应用厌氧技术处理含高浓度硫酸盐废水
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用厌氧技术处理含高浓度硫酸盐废水
2008-06-10 10:55:15 来源:转载浏览次数:82
含硫酸盐废水中的硫酸盐本身虽然无害,但是它遇到厌氧环境会在硫酸盐还原菌(SRB)作用下产生H2S,H2S能严重腐蚀处理设施和排水管道,且气味恶臭,严重污染大气。
关键字:技术[382篇] 处理[3650篇] 硫酸盐[5篇]
含硫酸盐废水中的硫酸盐本身虽然无害,但是它遇到厌氧环境会在硫酸盐还原菌(SRB)作用下产生H2S,H2S能严重腐蚀处理设施和排水管道,且气味恶臭,严重污染大气。另外硫酸盐废水排入水体会使受纳水体酸化,pH降低,危害水生生物;排入农田会破坏土壤结构,使土壤板结,减少农作物产量及降低农产品品质。目前,我国很多城市的地下水已经受到不同程度的硫酸盐污染,寻求行之有效的硫酸盐废水处
理工艺早已成为环境工程界普遍关注的问题[1]。
硫酸盐废水来源广泛,按硫酸盐废水的特点可将其分为两大类:第一类废水含有大量的SO42-和高浓度有机物;第二类废水也含有大量SO42-,但有机物含量较少。本研究主要针对第一类废水进行。此类废水的厌氧生物处理工艺可归纳为两大类:(1)单相处理工艺;(2)两相处理工艺[2,3]。比较两种处理工艺,
单相处理工艺具有经济简便的优势。
应用单相处理工艺时最大的困难在于硫酸盐还原菌(SRB)对产甲烷菌(MPB)的竞争与抑制作用:(1)竞争作用,因为在厌氧反应器内SRB与MPB同时存在,并且这两类菌可利用同种底物,从而在底物浓度不足时会发生竞争作用,不过由于高浓度有机废水可提供较充足的营养,故对本类废水这已不成为问题;(2)抑制作用,主要是由硫酸盐的还原产物硫化物引起的,尽管由于实验条件、方法的不同,关于抑制程度不同研究人员[4,5]所得出的结果不尽相同,但存在这一抑制作用却是毋庸质疑的。能否成功解除这一抑制作用就成了单相法处理这类废水的关键,这方面已有人提出了多种解决途径,例如气提法、金属离子沉淀法、出水硫化物氧化(如利用各种各样的微生物进行的生物氧化法)与回流工艺相结合的方案等等[1,6,7]。以上方法虽然都有一定的作用,但是操作起来都显得较为繁琐,本试验采用EGSB反应器,通过在反应器内维持一定的上升水流速度(v up),从而在v up以及反应自身所产气体的推动之下将产生抑制作用的H2S从
液相转移至气相,减轻或解除硫化物的抑制作用。
本研究采用上述技术处理含硫酸盐高浓度有机废水,希望在保证废水COD去除效果的前提下达到高的硫酸盐去除率和还原负荷。一旦硫酸盐还原成硫化物就可以通过化学或者生物法转化成单质硫[8~10],从而
实现废水脱硫的最终目的。
1 材料与方法
1.1 接种污泥
取自某柠檬酸生产企业IC反应器中的厌氧颗粒污泥,根据荷兰Lettinga推荐的接种量[11],本反应器内
的种泥量控制在10~15 kgVSS/m3。
1.2 试验用水
采用人工模拟废水,其中COD:N:P=200:5:1,硫酸盐浓度通过另外添加硫酸钠控制,具体配方见表1。
表1 模拟废水成分[12]mg/L
1.3 试验装置
试验中的EGSB反应器由有机玻璃制成,总体积为7.0 L,其中反应区为3.8 L。反应区高度为104.3 cm,内径为6.2 cm,高径比约为16.8。整套试验装置置于恒温室内,温度控制在30 ℃左右。
试验装置及流程如图1所示,整套装置形成了一个闭路循环,在换水周期内连续运转。
图1 试验装置及工艺流程图
1-进水及全回流出水接受容器;2-柱塞泵;3-湿式气体流量计;4-出气管
