镍基焊带烧结焊剂

镍基焊带烧结焊剂
镍基焊带烧结焊剂

镍基焊带/烧结焊剂

技术规范书

1.0 范围

本文件规定了用于压力容器SAW 镍基焊带和焊剂订货及验收的技术要求,只供焊材订货和验收使用。

2.0适用范围

用于压力容器埋弧带极堆焊镍基焊带和焊剂的订货和验收,可根据AWS中的有关规定,并应符合设计部门提出的制造技术条件的规定。亦可按照有关文字资料证明符合上述规范要求的相关标准执行。必要时须经需方质保部门的认可。

3.0技术要求和分类

3.1镍基焊带的技术要求,可参照ASME 规范sec.Ⅱ,part.C的SFA 5.14 的有关规定,其类别为EQNiCrMo-3。

3.2 镍基焊带的冶炼应采用任何能使产品符合本技术条件要求的方法进行。

4.0 试验要求

需方对供方提供的每炉焊带和焊剂都需进行检验,供方应在产品出厂前,采用相适应的烧结型堆焊焊剂进行试验,其结果必须满足本技术条件的规定。

4.1 焊带化学成分分析。

4.2堆焊熔敷金属化学成分分析(见表1)。

4.3 堆焊金属晶间腐蚀倾向试验。

4.4 HV硬度试验。

上述试验,供方应在产品出厂前,采用相应的方法进行试验,其结果必须满足本技术条件的要求,并提供报告。

5.0 焊接条件

焊材检验试板的焊接必须在需方指定的条件下进行,试验用母材为符合ASME规范第Ⅱ卷A篇相关标准要求SA387 Gr.11 Cl.2 钢板或SA182/SA336 F11 Cl.2锻件,焊接试板的规格和形式应符合检验需要。

试板焊后应按规定进行690±10?C/4+20hrs的热处理。

6.0 堆焊层熔敷金属化学成分

注:采用SAW堆焊两层,堆焊层厚度大于或等于7mm,在2.5~3mm深处取样。

7.0 硬度

进行镍基堆焊层焊后表面HV硬度测定,至少5点,硬度值供参考。

8.0 晶间腐蚀试验

试验方法:Streicher test 法(经改进),按照ASTM G-28, Method A。

金相检查按ASTM G-28, 8.3 条评估晶间腐蚀等级。

在690±10?C /4+20hrs焊后热处理条件下,最大晶间腐蚀深度不超过50μm。

检验准则:EN10204-3.1B。

9.0 焊带规格及表面质量

9.1焊带要求在冷扎半硬状态交货,其软硬适合于焊接时自动送进,不影响焊接进行和焊接质量为合格,

其规格和尺寸如表2所示:

9.2 焊带外观质量

9.2.1 镍基钢带冷轧后,表面必须进行精整,达到表面清洁,无毛刺和裂纹,表面粗糙度等级范围为Ra=

0.2~0.5μm,粗糙度等级为Ra=0.32μm以上。

9.2.2 焊带的表面不平度和不直度

9.2.2.1 不平度

冷轧状态的半硬焊带,宽度和不平度应满足不超过0.6%的规定。

9.2.2.2 不直度

焊带长度方向的不直度,测量焊带任意部位在一米长度内其不直度应符合表3的规定。

镍基焊条

基焊条 目录 镍基焊条的分类与用途 镍基焊材的选用 镍基合金焊条成份对比 镍基焊条的分类与用途 镍及镍合金焊条可分为五大类,即工业纯Ni、Ni-Cu、Ni-Cr-Fe、Ni-Mo 和Ni-Cr-Mo。每一类可分为一种或多种型号的焊条。这类焊条主要用于焊接镍或高镍合金,有时也可用于异种金属的焊接或堆焊. 镍基焊材的选用 镍基焊丝 镍基焊条图片 [1] ERNiCr-3 用于600,601以及800合金自身的焊接,及不锈钢和碳钢之间的异种钢焊接ERNiCrFe-7 用于焊接ASTM B163,166,167和168标准内的镍铬铁合金 ERNiCrFe-6 用于钢和镍铬铁合金的焊接,钢及不锈钢和镍基合金的焊接 ERNiCrCoMo-1 用于焊接镍铬钴钼合金及各种高温合金的异种焊接 ERNiCrMo-3 用于镍合金,碳钢,不锈钢和低合金钢的一种焊接,最主要用于625,601,802合金的焊接及9%镍合金的焊接 ERNi-CI 工业纯镍,用于可锻铸铁及灰口铸铁的焊接 ERCuNi 用于70/30,80/20,90/10铜镍合金的焊接 ERNiCu-7

用于焊接镍铜合金B127,163,164和165等 ERNi-1 用于纯镍铸件和锻件的焊接,如:ASTM B160,161,162,163标准内的合金 ERNiFeMn-CI 用于结节铸铁,球墨铸铁,可锻铸铁和灰口铸铁自身的焊接或用于它们 与不锈钢,碳钢,低合金钢及各种镍合金的焊接 ERNiCrMo-4 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接 ERNiCrMo-11 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接,还可以用于镍铬钼合金和钢焊接焊缝的堆焊 ERNiCrMo-13 用于焊接低碳镍铬钼合金 镍基焊条 ENiCrMo-3 用于焊接镍铬钼合金,如625,800,801,825和600 ENiCrFe-3 用于镍铬铁合金自身的焊接及与碳钢的焊接 ENiCrFe-2 用于奥氏体钢,铁素体钢及高镍合金之间的异种焊接, 还可用于9%镍合金的焊接 ENiCu-7 主要用于镍铜合金自身及其与钢之间的异种焊接 ENiCrFe-7 用于690(UNS N06690)镍铬铁合金自身的焊接 ENiCrMo-4 用于焊接C-276合金及大多数其它镍基合金 ENiCrCoMo-1 用于焊接镍铬钴钼合金以及各种的高温合金间的异种焊接 ERCuNi 焊接锻造或铸造的70/30,80/20,90/10铜镍合金 ENiCrMo-13 用于焊接低碳镍铬钼合金 ENiCrMo-11 用于焊接低碳镍铬钼合金 纯镍焊条 A5.11 ENi-1 EL-NiTi3 ≥ 92 - - Ti2.5 - 焊接 200 、 201 镍合金以及镀镍钢板; - 钢与镍异种材料的焊接; - 钢的表面堆焊。

镍基高温合金性能

镍基高温合金 镍基高温合金是以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金。 发展过程 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。镍基高温合金的发展趋势见图1。

