线面、面面平行的判定和性质随堂练习[附含答案解析]

合集下载

线线、线面、面面平行练习题(含答案)

线线、线面、面面平行练习题(含答案)

DC A B B 1A1C 1直线、平面平行的判定及其性质 测试题A一、选择题1.下列条件中,能判断两个平面平行的是( ) A .一个平面内的一条直线平行于另一个平面; B .一个平面内的两条直线平行于另一个平面 C .一个平面内有无数条直线平行于另一个平面 D .一个平面内任何一条直线都平行于另一个平面2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是 A .0 B .1 C .2 D .3 3. 直线,a b c ,及平面αβ,,使//a b 成立的条件是( )A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ= 4.若直线m 不平行于平面α,且m ⊄α,则下列结论成立的是( ) A .α内的所有直线与m 异面 B .α内不存在与m 平行的直线 C .α内存在唯一的直线与m 平行 D .α内的直线与m 都相交 5.下列命题中,假命题的个数是( )① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行A .4B .3C .2D .1 6.已知空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则下列判断正确的是( ) A .()12MN AC BD ≥+ B .()12MN AC BD ≤+C .()12MN AC BD =+ D .()12MN AC BD <+二、填空题7.在四面体ABCD 中,M ,N 分别是面△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.8.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是①②③④9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是 . 三、解答题10.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点, 求证:(1)MN //B 1D 1 ;(2)AC 1//平面EB 1D 1 ;(3)平面EB 1D 1//平面BDG .B一、选择题1.α,β是两个不重合的平面,a ,b 是两条不同直线,在下列条件下,可判定α∥β的是( )A .α,β都平行于直线a ,bB .α内有三个不共线点到β的距离相等C .a ,b 是α内两条直线,且a ∥β,b ∥βD .a ,b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β2.两条直线a ,b 满足a ∥b ,b α,则a 与平面α的关系是( )A .a ∥αB .a 与α相交C .a 与α不相交D .a α 3.设,a b 表示直线,,αβ表示平面,P 是空间一点,下面命题中正确的是( ) A .a α⊄,则//a α B .//a α,b α⊂,则//a bC .//,,a b αβαβ⊂⊂,则//a bD .,,//,//P a P a βααβ∈∈,则a β⊂ 4.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A.异面B.相交C.平行D.不能确定 5.下列四个命题中,正确的是( )①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行 A .①③ B .①② C .②③ D .③④6.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是A .过A 有且只有一个平面平行于a ,bB .过A 至少有一个平面平行于a ,bC .过A 有无数个平面平行于a ,bD .过A 且平行a ,b 的平面可能不存在 二、填空题7.a ,b ,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面内,给出六个命题:.⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;; 其中正确的命题是________________.(将正确的序号都填上)8.设平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于S ,若AS =18,BS =9,CD =34,则CS =_____________.9.如图,正四棱柱ABCD-A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,DD 1,DC 中点,N 是BC 中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BD D 1. 三、解答题10.如图,在正四棱锥P ABCD -中,PA AB a ==,点E在棱PC 上. 问点E 在何处时,//PA EBD 平面,并加以证明.11.如下图,设P 为长方形ABCD 所在平面外一点,M ,N 分别为AB ,PD 上的点,且MB AM =NPDN,求证:直线MN ∥平面PBC .EPDCBA参考答案A一、选择题 1.D【提示】当l =⋂βα时,α内有无数多条直线与交线l 平行,同时这些直线也与平面β平行.故A ,B ,C 均是错误的2.C【提示】棱AC ,BD 与平面EFG 平行,共2条. 3.C【提示】//,,a b αα⊂则//a b 或,a b 异面;所以A 错误;//,//,a b αα则//a b 或,a b 异面或,a b 相交,所以B 错误;//,,a b ααβ=则//a b 或,a b 异面,所以D 错误;//,//a c b c ,则//a b ,这是公理4,所以C 正确.4.B【提示】若直线m 不平行于平面α,且m ⊄α,则直线m 于平面α相交,α内不存在与m 平行的直线. 5.B【提示】②③④错误.②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行.③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上. 6. D【提示】本题可利用空间中的平行关系,构造三角形的两边之和大于第三边. 二、填空题7.平面ABC ,平面ABD【提示】连接AM 并延长,交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E 、F 重合为一点,且该点为CD 的中点E ,由MA EM =NB EN =21得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD . 8. ①③【提示】对于①,面MNP//面AB,故AB//面MNP.对于③,MP//AB,故AB//面MNP,对于②④,过AB 找一个平面与平面MNP 相交,AB 与交线显然不平行,故②④不能推证AB//面MNP. 9.平行【提示】连接BD 交AC 于O ,连OE ,∴OE ∥B D 1,OEC 平面ACE ,∴B D 1∥平面ACE. 三、解答题10.证明:设1AB 与B A 1相交于点P ,连接PD ,则P 为1AB 中点,D 为AC 中点,∴PD//C B 1.又 PD ⊂平面B A 1D ,∴C B 1//平面B A 1 D11.证明:(1) M 、N 分别是CD 、CB 的中点,∴MN//BD又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形.所以BD//B 1D 1.又MN//BD ,从而MN//B 1D 1(2)(法1)连A 1C 1,A 1C 1交B 1D 1与O 点四边形A 1B 1C 1D 1为平行四边形,则O 点是A 1C 1的中点 E 是AA 1的中点,∴EO 是∆AA 1C 1的中位线,EO//AC 1.AC 1⊄面EB 1D 1 ,EO ⊂面EB 1D 1,所以AC 1//面EB 1D 1 (法2)作BB 1中点为H 点,连接AH 、C 1H ,E 、H 点为AA 1、BB 1中点, 所以EH //C 1D 1,则四边形EHC 1D 1是平行四边形,所以ED 1//HC 1 又因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AHAH ⋂HC 1=H ,∴面AHC 1//面EB 1D 1.而AC 1⊂面AHC 1,所以AC 1//面EB 1D 1(3)因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AH 因为AD //HG ,则四边形ADGH 是平行四边形,所以DG//AH ,所以EB 1//DG 又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.BD ⋂DG=G ,∴面EB 1D 1//面BDGB一、选择题1.D【提示】A 错,若a ∥b ,则不能断定α∥β;B 错,若A ,B ,C 三点不在β的同一侧,则不能断定α∥β;C 错,若a ∥b ,则不能断定α∥β;D 正确. 2.C【提示】若直线a ,b 满足a ∥b ,b α,则a ∥α 或a α 3.D【提示】根据面面平行的性质定理可推证之. 4.C【提示】设α∩β=l ,a ∥α,a ∥β,过直线a 作与α、β都相交的平面γ,记α∩γ=b ,β∩γ=c ,则a ∥b 且a ∥c ,∴b ∥c .又b ⊂α,α∩β=l ,∴b ∥l .∴a ∥l . 5.A 【提示】 6. D【提示】过点A 可作直线a ′∥a ,b ′∥b ,则a ′∩b ′=A ,∴a ′,b ′可确定一个平面,记为α.如果a ⊄α,b ⊄α,则a ∥α,b ∥α.由于平面α可能过直线a 、b 之一,因此,过A 且平行于a 、b 的平面可能不存在. 二、填空题 7.①④⑤⑥ 8.68或368 【提示】如图(1),由α∥β可知BD ∥AC ,∴SA SB =SC SD ,即189=SCSC 34-,∴SC =68. SS AABBCCα α ββ(1)(2)DD如图(2),由α∥β知AC ∥BD ,∴SB SA =SD SC =SC CD SC -,即918=SCSC -34. ∴SC =368.9.M ∈HF【提示】易证平面NHF ∥平面BD D 1 B 1,M 为两平面的公共点,应在交线HF 上. 三、解答题 10.解:当E 为PC 中点时,//PA EBD 平面.证明:连接AC ,且AC BD O =,由于四边形ABCD 为正方形,∴O 为AC 的中点,又E 为中点,∴OE 为△ACP 的中位线,∴//PA EO ,又PA EBD ⊄平面,∴//PA EBD 平面. 11.证法一:过N 作NR ∥DC 交PC 于点R ,连接RB ,依题意得NR NR DC -=NP DN =MB AM =MB MB AB -=MBMBDC -⇒NR =MB .∵NR ∥DC ∥AB ,∴四边形MNRB 是平行四边形.∴MN ∥RB .又∵RB 平面PBC ,∴直线MN ∥平面PBC .证法二:过N 作NQ ∥AD 交P A 于点Q ,连接QM ,∵MB AM =NP DN =QPAQ,∴QM ∥PB .又NQ ∥AD ∥BC ,∴平面MQN ∥平面PBC .∴直线MN ∥平面PBC .OF ABCDP E。

(浙江专用)2020版高考数学直线、平面平行的判定与性质讲义(含解析)

(浙江专用)2020版高考数学直线、平面平行的判定与性质讲义(含解析)

§ 8.4 直线、平面平行的判定与性质基础知识自主学习----------------------------------------------------------- 回加■眦利, 训—「知识梳理1 .线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理:1.一条直线与一个平面平行,那么它与平面内的所有直线都平行吗?提示不都平行.该平面内的直线有两类,一类与该直线平行,一类与该直线异面.2.一个平面内的两条相交直线与另一个平面内的两条相交直线分别对应平行,那么这两个平面平行吗?提示平行.可以转化为“一个平面内的两条相交直线与另一个平面平行”,这就是面面平行的判定定理.,基础自测题组一思考辨析1.判断下列结论是否正确(请在括号中打或“X”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面. (X )(2)平行于同一条直线的两个平面平行. (X )(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行. (x )(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面. ( V )(5)若直线a与平面a内无数条直线平行,则a// a .( x )⑹若 a //。

,直线all a,贝U a//。

.( X )题组二教材改编2.[P58练习T3]平面a //平面。

的一个充分条件是( )A.存在一条直线a, a// a , a//。

B.存在一条直线a, a? a , all(3C.存在两条平行直线a, b, a?也,b? (3 , a//。

,b// aD.存在两条异面直线a, b, a? a , b? (3 , a//。

,b// a答案D解析若 a n 3 = l , a // l , a? a , a?。

,则a // a , a // 3 ,故排除A.若a n 3 = l , a? a , a // l ,则a//。

,故排除 B.若 a n 3 = l,a?济,all l , b?。

线面、面面平行的判定与性质习题课课件

线面、面面平行的判定与性质习题课课件
[例 3] (文)如下图,平面 α∥平面 β,线段 GH 与 α、
β 分别交于 A、B,线段 HF 与 α、β 分别交于 F、E,线 段 GD 与 α、β 分别交于 C、D,且 GA=9,AB=12,BH =16,S△ACF=72.求△BDE 的面积.
解析:因为 α∥β,所以 AC∥BD,AF∥BE.所以∠ FAC 与∠EBD 相等或互补.因为 AC∥BD,故△GAC∽
应用二面平行的判定定理时,两条相交直线的“相 交”二字决不可忽视.
4.要注意符合某条件的图形是否惟一,有无其它情 形.
一、转化的思想 解决空间线面、面面平行关系的问题关键是作好下 列转化
二、解题技巧 要能够灵活作出辅助线、面来解题,作辅助线、面 一定要以某一定理为理论依据.
线面平行的判定 [例 1] (文)如下图所示,矩形 ABCD 和梯形 BEFC 所在平面互相垂直,BE∥CF,求证:AE∥平面 DCF.
(文)(2011·济南调研)已知 m,n 是两条不同的直线, α,β,γ 是三个不同的平面,则下列命题正确的是( )
A.若 α⊥γ,α⊥β,则 γ∥β B.若 m∥n,m⊂α,n⊂β,则 α∥β C.若 α⊥β,m⊥β,则 m∥α D.若 m∥n,m⊥α,n⊥β,则 α∥β
解析:
由正方体交于同一顶点的三个面知 A 错;如上图
重点难点 重点:线面、面面平行的判定定理与性质定理及应 用 难点:定理的灵活运用
知识归纳
一、直线与平面平行
1.判定方法 (1)用定义:直线与平面无公共点.
(2)判定定理:
a⊄α
b⊂α⇒a∥α
a∥b
(3)其它方法: αa⊂∥ββ⇒a∥α
2.性质定理:
a∥α
a⊂β ⇒a∥b

