分数乘法知识点及典型例题总结
六年级第二单元《分数乘法》知识点总结
小学《分数乘法》知识点总结知识点一:倒数的认识1. 倒数的意义:乘积是1的两个数互为倒数。
2. 1的倒数是1,0没有倒数。
4. 倒数是两个数之间相互依存的关系,不能单独存在。
1.的倒数是,的倒数是0.35.2. 的倒数是.最小的合数的倒数是.3.的倒数是,最大的两位数的倒数是.4.的倒数是,和互为倒数.知识点二:分数乘法1.分数与整数相乘的意义与整数乘法的意义相同,是求几个相同分数和的简便运算。
2. 分数与整数相乘的计算方法用分数的分子和整数相乘的结果作积的分子,分母不变。
能约分的要先约分,再计算。
3. “求一个数的几分之几是多少”和“求一个数的几倍是多少”的解题方法相同,即用一个数乘几分之几。
4. 解决求比一个数多(少)几分之几的部分是多少的问题,关键是找准单位“1”的量,单位“1”的量×比一个数多(少)的几分之几=比一个数多(少)的几分之几的量。
1. 下面各题写出必要的计算过程.×75×××2. 10的是,8的是.3. 240吨增加后是吨,240吨减少吨后是吨.4. ×18=×8=5. 甲数是120,乙数是甲数的,乙数是6. 同学们打算把10盆鲜花摆成如下的图案.如果这些鲜花中有是菊花,你希望这些菊花摆在图案里的什么位置?在图中涂一涂.7.用颜色涂出每种图形的.并说一说每种图形的的个数一样多吗?为什么?8.妈妈只有60元钱.儿子对妈妈说:“妈妈将你的钱的一半给我买一本字典.”女儿对妈妈说:“将你的钱的给我订一套数学资料”.妈妈听了犯难了?你知道妈妈为什么犯难吗?(计算后回答)9.有四个不同的偶数,它们的倒数的和是1,已知其中的两个数是2和4,求其余的两个数.10.想一想:(1)用加法: + + . (2)图中表示 个 相加,可以用乘法计算,即 ⨯ .(3)计算方法:分数乘整数,用分子乘整数的积作 ,分母2()()315()⨯⨯== (4)计算时,能约分的可以先 ,再计算.11. 看图写算式:()()()()()()⨯=. 12.(2018•海门市校级模拟)先在长方形中涂色表示它的34,再画斜线表示34与25的乘积,并完成填空.3245⨯= .13.15米减少它的35后是米,若再接着增加35米,结果是米.14.m比30m多15,吨比30吨多15吨.15.38的倒数是,1的倒数是,1.3的倒数是,最小的合数的倒数是.16.37的倒数是,2的倒数是,0.4与互为倒数.17.1的倒数是,0.5和互为倒数.18.1(0)3a a⨯≠的倒数是.19.a比0大时,a和它的倒数相比,大.。
分数乘法知识点及典型例题总结word版
分数乘法知识点及典型例题总结word版第一单元知识点一、分数乘法的意义:1、分数乘整数的意义:与整数乘法的意义相同,都是求几个相同加数和的简便运算。
555例如:_6,表示:6个相加的和是多少,也可以表示的6倍是多少、求几个相同分数的和是多少?或求一个分数的几倍是多少?就用这个分数“几”例:求3个是多少,即可以列式112112、分数乘分数是求一个数的几分之几是多少。
例如:8_?表示求8的22例如:3_3,表示:3个3相加是多少,还表示3的3倍是多少。
2、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
6的12是多少。
277的7是多少。
3、一个数(小数、分数、整数)乘分数(第二因数为大于1的分数时):一个数乘分数的意义与整数乘法的意义也不相同,是表示这个数的几倍是多少。
5252例如:_E,表示:12的13倍是多少。
例I、计算:例9494乘法的意义。
(只看第二个因数)1、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和得简便运算。
2700_1_62表表求一个分数的几倍是多少求几个相同分数的和是多少,就用这个分数乘”几知识点二、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
例3、计算下列各题并说出计算方法。
分数乘整数的简便算法:分数乘整数的简便算法就是先约分,再计算。
计算结果必须是最简分数。
(4)分数乘分数的意义可以扩展到小数乘分数。
分数乘法知识点总结例题
分数乘法知识点总结例题一、分数乘法的基本概念1. 乘数:分数乘法中的两个数称为乘数,分别称为被乘数和乘数。
2. 乘积:两个乘数相乘得到的结果称为乘积。
二、分数乘法的计算方法分数乘法的计算方法可以分为以下几个步骤:1. 先将乘数化成最简分数。
2. 将两个乘数的分子和分母分别相乘,得到新的分子和分母。
3. 最后将得到的分子和分母约分得到最简分数。
三、分数乘法的例题例题1:计算$\frac{2}{3} \times \frac{4}{5}$解析:步骤1:将乘数化成最简分数。
$\frac{2}{3}$已经是最简分数,无需化简。
$\frac{4}{5}$已经是最简分数,无需化简。
步骤2:将两个乘数的分子和分母相乘。