镍基高温合金的发展趋势 成分和性能 镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的A3B 型金属间化合物γ'[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr主要起抗氧化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。 镍基高温合金按强化方式有固溶强化型合金和沉淀强化型合金。 ·固溶强化型合金 具有一定的高温强度,良好的抗氧化,抗热腐蚀,抗冷、热疲劳性能,并有良好的塑性和焊接性等,可用于制造工作温度较高、承受应力不大(每平方毫米几公斤力,见表1)的部件,如燃气轮机的燃烧室。 ·沉淀强化型合金 通常综合采用固溶强化、沉淀强化和晶界强化三种强化方式,因而具有良好的高温蠕变强度、抗疲劳性能、抗氧化和抗热腐蚀性能,可用于制作高温下承受应力较高(每平方毫米十

镍基焊条选用

镍基焊材的选用 镍基焊丝 镍基焊条图片 [1] ERNiCr-3 用于600,601以及800合金自身的焊接,及不锈钢和碳钢之间的异种钢焊接 ERNiCrFe-7 用于焊接ASTM B163,166,167和168标准内的镍铬铁合金 ERNiCrFe-6 用于钢和镍铬铁合金的焊接,钢及不锈钢和镍基合金的焊接 ERNiCrCoMo-1 用于焊接镍铬钴钼合金及各种高温合金的异种焊接 ERNiCrMo-3 用于镍合金,碳钢,不锈钢和低合金钢的一种焊接,最主要用于625,601,802合金的焊接及9%镍合金的焊接 ERNi-CI 工业纯镍,用于可锻铸铁及灰口铸铁的焊接 ERCuNi 用于70/30,80/20,90/10铜镍合金的焊接 ERNiCu-7 用于焊接镍铜合金B127,163,164和165等 ERNi-1 用于纯镍铸件和锻件的焊接,如:ASTM B160,161,162,163标准内的合金 ERNiFeMn-CI 用于结节铸铁,球墨铸铁,可锻铸铁和灰口铸铁自身的焊接或用于它们与不锈钢,碳钢,低合金钢及各种镍合金的焊接 ERNiCrMo-4 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接 ERNiCrMo-11 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接,还可以用于镍铬钼合金和钢焊接焊缝的堆焊 ERNiCrMo-13 用于焊接低碳镍铬钼合金 镍基焊条 ENiCrMo-3 用于焊接镍铬钼合金,如625,800,801,825和600 ENiCrFe-3 用于镍铬铁合金自身的焊接及与碳钢的焊接 ENiCrFe-2 用于奥氏体钢,铁素体钢及高镍合金之间的异种焊接, 还可用于9%镍合金的焊接 ENiCu-7 主要用于镍铜合金自身及其与钢之间的异种焊接 ENiCrFe-7 用于690(UNS N06690)镍铬铁合金自身的焊接 ENiCrMo-4 用于焊接C-276合金及大多数其它镍基合金 ENiCrCoMo-1 用于焊接镍铬钴钼合金以及各种的高温合金间的异种焊接 ERCuNi 焊接锻造或铸造的70/30,80/20,90/10铜镍合金 ENiCrMo-13 用于焊接低碳镍铬钼合金 ENiCrMo-11 用于焊接低碳镍铬钼合金纯镍焊条A5.11 ENi-1 EL-NiTi3 ≥ 92 - - Ti2.5 - 焊接200 、201 镍合金以及镀镍钢板;- 钢与镍异种材料的焊接;- 钢的表面堆焊。

Inconel600镍基合金焊接方案

1.1Inconel600镍基合金焊接方案 本工程中有Inconel600镍基合金管道36.8m,数量不多,但焊接要求严格。 由于气化装置是把煤转化水煤气等过程,整个系统是在较高温度和压力下操作,工艺介质中含有CO、CO2、H2S、H2、COS、NH2等可燃性、有毒介质,所以对管道材质要求较高。因此,我们特编写了镍合金管道的焊接方案,具体施工时将根据设计说明及技术要求再对本方案进一步的修改和补充。 1.1.1编制依据: 1) 《青海中浩60万吨/年甲醇项目建筑安装工程施工招标文件》; 2)《石油化工鉻镍奥氏体钢、铁镍合金和镍合金管道焊接规程》SH/T3525-199; 3)《现场设备、工业管道焊接工程施工验收规范》GB50236-1998; 4)《石油化工剧毒、可然介质管道工程施工及验收规范》SH3501。 1.1.2材料验收 焊接材料应有出厂质量证明书,其中焊条应符合《镍及镍合金焊条》GB/T13814的规定,焊丝应符合《镍及镍合金焊丝》GB/T15620的规定。 焊接材料应进行验收。验收合格后,应作好标示,入库储存。 焊接材料的储存、保管应符合下列规定: 焊材库必须干燥通风,库房内不得有有害气体和腐蚀介质。 焊接材料应存放在架子上,架子离地面的高度和墙壁的距离均不得小于300mm。 焊接材料应按种类、牌号、批号、规格和入库时间分类放置,并应有标示。 焊材库内应设置温度计和湿度计,保持库内温度不抵于5℃,相对湿度不大于60%。 焊接用的氩气纯度不应低于99.6%。 1.1.3焊前准备 管子切割及坡口加工宜采用机械方法,若采用等离子切割,应清理其加工面。 坡口加工后应进行外观检查,坡口表面不得有裂纹、分层等缺陷。

烧结焊剂

烧结焊剂与熔炼焊剂即使用同一焊丝,焊缝金属化学成分有很大的差异,因为它们的合金过渡系数不同,烧结焊剂碱度较高,过渡系数大,加之本身能加入合金成分,所以烧结焊剂过渡系数大于熔炼焊剂。 烧结焊剂施焊时无烟无味无毒。 比重轻,焊同一物件,要比熔炼焊剂节省20%以上。 目前大企业(重注工人环保的企业)都改用了烧结焊剂,熔炼焊剂是50年代产品,烧结焊剂是80年代产品,国外80-90%在使用烧结焊剂 烧结焊剂中也有不过渡合金元素的不能一概而论 烧结焊剂也会产生有害物质只要含有S P就会产生有害气体. 烧结焊剂在焊接过程中烧损比较多,不会达到真正的节省20% 熔炼焊剂回收率比烧结的高现在熔炼焊剂的渣壳可以卖到680元/吨烧结的一分钱也卖不了. 随化工猛矿石的不断涨价与环保要求的升高熔炼焊剂的价格也越来越高. 抗拉强度屈服强度伸长率冲击值 SJ101 H08MnA 450~550 ≥360 ≥24 ≥34(-40) H10Mn2 480~600 ≥400 ≥24 ≥34(-40) H08MnMoA 550~650 ≥430 ≥20 ≥34(-20) H08Mn2MoA 620~750 ≥500 ≥20 ≥34(-20) SJ102 H08MnA 490~560 ≥400 ≥24 ≥40(-40) H10Mn2 540~660 ≥450 ≥24 ≥60(-40) H08MnMoA 580~690 ≥500 ≥20 ≥60(-40)