必修二立体几何线线平行、面面平行、线面垂直判定及性质练习

必修二立体几何线线平行、面面平行、线面垂直判定及性质练习

必修二立体几何线线平行、面面平行、线面垂直判定及性质练习本文档将介绍必修二立体几何中关于线线平行、面面平行、线面垂直的判定方法和性质,并提供相关练题。

一、线线平行的判定和性质1. 判定方法- 定理1:若两线的任意一对对应角相等,则这两条线平行。

定理1:若两线的任意一对对应角相等,则这两条线平行。

- 定理2:若一条直线与两平行线相交,则所成的对应角相等。

定理2:若一条直线与两平行线相交,则所成的对应角相等。

2. 性质- 平行线之间的距离相等。

- 平行线截取的两个平行线段成比例。

- 平行线相交的任意两对内错角相等,外错角相等。

- 平行线与一个横截线相交,所成的相应角、对应角均相等。

二、面面平行的判定1. 判定方法- 定理3:若两平面有一对平行线,则这两个平面平行。

定理3:若两平面有一对平行线,则这两个平面平行。

- 定理4:若两平面分别与一直线平行,则这两个平面平行。

定理4:若两平面分别与一直线平行,则这两个平面平行。

2. 性质- 平行面之间的距离相等。

三、线面垂直的判定1. 判定方法- 定理5:一条直线与平面垂直的充分必要条件是直线与平面内的任意一条短线都垂直。

定理5:一条直线与平面垂直的充分必要条件是直线与平面内的任意一条短线都垂直。

2. 性质- 垂直于同一平面的两条直线平行。

四、练题1. 若两线段的长度相等,能判断这两条线段平行吗?若能,请说明理由。

2. 若两平行线上的两点与另外一直线上的两点分别相连,那么这四条线段相交于一点还是两点?请说明理由。

3. 若两平面平行,能判断这两个平面之间的距离吗?请说明理由。

以上是必修二立体几何中关于线线平行、面面平行、线面垂直的判定方法和性质的介绍及练题。

通过理解和练这些内容,你将更好地掌握立体几何的基本概念和性质。

希望对你有帮助!。

高中数学必修二2.2-直线、平面平行的判定及其性质课堂练习及答案

高中数学必修二2.2-直线、平面平行的判定及其性质课堂练习及答案

2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定●知识梳理1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:a αb β => a∥αa∥b●知能训练一.选择题1.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n2.若直线l不平行于平面α,且l⊄α,则()A.α内存在直线与l异面B.α内存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交3.如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③4.正方体ABCD-A1B1C1D1中M,N,Q分别是棱D1C1,A1D1,BC的中点.P在对角线BD1上,且BP=BD1,给出下面四个命题:(1)MN∥面APC;(2)C1Q∥面APC;(3)A,P,M三点共线;(4)面MNQ∥面APC.正确的序号为()A.(1)(2)B.(1)(4)C.(2)(3)D.(3)(4)5.在正方体ABCD-A1B1C1D1的各个顶点与各棱中点共20个点中,任取两点连成直线,所连的直线中与A1BC1平行的直线共有()A.12条B.18条C.21条D.24条6.直线a∥平面α,P∈α,那么过P且平行于a的直线()A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,且在平面α内D.有无数条,一定在平面α内7.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交8.如图在正方体ABCD-A1B1C1D1中,与平面AB1C平行的直线是()A.DD1B.A1D1C.C1D1D.A1D9.如图,在三棱柱ABC-A1B1C1中,点D为AC的中点,点D1是A1C1上的一点,若BC1∥平面AB1D1,则等于()A.1/2B.1 C.2 D.310.下面四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.①②B.①④C.②③D.③④11.如图,正方体的棱长为1,线段B′D′上有两个动点E,F,EF=,则下列结论中错误的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值二.填空题12.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H,M分别是棱AD,DD1,D1A1,A1A,AB的中点,点N在四边形EFGH的四边及其内部运动,则当N只需满足条件时,就有MN⊥A1C1;当N只需满足条件时,就有MN∥平面B1D1C.13.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于.三.解答题14.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2.(1)求证:AB 1∥平面BC1D;(2)若BC=3,求三棱锥D-BC1C的体积.2.2.2 平面与平面平行的判定●知识梳理1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

完整版)线线、线面、面面平行练习题(含答案)

完整版)线线、线面、面面平行练习题(含答案)

完整版)线线、线面、面面平行练习题(含答案)一、选择题1.B2.C3.B4.B5.A6.A二、填空题7.直线MN与直线BD异面。

三、解答题10.因为D是AC的中点,所以BD平分角ABC,即∠ABD=∠CBD。

又因为AB=AC,所以△ABD≌△CBD,从而BD=BD,即BD//平面ABC。

又因为A1D1//ABC,所以BD//A1D1,即BD//平面A1BD。

因此,BD//平面A1BD,即B1C1//平面A1BD,即B1C1//平面ABD。

11.1) 因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以MN//CD,MN=CD/2.又因为ABCD是平行六面体,所以BD//AC,从而△BDA≌△CDA1,即BD=AC,BD=2AC/√3.所以MN=CD/2=AC/√3=BD/2√3,即MN//B1D1.2) 因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以MN=CD/2=AC/√3,EN=CG=AC/2.又因为ABCD是平行六面体,所以BD//AC,从而△BDA≌△CDA1,即BD=AC,BD=2AC/√3.所以AE=BD/2=AC/√3,从而AE=EN,即AEEN是平行四边形,即AE//EN。

又因为XXX,所以AE//MN,即平面AEM//平面MNC。

又因为平面AEM与平面ABC的交线是直线AE,平面MNC与平面ABC的交线是直线MN,所以AE//MN//BD,即B1D1//平面AEM。

因此,AC1//平面AEM//B1D1,即AC1//平面EB1D1.3) 因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以MN=CD/2=AC/√3,EN=CG=AC/2.又因为ABCD是平行六面体,所以BD//AC,从而△BDA≌△CDA1,即BD=AC,BD=2AC/√3.又因为D1是BD的中点,所以D1C1=BC/2=AC/2√2.所以MN=CD/2=AC/√3=D1C1√2/√3,即MN//D1C1.又因为E,M,N,G分别是AA1,CD,CB,CC1的中点,所以EG=CC1/2=AC/2√2.又因为ABCD是平行六面体,所以AD//BC,从而△ABD≌△CBA1,即AD=BC,AD=2AC/√3.所以EG=CC1/2=AC/2√2=AD/2√2,即EG//AD。