分子相乘:$2 \times 4=8$分母相乘:$3 \times 5=15$步骤3:将分子和分母约分得到最简分数。
结果:$\frac{8}{15}$所以,$\frac{2}{3} \times \frac{4}{5} = \frac{8}{15}$。
例题2:计算$\frac{7}{8} \times \frac{3}{10}$解析:步骤1:将乘数化成最简分数。
$\frac{7}{8}$已经是最简分数,无需化简。
$\frac{3}{10}$已经是最简分数,无需化简。
步骤2:将两个乘数的分子和分母相乘。
分子相乘:$7 \times 3=21$分母相乘:$8 \times 10=80$步骤3:将分子和分母约分得到最简分数。
结果:$\frac{21}{80}$所以,$\frac{7}{8} \times \frac{3}{10} = \frac{21}{80}$。
例题3:计算$\frac{5}{6} \times \frac{2}{3}$解析:步骤1:将乘数化成最简分数。
$\frac{5}{6}$已经是最简分数,无需化简。
$\frac{2}{3}$已经是最简分数,无需化简。
步骤2:将两个乘数的分子和分母相乘。
六年级上册数学知识点汇总
圆
圆 周 率 及 圆 例 4 红星剧场的圆形舞台的 的周长 直径是 15 米, 它的周长是多少 米? C=πd =3.14×15 =47.1(米) 答:它的周长是 47.1 米。 圆的面积
圆环的面积
例 5 一个圆形湖心岛的直径 是 200 米 它的面积是多少平 方米? r=d÷ 2=200÷ 2=100 米 S=πr² =3.14×100×100 =31400(平方米) 例 6 在一个周长是 62.8 米的 圆环面积为 S 环=πR² -πr² =π(R² -r² ) 圆形花圃边缘修一条宽 1 米的 环形小路,这条小路的面积是 多少平方米?
例 14 一项工程,由甲队做 30 天完成,由 三、将工作总量假设为“ 1” ,用工 乙队做 20 天完成,两队合作几天完成? 作总量 ÷工作效率的和=合作工作时 1 1 间 1 ( ) 12 (天) 20 30 答:两队合作 12 天完成。 3.比 知识要点 比的意义
典型例题 例 15 填一填:小强和小丽在礼品店买同样的 花,小强买了 4 枝,小丽买了 8 枝,小强和小 丽买的花的枝数之比为( ) : ( ) ,比值是 1 ( ) 答案:4:8 2 比的基本性质 例 16 把下面各比化成最简的整数比, 1 3 : 35:7 0.8:0.2 4 4 =5:1 =4:1 =1:3 3 比、分数、除法 例 17 填一填 : 3 : 5 3 5 的联系与区别 5
六年级上册数学知识点汇总 1.分数乘法 知识要点 分数乘整数 典型例题 例1 计算
5 8 12
姓名: 重点内容 分数乘整数: 用分子和整数相乘的积 作分子,分母不变,能约分的要先约 分,再计算。
分数乘分数
例2
8 3 计算 9 10
《分数乘法》知识点整理与典型练习
《分数乘法》知识点整理与典型练习一、知识梳理1、分数和整数相乘,可以表示求几个几分之几相加的和。
2、求一个数的几分之几是多少,可以用乘法计算。
3、分数和整数相乘,用分数的分子和整数相乘的积作分子,分母不变。
如果整数能与分数的分母约分,要先约分,再计算。
4、根据“实际产量比计划节约了54”,写出一个数量关系式 计划产量 × 54 = 实际产量比计划节约的产量 5、一个数和真分数相乘,所得的积小于这个数;一个数和假分数相乘,所得的积大于这个数。
6、乘积为1的两个数互为倒数,求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
7、1的倒数是1,0没有倒数,真分数的倒数都大于1,自然数的倒数都是分子为1的真分数,假分数的倒数小于或等于1。
二、典型练习【例1】下面的长方形代表1公顷,请你在图中表示出21公顷的32,结果是多少公顷?分析与解:这个题目要分层次思考,一步一步展开。
(1)21公顷是1公顷的21(1公顷的一半); (2)21公顷的32,就是将21公顷部分平均分成3份,表示出2份。
21公顷的3221公顷【例2】一袋大米重25千克,先吃去这袋大米的51,又吃去51千克,两次一共吃去多少千克? 分析与解:求两次共吃去多少千克,要用第一次吃的千克数加上第二次吃的千克数;第一次吃了这袋大米的51,是把这袋大米看作单位“1”,即吃去25千克的51;第二次吃去51千克。
先求出第一次吃去多少千克。
25 ×51 = 5(千克) 5 + 51 = 551(千克) 答:两次一共吃去551千克。
点评:这一题的关键就是正确理解题目中两个51所表示的不同含义,第一个51表示是一个数的几分之几,是分率;而第二个51表示的是51千克,是具体的量。
要先求出第一天的51所对应的量再直接加上第二天吃的51千克就可以了。
在解题过程中,一定要注意区分,并作出正确的判断,再进行解答。
【例3】填空。
( )× 94 = 7 × ( )= ( )× 165 = 0.8 × ( ) 分析与解:这是一道连等式填空。