SJ105 WM-210药芯HRC≥45 SJ107 H08MnA 450~550 ≥360 ≥24 ≥34(-40) H10Mn2 480~600 ≥400 ≥24 ≥34(-40) H08MnMoA 550~650 ≥430 ≥20 ≥34(-20) H08Mn2MoA 620~750 ≥500 ≥20 ≥34(-20) SJ201 H08MnA 460~650 ≥380 ≥22 ≥27(-40) H10Mn2 480~690 ≥400 ≥22 ≥27(-40) H08Mn2MOA 600~730 ≥450 ≥22 ≥27(-40) SJ202 H3Cr2W8 HRC≥50 H3Cr2W8V H30CrMnSi SJ301 H08A 460~560 ≥360 ≥24 ≥34(-20) H08MnA 500~600 ≥400 ≥24 ≥34(-20) H10Mn2 530~630 ≥400 ≥24 ≥34(-20) H08MnMoA 600~700 ≥480 ≥24 ≥34(-20) SJ401 H08A 410~550 ≥330 ≥22 ≥27(0)SJ402 H08A 480~650 ≥400 ≥22 ≥34(0)SJ403 H08A 410~550 ≥330 ≥22 ≥27(0)YD137 HRC≥35

镍基合金复合管道焊接工艺的推广和应用

镍基合金复合管道焊接工艺的推广和应用 摘要: 镍基合金复合钢管具有良好的韧性、强度,以及耐各种形式腐蚀的性能,目前广泛应用于高压高含硫气田施工中。在普光气田安全隐患排查工程中,原料气管线全部更换为镍基合金复合管道,为提高功效保证焊接质量,该工程采用了新的焊接工艺(GTAW+P+MIG),依托本工程进行推广和应用。 关键字:镍基复合管;GTAW+P+MIG;背部充氩保护装置;焊接工艺 1、简介 镍基合金复合材料作为一种新型材料[1],其同时兼具低合金钢的韧性和强度,及镍基合金全面的耐腐蚀性能,因而在高压高含硫气田施工中得到广泛的应用。普光气田作为高含硫气田,受条件限制,在建设初期并未采用镍基合金材料进行施工。 在2016年,普光净化厂原料气管线安全隐患治理工程中,设计将原料气管线进行材质升级,将原有管道更换成镍基合金复合钢管(Q245R+N08825),规格为φ711×(32+3)mm、φ610×(28+3)mm、φ508×(24+3)mm。 目前,镍基合金复合管道的焊接方法主要有GTAW(打底)+SMAW(填充、盖面);TIP TIG焊打底、填充、盖面。该工程使用的镍基合金复合管材,因管径和基层厚度较大,采用GTAW(打底)+MIG(填充、盖面)的焊接方法。相比以上两种方法,该方法具有更高的焊接效率和焊接可靠性。经中石化第十建设公司进行焊接工艺评定,焊缝各项性能均满足设计要求。因此,本工程最终确定采用GTAW(打底)+MIG(填充、盖面)的焊接方法进行施工焊接。 2、施工机具准备 (1)焊接设备 氩弧焊:低频脉冲钨极氩弧焊(GTAW+P),设备型号山大奥太WSM-400。该设备能够实现焊接电流在恒流与脉冲之间的自由调节,在选用脉冲电流焊接时,通过调节基值、

焊剂类型及用途

焊剂类型及用途 型号焊剂类型用途: HJ130 熔炼焊剂-无 锰高硅低氟 配合H10Mn2焊丝及其他低合金钢焊丝,埋弧焊接低碳钢或 其他低合金钢(如16Mn等) HJ131 熔炼焊剂-无 锰高硅低氟 配合镍基焊丝焊接镍基合金薄板结构 HJ150 熔炼焊剂-无 锰中硅中氟 配合适当焊丝,加H2Cr13或H3Cr2W8,堆焊轧辊 HJ151 熔炼焊剂-无 锰中硅中氟 配合奥氏体不锈钢焊丝或焊带如 H0Cr21Ni10,H0Cr20Ni10Ti H00Cr24Ni12Nb,H00Cr21Ni10Nb,H00Cr26Ni12,H00Cr21Ni10 等进行带极堆焊或焊接,用于核容器及石油化工设备耐腐蚀 层堆焊和构件的焊接.配合H0Cr16Mn16焊丝可用于高锰钢 补焊.配方中若加入适量氧化铌,还可解决含铌钢焊后脱渣 难的问题 HJ172 熔炼焊剂-无 锰低硅高氟 配合适当焊丝,可焊接高铬马氏体热强钢如Cr12MowV及含 铌的铬镍不锈钢 HJ230 熔炼焊剂-低 锰高硅低氟 配合H08MnA,H10Mn2焊丝及某些低合金钢焊丝,焊接低碳钢 及某些低合金(16Mn)等结构 HJ250 熔炼焊剂-低 锰中硅中氟 配合适焊丝(H08MnMoA,H08Mn2MoA及H08MN2MoVA)可焊接低 合金钢(15MnV,14MnMoV,18MnMoNb等),配合Ho8Mn2MoVA焊 丝焊接 -70℃低温钢(如09Mn2V),具有较好的低温冲击韧 性 HJ251 熔炼焊剂-低 锰中硅中氟 配合铬钼钢焊丝焊接珠光体耐热钢(如焊接汽机轮子) HJ252 熔炼焊剂-低 锰中硅中氟 配合H0Mn2NiMoA,H08Mn2MoA,H10Mn2焊丝焊接低合金钢 15MnV,14MnMoV,18MnMoNb等,焊缝具有良好的抗裂性和较 好的低温韧性,可用于核容器、石油化工等压力容器的焊接 HJ260 熔炼焊剂-低 锰高硅中氟 配合奥氏体不锈钢焊丝(如H0CR21Ni10,H0Cr20Ni10Ti等) 焊接相应的耐酸不锈钢结构,也可用轧锟堆焊 HJ330 熔炼焊剂-中 锰高硅中氟 配合H08MnA,H08Mn2Si及H10MnSi等焊丝,可焊接低碳钢和 某些低合金钢(如16Mn,15MnTi,15MnV等)结构,如锅炉、压 力容器等 HJ350 熔炼焊剂-中 锰中硅中氟 配合适当焊丝,可以焊接低合金(如16Mn,15MnV,15MnVn等) 重要结构,船舶、锅炉、高压容器等.细粒度焊剂可用于细丝 埋弧焊,焊接薄板结构 HJ351 熔炼焊剂-中 锰中硅中氟 用于埋弧自动焊和半自动焊,配合适当焊丝可焊接锰-钼、锰 硅及含钼的低合金钢重要结构,如船舶、锅炉、高压容器等. 细粒度焊剂可用于焊接薄板结构 HJ360 熔炼焊剂-中 锰高硅中氟 主要用于电渣焊,配合H10MnSi,H10Mn2,H08Mn2MoVA, H102MoA等,焊接低碳钢及某些合金钢大型结构(A3.20g,