直线、平面平行的判定及性质及详细答案

直线、平面平行的判定及性质及详细答案

直线、平面平行的判定及性质1.直线和平面平行的判定定理2.直线和平面平行的性质定理3.两个平面平行的判定定理4.两个平面平行的性质定理5.与垂直相关的平行的判定定理例1如图所示,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点.证明:MN∥平面A′ACC′.例2.正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.如图所示,在三棱柱ABC-A1B1C1中,E为AC上一点,若AB1∥平面C1EB,求:AE∶EC.例3如图所示,正方体ABCD—A1B1C1D1中,M、N、E、F分别是棱A1B1,A1D1,B1C1,C1D1的中点.求证:平面AMN∥平面EFDB.例4如图所示,平面α∥平面β,点A∈α,C∈α,点B∈β,D∈β,点E、F分别在线段AB,CD上,且AE∶EB=CF∶FD.求证:EF∥β.练习题:1.(课本习题改编)给出下列四个命题:①若一条直线与一个平面内的一条直线平行,则这条直线与这个平面平行;②若一条直线与一个平面内的两条直线平行,则这条直线与这个平面平行;③若平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行;④若两条平行直线中的一条与一个平面平行,则另一条也与这个平面平行.其中正确命题的个数是________个.1.下列命题中正确的是________.①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行;⑤若l与平面α平行,则l与α内任何一条直线都没有公共点;⑥平行于同一平面的两直线可以相交.2.(2014·合肥一检)给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.1.已知两条不同直线l1和l2及平面α,则直线l1∥l2的一个充分条件是() A.l1∥α且l2∥αB.l1⊥α且l2⊥αC.l1∥α且l2⊄αD.l1∥α且l2⊂α答案 B解析l1⊥α且l2⊥α⇒l1∥l2.2.(2012·四川)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行答案 C解析若两条直线和同一平面所成的角相等,则这两条直线可平行、可异面、可相交,A项不正确;如果到一个平面距离相等的三个点在同一条直线上或在这个平面的两侧,那么经过这三个点的平面与这个平面相交,B项不正确.3.(2013·浙江)设m,n是两条不同的直线,α,β是两个不同的平面() A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β答案 C解析A项中,直线m,n可能平行,也可能相交或异面,直线m,n的关系是任意的;B项中,α与β也可能相交,此时直线m平行于α,β的交线;D 项中,m也可能平行于β.故选C项.4.设α,β表示平面,m,n表示直线,则m∥α的一个充分不必要条件是()A .α⊥β且m ⊥βB .α∩β=n 且m ∥nC .m ∥n 且n ∥αD .α∥β且m ⊂β答案 D解析 若两个平面平行,其中一个面内的任一直线均平行于另一个平面,故选D.5.若空间四边形ABCD 的两条对角线AC 、BD 的长分别是8、12,过AB 的中点E 且平行于BD 、AC 的截面四边形的周长为( )A .10B .20C .8D .4答案 B解析 设截面四边形为EFGH ,F 、G 、H 分别是BC 、CD 、DA 的中点,∴EF =GH =4,FG =HE =6.∴周长为2×(4+6)=20.6.在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定答案 B解析 连接CD 1,在CD 1上取点P ,使D 1P =2a3,∴MP ∥BC ,PN ∥AD 1. ∴MP ∥面BB 1C 1C ,PN ∥面AA 1D 1D . ∴面MNP ∥面BB 1C 1C ,∴MN ∥面BB 1C 1C .7.如图所示,四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点,能得出AB ∥面MNP 的图形的序号是________(写出所有符合要求的图形序号).答案①③8. 棱锥P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,P A⊥底面ABCD,E为PC的中点,则BE与平面P AD的位置关系为________.答案平行解析取PD的中点F,连接EF.在△PCD中,EF綊12CD.又∵AB∥CD且CD=2AB,∴EF=12CD且CD=2AB.∴EF綊AB,∴四边形ABEF是平行四边形,∴EB∥AF.又∵EB⊄平面P AD,AF⊂平面P AD,∴BE∥平面P AD.9. 如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1、B1C1的中点,P是上底面的棱AD上的一点,AP=a3,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=________.答案22 3a解析 如图所示,连接AC ,易知MN ∥平面ABCD .∴MN ∥PQ .又∵MN ∥AC ,∴PQ ∥AC . 又∵AP =a 3,∴PD AD =DQ CD =PQ AC =23. ∴PQ =23AC =232a =223a .10.考查下列三个命题,在“________”处都缺少同一个条件,补上这个条件使其构成真命题(其中l 、m 为直线,α、β为平面),则此条件为________.①⎭⎬⎫m ⊂αl ∥m⇒l ∥α;②⎭⎬⎫l ∥m m ∥α⇒l ∥α;③⎭⎬⎫l ⊥βα⊥β⇒l ∥α. 答案 l ⊄α解析 ①体现的是线面平行的判定定理,缺的条件是“l 为平面α外的直线”,即“l ⊄α”,它也同样适合②③,故填l ⊄α.11.在四面体ABCD 中,M 、N 分别是面△ACD 、△BCD 的重心,则四面体的四个面中与MN 平行的是________.答案 平面ABC 和平面ABD解析 连接AM 并延长交CD 于E ,连接BN 并延长交CD 于F .由重心的性质可知,E 、F 重合为一点,且该点为CD 的中点E .由EM MA =EN NB =12,得MN ∥AB .因此MN ∥平面ABC 且MN ∥平面ABD .12.过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.答案 6解析 过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,EF 1,EE 1,FF 1,E 1F ,E 1F 1均与平面ABB1A 1平行,故符合题意的直线共6条.13. 如图所示,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E、B、F、D1四点共面;(2)求证:平面A1GH∥平面BED1F.答案(1)略(2)略解析(1)连接FG.∵AE=B1G=1,∴BG=A1E=2.∴BG綊A1E,∴A1G∥BE.又∵C1F綊B1G,∴四边形C1FGB1是平行四边形.∴FG綊C1B1綊D1A1.∴四边形A1GFD1是平行四边形.∴A1G綊D1F,∴D1F綊EB.故E、B、F、D1四点共面.(2)∵H是B1C1的中点,∴B1H=32.又B1G=1,∴B1GB1H=23.又FCBC=23,且∠FCB=∠GB1H=90°,∴△B1HG∽△CBF.∴∠B1GH=∠CFB=∠FBG,∴HG∥FB.又由(1)知,A1G∥BE,且HG∩A1G=G,FB∩BE=B,∴平面A1GH∥平面BED1F.14. 如图所示,四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.(1)求证:P A∥平面EFG;(2)求三棱锥P—EFG的体积.答案(1)略(2)1 6解析(1)如图所示,取AD的中点H,连接GH,FH.∵E,F分别为PC,PD的中点,∴EF∥CD.∵G,H分别是BC,AD的中点,∴GH∥CD.∴EF∥GH,∴E,F,H,G四点共面.∵F,H分别为DP,DA的中点,∴P A∥FH.∵P A⊄平面EFG,FH⊂平面EFG,∴P A∥平面EFG.(2)∵PD⊥平面ABCD,CG⊂平面ABCD,∴PD⊥CG.又∵CG⊥CD,CD∩PD=D,∴GC⊥平面PCD.∵PF =12PD =1,EF =12CD =1, ∴S △PEF =12EF ·PF =12. 又GC =12BC =1,∴V P —EFG =V G —PEF =13×12×1=16.15.一个多面体的直观图和三视图如图所示(其中M ,N 分别是AF ,BC 中点).(1)求证:MN ∥平面CDEF ; (2)求多面体A —CDEF 的体积. 答案 (1)略 (2)83解析 (1)证明 由三视图知,该多面体是底面为直角三角形的直三棱柱,且AB =BC =BF =2,DE =CF =22,∴∠CBF =90°.取BF 中点G ,连接MG ,NG ,由M ,N 分别是AF ,BC 中点,可知:NG ∥CF ,MG ∥EF .又MG ∩NG =G ,CF ∩EF =F ,∴平面MNG ∥平面CDEF ,∴MN ∥平面CDEF .(2)作AH ⊥DE 于H ,由于三棱柱ADE —BCF 为直三棱柱,∴AH ⊥平面CDEF ,且AH = 2.∴V A -CDEF =13S 四边形CDEF ·AH =13×2×22×2=83.16. 如图所示,三棱柱ABC -A 1B 1C 1,底面为正三角形,侧棱A 1A ⊥底面ABC ,点E 、F 分别是棱CC 1、BB 1上的点,点M 是线段AC 上的动点,EC =2FB .当点M 在何位置时,BM ∥平面AEF?答案当M为AC中点时,BM∥平面AEF.解析方法一:如图所示,取AE的中点O,连接OF,过点O作OM⊥AC 于点M.∵侧棱A1A⊥底面ABC,∴侧面A1ACC1⊥底面ABC.∴OM⊥底面ABC.又∵EC=2FB,∴OM∥FB綊12EC.∴四边形OMBF为矩形.∴BM∥OF.又∵OF⊂面AEF,BM⊄面AEF,故BM∥平面AEF,此时点M为AC的中点.方法二:如图所示,取EC的中点P,AC的中点Q,连接PQ、PB、BQ. ∴PQ∥AE.∵EC=2FB,∴PE綊BF,PB∥EF.∴PQ∥平面AEF,PB∥平面AEF.又PQ∩PB=P,∴平面PBQ ∥平面AEF .又∵BQ ⊂面PQB ,∴BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.17. (2013·福建)如图所示,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,BC =5,DC =3,AD =4,∠P AD =60°.(1)当正视方向与向量AD →的方向相同时,画出四棱锥P -ABCD 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为P A 的中点,求证:DM ∥平面PBC ;(3)求三棱锥D -PBC 的体积.答案 (1)略 (2)略 (3)8 3解析 方法一:(1)在梯形ABCD 中,过点C 作CE ⊥AB ,垂足为E ,由已知得,四边形ADCE 为矩形,AE =CD =3,在Rt △BEC 中,由BC =5,CE =4,依勾股定理,得BE =3,从而AB =6.又由PD ⊥平面ABCD ,得PD ⊥AD .从而在Rt △PDA 中,由AD =4,∠P AD =60°,得PD =4 3.正视图如图所示.(2) 取PB 中点N ,连接MN ,CN .在△P AB 中,∵M 是P A 中点,∴MN ∥AB ,MN =12AB =3.又CD ∥AB ,CD =3,∴MN ∥CD ,MN =CD .∴四边形MNCD 为平行四边形.∴DM ∥CN .又DM ⊄平面PBC ,CN ⊂平面PBC ,∴DM ∥平面PBC .(3)V D -PBC =V P -DBC =13S △DBC ·PD ,又S △DBC =6,PD =43,所以V D -PBC =8 3.方法二:(1)同方法一.(2) 取AB 的中点E ,连接ME ,DE .在梯形ABCD 中,BE ∥CD ,且BE =CD ,∴四边形BCDE 为平行四边形.∴DE ∥BC .又DE ⊄平面PBC ,BC ⊂平面PBC ,∴DE∥平面PBC.又在△P AB中,ME∥PB,ME⊄平面PBC,PB⊂平面PBC,∴ME∥平面PBC.又DE∩ME=E,∴平面DME∥平面PBC.又DM⊂平面DME,∴DM∥平面PBC.(3)同方法一.。

04线面平行与面面平行判定与性质(经典题型+答案)

04线面平行与面面平行判定与性质(经典题型+答案)

线面平行、面面平行的判定及性质一、直线与平面平行文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则直线与此平面平行.性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.二、平面与平面平行文字语言图形语言符号语言判定定理一个平面内有两条相交直线与另一个平面平行,则这两个平面平行性质定理如果两个平行平面时与第三个平面相交,那么它们的交线平行A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面解:由面面平行的定义可知选D.例2:若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a垂直解:A错误,a与α内的直线平行或异面.例3:已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,上面命题中正确的是________(填序号)。

解:①中a与b可能异面;②中a与b可能相交、平行或异面;③中a可能在平面α内,④正确。

例4:已知α、β是平面,m 、n 是直线,给出下列命题:①若m ⊥α,m ⊂β,则α⊥β.②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β.③如果m ⊂α,n ⊄α,m 、n 是异面直线,那么n 与α相交.④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α且n ∥β其中正确命题的个数是 ( ) A .1 B .2 C .3 D .4解:对于①,由定理“如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直”得知,①正确;对于②,注意到直线m ,n 可能是两条平行直线,此时平面α,β可能是相交平面,因此②不正确;对于③,满足条件的直线n 可能平行于平面α,因此③不正确;对于④,由定理“如果平面外一条直线平行于平面内一条直线,那么这条直线平行于这个平面”得知,④正确.综上所述,其中正确的命题是①④,选B.例5:已知m ,n 表示两条不同直线,α,β,γ表示不同平面,给出下列三个命题:(1)⎩⎪⎨⎪⎧ m ⊥αn ⊥α⇒m ∥n ;(2)⎩⎪⎨⎪⎧ m ⊥αm ⊥n ⇒n ∥α (3)⎩⎪⎨⎪⎧m ⊥αn ∥α⇒m ⊥n 其中真命题的个数为 ( ) A .0 B .1 C .2 D .3 解:若⎩⎪⎨⎪⎧ m ⊥α,n ⊥α,则m ∥n ,即命题(1)正确;若⎩⎪⎨⎪⎧ m ⊥α,m ⊥n ,则n ∥α或n ⊂α,即命题(2)不正确;若⎩⎪⎨⎪⎧m ⊥αn ∥α,则m ⊥n ,即命题(3)正确;综上可得,真命题共有2个.选C例6:已知m 、n 、l 1、l 2表示直线,α、β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则以下条件中,能推出α∥β的是 ( )A .m ∥β且l 1∥αB .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2解:由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.例7:在下列条件中,可判断平面α与β平行的是( ).A. α、β都平行于直线lB. α内存在不共线的三点到β的距离相等C. l 、m 是α内两条直线,且l ∥β,m ∥βD. l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β 解:排除法,A中α、β可以是相交平面;B中三点可面平面两侧;C中两直线可以不相交.故选D,也可直接证明.例8:经过平面外的两点作该平面的平行平面可以作( ).A. 0个B. 1个C. 0个或1个D. 1个或2个解:这两点可以是在平面同侧或两侧.选C 。