五年级下册数学试题分数乘法(一) 总结与练习 北师大版
分数乘法【要点梳理】知识点一、分数乘法的意义及计算方法1、分数乘整数的意义:求几个相同加数的和的简便运算。
整数乘分数的意义:求这个整数的几分之几是多少。
2、分数乘以整数,分母不变,分子乘以整数,最后结果化成最简分数;求整数的几分之几是多少的方法:用整数与几分之几相乘。
知识点二、打折销售打几折就是按原价的十分之几销售。
【典型例题】类型一、分数乘法的意义及计算方法例1、3个18的和是多少?举一反三:1、2个512的和是多少?例2、16的18是多少?举一反三:2、15的35是多少?类型二、打折销售例3、一本漫画书定价是40元,打八折后的价钱是多少?举一反三:1、一条裤子,先增加原价的110,再按原价的9折出售,现价和原价相比,降低了还是升高了?【巩固练习】一、按要求填空。
6.在○里填上“>”“<”或“=”。
3×37○3745×3○3 13×4○14×56× 17 ○7× 16 17 ×2○ 27 3× 58 ○5× 38错误!未找到引用源。
错误!未指定书签。
二、判断题。
1、3千克的 18 和1千克的 38同样多。
( ) 2、5× 58 =18。
( ) 3、一根绳子,剪去全长的 34 ,还剩全长的 14米。
( ) 4、17×0没有意义。
( ) 三、准确计算:1、算一算。
2、涂一涂,算一算。
(1)24的 18 是多少? (2)3个 225的和是多少? 四、解决问题。
1、乐乐和美美一同骑自行车上学,每分钟 34千米,48分钟行多少千米?1小时行多少千米? 2、一种大豆每千克含油425千克,100千克这种大豆含油多少千克?1吨大豆呢?3、小明每天步行上学,每分行 225 千米,10分钟到校。
照这样计算的话,她一天往返一次要行多少千米?4、一本故事书8元,一本文艺书的价格是故事书的 54 ,一本连环画的价钱是文艺书的 12,连环画多少元? 5、妈年龄是30岁,小丽的年龄是妈 15 ,小明的年龄是妈 16,小丽和小明各几岁? 6、有两根铁丝,长度是3米,第一根剪去 13 米,第二根剪去它的 13,哪一根剪去的部分长?。
第四讲:分数乘除法的知识点总结和归纳练习
分数乘除法的知识点归纳和总结练习一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少?2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少?(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
练一、分数与整数相乘。
512 ×4= 26×613 = 1115 ×5= 24×1348 = 221 ×7= 310×20= 425 ×15= 718 ×12= 16×920 = 练二、分数和分数相乘。
(注意:能约分的先约分,再计算。
) 25 ×34 = 67 ×78 = 59 ×815 = 911 ×715 = 1225 ×1516 = 45 ×910 = 1319 ×3839 = 910 ×5063 = 1234 ×1736 = (三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
练三、比较大小5 6×4○569×23○23×938×12○38(四)分数混合运算的运算顺序和整数的运算顺序相同。
练四、分数乘、加、减混合。
7 16×(5063-27)45×1516×1456×34+123+512×4159 14-59×27351-1819×3845615×(5-513)1991×7+813(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
(完整版)分数乘除法的知识点总结和归纳练习(2),推荐文档
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK地方价格
[ -( + )]÷
3 54 4
建议收藏下载本文,以便随时学习! 1 ÷2=
3
5 ÷15= 7
11 ÷11= 12
1 ÷3= 3
13 3 5
× ÷( - )
3 4 4 12
21 1 2 9 3 5 11
5 ÷5= 9
1 ÷4= 2
4 ÷4= 5
练习二、整数除以分数
6÷ 2 = 7
4÷ 8 = 15
算术法:(1)找出单位“1”; (2)找出已知量和已知量占单位“1”的几分之几; (3)列除法算式。即已知量÷已知量占单位“1”的几分之几=单位“1” 的量。
例如:妈妈给小林一些钱买衣服,小林买毛衣花了 90 元,买裤子花了 60 元,买这两样衣物花的 钱是妈妈给小林钱数的 3 ,妈妈给小林多少钱?
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 练一、分数与整数相乘。
5 12×4=
6 26×13=
11 15×5=
2
1
2、一个果园占地 20 公顷,其中的 5种苹果树,4种梨树,苹果树和梨树各种了多少公顷?