镍基合金INCONEL 625的焊接

镍基合金INCONEL 625的焊接 引言:在石油化工建设工程中,常会遇到镍基合金这种材料,因这种材料具有耐活泼性气体、耐苛性介质、耐还原性酸介质腐蚀的良好性能,又具有强度高、塑性好、可冷热变形和可加 工成型及可焊接的特点,广泛应用于石油化工中。例如:在安徽铜陵六国化工合成氨装置 气化工段中,就有这种材料,它的具体名称为INCONEL 625,用于输送氧气介质。 关键词:镍基合金焊接热裂纹 1 镍基合金INCONEL 625的化学成分及对焊接性能的影响 为了研究INCONEL 625的焊接,我们有必要对这种材料的化学成分进行了解。镍基合金INCONEL 625的化学成分见表1: 在Ni中添加Al、Cr、Fe、Mo、Ti能引起较强的固溶强化,Mo可改善镍基合金的高温强度,Nb 则可以稳定组织,细化晶粒,改善材料性能,Cr在Ni中的固溶范围约为35%~40%,而Mo在Ni中的固溶范围大约为20%。Cr、Mo等合金材料的添加不但增加其耐蚀性,而且对材料的焊接性能没有不利影响。添加Ti、Mn、Nb则可提高材料的抗热裂纹和减少气孔。Si在钢中是脱氧剂和抗氧化剂。而C的含量很小,因Ti和Nb的存在一般不会产生晶间腐蚀。 镍基合金的焊接性对S则较为敏感,S不溶于Ni,在焊接凝固时可形成低熔点的共晶体,易产生热裂纹。P在镍基合金中也会增加裂纹的敏感性。 2 镍基合金INCONEL 625的焊接特点 2.1 焊接热裂纹镍基合金INCONEL 625在焊接时具有较高的热裂纹敏感性。热裂纹分为结晶裂纹、液化裂纹和高温失塑裂纹。结晶裂纹最容易发生在焊道弧坑,形成火口裂纹。结晶裂纹多半沿焊缝中心线纵向开裂。液化裂纹则易出现在紧靠融合线的热影响区中,有的还出现在多层焊的前层焊缝中。高温失塑裂纹既可能出现在热影响区中,也可能发生在焊缝中。各种热裂纹有时是宏观裂纹,或宏观裂纹伴随微观裂纹,也有时仅仅是微观裂纹。热裂纹发生在高温状态,常温下不再扩展。2.2 污染物的影响焊件表面的清洁性是保证镍基合金INCONEL 625焊接质量的一个关键。焊件表面的污染物主要是表面氧化皮和引起脆化的元素。镍基合金INCONEL 625表面氧化皮的熔点比母材高得多,常常可能形成夹渣或细小的不连续的氧化物,S、P、Pb、Sn、Zn、Bi、Sb及As等凡是能和Ni形成低熔点共晶体的元素都是有害元素。这些有害元素大大增加了镍基合金焊接时的热裂纹倾向。这些元素常常存在于预制过程中使用的材料中,例如:油脂、油漆、测温笔和记号笔的墨水常含有这些元素。因此,在焊接前,必须彻底清除,包括坡口外50mm范围内均属于清除范围。 清除方法取决于污染物的种类,对于油脂类物质,可采用蒸汽脱脂,或用丙酮清洗。对于油漆类物质,可采用氯甲烷、碱液、甲醇清洗,也可采用打磨的方法清除。 2.3 焊接热输入的影响采用高热输入会使焊缝接头产生一定程度的退火,并伴随晶粒长大,而使组织发生相变,降低材料的机械性能。此外,高热的输入,还可能使晶相组织产生过度的偏析,碳化物沉淀并析出,从而引起热裂纹,并降低耐蚀性。 在选择焊接方法和焊接工艺时,必须考虑到这一点,因此,在实际操作时采用小电流,窄焊道,多层焊较为合理。 需要指出的是,有些镍基合金焊接加热后对靠近热影响区的焊缝组织会产生不良影响。例如Ni-Mo合金焊接后需通过退火处理来消除这种影响,恢复其耐蚀性。但对于INCONEL 625这种合金来说属于Ni-Cr-Mo合金, 象奥氏体不锈钢一样,镍基合金的显微组织也是奥氏体,固态情况下不发生相变,母材和焊缝金属的晶粒不能通过热处理细化,因此,镍基合金INCONEL 625不需要进行热

镍管焊接方案

纯镍管B162UNSN02200的现场焊接 1概述 镍与镍基耐蚀合金是化学、石油化工、冶金、航天、核工业领域中耐高温、高压、高浓度或混有不纯物等各种苛刻腐蚀环境的比较理想的金属结构材料,1997年,我们十一化建公司在平顶山尼龙66盐工程已二胺装置工艺管道的焊接中首次遇到了纯镍管,其材质为B162UNSN02200。管材由日本东洋公司提供,其管内介质为已二胺等工艺物料,共有管径1/2″~16″的各类对接焊口142道,壁厚范围2.9~6.35mm,另有角焊缝53道,管线总长63m。 2镍的理化性能分析 镍在常温时的晶体结构为面心立方晶格,其熔点及电阻率均低于碳素钢,镍与低碳钢的物理性质比较 学性能和抗腐蚀、抗氧化性能显著改善,但热导率和电阻率显著下降。若镍中混有的杂物较多,则在焊接时易于形成低熔点共晶物,使焊接性能下降,纯镍B162UNSN02200的化学成分及力学性能见表 纯镍管B162UNSN 纯镍管B162UNSN 3镍的焊接性能分析 和低碳钢、不锈钢的焊接相比,镍基材料的焊接有奥氏体不锈钢焊接发生的类似问题,如焊接热裂纹倾向、焊缝气孔等。 3.1焊接热裂纹 镍的热裂纹敏感性高,产生热裂纹的主要原因是合金凝固时有低点金属或低迷人点化合物的液态膜残留的晶界区,由于收缩应力的作用而发生开裂,由下表可以看出,铁和镍的二元共晶物中有许多低熔点共晶物和非金属共晶物,特别是硫、磷共晶物,它们的熔点与Ni、Fe相比低很多,这将大大助长热裂纹的产生。 3.2焊缝中的气孔倾向较大 纯镍固液相温度间距小、流动性偏低,同时O2、H2、CO2在液态镍中的溶解度较大(如O2在1720℃时溶解度为1.18%),但在冷却时显著减小(1470℃时O2溶解度为0.06%)。故此,在焊接快速冷却凝固结晶条件下,极易产生焊缝气孔。和低碳钢、低合金钢相比,氧化性气氛对镍焊缝形成气孔的几率影响更大些,但在还原性较大时对氢气孔也是敏感的。