高一数学直线平面平行的判定及其性质试题答案及解析

高一数学直线平面平行的判定及其性质试题答案及解析

高一数学直线平面平行的判定及其性质试题答案及解析1. a∥,则a平行于内的(D)A.一条确定的直线B.任意一条直线C.所有直线D.无数多条平行线【答案】D【解析】略2.m、n是平面外的两条直线,在m∥的前提下,m∥n是n∥的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】,则存在有。

而由可得,从而有。

反之则不一定成立,可能相交,平行或异面。

所以是的充分不必要条件,故选A3.直线a∥平面?,平面?内有n条直线相交于一点,那么这n条直线中与直线a平行的() A.至少有一条B.至多有一条C.有且只有一条D.不可能有【答案】B【解析】,则直线与平面的直线可能平行或异面。

则直线可能平面这n条互相相交的直线中的一条平行,与其余n-1条直线都异面,或与这n条互相相交的直线都异面。

故选B4. a和b是两条异面直线,下列结论正确的是()A.过不在a、b上的任意一点,可作一个平面与a、b都平行B.过不在a、b上的任意一点,可作一条直线与a、b都相交C.过不在a、b上的任意一点,可作一条直线与a、b都平行D.过a可以并且只可以作一个平面与b平行【答案】D【解析】经过空间任意一点不都可作唯一一个平面与两条已知异面直线都平行,有时会出现其中一条直线在所做的平面上,A不正确;在a任取一点M,在b上任取一点N,直线MN上的点才可作一条直线与a、b都相交。

其它的点不行,B不正确;若过不在a,b上的任意一点,有直线l∥a,l∥b,则a∥b,与a,b异面矛盾,C不正确;在a上任取一点M,则过点M且与直线b平行的直线唯一,则该直线与直线a所在平面与直线b 平行。

而两相交直线所确定的平面唯一,该平面唯一。

D正确,故选D5. a∥(判断对错) ( )【答案】错【解析】错误;6.三个平面两两相交不共线,求证三条直线交于一点或两两平行。

【答案】见解析【解析】证:设,,∴、(1)若(2)若∴、、交于一点7.、异面直线,为空间任一点,过作直线与、均相交,这样的直线可以作多少条。

高中数学必修二 8 5 2 直线与平面平行(第2课时)直线与平面平行的性质 练习(含答案)

高中数学必修二  8 5 2 直线与平面平行(第2课时)直线与平面平行的性质 练习(含答案)

8.5.2 直线与平面平行第2课时 直线与平面平行的性质一、选择题1.已知直线l 和平面α,若//l α,P α∈,则过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,且在平面α内C .有无数条,一定在平面α内D .有无数条,一定不在平面α内【答案】B【解析】假设过点P 且平行于l 的直线有两条m 与n ,∴//m l 且//n l ,由平行公理得//m n ,这与两条直线m 与n 相交与点P 相矛盾.故选:B .2.如图,在长方体1111ABCD A B C D -中,E 、F 分别是棱1AA 和1BB 的中点,过EF 的平面EFGH 分别交BC 和AD 于点G 、H ,则GH 与AB 的位置关系是( )A .平行B .相交C .异面D .平行或异面【答案】A 【解析】在长方体1111ABCD A B C D -中,11//AA BB ,E 、F 分别为1AA 、1BB 的中点,//AE BF ∴, ∴四边形ABFE 为平行四边形,//EF AB ∴,EF ⊄平面ABCD ,AB 平面ABCD ,//EF ∴平面ABCD ,EF ⊂平面EFGH ,平面EFGH平面ABCD GH =,//EF GH ∴,又//EF AB ,//GH AB ∴,故选A.3.如图,在三棱柱ABC -A 1B 1C 1中,AM =2MA 1,BN =2NB 1,过MN 作一平面交底面三角形ABC 的边BC 、AC 于点E 、F ,则 ( )A.MF∥NEB.四边形MNEF为梯形C.四边形MNEF为平行四边形D.A1B1∥NE【答案】B【解析】∵在AA 1B1B中,AM=2MA1,BN=2NB1,∴AM//BN,∴MN//AB.又MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC.又MN⊂平面MNEF,平面MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB,显然在△ABC中EF≠AB,∴EF≠MN,∴四边形MNEF为梯形.故选B.4.如图,四棱锥S-ABCD的所有棱长都等于2,E是SA的中点,过C,D,E三点的平面与SB交于点F,则四边形DEFC的周长为()A.B.C.D.【答案】C【解析】因为AB=BC=CD=DA=2,所以四边形ABCD是菱形,所以CD∥AB,又CD⊄平面SAB,AB⊂平面SAB,所以CD∥平面SAB.又CD⊂平面CDEF,平面CDEF∩平面SAB=EF,所以CD∥EF,所以EF∥AB.又因为E为SA中点,所以EF=12AB=1.又因为△SAD和△SBC都是等边三角形,所以所以四边形DEFC 的周长为:故选C.5.(多选题)在梯形ABCD 中,AB CD ∥,AB平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( )A .平行B .异面C .相交D .共面 【答案】AB【解析】∵AB CD ∥,AB 平面α,CD ⊄平面α,∴CD ∥平面α,∴直线CD 与平面α内的直线没有公共点,直线CD 与平面α内的直线的位置关系可能平行,也可能异面,故选A B .6.(多选题)在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 上的点,当//BD 平面EFGH 时,下面结论正确的是( )A .,,,E F G H 一定是各边的中点B .,G H 一定是,CD DA 的中点C .::AE EB AH HD =,且::BF FC DG GC =D .四边形EFGH 是平行四边形或梯形【答案】CD【解析】由//BD 平面EFGH ,所以由线面平行的性质定理,得//BD EH ,//BD FG ,则::AE EB AH HD =,且::BF FC DG GC =,且//EH FG ,四边形EFGH 是平行四边形或梯形.故选:CD .二、填空题7.如图,在三棱柱111ABC A B C -中,D 是BC 的中点,E 是11A C 上一点,但1//A B 平面1B DE ,则11A E EC 的值为_______. 【答案】12【解析】如下图所示,连接1BC 交1B D 于点F ,连接EF .在三棱柱111ABC A B C -中,11//BC B C ,11BDF C B F ∴∆∆, D 为BC 的中点,111122BD BC B C ∴==,11112BF BD FC B C ∴==. 1//A B 平面1B DE ,1A B ⊂平面11A BC ,平面11A BC ⋂平面1B DE EF =,1//A B EF ∴,11112A E BF EC FC ∴==,故答案为12. 8.正方体1111ABCD A B C D -中,2AB =,点E 为AD 的中点,点F 在1CC 上,若//EF 平面1AB C ,则EF =_____.【解析】取1AA 中点M ,连接,EM MFE 为AD 的中点,M 为1AA 中点⇒11EMA D EMBC ⇒⇒//EM 平面1AB C又因为://EF 平面1AB C ⇒ 平面//EMF 平面1AB C ⇒ //MF 平面1AB C ,因为MF ⊂平面11,AA C C 平面11AAC C 平面1AB C AC =MF AC ⇒⇒F 为1CC 中点.在Rt ECF ∆中,计算知:EF =9.如图,长方体1111ABCD A B C D -中,DD 18= ,E ,F 分别是侧棱1AA ,1CC 上的动点,8AE CF +=,点P 在棱1AA 上,且2AP =,若//EF 平面PBD ,则__________CF =.【答案】2【解析】连接AC ,交BD 于点O ,连接PO .因为//EF 平面PBD ,EF ⊂平面EACF ,平面EACF 平面PBD PO =,所以//EF PO ;在1PA 上截取2PQ AP ==,连接QC ,则//QC PO ,所以//EF QC ,所以易知四边形EFCQ 为平行四边形,则CF EQ =.又8AE CF +=,18AE A E +=,所以11122A E CF EQ AQ ====,故2CF =. 故答案为:2.10.如图在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中正确的有______.(填上所有正确命题的序号)AC BD ⊥①,AC BD =②,//AC ③截面PQMN ,④异面直线PM 与BD 所成的角为45.【答案】①③④【解析】解:在四面体ABCD 中,截面PQMN 是正方形,//PQ MN ∴,PQ ⊄平面ACD ,MN ⊂平面ACD ,//PQ ∴平面ACD .平面ACB ⋂平面ACD AC =,//PQ AC ∴,可得//AC 平面PQMN .同理可得//BD 平面PQMN ,//BD PN .PN PQ ⊥,AC BD ∴⊥.由//BD PN ,MPN ∴∠是异面直线PM 与BD 所成的角,且为45.由上面可知://BD PN ,//PQ AC .PN AN BD AD ∴=,MN DN AC AD=, 而AN DN ≠,PN MN =,BD AC ∴≠.综上可知:①③④都正确.故答案为①③④.利用线面平行与垂直的判定定理和性质定理、正方形的性质、异面直线所成的角即可得出.三、解答题11.如图所示,P 为平行四边形ABCD 所在平面外一点,M,N 分别为AB,PC 的中点,平面PAD 平面PBC =l .(1)求证:BC ∥l ;(2)MN 与平面PAD 是否平行?试证明你的结论.【答案】(1)见解析;(2)见解析【解析】(1)证明 因为BC ∥AD ,AD ⊂平面PAD ,BC ⊄平面PAD ,所以BC ∥平面PAD.又平面PAD∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l.(2)解 MN ∥平面PAD.证明如下:如图所示,取PD 中点E ,连结AE ,EN.又∵N 为PC 的中点,∴//12EN CD =又∵//12AM CD = ∴//AM EN =即四边形AMNE 为平行四边形.∴AE ∥MN ,又MN ⊄平面PAD ,AE ⊂平面PAD.∴MN ∥平面PAD.12.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,60BAD ∠=︒,Q 为AD 的中点,点M 在侧棱PC 上,且PM tPC =,若//PA 平面MQB ,试确定实数t 的值.【答案】13【解析】如图,连接BD AC AC ,,交BQ 于点N ,交BD 于点O ,连接MN ,易知O 为BD 的中点.∵,BQ AO 分别为正三角形ABD 的边,AD BD 上的中线,∴N 为正三角形ABD 的中心.设菱形ABCD 的边长为a,则AN =,AC =. ∵//PA 平面MQB ,PA ⊂平面PAC ,平面PAC平面MQB MN =, ∴//PA MN ,∴13a PM AN PC AC === 即13PM PC =,∴实数t 的值为13.。

直线、平面平行的判定与性质知识点+典型例题及答案解析

直线、平面平行的判定与性质知识点+典型例题及答案解析

2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线和平面的位置关系一条直线和一个平面的位置关系有且只有以下三种 位置关系 直线在平面内 直线与平面相交 直线与平面平行 公共点 有无数个公共点有且只有一个公共点没有公共点 符号表示a ⊂αa ∩α=Aa||α 图形表示注:直线和平面相交或平行的情况统称为直线在平面外 2、直线和平面平行(1)定义:直线和平面没有公共点,则称此直线L 和平面α平行,记作L ||α。

(2)判定定理:如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

简记为:线线平行,则线面平行.符号表示:,////a b a b a ααα⊄⊂⇒、.2.2.2 平面与平面平行的判定1、定义:没有公共点的两个平面叫做平行平面。