三、分数除法
(一)、分数除法的意义
1、分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一 个因数的运算。用(除法)计算。
分数乘法知识点总结6
分数乘法知识点总结6一、分数的乘法1. 分数的乘法定义分数的乘法就是将两个分数相乘,得到一个新的分数。
2. 分数乘法的计算方法分数乘法的计算方法是:将两个分数相乘,然后约分得到最简分数。
3. 分数乘法公式假设有两个分数a/b和c/d,它们的乘积可以表示为:(a/b) × (c/d) = (a × c) / (b × d)4. 分数的乘法性质分数的乘法具有以下性质:- 乘法交换律:a/b × c/d = c/d × a/b- 乘法结合律:(a/b) × (c/d) × (e/f) = a/b × (c/d) × (e/f) = a/b × c/d × e/f二、分数乘法的应用1. 分数乘法在生活中的应用分数乘法在日常生活中有着广泛的应用,比如在厨房中用到的食谱中的配料计算、购物时的商品折扣计算等都需要用到分数乘法。
2. 分数乘法在数学中的应用在数学中,分数乘法在各种数学题目中都有着重要的应用,比如分数的运算、分数的比较、分数与整数的混合运算等。
三、分数乘法的简化1. 分数乘法的简化方法分数乘法的简化方法是将乘积约分为最简分数,即将分子和分母的公约数约去。
2. 分数乘法的约分原则分数乘法的约分原则是先将乘积求得的分数化简为最简分数,即分子和分母不能再被约分为整数的分数。
3. 分数乘法简化的例题比如计算3/4 × 2/5,将3和5相乘得15,4和2相乘得8,然后将15/8约分为最简分数,最终得到的结果是15/8。
四、分数乘法的注意事项1. 分数乘法中的分子与分母在分数乘法中,要特别注意乘数和被乘数的分子与分母,确保按照正确的顺序进行计算。
2. 分数乘法中的分数形式在分数乘法中,要根据实际情况化成最简分数,或者根据具体题目要求用分数或整数表示结果。
3. 分数乘法中的乘积计算在分数乘法中,要将分数和整数相乘时,可以将整数写成分母为1的分数,然后进行相乘。
分数的乘法知识点总结
分数的乘法知识点总结分数的乘法是数学中的基本运算之一,它在解决实际问题、简化计算、拓展数学思维等方面都起着重要的作用。
本文将对分数的乘法进行详细总结和解析。
一、分数的乘法规则分数的乘法遵循以下规则:1. 分数与整数相乘:将整数看作分母为1的分数,然后按照分数乘法规则相乘。
2. 分数相乘:将两个分数的分子相乘得到新的分子,分母相乘得到新的分母。
3. 约分:将乘积的分子和分母约分到最简形式,使分数表示最简洁。
二、分数的乘法实例分析下面通过几个实例来说明分数的乘法:例1:计算1/2 × 3/4。
解析:按照分数乘法规则,分子相乘得到1×3=3,分母相乘得到2×4=8,所以结果为3/8。
这个结果已经是最简形式。
例2:计算2/3 × 5。
解析:将整数5看作分母为1的分数5/1,然后按照分数乘法规则相乘,得到2/3 × 5/1 = (2×5)/(3×1) = 10/3。
这个结果还需要约分。
三、分数乘法的练习题现在,我们通过几个练习题来巩固分数的乘法知识:练习题1:计算2/5 × 3/4。
练习题2:计算4/7 × 7/9。
练习题3:计算1/2 × 3。
练习题4:计算5/6 × 2/3。
四、分数乘法的应用领域分数乘法在实际生活和其他学科中有广泛的应用。
以下是几个常见的应用领域:1. 食谱:在烹饪过程中,食谱中的材料数量通常以分数形式表示。
例如,使用1/2杯面粉乘以2/3可以计算出需要的面粉用量。
2. 货币兑换:在国际贸易或旅行中,需要进行货币兑换,而汇率通常以分数的形式表示。
通过乘法运算,可以计算出相应的货币兑换金额。
3. 化学计量:在化学实验中,需要按照一定的化学计量关系来计算反应物的用量和生成物的产量,这其中涉及到分数的乘法运算。
4. 比例关系:在比例问题中,经常需要进行分数的乘法运算。
例如,计算两种不同配方的比例时,需要将每个原料的分数相乘来得到最终比例。
(完整版)分数乘法知识点归纳
分数乘法知识点归纳(一)分数乘法的意义:(二)知识点1:分数与整数相乘:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
知识点2.整数乘分数的意义:整数乘分数的意义求一个数的几分之几是多少。
知识点3.:分数乘分数的意义分数乘分数的意义就是求一个分数的几分之几是多少。
(二)、分数乘法的计算方法:知识点1. 分数乘分数的计算方法:分子相乘的积做分子,分母相乘的积做分母,能约分的可以先约分。
(计算结果要求是最简分数。
)知识点3.分数乘整数的计算方法:用分数的分子和整数相乘的积作分子,分母不变。
计算时,应该先约分再计算。
计算结果要约成最简分数。
因为整数可以看成分母是1的分数,所以分数乘分数的计算法则也适用于分数和整数相乘。
知识点4.含带分数的分数计算方法带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
知识点5.分数乘小数的计算方法分数乘小数,可把小数化成分数,统一成分数乘分数,按照分数乘分数的计算方法计算。
分数乘小数,也可把分数化成小数,统一成小数乘小数乘小数,按照小数乘小数的计算方法计算。
注意:当分数不能化成有限小数时,则最好统一成分数乘分数(三)、乘法中乘数与积的大小关系的规律:一个数(0除外)乘小于1(真分数)(0除外)的数,积小于这个数。
一个数(0除外)乘1,积等于这个数。
一个数(0除外)乘大于1(带分数)的数,积大于这个数。