常用金属焊接性之高温合金的钎焊

常用金属焊接性之高温合金的钎焊 高温合金是在高温下具有较好的力学性能、抗氧化性和抗腐蚀性的合金。这类合金可分为镍基、铁基和钴基三类;在钎焊结构中用得最多的是镍基合金。镍基合金按强化方式分为固溶强化、实效沉淀强化和氧化物弥散强化三类。固溶强化镍基合金为面心立方点阵的固溶相,通过添加铬、钴、钨、钼、铝、钛、铌等元素提高原子间结合力,产生点阵畸变,降低堆垛层错能,阻止位错运动,提高再结晶温度来强化固溶体。沉淀强化镍基合金钢是在固溶强化的基础上添加较多的铝、钛、铌、钽等元素而形成的。这些元素除形成强化固溶体外,还与镍形成Ni3(Al、Ti)γ’或Ni3(NbAlTi)γ”金属间化合物相;同时钨、铜、硼等元素与碳形成各种碳化物。TD-Ni和TD-NiCr合金是在镍或镍铬基体中加入2%左右弥散分布的ThO2颗粒,产生弥散强化效果的新型高温合金。 一:钎焊性 高温合金均含有较多的铬,加热时表面形成稳定的Cr2O3,比较难以去除;此外镍基高温合金均含铝和钛,尤其是沉淀强化高温合金和铸造合金的铝和钛含量更高。铝和钛对氧的亲和力比铬大得多,加热时极易氧化。因此,如何防止或减少镍基高温合金加热时的氧化以及去除其氧化膜是镍基高温合金钎焊时的首要任务。镍基高温合金钎焊时不建议用钎剂来去除氧化物,尤其是在高的钎焊温度下,因为钎剂中的硼砂或硼酸在钎焊温度下与母材起反应,降低母材表面的熔化温度,促使钎剂覆盖处的母材产生溶蚀;并且硼砂或硼酸与母材发生反应后析出的硼可能渗入母材,造成晶间渗入。对薄的工件来说是很不利的。所以镍基高温合金一般都在保护气氛,尤其是在真空中钎焊。母材表面氧化物的形成和去除与保护气氛的纯度以及真空度密切相关。对于含铝和钛低的合金,热态真空度不应低于10-2Pa;对于含铝钛较高的合金,表面氧化物的去除不仅与真空度有关,而且还与加热温度有关。 无论是固溶强化,还是沉淀强化的镍基高温合金,都必须将其合金元素及其化合物充分固溶于基体内,才能取得良好的高温性能。沉淀强化合金固溶处理后还必须进行时效处理,已达到弥散强化的目的。因此钎焊热循环应尽可能与合金的热处理相匹配,即钎焊温度尽量与热处理的加热温度相一致,以保证合金元素的充分溶解。钎焊温度过低不能使合金元素完全溶解;钎焊温度过高将使母材的晶粒长大,这些均对母材

镍基合金焊接材料

镍基合金焊接材料 镍及镍合金焊条

产品名称:镍及镍基合金焊材 产品说明: Ni102镍及镍合金焊条型号GB/T:ENi-0 说明:钛钙型药皮的纯镍焊条,具有较好的力学性能及耐热、耐腐蚀性,交、直流两用,采用直流反接。 用途:用于化工设备、食品工业,医疗器械制造中镍基合金和双金属的焊接,也可用作异种金属的过渡层焊条,具有良好的熔合性和抗裂性。 熔敷金属化学成份/% C≤0.03 Mn 0.6-1.1 Si≤1Ni≥92Fe≤0.5 Ti 0.7-1.2 Nb 1.8-2.3 S≤0.015P≤0.015 Ni112镍及镍合金焊条型号GB/T:ENi-0 相当于AWS:ENi-1 说明:钛钙型药皮的纯镍焊条,具有较好的力学性能及耐热、耐腐蚀性,交、直流两用,采用直流反接。 用途:用于化工设备、食品工业,医疗器械制造中镍基合金和双金属的焊接,也可用作异种金属的过渡层焊条,具有良好的熔合性和抗裂性。 熔敷金属化学成份/% C≈0.04Mn≈1.5Ni≥92Fe≈3Ti≈0.5Nb≈1S≤0.015P≤0.015 Ni202镍及镍合金焊条型号GB/T:ENiCu-7 相当于AWS:ENiCu-7 说明:钛钙型药皮的Ni70Cu30蒙乃尔合金焊条,含适量的锰、铌,具有较好的抗裂性,焊接时电弧燃烧稳定,飞溅小,脱渣容易,焊接成形美观,采用交流或直流反接,采用直流反接。用途:用于镍铜合金与异种钢的焊接,也可用作过渡层堆焊材料。 熔敷金属化学成份/% C≤0.15 Mn≤4Si≤1.5 Ni 62-69 Fe≤2.5Ti≤1Nb≤2.5 S≤0.015 P≤0.02Al≤0.75 Cu余量 Ni207镍及镍合金焊条型号GB/T:ENiCu-7 相当于AWS:ENiCu-7 说明:低氢型蒙乃尔合金焊条,具有良好的抗裂性和焊接工艺性能。 用途:用于焊接蒙乃尔合金焊条或异种钢,也可用作过渡层堆焊材料。 熔敷金属化学成份/% C≤0.15Mn≤4Si≤1.5 Ni 62-69 Fe≤2.5Ti≤1Nb≤2.5S≤0.015 P≤0.02 Cu余量 Ni307镍及镍合金焊条型号GB/T:ENiCrMo-0