符号表示为:平面α、平面β,若a ∩β=∅,则a ∥β2、判定定理:1..性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行. 简记为:线面平行,则线线平行.判定文字描述如果两个平面无公共点,责成这两个平面平行一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行.如果两个平面同时垂直于一条直线,那么这两个平面垂直。

图形条件=αβ∅α,b ⊂β,α∩b =P α∥α,b ∥α ⇒β∥αl ⊥α l ⊥β ⇒β∥α结论//αβ //αβ //αβ符号表示:若//,,,//a a b a b αβαβ⊂=则.2.2.4 平面与平面平行的性质性质文字描述如果两个平行平面同时和第三平面相交,那么他们的交线平行 如果两个平行平面中有一个垂直于一条直线,那么另一个平面也垂直于这条直线 如果两个平面平行,那么其中一个平面内的直线平行于另一个平面 图形条件 α∥β β∩γ=b α∩γ=a α∥β l ⊥α α∥β a ⊂β结论a ∥bl ⊥βa ∥α1. 解题方法(1) 证明直线与平面平行的常用方法:2.利用定义,证明直线与平面没有公共点。

高中数学(人教版必修2)直线、平面平行的判定及其性质配套练习(有答案)

高中数学(人教版必修2)直线、平面平行的判定及其性质配套练习(有答案)