(四)、分数混合运算的运算顺序与整数的运算顺序相同:知识点1:整数加法的交换律结合律,对分数乘法同样适用。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)加法的交换律、结合律往往混合运用:三个或三个以上的数相加可以任意的交换加数的位置,可以任意的把其中两个加数结合在一起。
知识点2整数乘法的交换律、交换律和分配律,对分数乘法同样适用。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc乘法交换律和结合律往往混合运用:三个或三个以上的数相乘可以任意的交换因数的位置,也可以任意的把其中两个因数结合在一起另附:倒数:知识点1.倒数的意义:(1)乘积是1的两个数互为倒数。
分数乘法 单位“1”精讲
分数乘法 单位“1”精讲【知识点】1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量(单位“1”):解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)4、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
5、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
【例题讲解】例题1、求一个数是另一个数的几分之几学校的果园里有梨树15棵,苹果树20棵。
梨树的棵数是苹果树的几分之几?变式1、五年级植树145颗,六年级植树210颗,五年级是六年级的几分之几?变式2、五年级植树145颗,六年级比五年级少植树20颗,六年级比五年级少几分之几?例题2、已知整体的量,部分是整体的几分之之几,求部分的量一根绳子有8米长,用去了总长的52,还剩下多少米?变式1、某车间总人数为45人,男工人占所有工人的94,男工人有多少人?例题3、已知一个数,比已知数多几分之几分的量是多少 今年的水果产量比去年多了61,去年的水果产量是30吨,问今年的水果产量是多少?变式1、大卡车的运载量为1200千克,小卡车的运载量比大卡车少41,小卡车的运载量是多少?变式2、小红家上个月的电费是78元,这个月比上个月节约61,问这个月的电费是多少元?例题4、已知一个数的几分之几是多少,求这个数。
一个儿童体内所含水分有28千克,占体重的4/5 。
这儿童的体重有多少千克?变式1、学校有20个足球,足球比篮球多 1/4,篮球有多少个?变式2、学校有20个足球,足球比篮球少 1/5 ,篮球有多少个?例题5、单位“1”不明确,或发生转移的情况商场一台电冰箱原价1500元,商家先提价51,过了半个月又降价51,这个时候冰箱比原价降了还是升了?现价原价相差多少元?变式1、冰化成水,体积减少111,水结成冰,体积增加了几分之几?变式2、状元工厂准备生产一批糖果,原计划4个月完成任务,实际3个月就完成了任务,问工作效率是提高了还是降低了?实际与计划工作效率相差几分之几?【课堂作业】1、五年级运砖150块,六年级比五年级多运52,六年级比五年级多运多少块?2、五年级运砖150块,比六年级多运21,六年级运砖多少块?3、某钢铁厂9月份生产钢铁4000吨,10月份生产的是9月份的7/8,11月份比10月份多生产1/8,11月份生产钢铁多少吨?4、一本书,每天看14页,5天后还剩下全书的3/8没有看,这本有多少页?一种商品现在48元,比原价降低了1/5,降低了多少元?5、某学校四月份用电160度,比三月份节约了1/9,三月份用电多少度,四月份比三月份节约用电多少度?6、某皮鞋厂本月生产皮鞋1800双,比上月增产1/8,上月生产多少双皮鞋?本月比上月多生产了多少双皮鞋?7、小明看一本书,第一天看了一半,第二天看了全书的1/4,还剩24页没有看,这本书有多少页?8、小明看一本240页的故事书,第一天看了3/8,第二天看了余下的2/5,还剩多少页没有看?8、有一桶油,第一次取出总数的1/4,第二次取出总数的2/5,第二次比第一次多取出7.5千克。
分数乘除法的知识点总结和归纳练习
分数乘除法的知识点归纳和总结练习一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少?2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少?(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
练一、分数与整数相乘。
512 ×4= 26×613 = 1115 ×5= 24×1348 = 221 ×7= 310×20= 425 ×15= 718 ×12= 16×920 = 练二、分数和分数相乘。
(注意:能约分的先约分,再计算。
) 25 ×34 = 67 ×78 = 59 ×815 = 911 ×715 = 1225 ×1516 = 45 ×910 = 1319 ×3839 = 910 ×5063 = 1234 ×1736 = (三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
练三、比较大小56 ×4○ 56 9×23 ○23 ×9 38 × 12 ○ 38(四)分数混合运算的运算顺序和整数的运算顺序相同。
练四、分数乘、加、减混合。
716 ×(5063 -27 ) 45 ×1516 ×14 56 ×34 +1 23 +512 ×415914 -59 ×2735 1 -1819 ×3845 615 ×(5-513 ) 1991 ×7+813(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
小学六年级上册数学《分数乘法》知识点及练习题
【导语】分数乘法是⼀种数学运算⽅法。
分数的分⼦与分⼦相乘,分母与分母相乘,能约分的要先约分,分⼦不能和分母乘。