铁镍基高温合金的焊接性及焊接工艺

铁镍基高温合金的焊接性及焊接工艺 一、焊接性 对于固熔强化的高温合金,主要问题是焊缝结晶裂纹和过热区的晶粒长大,焊接接头的“等强度”等。对于沉淀强化的高温合金,除了焊缝的结晶裂纹外,还有液化裂纹和再热裂纹;焊接接头的“等强度”问题也很突出,焊缝和热影响区的强度、塑性往往达不到母材金属的水平。 1、焊缝的热裂纹 铁镍基合金都具有较大的焊接热裂纹倾向,特别是沉淀强化的合金,溶解度有限的元素Ni和Fe,易在晶界处形成低熔点物质,如Ni—Si,Fe—Nb,Ni—B等;同时对某些杂质非常敏感,如:S、P、Pb、Bi、Sn、Ca等;这些高温合金易形成方向性强的单项奥氏体柱状晶,促使杂质偏析;这些高温合金的线膨胀系数很大,易形成较大的焊接应力。 实践证明,沉淀强化的合金比固熔强化合金具有更大的热裂倾向。 影响焊缝产生热裂纹的因素有: ①合金系统特性的影响。 凝固温度区间越大,且固相线低的合金,结晶裂纹倾向越大。如:N—155(30Cr17Ni15Co12Mo3Nb),而S—590(40Cr20Ni20Co20Mo4W4Nb4)裂纹倾向就较小。 ②焊缝中合金元素的影响。 采用不同的焊材,焊缝的热裂倾向有很大的差别。如铁基合金Cr15Ni40W5Mo2Al2Ti3在TIG焊时,选用与母材合金同质的焊丝,即焊缝含有γ/形成元素,结果焊缝产生结晶裂纹;而选用固熔强化型HGH113,Ni—Cr—Mo系焊丝,含有较多的Mo,Mo在高Ni合金中具有很高的溶解度,不会形成易熔物质,故也不会引起热裂纹。含Mo量越高,焊缝的热裂倾向越小;同时Mo还能提高固熔体的扩散激活能,而阻止形成正亚晶界裂纹(多元化裂纹)。 B、Si、Mn含量降低,Ni、Ti成分增加,裂纹减少。 ③变质剂的影响。 用变质剂细化焊缝一次结晶组织,能明显减少热裂倾向。 ④杂质元素的影响。 有害杂质元素,S、P、B等,常常是焊缝产生热裂纹的原因。 ⑤焊接工艺的影响。 焊接接头具有较大的拘束应力,促使焊缝热裂倾向大。采用脉冲氩弧焊或适当减少焊缝电流,以减少熔池的过热,对于提高焊缝的抗热裂性是有益的。 2、热影响区的液化裂纹 低熔点共晶物形成的晶间液膜引起液化裂纹。 A—286的晶界处有Ti、Si、Ni、Mo等元素的偏析,形成低熔点共晶物。 液膜还可以在碳化物相(MC或M6C)的周围形成,如Inconel718,铸造镍基合金B—1900和Inconel713C。 高温合金的晶粒粗细,对裂纹的产生也有很大的影响。焊接时常常在粗晶部位产生液化裂纹。因此,在焊接工艺上,应尽可能采用小焊接线能量,来避免热影响区晶粒的粗化。 对焊接热影响区液化裂纹的控制,关键在于合金本身的材质,去除合金中的杂质,则有利于防止液化裂纹。 3、再热裂纹 γ/形成元素Al、Ti的含量越高,再热裂纹倾向越大。 对于γ/强化合金消除应力退火,加热必须是快速而且均匀,加热曲线要避开等温时效的温度、时间曲线的影响区。 对于固熔态或退火态的母材合金进行焊接时,有利于减少再热裂纹的产生。 焊接工艺上应尽可能选用小焊接线能量,小焊道的多层焊,合理设计接头,以降低焊接结构的拘束度。

埋弧焊焊剂种类有哪些【大全】

埋弧焊焊剂种类 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 目前国产焊剂已有50余种。焊剂的分类方法有许多种,可分别按用途,制造方法,化学成分,焊接冶金性能等对焊剂进行分类,也可按焊剂的酸碱性,焊剂的颗粒结构来分类,但每一种分类方法只是从某一方面反映了焊剂的特性,不能概括焊剂的所有特点。了解焊剂的分类是为了更好掌握焊剂的特点,以便进行正确选择和使用。 1.按焊剂的制造方法分类 根据焊剂的制造方法,可以把焊剂分成熔炼焊剂和非熔炼焊剂(陶质焊剂,烧结焊剂)两大类。 (1)熔炼焊剂 熔炼焊剂 把各种矿物性原料按配方比例混合配成炉料,然后在电炉或火熔炉中加热到1300℃以上熔化,均匀后出炉经过水冷粒化,烘干,筛分得到的焊剂称为熔炼焊剂。熔炼焊剂采用的原料主要有锰矿,硅砂,铝矾土,镁砂,萤石,生石灰,钛铁矿等矿物性原料,另外还加入冰晶石,硼砂等化工产品。熔炼前所用的原料应进行150-200℃的烘干,以清除原料中的水分。由于熔炼焊剂制造中要熔化原料,所以焊剂种不能加碳酸盐,脱氧剂和合金剂,制造高碱度焊剂也很困难。而且,熔炼焊剂经熔炼后不可能保持原料的原组分不变。所以,熔炼焊剂是各种化合物的组合体。 熔炼焊剂按其颗粒结构又可分为玻璃状焊剂,结晶状焊剂和浮石状焊剂三种。玻璃状焊剂成透明状颗粒,结晶状焊剂的颗粒具有结晶体特点,浮石状焊剂是泡沫状颗粒。玻璃状焊剂和结晶状焊剂的结构都比较致

镍基合金复合管道焊接工艺的推广和应用修订稿

镍基合金复合管道焊接 工艺的推广和应用 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

镍基合金复合管道焊接工艺的推广和应用 摘要: 镍基合金复合钢管具有良好的韧性、强度,以及耐各种形式腐蚀的性能,目前广泛应用于高压高含硫气田施工中。在普光气田安全隐患排查工程中,原料气管线全部更换为镍基合金复合管道,为提高功效保证焊接质量,该工程采用了新的焊接工艺(GTAW+P+MIG),依托本工程进行推广和应用。 关键字:镍基复合管;GTAW+P+MIG;背部充氩保护装置;焊接工艺 1、简介 镍基合金复合材料作为一种新型材料[1],其同时兼具低合金钢的韧性和强度,及镍基合金全面的耐腐蚀性能,因而在高压高含硫气田施工中得到广泛的应用。普光气田作为高含硫气田,受条件限制,在建设初期并未采用镍基合金材料进行施工。 在2016年,普光净化厂原料气管线安全隐患治理工程中,设计将原料气管线进行材质升级,将原有管道更换成镍基合金复合钢管(Q245R+N08825),规格为φ711×(32+3)mm、φ610×(28+3)mm、φ508×(24+3)mm。 目前,镍基合金复合管道的焊接方法主要有GTAW(打底)+SMAW(填充、盖面);TIP TIG焊打底、填充、盖面。该工程使用的镍基合金复合管材,因管径和基层厚度较大,采用GTAW(打底)+MIG(填充、盖面)的焊接方法。相比以上两种方法,该方法具有更高的焊接效率和焊接可靠性。经中石化第十建设公司进行焊接工艺评定,焊缝各项性能均满足设计要求。因此,本工程最终确定采用GTAW(打底)+MIG(填充、盖面)的焊接方法进行施工焊接。 2、施工机具准备 (1)焊接设备 氩弧焊:低频脉冲钨极氩弧焊(GTAW+P),设备型号山大奥太WSM-400。该设备能够实现焊接电流在恒流与脉冲之间的自由调节,在选用脉冲电流焊接时,通过调节基