§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定一、基础过关1.直线m∥平面α,直线n∥m,则() A.n∥αB.n与α相交C.n⊂αD.n∥α或n⊂α2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是() A.平行B.相交C.平行或相交D.不相交3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是() A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是() A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5. 如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是______;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.6.已知不重合的直线a,b和平面α.①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,其中正确命题的个数是________.7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.8. 如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB∥平面DCF.二、能力提升9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定10.过直线l外两点,作与l平行的平面,则这样的平面() A.不存在B.只能作出一个C.能作出无数个D.以上都有可能11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.12.如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.三、探究与拓展13. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)答案1.D 2.B 3.D 4.D5.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A1C1 6.17.证明如图,连接BD交AC于F,连接EF.因为F为正方形ABCD对角线的交点,所以F为AC、BD的中点.在三角形DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.8.证明连接OF,∵O为正方形DBCE对角线的交点,∴BO=OE,又AF=FE,∴AB∥OF,⎭⎬⎫AB⊄平面DCFOF⊂平面DCFAB∥OF⇒AB∥平面DCF.9.A10.D11.1212.证明取A′D的中点G,连接GF,GE,由条件易知FG∥CD,FG=12CD,BE∥CD,BE=12CD,所以FG∥BE,FG=BE,故四边形BEGF为平行四边形,所以BF∥EG.因为EG⊂平面A′DE,BF⊄平面A′DE,所以BF∥平面A′DE.13.证明如图所示,连接AQ并延长交BC于K,连接EK.∵KB∥AD,∴DQBQ=AQQK.∵AP=DQ,AE=BD,∴BQ=PE.∴DQBQ=APPE.∴AQQK=APPE.∴PQ∥EK.又PQ⊄平面BCE,EK⊂平面BCE,∴PQ∥平面BCE.2.1.2 空间中直线与直线之间的位置关系一、基础过关1.分别在两个平面内的两条直线间的位置关系是( )A .异面B .平行C .相交D .以上都有可能2.若AB ∥A ′B ′,AC ∥A ′C ′,则有( )A .∠BAC =∠B ′A ′C ′ B .∠BAC +∠B ′A ′C ′=180°C .∠BAC =∠B ′A ′C ′或∠BAC +∠B ′A ′C ′=180°D .∠BAC >∠B ′A ′C ′3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是 ( )A .空间四边形B .矩形C .菱形D .正方形4.“a 、b 为异面直线”是指:①a ∩b =∅,且aD \∥b ;②a ⊂面α,b ⊂面β,且a ∩b =∅;③a ⊂面α,b ⊂面β,且α∩β=∅;④a ⊂面α,b ⊄面α;⑤不存在面α,使a ⊂面α,b ⊂面α成立. 上述结论中,正确的是( )A .①④⑤B .①③④C .②④D .①⑤5.如果两条直线a 和b 没有公共点,那么a 与b 的位置关系是________. 6.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________.7.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么?8.如图,正方体ABCD -EFGH 中,O 为侧面ADHE 的中心,求:(1)BE 与CG 所成的角; (2)FO 与BD 所成的角. 二、能力提升9.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )10.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( )A .12对B .24对C .36对D .48对11.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上结论中正确的序号为________.12.已知A 是△BCD 平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角. 三、探究与拓展13.已知三棱锥A —BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M 、N 分别是BC 、AD 的中点,求直线AB 和MN 所成的角.答案1.D 2.C 3.B 4.D 5.平行或异面 6.(1)60° (2)45°7.(1)证明 由已知FG =GA ,FH =HD ,可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 为平行四边形.(2)解 由BE 綊12AF ,G 为F A 中点知,BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.8.解 (1)如图,∵CG ∥BF ,∴∠EBF (或其补角)为异面直线BE 与CG 所成的角,又△BEF 中,∠EBF =45°,所以BE 与CG 所成的角为45°.(2)连接FH ,BD ,FO ,∵HD 綊EA ,EA 綊FB , ∴HD 綊FB ,∴四边形HFBD 为平行四边形, ∴HF ∥BD ,∴∠HFO (或其补角)为异面直线FO 与BD 所成的角. 连接HA 、AF ,易得FH =HA =AF , ∴△AFH 为等边三角形,又依题意知O 为AH 中点,∴∠HFO =30°,即FO 与BD 所成的角是30°.9.D 10.B 11.①③12.(1)证明 假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解 取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.13.解 如图,取AC 的中点P .连接PM 、PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN =60°或∠MPN =120°, 若∠MPN =60°,因为PM ∥AB ,所以∠PMN 是AB 与MN 所成的角(或所成角的补角). 又因AB =CD ,所以PM =PN ,则△PMN 是等边三角形, 所以∠PMN =60°,即AB 与MN 所成的角为60°.若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°, 即AB 与MN 所成的角为30°.故直线AB 和MN 所成的角为60°或30°.2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、基础过关1.已知直线a∥平面α,直线b⊂α,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.直线l与平面α不平行,则() A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对3.如果直线a∥平面α,那么直线a与平面α内的() A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交4.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是() A.平行B.相交C.平行或相交D.AB⊂α5.直线a⊂平面α,直线b⊄平面α,则a,b的位置关系是________.6.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是________.7.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.8. 如图,直线a∥平面α,a⊂β,α∩β=b,求证:a∥b.二、能力提升9.下列命题正确的是() A.若直线a在平面α外,则直线a∥αB.若直线a与平面α有公共点,则a与α相交C.若平面α内存在直线与平面β无交点,则α∥βD.若平面α内的任意直线与平面β均无交点,则α∥β10.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线() A.异面B.相交C.平行D.垂直11.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC 与面α的位置关系为________.12. 如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.三、探究与拓展13.正方体ABCD—A1B1C1D1中,点Q是棱DD1上的动点,判断过A、Q、B1三点的截面图形的形状.答案1.D2.C3.D4.C5.平行、相交或异面6.b⊂α,b∥α或b与α相交7.解不正确.如图,设α∩β=l,则在α内与l平行的直线可以有无数条,如a1,a2,…,a n,它们是一组平行线,这时a1,a2,…,a n与平面β平行,但此时α与β不平行,α∩β=l.8.证明∵直线a∥平面α,∴直线a与平面α无公共点.∵α∩β=b,∴b⊂α,b⊂β.∴直线a与b无公共点.∵a⊂β,∴a∥b.9.D10.D11.平行或相交12.解由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a、b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点,又a⊂α,∴a与β无公共点,∴a∥β.13.解由点Q在线段DD1上移动,当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图(1)所示;当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2)所示;图(1)图(2)当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图(3)所示.图(3)2.2.2平面与平面平行的判定一、基础过关1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是() A.相交B.平行C.异面D.不确定2.平面α与平面β平行的条件可以是() A.α内的一条直线与β平行B.α内的两条直线与β平行C.α内的无数条直线与β平行D.α内的两条相交直线分别与β平行3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若正n边形的两条对角线分别与面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的取值可能是() A.12 B.8 C.6 D.55.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是________.6.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________.(填序号)7.如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,求证:AE∥平面DCF.8. 在长方体ABCD—A1B1C1D1中,E、F、E1、F1分别是AB、CD、A1B1、C1D1的中点.求证:平面A1EFD1∥平面BCF1E1.二、能力提升9.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是() A.α,β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线,且a∥α,b∥α,a∥β,b∥β10. 正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G11. 如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.12.已知在正方体ABCD—A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、D、B四点共面;(2)平面AMN∥平面EFDB.三、探究与拓展13.如图所示,B为△ACD所在平面外一点,M、N、G分别为△ABC、△ABD、△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.答案1.B 2.D 3.B 4.D 5.相交或平行 6.③7.证明 由于AB ∥CD ,BE ∥CF ,故平面ABE ∥平面DCF .而直线AE 在平面ABE 内,根据线面平行的定义,知AE ∥平面DCF . 8.证明 ∵E 、E 1分别是AB 、A 1B 1的中点,∴A 1E 1∥BE 且A 1E 1=BE .∴四边形A 1EBE 1为平行四边形. ∴A 1E ∥BE 1.∵A 1E ⊄平面BCF 1E 1, BE 1⊂平面BCF 1E 1. ∴A 1E ∥平面BCF 1E 1. 同理A 1D 1∥平面BCF 1E 1, A 1E ∩A 1D 1=A 1,∴平面A 1EFD 1∥平面BCF 1E 1. 9.D 10.A 11.M ∈线段FH12.证明 (1)∵E 、F 分别是B 1C 1、C 1D 1的中点,∴EF 綊12B 1D 1,∵DD 1綊BB 1,∴四边形D 1B 1BD 是平行四边形, ∴D 1B 1∥BD . ∴EF ∥BD ,即EF 、BD 确定一个平面,故E 、F 、D 、B 四点共面. (2)∵M 、N 分别是A 1B 1、A 1D 1的中点, ∴MN ∥D 1B 1∥EF . 又MN ⊄平面EFDB , EF ⊂平面EFDB . ∴MN ∥平面EFDB .连接NE ,则NE 綊A 1B 1綊AB . ∴四边形NEBA 是平行四边形.∴AN ∥BE .又AN ⊄平面EFDB ,BE ⊂平面EFDB .∴AN ∥平面EFDB . ∵AN 、MN 都在平面AMN 内,且AN ∩MN =N , ∴平面AMN ∥平面EFDB .13.(1)证明 连接BM 、BN 、BG 并延长交AC 、AD 、CD 分别于P 、F 、H .∵M 、N 、G 分别为△ABC 、△ABD 、△BCD 的重心,则有BM MP =BN NF =BGGH =2.连接PF 、FH 、PH ,有MN ∥PF . 又PF ⊂平面ACD ,MN ⊄平面ACD , ∴MN ∥平面ACD .同理MG ∥平面ACD ,MG ∩MN =M , ∴平面MNG ∥平面ACD .(2)解 由(1)可知MG PH =BG BH =23,∴MG =23PH .又PH =12AD ,∴MG =13AD .同理NG =13AC ,MN =13CD .∴△MNG ∽△DCA ,其相似比为1∶3, ∴S △MNG ∶S △ADC =1∶9.2.2.3 直线与平面平行的性质一、基础过关1.a ,b 是两条异面直线,P 是空间一点,过P 作平面与a ,b 都平行,这样的平面( ) A .只有一个 B .至多有两个 C .不一定有D .有无数个2. 如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为( )A .AC ⊥BDB .AC ∥截面PQMNC .AC =BDD .异面直线PM 与BD 所成的角为45°3. 如图所示,长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G 、H ,则HG 与AB 的位置关系是( )A .平行B .相交C .异面D .平行和异面4.直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( ) A .至少有一条 B .至多有一条 C .有且只有一条D .没有5.设m 、n 是平面α外的两条直线,给出三个论断:①m ∥n ;②m ∥α;③n ∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7. ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .8. 如图所示,三棱锥A —BCD 被一平面所截,截面为平行四边形EFGH .求证:CD∥平面EFGH.二、能力提升9.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是()A.l1平行于l3,且l2平行于l3B.l1平行于l3,且l2不平行于l3C.l1不平行于l3,且l2不平行于l3D.l1不平行于l3,但l2平行于l310.如图所示,已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是________.10题图11题图11.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB =________.12. 如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面P AD∩平面PBC=l.(1)求证:BC∥l;(2)MN与平面P AD是否平行?试证明你的结论.三、探究与拓展13.如图所示,三棱柱ABC—A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.答案1.C 2.C 3.A 4.B5.①②⇒③(或①③⇒②) 6.223a7.证明 如图所示,连接AC 交BD 于O ,连接MO ,∵ABCD 是平行四边形,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .∴O 是AC 中点,又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理, 则有P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , 根据直线和平面平行的性质定理, 则有AP ∥GH .8.证明 ∵四边形EFGH 为平行四边形, ∴EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD . ∴EF ∥平面BCD .而平面ACD ∩平面BCD =CD ,EF ⊂平面ACD ,∴EF ∥CD . 而EF ⊂平面EFGH ,CD ⊄平面EFGH , ∴CD ∥平面EFGH . 9.A 10.平行四边形 11.m ∶n12.(1)证明 因为BC ∥AD ,AD ⊂平面P AD ,BC ⊄平面P AD ,所以BC ∥平面P AD .又平面P AD ∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l . (2)解 MN ∥平面P AD . 证明如下:如图所示,取PD 中点E . 连接EN 、AE .又∵N 为PC 中点,∴EN 綊12AB∴EN綊AM,∴四边形ENMA为平行四边形,∴AE∥MN.又∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.13.证明连接A 1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED,∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,又∵C1D⊂平面AC1D,BD1⊄平面AC1D,∴BD1∥平面AC1D,又A1B∩BD1=B,∴平面A1BD1∥平面AC1D.2.2.4 平面与平面平行的性质一、基础过关1.已知平面α∥平面β,过平面α内的一条直线a 的平面γ,与平面β相交,交线为直线b ,则a 、b 的位置关系是( ) A .平行B .相交C .异面D .不确定2.已知a 、b 表示直线,α、β表示平面,下列推理正确的是( )A .α∩β=a ,b ⊂α⇒a ∥bB .