以下是⽆忧考为⼤家精⼼整理的内容,欢迎⼤家阅读。
【篇⼀】⼩学六年级上册数学《分数乘法》知识点 (⼀)分数乘法意义: 1、分数乘整数的意义与整数乘法的意义相同,就是求⼏个相同加数的和的简便运算。
“分数乘整数”指的是第⼆个因数必须是整数,不能是分数。
2、⼀个数乘分数的意义就是求⼀个数的⼏分之⼏是多少。
“⼀个数乘分数”指的是第⼆个因数必须是分数,不能是整数。
(第⼀个因数是什么都可以) (⼆)分数乘法计算法则: 1、分数乘整数的计算⽅法:⽤分⼦乘整数的积作分⼦,分母不变。
能约分的可以先约分,再计算。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分) (2)约分是⽤整数和下⾯的分母约掉公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的计算⽅法是:⽤分⼦相乘的积做分⼦,⽤分母相乘的积作分母。
(分⼦乘分⼦,分母乘分母) (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的⽅法是:分⼦、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分⼦、分母中,两个可以约分的数先划去,再分别在它们的上、下⽅写出约分后的数。
(约分后分⼦和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分⼦、分母同时乘或者除以⼀个相同的数(0除外),分数的⼤⼩不变。
(三)积与因数的关系: ⼀个数(0除外)乘⼤于1的数,积⼤于这个数。
a×b=c,当b>1时,c>a。
⼀个数(0除外)乘⼩于1的数,积⼩于这个数。
a×b=c,当b<1时,c。
分数乘法知识点归类与练习
分数乘法知识点归类与练习一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
2、分数乘分数是求一个数的几分之几是多少。
(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,结果化成最简分数。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c乘法分配率逆运算: a c + b c=( a + b )×c中考考点1:分数的乘法计算此类题在中考中的考查多为基础性题目,一般不单独命题,题型有选择题、填空题和计算题,解决这类问题需牢记分数乘法的运算法则,灵活的运用乘法的运算律进行简便运算。
例1:316967练习1:分数简便运算常见题型第一种:连乘——乘法交换律的应用例题:1)1374135⨯⨯ 2)56153⨯⨯ 3)267831413⨯⨯ 涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。
第二种:乘法分配律的应用例题:1)27)27498(⨯+ 2)4)41101(⨯- 3)16)2143(⨯+ 涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
分数乘法的总结知识点
分数乘法的总结知识点一、分数的乘法规则1. 分数乘分数分数相乘时,只需将分子与分子相乘,分母与分母相乘,得到的结果即为乘积的分数。
例如:2/3 * 3/4 = (2*3) / (3*4) = 6/122. 分数乘整数分数乘整数时,只需将整数与分子相乘,分母不变。
例如:2/3 * 4 = (2*4) / 3 = 8/33. 分数的乘积可以化为最简分数的形式分数的乘积可以通过化简得到最简分数形式,即分子与分母的最大公约数为1。
例如:4/8 * 3/6 = (4*3) / (8*6) = 12/48 = 1/44. 分数的乘法交换律分数的乘法满足交换律,即a/b * c/d = c/d * a/b5. 分数的乘法结合律分数的乘法满足结合律,即(a/b) *(c/d) * (e/f) = a/b * (c/d) * (e/f)二、分数乘法的应用1. 分数的相乘可以应用在日常生活中,如计算食谱中的材料用量、商场中的价格折扣等。
2. 在学习中,分数的乘法也会涉及到大量的习题,例如完成分数相乘的计算、化简分数等。
三、习题解析1. 计算下列各题。
① 2/3 * 3/4 = ?(2*3) / (3*4) = 6/12 = 1/2所以2/3 * 3/4 = 1/2② 5/6 * 2 = ?(5*2) / 6 = 10/6 = 5/3所以5/6 * 2 = 5/3③ 7/8 * 4/7 * 2/3 = ?(7*4*2) / (8*7*3) = 56/168 = 1/3所以7/8 * 4/7 * 2/3 = 1/32. 化简下列各题。
① 4/8 * 3/6分子分母同除以最大公约数4,得到1/2所以4/8 * 3/6 = 1/2② 6/10 * 2/5分子分母同除以最大公约数2,得到3/5所以6/10 * 2/5 = 3/5四、总结分数乘法是数学中的一个基本运算,它与实数乘法一样都遵守交换律和结合律。
在分数乘法的运算中,我们只需将分子与分子相乘,分母与分母相乘,得到的结果即为乘积的分数。
分数的乘除知识点总结
分数的乘除知识点总结分数是数学中常见的一个概念,它由分子与分母组成,分子表示分数的份数,分母表示被分成的份数。
在运算中,分数的乘法和除法是基础和重要的知识点。
本文将对分数的乘法和除法进行总结和讲解。
一、分数的乘法分数的乘法运算规则是:分子与分子相乘,分母与分母相乘。
具体步骤如下:1. 确定两个分数的乘法,如:2/3 × 3/4。
2. 将两个分数的分子相乘得到结果的分子,即 2 × 3 = 6。