焊剂和焊丝

埋弧焊的焊剂和焊丝 (1)焊剂的作用及对焊剂的要求焊剂的作用与焊条药皮有相似之处,埋弧焊焊接过程中,熔化的焊剂产生气和渣,有效的保护了电弧和熔池,并防止焊缝金属的氧化,氮化和合金元素的蒸发与烧损,使焊接过程稳定。焊剂还有脱氧和渗合金的作用。与焊丝配合使用,使焊缝金属获得所需要的化学成分和机械性能。 (2)焊剂的分类和常用焊剂埋弧焊用焊剂主要按制造方法和化学成分来分:按制造方法分有熔炼焊剂和非熔炼焊剂,非熔炼焊剂又分为粘结焊剂(陶质焊剂)和烧结焊剂,按化学成分分有无锰焊剂,低锰焊剂,中锰焊剂和高锰焊剂。也有按构造分为玻璃状焊剂和浮石状焊剂;按化学特性分为酸性和碱性焊剂;按用途分为低碳钢,低合金钢和合金钢焊剂等。一般焊剂在使用前必须再250℃下哄干,并保温1—2h。 (3)焊丝埋弧焊用焊丝与手工电弧焊焊条钢芯同属一个国家标准,即焊接用钢丝。焊丝直径为1.6mm。不同牌号焊丝应分类妥善包管,不能混用。焊前应对焊丝仔细清理,祛除铁锈和油污等杂质,防止焊接时产生气孔等缺陷。 (4)焊剂和焊丝的选配月欲获得高质量的埋弧焊焊接接头,正确选用焊剂是十分重要的。低碳钢的焊接可选用高锰高硅型焊剂,配合H08MnA焊丝,或选用低锰.无锰型焊剂配H08MnA.H10Mn2焊丝。低合金高强度钢的焊接可选用中锰中硅或低锰中硅型焊剂配合适当低合金高强度钢焊丝。对于耐热钢.低锰钢.耐蚀钢的焊接可选用中硅或低硅型焊剂配合相应的合金钢焊丝。铁素体.奥氏体等高合金钢,一般选用碱度较高的熔炼焊剂或烧结.粘结焊剂,以降低合金元素。埋弧焊用的焊丝,应根据所焊钢材的类别及对焊接接头性能的要求加以选择,并与适当的焊剂配合使用。低碳钢和低合金高强度钢焊接应选择与钢材强度相匹配的焊丝;耐热钢和不锈钢的焊接应选择与钢材成分相近的焊丝,不同钢种焊接用的焊剂与焊丝配用见表1。

镍及镍基合金焊材选用

镍及镍基合金焊材选用 镍是一种用途广泛的重要有色金属,具有熔点高﹑耐腐蚀性好﹑力学性能优良等特性。镍基合金是含镍量大于50%并含有多良其他元素的合金,镍基比铁基能固熔更多的合金元素,所以镍基合金不但保持了镍的良好特性,有兼有合金化组分的良好特性,既可耐高温,又可耐腐蚀。工程上将其分为两大合金类型,即耐热用镍基合金(有称高温合金)和耐腐蚀用镍基合金。前者主要用于航空﹑航天等高温工作构件;后者则用于化学﹑石油﹑核工业等苛刻腐蚀环境。 ⑴镍基高温合金:它是以镍﹑铬固熔体为基体并天家多种合金元素进行固熔强化而得到的合金。焊接结构常用的镍基高温合金的强化机制分为固熔强化和时效沉淀强化两大类。固熔强化是加入Cr ﹑Co ﹑W﹑Mo﹑Nb﹑Ta 等元素,以提高原子间结合力,产生点阵畸变,阻止位错运动,提高再结晶度等来强化固熔体。这类合金具有优良的抗氧化性,塑性较高,易于焊接,但热强性相对较低。时效强化是在固熔强化的基础上,天家较多的Al﹑Ti﹑Nb﹑Ta 等元素,他们与镍结合成共格稳定﹑成分复杂的金属间化合物,使合金的热强性大大提高。但是,Al﹑Ti ﹑Nb等元素的加入使焊接性变差,故这类元素的加入 总量宜限制在6%以下。固熔强化和时效强化的形变镍基高温合金牌号有30 个左右,如GH3030 ( Ni-20Cr-0.25Ti )﹑GH4033(Ni-20Cr-2.5Ti-0.8Al) 等。焊接时有可能产生凝固﹑液化裂纹或应变时效裂纹,Al ﹑Ti 等时效强化元素越多,裂纹敏感性越大。 ⑵镍基耐蚀合金:为提高镍基耐蚀合金的耐腐蚀性能,也加入Cr﹑W﹑Mo等合金元素;且要求碳量 越低越好;Ti ﹑Nb 等含量较低,主要作用是抑制碳的有害影响,以提高耐腐蚀性能,这均是与高温合金的重要区别。我国的耐腐蚀合金牌号标准见GB/T15007-1994 。镍基耐腐蚀合金也有固熔和沉淀两种强化 方式,但成分类型与镍基高温合金不同,有如下几种类型;Ni 系,近于纯镍,如Ni200 等;Ni-Cu 系,如蒙乃尔 ( monel) 400(66Ni31Cu);Ni-Cr 系和Ni-Cr-Fe 系,如因康镍( Inconel )600(76Ni15Cr8Fe) ﹑因康镍 718(53Ni19Cr3Mo5Nb18Fe);Ni-Fe-Cr 系,如因康洛依( Incoloy ) 800(32Ni46Fe21Cr);Ni-Mo 系和Ni-Cr-Mo 系,如哈斯特洛依( Hastelloy ) C (64Ni16Cr16Mo4W);Ni-Cr-Mo-Cu 系,含Cu 在3%以上。镍基耐蚀合金在焊接时可能产生热裂纹﹑焊缝气孔等问题,有的合金烈性(如Ni-Cr ﹑Ni-Mo﹑Ni-Cr-Mo 系)焊接接头还存在晶间腐蚀和应力腐蚀问题。 镍基合金具有耐活泼性气体﹑耐苛性介质﹑耐还原性酸介质腐蚀的良好性能,又经验有强度高﹑塑性好﹑可冷热变形和加工成型及可焊接的特点,因此,广泛应用于石油化工﹑冶金﹑原子能﹑海洋开发﹑航空﹑航天等工业中,解决一般不锈钢和其他金属﹑非金属材料无法解决的工程腐蚀问题,是一类非常重要的耐腐蚀金属材料。 镍基及铁镍基耐腐蚀合金的化学成分列于表1,哈氏系列耐腐蚀合金化学成分典型值列于表 2。

