弦 ④ 平分弦所对优弧 ② 垂直于弦
O E A
D
已知:CD是直径,AB是弦,并且A⌒D=B⌒D 求证:CD平分AB,CD ⊥AB,A⌒C=BC⌒
相关文档
最新文档