3. 将两个分数的分母相乘得到结果的分母,即 3 × 4 = 12。
4. 根据上述两个步骤,得到最终结果为 6/12。
5. 如果需要化简分数,可以将分子和分母同时除以它们的最大公约数。
在此例中,6 和 12 的最大公约数为 6,所以最终结果为 1/2。
二、分数的除法分数的除法运算规则是:取第一个分数的倒数(即将分子与分母交换位置),再与第二个分数进行乘法运算。
具体步骤如下:1. 确定两个分数的除法,如:2/3 ÷ 4/5。
2. 将第一个分数的分子与分母交换位置,得到倒数,即 3/2。
3. 将倒数与第二个分数进行乘法运算,即 3/2 × 4/5。
4. 按照分数乘法的运算规则,分子相乘得到结果的分子,即 3 × 4 = 12。
5. 分母相乘得到结果的分母,即 2 × 5 = 10。
6. 根据上述两个步骤,得到最终结果为 12/10。
7. 同样地,如果需要化简分数,可以将分子和分母同时除以它们的最大公约数。
在此例中,12 和 10 的最大公约数为 2,所以最终结果为6/5。
三、分数的乘法与除法综合例题以下是一些分数乘法与除法的综合例题,我们将结合上述所学知识进行解答:例题一:2/3 × 1/5 = ?解答:根据分数乘法的运算规则,将分子相乘得到结果的分子,即2 × 1 = 2;将分母相乘得到结果的分母,即 3 × 5 = 15。
分数乘法单元知识点整理
分数乘法单元知识点整理一、分数乘法的意义。
1. 分数乘整数。
- 意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如:(2)/(3)×3表示3个(2)/(3)相加的和是多少。
2. 一个数乘分数。
- 表示求这个数的几分之几是多少。
例如:3×(2)/(5)表示3的(2)/(5)是多少;(3)/(4)×(2)/(5)表示(3)/(4)的(2)/(5)是多少。
二、分数乘法的计算法则。
1. 分数乘整数。
- 用分数的分子和整数相乘的积作分子,分母不变。
能约分的可以先约分,再计算。
例如:(2)/(3)×3=(2×3)/(3) = 2;计算(3)/(5)×10时,先约分(3)/(5)×10=(3×10)/(5)= 6。
2. 分数乘分数。
- 用分子相乘的积作分子,分母相乘的积作分母。
例如:(3)/(4)×(2)/(5)=(3×2)/(4×5)=(6)/(20)=(3)/(10)。
能约分的要先约分再计算,这样可以使计算简便。
三、分数乘法的简便运算。
1. 乘法交换律。
- 在分数乘法中同样适用,a× b = b× a。
例如:(2)/(3)×(3)/(4)=(3)/(4)×(2)/(3)=(1)/(2)。
2. 乘法结合律。
- (a× b)× c=a×(b× c)。
例如:((1)/(2)×(2)/(3))×(3)/(4)=(1)/(2)×((2)/(3)×(3)/(4))=(1)/(4)。
3. 乘法分配律。
- a×(b + c)=a× b+a× c。
例如:(1)/(2)×((2)/(3)+(3)/(4))=(1)/(2)×(2)/(3)+(1)/(2)×(3)/(4)=(1)/(3)+(3)/(8)=(8 +9)/(24)=(17)/(24)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元分数乘法知识点及典型例题总结知识点一、分数乘法的意义:1、分数乘整数的意义:与整数乘法的意义相同,都是求几个相同加数和的简便运算。
例如:125×6,表示:6个125相加的和是多少,也可以表示125的6倍是多少。
2、求几个相同分数的和是多少? 或求一个分数的几倍是多少? 就用这个分数“几”。
例:求3个112是多少,即可以列式112×3。
2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少?【技巧点拨】分数乘法的意义。
(只看第二个因数)1、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和得简便运算。
求一个分数的几倍是多少 求几个相同分数的和是多少,就用这个分数乘”几“例如:23 ×3,表示:3个23 相加是多少,还表示23的3倍是多少。
2、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512 ,表示:6的512 是多少。
27 ×78 ,表示:27 的78是多少。
3、一个数(小数、分数、整数)乘分数(第二因数为大于1的分数时):一个数乘分数的意义与整数乘法的意义也不相同,是表示这个数的几倍是多少。
例如:512 ×123 ,表示:512 的123倍是多少。
例1、 计算: 例2、知识点二、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
例3、计算下列各题并说出计算方法。
【拓展提高】(3)分数乘整数的简便算法:分数乘整数的简便算法就是先约分,再计算。
计算结果必须是最简分数。
(4)分数乘分数的意义可以扩展到小数乘分数。
注:(1)为了计算简便能约分的可先约分再计算。
(分母和整数约分)(2)约分是用整数和下面的分母约掉最大公因数。
(计算结果必须是最简分数)例4、计算,能简便计算的简便计算知识点4、分数大小的比较一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
例5、比较大小【技巧点拨】:积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0).一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a .0乘任何数都得0注:1.在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