镍基合金焊接材料(参考模板)

镍基合金焊接材料 · 产品名称:镍及镍基合金焊材 · 产品说明: Ni102镍及镍合金焊条型号GB/T:ENi-0 说明:钛钙型药皮的纯镍焊条,具有较好的力学性能及耐热、耐腐蚀性,交、直流两用,采用直流反接。 用途:用于化工设备、食品工业,医疗器械制造中镍基合金和双金属的焊接,也可用作异种金属的过渡层焊条,具有良好的熔合性和抗裂性。 熔敷金属化学成份/% C≤0.03 Mn 0.6-1.1 Si≤1Ni≥92Fe≤0.5 Ti 0.7-1.2 Nb 1.8-2.3 S≤0.015P≤0.015 Ni112镍及镍合金焊条型号GB/T:ENi-0 相当于AWS:ENi-1 说明:钛钙型药皮的纯镍焊条,具有较好的力学性能及耐热、耐腐蚀性,交、直流两用,采用直流反接。 用途:用于化工设备、食品工业,医疗器械制造中镍基合金和双金属的焊接,也可用作异种金属的过渡层焊条,具有良好的熔合性和抗裂性。 熔敷金属化学成份/% C≈0.04Mn≈1.5Ni≥92Fe≈3Ti≈0.5Nb≈1S≤0.015P≤0.015 Ni202镍及镍合金焊条型号GB/T:ENiCu-7 相当于AWS:ENiCu-7 说明:钛钙型药皮的Ni70Cu30蒙乃尔合金焊条,含适量的锰、铌,具有较好的抗裂性,焊接时电弧燃烧稳定,飞溅小,脱渣容易,焊接成形美观,采用交流或直流反接,采用直流反接。 用途:用于镍铜合金与异种钢的焊接,也可用作过渡层堆焊材料。 熔敷金属化学成份/% C≤0.15Mn≤4Si≤1.5 Ni 62-69 Fe≤2.5Ti≤1Nb≤2.5 S≤0.015 P≤0.02Al≤0.75 Cu余量 Ni207镍及镍合金焊条型号GB/T:ENiCu-7 相当于AWS:ENiCu-7 说明:低氢型蒙乃尔合金焊条,具有良好的抗裂性和焊接工艺性能。 用途:用于焊接蒙乃尔合金焊条或异种钢,也可用作过渡层堆焊材料。 熔敷金属化学成份/% C≤0.15Mn≤4Si≤1.5 Ni 62-69 Fe≤2.5Ti≤1Nb≤2.5S≤0.015 P≤0.02 Cu余量 Ni307镍及镍合金焊条型号GB/T:ENiCrMo-0 说明:低氢型Ni70Cr15耐热耐蚀合金焊条,焊缝中有适量的钼、铌等合金元素,熔敷金属具有良好的抗裂性,采用直流反接。 用途:用于焊接有耐热、耐蚀要求的镍基合金,也可用于一些难焊合金、异种钢的焊接及堆焊。

高温合金的焊接性

高温合金的焊接性 1 引言 高温合金是航空发动机的关键材料,而镍基及镍铁基高温合金是目前高温合金结构材料的重要组成部分,镍基高温合金由于具有优异的耐热性及耐腐蚀性,被称之为“航空发动机的心脏”,具有组织稳定、工作温度高、合金化能力强等特点,目前已成为航空航天、军工、舰艇燃气机、火箭发动机所必须的重要金属材料,同时在高温化学、原子能工业及地面涡轮等领域得到了广泛的应用。据统计,在国外一些先进的飞机发动机中,高温合金的用量已达发动机重量的55%~60%。用于制造涡轮叶片的材料主要是镍基高温合金,同时镍基高温合金还是目前航空发动机和工业燃汽轮机等热端部件的主要用材,在先进发动机中这种合金的重量占50%以上。从高温合金的发展史来看,高温合金经历了变形高温合金、普通铸造高温合金、定向凝固高温合金、单晶高温合金4个阶段。 低膨胀高温合金具有高强度和低膨胀系数相结合的独特性能, 有良好的冷热疲劳性能, 耐热冲击、抗高压氢脆。自70年代开始研究开发低膨胀高温合金以来, 相继有十几种不同类型的低膨胀高温合金问世, 并被广泛用于航空航天工业中。航空工业上低膨胀高温合金主要用于涡轮发动机机匣、涡轮外环以及封严圈、蜂窝支撑环等零部件的制造, 以缩小叶片与机匣、封套之间的间隙, 降低燃气损失, 提高发动机的推力和效率。美国的CFM—56、V—2500 和F101发动机都大量采用这类合金,有的用量已达到发动机质量的25%。航天工业上采用这类合金制造宇宙飞船和火箭发动机的主燃烧室、涡轮泵和喷嘴等零件。低膨胀高温合金的应用不可避免要涉及到焊接加工。已有的研究表明, 这类合金焊接时存在一定的焊缝结晶裂纹和热影响区微裂纹倾向。这不仅会限制新材料的应用范围, 还有可能引发再热裂纹和疲劳裂纹造成产品的报废, 甚至给飞机的安全飞行埋下严重隐患。因此, 开展低膨胀高温合金的焊接性研究, 研究其焊接裂纹的形成机理、影响因素和控制措施,不仅能够丰富焊接裂纹理论, 而且对于提高航空航天发动机的可靠性和安全性有着重要意义。该领域的研究日益受到人们的重视, 并且取得了一定的进展。 2 低膨胀高温合金的成分特点及焊接性 大致可以把低膨胀高温合金分为四类。第一类是含Nb低膨胀高温合金, 它包括Incoloy 903 和Pyroment CTX—1及国产GH903 。此类合金以Fe-Ni-Co为基, 添加Nb、Ti、Al等元素进行强化。第二类是降Al低膨胀高温合金, 它包括Incoloy 907 和CTX—3及国产GH907。为提高抗应力加速晶界氧化脆性, 此类合金中限制Al含量<0.1%(质量分数),适当提高了Nb含量。第三类是高Si低膨胀高温合金, 它包括Incoloy 909和CTX—909及国产GH909。这类合金是降Al 低膨胀高温合金的改型,其基本成分相同, 仅提高了Si含量。最后一类是抗氧化低膨胀高温合金。已有的关于低膨胀高温合金的研究, 主要集中在Incoloy903上,对于Incoloy907和

相关文档
最新文档