α∩β=a ,a ∥b ⇒b ∥α且b ∥βC .a ∥β,b ∥β,a ⊂α,b ⊂α⇒α∥βD .α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b3. 如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A 、PB 、PC 于A ′、B ′、C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶54.α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则有下列命题,不正确的是( )①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b; ② ⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ; ③⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β; ④ ⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;⑤⎭⎪⎬⎪⎫α∥c a ∥c ⇒α∥a; ⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α. A .④⑥ B .②③⑥ C .②③⑤⑥ D .②③5.分别在两个平行平面的两个三角形.(填“相似”“全等”) (1)若对应顶点的连线共点,那么这两个三角形具有______关系; (2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.6.已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC =______.7.如图,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.8. 如图所示,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?并证明你的结论.二、能力提升9.设α∥β,A ∈α,B ∈β,C 是AB 的中点,当A 、B 分别在平面α、β内运动时,得到无数个AB 的中点C ,那么所有的动点C( )A .不共面B .当且仅当A 、B 分别在两条直线上移动时才共面C .当且仅当A 、B 分别在两条给定的异面直线上移动时才共面D .不论A 、B 如何移动,都共面10.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且P A =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245 C .14 D .2011.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中可以判断两个平面α与β平行的条件有________个.12. 如图所示,平面α∥平面β,△ABC 、△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′共点于O ,O 在α、β之间,若AB =2,AC =1,∠BAC =90°,OA ∶OA ′=3∶2. 求△A ′B ′C ′的面积.三、探究与拓展13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定一、基础过关1.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是() A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β2.直线a⊥直线b,b⊥平面β,则a与β的关系是() A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是() A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5. 在正方体ABCD-A 1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是______.6. 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=______.7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.8. 如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F分别是AB、PC的中点,P A=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.二、能力提升9. 如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.110.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直11.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).12. 如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证:B1O⊥平面P AC.三、探究与拓展13.已知平面α外两点A、B到平面α的距离分别为1和2,A、B两点在α内的射影之间距离为3,求直线AB和平面α所成的角.答案1.A 2.D 3.C 4.B 5.(1)45° (2)30° (3)90° 6.90°7.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF ,∴∠BCF +∠EBC =90°,∴CF ⊥BE , 又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,又AB ∩BE =B , ∴CF ⊥平面EAB .8.证明 (1)∵P A ⊥底面ABCD , ∴CD ⊥P A .又矩形ABCD 中,CD ⊥AD ,且AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD ⊥PD .(2)取PD 的中点G ,连接AG ,FG .又∵G 、F 分别是PD 、PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵P A =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD , ∵CD ⊥平面P AD ,AG ⊂平面P AD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD . 9.A 10.B 11.∠A 1C 1B 1=90°12.证明 连接AB 1,CB 1,设AB =1.∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC .连接PB1.∵OB21=OB2+BB21=32,PB21=PD21+B1D21=94,OP2=PD2+DO2=34,∴OB21+OP2=PB21.∴B1O⊥PO,又∵PO∩AC=O,∴B1O⊥平面P AC.13.解(1)如图①,当A、B位于平面α同侧时,由点A、B分别向平面α作垂线,垂足分别为A1、B1,则AA1=1,BB1=2,B1A1= 3.过点A作AH⊥BB1于H,则AB和α所成角即为∠HAB.而tan∠BAH=2-13=33.∴∠BAH=30°.(2)如图②,当A、B位于平面α异侧时,经A、B分别作AA1⊥α于A1,BB1⊥α于B1,AB∩α=C,则A1B1为AB在平面α上的射影,∠BCB1或∠ACA1为AB与平面α所成的角.∵△BCB1∽△ACA1,∴BB1AA1=B1CCA1=2,∴B1C=2CA1,而B1C+CA1=3,∴B1C=233.∴tan∠BCB1=BB1B1C=2233=3,∴∠BCB1=60°.综合(1)、(2)可知:AB与平面α所成的角为30°或60°.2.3.2平面与平面垂直的判定一、基础过关1.过两点与一个已知平面垂直的平面() A.有且只有一个B.有无数个C.一个或无数个D.可能不存在2.不能肯定两个平面一定垂直的情况是() A.两个平面相交,所成二面角是直二面角B.一个平面经过另一个平面的一条垂线C.一个平面垂直于另一个平面内的一条直线D.平面α内的直线a与平面β内的直线b是垂直的3.设有直线m、n和平面α、β,则下列结论中正确的是()①若m∥n,n⊥β,m⊂α,则α⊥β;②若m⊥n,α∩β=m,n⊂α,则α⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β.A.①②B.①③C.②③D.①②③4.设l是直线,α,β是两个不同的平面,下列结论中正确的是() A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β5.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.6.如图所示,已知P A⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.7.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.求证:平面EFG⊥平面PDC.8. 如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,P A⊥底面ABCD,P A= 3.(1)证明:平面PBE⊥平面P AB;(2)求二面角A—BE—P的大小.二、能力提升9.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( )A.13B.12C.223D.32 10.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDF ⊥面ABCD .面P AE ⊥面ABC11.如图,在直三棱柱ABC —A 1B 1C 1中,E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .12.如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A —DE —P 为直二面角?并说明理由. 三、探究与拓展13.如图所示,三棱锥P —ABC 中,D 是AC 的中点,P A =PB =PC =5,AC =22,AB =2,BC = 6.(1)求证:PD ⊥平面ABC ; (2)求二面角P —AB —C 的正切值.答案1.C 2.D 3.B 4.B5.45°6.57.证明因为MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD为正方形,所以BC⊥DC.又PD∩DC=D,所以BC⊥平面PDC.在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC,所以GF⊥平面PDC.又GF⊂平面EFG,所以平面EFG⊥平面PDC.8.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE.而P A∩AB=A,因此BE⊥平面P AB.又BE⊂平面PBE,所以平面PBE⊥平面P AB.(2)解由(1)知,BE⊥平面P AB,PB⊂平面P AB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.=3,则∠PBA=60°.在Rt△P AB中,tan∠PBA=P AAB故二面角A—BE—P的大小是60°.9.B 10.C11.证明(1)由E、F分别是A1B、A1C的中点知EF∥BC.因为EF⊄平面ABC,BC⊂平面ABC.所以EF∥平面ABC.(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1.又A1D⊂平面A1B1C1,故CC1⊥A1D.又因为A1D⊥B1C,CC1∩B1C=C,故A1D⊥平面BB1C1C,又A1D⊂平面A1FD,所以平面A1FD⊥平面BB1C1C.12.(1)证明∵P A⊥底面ABC,∴P A⊥BC.又∠BCA=90°,∴AC⊥BC.又∵AC∩P A=A,∴BC⊥平面P AC.(2)解∵DE∥BC,又由(1)知,BC⊥平面P AC,∴DE⊥平面P AC.又∵AE⊂平面P AC,PE⊂平面P AC,∴DE⊥AE,DE⊥PE.∴∠AEP 为二面角A —DE —P 的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC , ∴∠P AC =90°.∴在棱PC 上存在一点E , 使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角. 13.(1)证明 连接BD ,∵D 是AC 的中点,P A =PC =5, ∴PD ⊥AC .∵AC =22,AB =2,BC =6, ∴AB 2+BC 2=AC 2.∴∠ABC =90°,即AB ⊥BC .∴BD =12AC =2=AD .∵PD 2=P A 2-AD 2=3,PB =5, ∴PD 2+BD 2=PB 2.∴PD ⊥BD . ∵AC ∩BD =D ,∴PD ⊥平面ABC .(2)解 取AB 的中点E ,连接DE 、PE ,由E 为AB 的中点知DE ∥BC , ∵AB ⊥BC ,∴AB ⊥DE . ∵PD ⊥平面ABC ,∴PD ⊥AB .又AB ⊥DE ,DE ∩PD =D ,∴AB ⊥平面PDE ,∴PE ⊥AB . ∴∠PED 是二面角P —AB —C 的平面角.在△PED 中,DE =12BC =62,PD =3,∠PDE =90°,∴tan ∠PED =PDDE = 2.∴二面角P —AB —C 的正切值为 2.2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质一、基础过关1.已知两个平面互相垂直,那么下列说法中正确的个数是( )①一个平面内的直线必垂直于另一个平面内的无数条直线;②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线; ③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上; ④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面. A .4B .3C .2D .1 2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( ) A .相交B .平行C .异面D .相交或平行3.若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( )①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α. A .1 B .2C .3D .4 4.在△ABC 所在的平面α外有一点P ,且P A =PB =PC ,则P 在α内的射影是△ABC 的( )A .垂心B .内心C .外心D .重心5. 如图所示,AF ⊥平面ABCD ,DE ⊥平面ABCD ,且AF =DE ,AD =6,则EF =________.6.若α⊥β,α∩β=AB ,a ∥α,a ⊥AB ,则a 与β的关系为________. 7. 如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,平面P AB ⊥平面PBC .求证:BC ⊥AB .8. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC . 求证:(1)MN ∥AD 1; (2)M 是AB 的中点.二、能力提升9. 如图所示,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足分别为A ′、B ′,则AB ∶A ′B ′等于( )A .2∶1B .3∶1C .3∶2D .4∶310.设α-l -β是直二面角,直线a ⊂α,直线b ⊂β,a ,b 与l 都不垂直,那么( )A .a 与b 可能垂直,但不可能平行B .a 与b 可能垂直,也可能平行C .a 与b 不可能垂直,但可能平行D .a 与b 不可能垂直,也不可能平行11.直线a 和b 在正方体ABCD -A 1B 1C 1D 1的两个不同平面内,使a ∥b 成立的条件是________.(只填序号)①a 和b 垂直于正方体的同一个面; ②a 和b 在正方体两个相对的面内,且共面; ③a 和b 平行于同一条棱;④a 和b 在正方体的两个面内,且与正方体的同一条棱垂直. 12.如图所示,在多面体P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5. (1)设M 是PC 上的一点, 求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积. 三、探究与拓展13.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.答案1.B 2.B 3.C 4.C 5.6 6.a ⊥β7.证明 在平面P AB 内,作AD ⊥PB 于D . ∵平面P AB ⊥平面PBC , 且平面P AB ∩平面PBC =PB . ∴AD ⊥平面PBC . 又BC ⊂平面PBC , ∴AD ⊥BC .又∵P A ⊥平面ABC , BC ⊂平面ABC ,∴P A ⊥BC ,∴BC ⊥平面P AB . 又AB ⊂平面P AB , ∴BC ⊥AB .8.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1, ∴CD ⊥AD 1. ∵A 1D ∩CD =D , ∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形, ∴ON =AM . ∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点. 9.A 10.C 11.①②③12.(1)证明 在△ABD 中,∵AD =4,BD =8,AB =45, ∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵面P AD ⊥面ABCD ,面P AD ∩面ABCD =AD ,BD ⊂面ABCD ,∴BD ⊥面P AD ,又BD ⊂面BDM , ∴面MBD ⊥面P AD . (2)解 过P 作PO ⊥AD , ∵面P AD ⊥面ABCD , ∴PO ⊥面ABCD ,即PO 为四棱锥P —ABCD 的高. 又△P AD 是边长为4的等边三角形, ∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=16 3.13.(1)证明 由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,CD ∩BD =D ,所以DC 1⊥平面BCD .因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)解 DC 1⊥BC ,CC 1⊥BC ⇒BC ⊥平面ACC 1A 1⇒BC ⊥AC ,取A 1B 1的中点O ,过点O 作OH ⊥BD 于点H ,连接C 1O ,C 1H ,A 1C 1=B 1C 1⇒C 1O ⊥A 1B 1,面A 1B 1C 1⊥面A 1BD ⇒C 1O ⊥面A 1BD ,又∵DB ⊂面A 1DB ,∴C 1O ⊥BD ,又∵OH ⊥BD ,∴BD ⊥面C 1OH ,C 1H ⊂面C 1OH ,∴BD ⊥C 1H ,得点H 与点D 重合,且∠C 1DO 是二面角A 1-BD -C 的平面角,设AC =a ,则C 1O =22a ,C 1D =2a =2C 1O ⇒∠C 1DO =30°,故二面角A 1-BD -C 1的大小为30°.章末检测一、选择题1.下列推理错误的是() A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α2.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°3.下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.在空间四边形ABCD的边AB,BC,CD,DA上分别取E、F、G、H四点,如果EF,GH交于一点P,则() A.P一定在直线BD上B.P一定在直线AC上C.P一定在直线AC或BD上D.P既不在直线AC上,也不在直线BD上5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是() A.①和②B.②和③C.③和④D.②和④6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β7.如图(1)所示,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG中必有()。