知识点5、分数乘加、乘减混合运算的运算顺序:分数乘加、乘减混合运算的运算顺序同整数乘加、乘减混合运算的运算顺序相同。
没有括号的先算乘法,后算加减;有括号的,先算括号里面的,再算括号外面的。
能用简便方法的用简便方法进行计算,化成最简分数。
例6、计算知识点6、整数乘法运算定律,推广到分数乘法。
【整数乘法的交换律】:乘法交换律是两个数相乘,交换因数的位置,它们的积不变,用字母表示为:a×b=b×aa×b×c=a×c×b【乘法结合律】:乘法结合律是若干个数相乘,改变它们的运算顺序,先把前两个数相乘或者先把后两个数相乘,积不变。
用字母表示为:乘法结合律:(a×b)×c=a×(b×c)【乘法分配律】:是两个数的和(差)同一个数相乘,可以把这两个加数(减数)分别同这个数相乘,再把两个积相加(相减),结果不变。
用字母表示为:乘法分配律:(a+b)×c=ac+bc(a-b)×c=ac–bc例7、分数乘、加、减简便运算。
13 15×726×5 (58+1112)×24914×1718×14(56-49)×36 99×9798913-718×9136 7×12×712815×47×316911×97×1193 8×712+512×38517×79+79×4171225×15-725×15知识点7、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面3、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数×几几。
4、写数量关系式技巧:(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ ÷ ” (2)分率前是“的”: 单位“1”的量×分率=分率对应量 (3)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量 【解决实际问题】1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式: 单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少? (2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。
(7)乘法应用题中,单位“1”是已知的。
(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。
(9).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。
单位“1”×分率=比较量;比较量÷分率=单位“1”(10).单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
(11).单位“1”的特点:①单位“1”为分母;②单位“1”为不变量。
(12)分率与量要对应。
①多的对应量对多的分率;②少的对应量对少的分率;③增加的对应量对增加的分率;④减少的对应量对减少的分率;⑤提高的对应量对提高的分率;⑥降低的对应量对降低的分率;⑦工作总量的对应量对工作总量的分率;⑧工作效率的对应量对工作效率的分率;⑨部分的对应量对部分的分率;⑩总量的对应量对总量的分率;例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算)方法:单位“1”的数量×对应分率=对应数量。
2、分数的连乘。
找到每一个分率的单位“1”。
1、看图列式计算。
2、甲乙两地相距420千米,一辆汽车行驶了全程的 57 ,行驶了多少千米?3、一个果园占地20公顷,其中的 25 种苹果树,14 种梨树,苹果树和梨树各种了多少公顷?4、某鞋店进来皮鞋600双。
第一周卖出总数的 15 ,第二周卖出总数的 38 。
⑴两周一共卖出总数的几分之几? ⑵两周一共卖出多少双? ⑶还剩多少双?5、六年级同学给灾区的小朋友捐款。
六一班捐了500元,六二班捐的是六一班的45 ,六三班捐的是六二班的 98。
六三班捐款多少元? 6、一件西服原价180元,现在的价格比原来降低了15 ,现在的价格是多少元?知识点8、倒数1、倒数的意义: 乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数: 把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
因为1×1=1;0乘任何数都得0,01(分母不能为0)4、 对于任意数(0)a a ,它的倒数为1a ;非零整数a 的倒数为1a ;分数ba 的倒数是ab ;5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
() (20分钟)1、看图列式。
2、计算61×87 87×32×8 57×94-52×94(57-52)×9487×6187×8×323、 计算。
43+43+……+43= ( )×( )=( ) 2000个434、跷跷板。
65×54 54 21×3 2125×6525 32×45 3289×151 151 121×94 945、列式计算。
1. 87的54是多少? 2. 21吨的65是多少吨?3. 109小时的32是多少小时?4. 65米的103是多少米? 6、比一比,谁的方法最简便。
91×16×8721×125+21×12748×(87-65) 72-141×7234×331385×(97×158)7、找朋友(将下列各数与它们的倒数连起来)。