1.4 试验内容与方法
采取每天进出水各一次的半连续运行方式。首先在进水中不添加硫酸盐的情况下启动反应器,由于本实验用接种污泥是直接从某企业中正在高负荷运行的IC反应器中取出的颗粒污泥,活性非常之高,故在进水COD4000 mg/L左右的条件下,COD容积负荷很快达到了20 kg/(m3·d)并能够稳定运行,然后即在此情
况下进行下列试验。
1.4.1 确定装置运行最佳v up的试验
对于本套装置,v up是保证其稳定运行的至关重要并且需要首先进行研究的参数。相对于从反应器中去除气体的效果而言,v up自然越大越好,但从保证污泥良好稳定生长的角度,v up有最适的取值范围。故决定从污泥生长方面来确定最佳v up,即待反应器在20 kgCOD/(m3·d)的容积负荷下稳定运行后,考察污泥的生长量(通过污泥床体积来反映)和废水的COD去除率。v up值选取为2、4、6及8 m/h,各阶段运行时间定为1周,通过排泥控制运行前的污泥床体积相等,运行期末测一次污泥床体积,并每天检测一次进出水COD。
1.4.2 硫酸盐废水处理试验
待确定最佳v up的试验结束后,紧接着即在此v up值下进行硫酸盐废水处理试验。尽管v up值不是在处理硫酸盐废水时得到的,因此不一定最适于硫酸盐废水处理,但是利用其作为本实验的运行参数仍不失为一
项可行的策略。
在维持COD容积负荷20 kg/(m3·d)不变的条件下,通过向进水中添加Na2SO4并逐渐提高加入量来进行本试验,其中加入的Na2SO4量依次为20、30、45及60 g,对应的进水中SO42-分别为676、1014、1521和2028 mg/L,待硫酸盐还原率与COD去除率均达到80%以上,并稳定运行3 d后即可进入下一阶段。
1.5 分析项目与方法
COD:半微量快速烘箱法;pH:pH-2S型酸度计;碱度:分步滴定法[13];MLSS(悬浮固体)及MLVSS (挥发性悬浮固体):重量法[14];SO42-:络合滴定法[13];硫化物:滴定法[14];颗粒污泥沉降速度:取量程为1 L的量筒,测定其高度,并注满清水。将用自来水淘洗过的颗粒污泥逐个加入量筒内,用秒表计量单个颗粒污泥从筒口沉降到筒底所需时间t,然后利用公式v=H/t(v为沉速,H为量筒高度,t为沉淀时间)计算得出该颗粒污泥的沉速。测试过程中,在某个粒径范围内一般测定其中20~30个任意选取的颗粒污泥进行测试,取其平均值作为该粒径范围颗粒污泥的沉速。
2 结果与讨论
2.1 最佳运行v up的确定
据资料反映,EGSB反应器的v up一般为5~10 m/h[15]。从图2和图3明显可以看出通过污泥的生长量和废水的COD去除率确定的本工艺最佳v up为6 m/h。当v up较低时,v up产生的搅动效果不够,反应器内会出现“气袋”[16],影响了传质效果,从而带来污泥生长活性及去除效果的下降;而当v up较高时会对污泥造成较大的剪切力,使得污泥流失量增加,同样对污泥生长不利。这从各个阶段的出水SS值亦可反映出来,当v up值取为2、4、6及8 m/h时对应的SS值分别约为150、175、250及370 mg/L,可见在前面三种条件下,反应器出水和COD去除率较为平稳,而当v up为8 m/h时反应器运行非常不稳定,出水SS和COD去除率变化较大。因此,认为v up6 m/h时的上升流速较为适合颗粒污泥厌氧反应体系。经检测在6 m/h阶段下的颗粒污泥性质良好,沉降速度达到了88 m/h,粒径一般在2~3 mm。
图2 不同v up阶段的反应器运行情况
注:从左至右对应v up分别为2、4、6及8 m/h。
2.2 硫酸盐废水处理过程