线面面面平行的判定与性质随堂练习含答案图文稿

线面面面平行的判定与性质随堂练习含答案图文稿

线面面面平行的判定与性质随堂练习含答案集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-线面、面面平行的判定与性质基础巩固强化1.(文)(2011·北京海淀期中)已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误..的是( )A.若m∥β,则m∥l B.若m∥l,则m∥βC.若m⊥β,则m⊥l D.若m⊥l,则m⊥β[答案]D[解析]A符合直线与平面平行的性质定理;B符合直线与平面平行的判定定理;C符合直线与平面垂直的性质;对于D,只有α⊥β时,才能成立.(理)(2011·泰安模拟)设m、n表示不同直线,α、β表示不同平面,则下列命题中正确的是( )A.若m∥α,m∥n,则n∥αB.若mα,nβ,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,nβ,则n∥β[答案]D[解析]A选项不正确,n还有可能在平面α内,B选项不正确,平面α还有可能与平面β相交,C选项不正确,n也有可能在平面β内,选项D正确.2.(文)(2011·邯郸期末)设m,n为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是( )A.若mα,nα,且m∥β,n∥β,则α∥βB.若m∥α,m∥n,则n∥αC.若m∥α,n∥α,则m∥nD.若m,n为两条异面直线,且m∥α,n∥α,m∥β,n∥β,则α∥β[答案]D[解析]选项A中的直线m,n可能不相交;选项B中直线n可能在平面α内;选项C中直线m,n的位置可能是平行、相交或异面.(理)(2011·浙江省温州市测试)已知m,n,l为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )A.α∥β,mα,nβm∥nB.l⊥β,α⊥βl∥αC.m⊥α,m⊥nn∥αD.α∥β,l⊥αl⊥β[答案]D[解析]对于选项A,m,n平行或异面;对于选项B,可能出现lα这种情形;对于选项C,可能出现nα这种情形.故选D.3.(2011·宁波模拟)已知直线l、m,平面α、β,则下列命题中的假命题是( )A.若α∥β,lα,则l∥βB.若α∥β,l⊥α,则l⊥βC.若l∥α,mα,则l∥mD.若α⊥β,α∩β=l,mα,m⊥l,则m⊥β[答案]C[解析]对于选项C,直线l与m可能构成异面直线,故选C.4.(2011·广东揭阳模拟)若a不平行于平面α,且aα,则下列结论成立的是( )A.α内的所有直线与a异面B.α内与a平行的直线不存在C.α内存在唯一的直线与a平行D.α内的直线与a都相交[答案]B[解析]由条件知a与α相交,故在平面α内的直线与a相交或异面,不存在与a平行的直线.5.(2012·石家庄二模)三棱锥的三组相对的棱(相对的棱是指三棱锥中成异面直线的一组棱)分别相等,且长分别为2、m、n,其中m2+n2=6,则该三棱锥体积的最大值为( )A.12B.8327C.33D.23[答案]D[解析]令m=n,由m2+n2=6得m=n=3,取AB的中点E,则BE=22,PB=3,∴PE=102,CE=102,∴EF=2,∴V P-ABC=13S△PEC·AB=13×(12×2×2)×2=23,∵23>12,∴23>33,2 3>8327,故选D.6.(2011·苏州模拟)下列命题中,是假命题的是( )A.三角形的两条边平行于一个平面,则第三边也平行于这个平面B.平面α∥平面β,aα,过β内的一点B有唯一的一条直线b,使b∥aC.α∥β,γ∥δ,α、β与γ、δ的交线分别为a、b和c、d,则a∥b∥c∥dD.一条直线与两个平面成等角是这两个平面平行的充要条件[答案]D[解析]三角形的任意两边必相交,故三角形所在的平面与这个平面平行,从而第三边也与这个平面平行,∴A真;假设在β内经过B点有两条直线b、c都与a平行,则b∥c,与b、c都过B点矛盾,故B真;∵γ∥δ,α∩γ=a,α∩δ=b,∴a∥b,同理c∥d;又α∥β,γ∩α=a,γ∩β=c,∴a∥c,∴a∥b∥c∥d,故C真;正方体ABCD-A1B1C1D1中,AC与平面AA1D1D和平面CC1D1D所成角相等,但平面AA1D1D∩平面CC1D1D=DD1,故D假.7.(2012·北京东城区综合练习)在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;②若平面α∥平面β,则平面α内任意一条直线m∥平面β;③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β;④若平面α内的三点A、B、C到平面β的距离相等,则α∥β.其中正确命题的序号为________.[答案]②[解析]①中,互相平行的两条直线的射影可能重合,①错误;②正确;③中,平面α与平面β不一定垂直,所以直线n就不一定垂直于平面β,③错误;④中,若平面α内的三点A、B、C在一条直线上,则平面α与平面β可以相交,④错误.8.(2011·福建文,15)如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.[答案]2[解析]∵EF∥平面AB1C,平面ABCD经过直线EF与平面AB1C相交于AC,∴EF∥AC,∵E为AD的中点,∴F为CD的中点,∴EF=12AC=12×22= 2.9.(2011·郑州一检)已知两条不重合的直线m、n,两个不重合的平面α、β,有下列命题:①若m ∥n ,nα,则m ∥α;②若n ⊥α,m ⊥β,且n ∥m ,则α∥β; ③若mα,nα,m ∥β,n ∥β,则α∥β; ④若α⊥β,α∩β=m ,nβ,n ⊥m ,则n ⊥α. 其中正确命题的序号是________. [答案] ②④[解析] 对于①,直线m 可能位于平面α内,此时不能得出m ∥α,因此①不正确;对于②,由n ⊥α,m ∥n ,得m ⊥α,又m ⊥β,所以α∥β,因此②正确;对于③,直线m ,n 可能是两条平行直线,此时不一定能得出α∥β,因此③不正确;对于④,由“如果两个平面相互垂直,则在一个平面内垂直于它们交线的直线必垂直于另一个平面”可知,④正确.综上所述,其中正确命题的序号是②④.10.(文)(2012·辽宁文,18)如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =2,AA ′=1,点M 、N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)求三棱锥A ′-MNC 的体积(锥体体积公式V =13Sh ,其中S 为底面面积,h 为高).[分析] (1)欲证MN ∥平面A ′ACC ′,须在平面A ′ACC ′内找到一条直线与MN 平行,由于M 、N 分别为A ′B ,B ′C ′的中点,B ′C ′与平面A ′ACC ′相交,又M 为直三棱柱侧面ABB ′A ′的对角线A ′B 的中点,从而M 为AB ′的中点,故MN 为△AB ′C ′的中位线,得证.(2)欲求三棱锥A ′-MNC 的体积,注意到直三棱柱的特殊性和点M 、N 为中点,可考虑哪一个面作为底面有利于问题的解决,视A ′MC 为底面,则S △A ′MC =12S △A ′BC ,∴V A ′-MNC =12V N -A ′BC ,又V N -A ′BC =V A ′-NBC ,易知A ′N 为三棱锥A ′-NBC的高,于是易得待求体积.[解析](1)连结AB′,AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,所以M为AB′中点.又因为N为B′C′的中点,所以MN∥AC′.又MN平面A′ACC′,AC′平面A′ACC′,因此MN∥平面A′ACC′.(2)连结BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC.又A′N=12B′C′=1,故V A′-MNC=V N-A′MC=12V N-A′BC=12V A′-NBC=16.[点评] 本题考查了线面平行的证明,锥体的体积两方面的问题,对于(1)还可以利用面面平行(平面MPN∥平面A′ACC′,其中P为A′B′的中点)来证明;(2)还可利用割补法求解.(理)(2012·浙江文,20)如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=2,AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成角的正弦值.[分析] (1)①欲证EF∥A1D1,∵B1C1∥A1D1,∴只需证EF∥B1C1,故由线面平行的性质定理“线面平行线线平行”可推证.②要证BA1⊥平面B1C1EF,需证BA1⊥B1C1,BA1⊥B1F,要证BA1⊥B1C1,只需证B1C1⊥平面AA1B1B,要证BA1⊥B1F,通过在侧面正方形AA1B1B中计算证明即可.(2)设BA1与B1F交于点H,连结C1H,则∠BC1H就是所求的角.[解析](1)①∵C1B1∥A1D1,C1B1平面ADD1A1,∴C1B1∥平面A1D1DA.又∵平面B1C1EF∩平面A1D1DA=EF,∴C1B1∥EF,∴A1D1∥EF.②∵BB1⊥平面A1B1C1D1,∴BB1⊥B1C1,又∵B1C1⊥B1A1,∴B1C1⊥平面ABB1A1.∴B1C1⊥BA1.在矩形ABB1A1中,F是AA1的中点,tan∠A1B1F=tan∠AA1B=22,即∠A1B1F=∠AA1B,∴BA1⊥B1F.又∵BA1⊥B1C1,所以BA1⊥平面B1C1EF.(2)设BA1与B1F交点为H,连结C1H.由(1)知BA1⊥平面B1C1EF,所以∠BC1H是BC1与平面B1C1EF所成的角.在矩形AA1B1B中,由AB=2,AA1=2,得BH=4 6 .在Rt△BHC1中,由BC1=25,BH=46得,sin∠BC1H=BHBC1=3015.所以BC1与平面B1C1EF所成角的正弦值是30 15.[点评] 本题主要考查空间点、线、面的位置关系,线面角等基础知识,同时考查空间想象能力和推理论证能力.能力拓展提升11.(文)(2011·北京模拟)给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,lα,mβ,则α∥β;②若α∥β,lα,mβ,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为( )A.3 B.2 C.1 D.0[答案]C[解析]①设α∩β=a,当l,m都与a相交且交点不重合时,满足①的条件,故①假;②中分别在两个平行平面内的两条直线可能平行,也可能异面,故②假;由三棱柱知③真;故选C.(理)如图,在三棱柱ABC-A′B′C′中,点E、F、H、K分别为AC′、CB′、A′B、B′C′的中点,G为△ABC的重心.从K、H、G、B′中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P为( ) A.K B.HC.G D.B′[答案]C[解析]假如平面PEF与侧棱BB′平行则和三条侧棱都平行,不满足题意,而FK∥BB′,排除A;假如P为B′点,则平面PEF即平面A′B′C,此平面只与一条侧棱AB平行,排除D.若P为H点,则HF为△BA′C′的中位线,∴HF∥A′C′;EF为△ABC′的中位线,∴EF∥AB,HE为△AB′C′的中位线,∴HE∥B′C′,显然不合题意,排除B.[点评] 此题中,∵EF是△ABC′的中位线,∴EF∥AB∥A′B′,故点P只要使得平面PEF与其他各棱均不平行即可,故选G点.12.(文)(2012·江西文,7)若一个几何体的三视图如图所示,则此几何体的体积为( )A.112B.5C.92D.4[答案]D[解析]由三视图知该几何体为直六棱柱.其底面积为S=2×[1 2×(1+3)×1]=4,高为1.所以体积V=4.(理)(2012·四川文,6)下列命题正确的是( )A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行[答案]C[解析]本题考查了线面角,面面垂直,线面平行,面面平行等位置关系的判定与性质,对于A选项,两条直线也可相交,B选项若三点在同一条直线上,平面可相交.D选项这两个平面可相交(可联系墙角),而C项可利用线面平行的性质定理,再运用线面平行的判定与性质可得.本题需要我们熟练掌握各种位置关系的判定与性质.13.(2012·南昌二模)若P是两条异面直线l、m外的任意一点,则下列命题中假命题的序号是________.①过点P有且仅有一条直线与l,m都平行;②过点P有且仅有一条直线与l,m都垂直;③过点P有且仅有一条直线与l,m都相交;④过点P有且仅有一条直线与l,m都异面.[答案]①③④[解析]①是假命题,因为过点P不存在一条直线与l,m都平行;②是真命题,因为过点P有且仅有一条直线与l,m都垂直,这条直线与两异面直线的公垂线平行或重合;③是假命题,因为过点P也可能没有一条直线与l,m都相交;④是假命题,因为过点P可以作出无数条直线与l,m都异面,这无数条直线在过点P且与l,m都平行的平面上.[点评] 第③个命题易判断错误.当点P与l确定的平面α∥m 时,或点P与m确定的平面β∥l时,过点P与l、m都相交的直线不存在.14.(2012·佛山一模)过两平行平面α、β外的一点P作两条直线,分别交α于A、C两点,交β于B、D两点,若PA=6,AC=9,PB =8,则BD=________.[答案]12[解析]由面面平行的性质定理可知AC∥BD,又由平行线分线段成比例定理可得PAPB=ACBD,即68=9BD,得BD=12.15.(文)如图,在三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,AC=BC =BB1=2,D为AB的中点,且CD⊥DA1.(1)求证:BB1⊥平面ABC;(2)求证:BC1∥平面CA1D;(3)求三棱锥B1-A1DC的体积.[解析](1)∵AC=BC,D为AB的中点,∴CD⊥AB,又∵CD⊥DA1,∴CD⊥平面ABB1A1,∴CD⊥BB1,又BB1⊥AB,AB∩CD=D,∴BB1⊥平面ABC.(2)连接BC1,连接AC1交CA1于E,连接DE,易知E是AC1的中点,又D是AB的中点,则DE∥BC1,又DE平面CA1D,BC1平面CA1D,∴BC1∥平面CA1D.(3)由(1)知CD⊥平面AA1B1B,故CD是三棱锥C-A1B1D的高,在Rt△ACB中,AC=BC=2,∴AB=22,CD=2,又BB1=2,∴VB1-A1DC=VC-A1B1D=13S△A1B1D·CD=16A1B1×B1B×CD=16×22×2×2=43.(理)如图,PO⊥平面ABCD,点O在AB上,EA∥PO,四边形ABCD为直角梯形,BC⊥AB,BC=CD=BO=PO,EA=AO=12 CD.(1)求证:BC⊥平面ABPE;(2)直线PE上是否存在点M,使DM∥平面PBC,若存在,求出点M;若不存在,说明理由.[解析](1)∵PO⊥平面ABCD,BC平面ABCD,∴BC⊥PO,又BC⊥AB,AB∩PO=O,AB平面ABP,PO平面ABP,∴BC⊥平面ABP,又EA∥PO,AO平面ABP,∴EA平面ABP,∴BC⊥平面ABPE.(2)点E即为所求的点,即点M与点E重合.取PO的中点N,连结EN并延长交PB于F,∵EA=1,PO=2,∴NO=1,又EA与PO都与平面ABCD垂直,∴EF∥AB,∴F为PB的中点,∴NF=12OB=1,∴EF=2,又CD=2,EF∥AB∥CD,∴四边形DCFE为平行四边形,∴DE∥CF,∵CF平面PBC,DE平面PBC,∴DE∥平面PBC.∴当M与E重合时,DM∥平面PBC.16.(2012·北京海淀区二模)在正方体ABCD-A′B′C′D′中,棱AB、BB′、B′C′、C′D′的中点分别为E、F、G、H,如图所示.(1)求证:AD′∥平面EFG;(2)求证:A′C⊥平面EFG;(3)判断点A、D′、H、F是否共面,并说明理由.[解析](1)证明:连结BC′.在正方体ABCD-A′B′C′D′中,AB=C′D′,AB∥C′D′.所以四边形ABC′D′是平行四边形.所以AD′∥BC′.因为F、G分别是BB′、B′C′的中点,所以FG∥BC′,所以FG∥AD′.因为EF、AD′是异面直线,所以AD′平面EFG.因为FG平面EFG,所以AD′∥平面EFG.(2)证明:连结B′C.在正方体ABCD-A′B′C′D′中,A′B′⊥平面BCC′B′,BC′平面BCC′B′,所以A′B′⊥BC′.在正方体BCC′B′中,B′C⊥BC′,因为A′B′平面A′B′C,B′C′平面A′B′C,A′B′∩B′C′=B′,所以BC′⊥平面A′B′C.因为A′C平面A′B′C,所以BC′⊥A′C.因为FG∥BC′,所以A′C⊥FG.同理可证:A′C⊥EF.因为EF平面EFG,FG平面EFG,EF∩FG=F,所以A′C⊥平面EFG.(3)点A、D′、H、F不共面.理由如下:假设A、D′、H、F共面.连结C′F、AF、HF.由(1)知,AD′∥BC′,因为BC′平面BCC′B′,AD′平面BCC′B′.所以AD′∥平面BCC′B′.因为C′∈D′H,所以平面AD′HF∩平面BCC′B′=C′F.因为AD′平面AD′HF,所以AD′∥C′F.所以C′F∥BC′,而C′F与BC′相交,矛盾.所以A,D′、H、F点不共面.1.设m、l是两条不同的直线,α是一个平面,则下列命题正确的是( )A.若l⊥m,mα,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,mα,则l∥mD.若l∥α,m∥α,则l∥m[答案]B[解析]两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面,故选B.2.如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=2a,点E在PD上,且PE:ED=2:1.(1)证明:PA⊥平面ABCD;(2)在棱PC上是否存在一点F,使BF∥平面AEC如果存在,请求出此时PF FC的值;如果不存在,请说明理由.[解析](1)因为底面ABCD是菱形,∠ABC=60°,所以AB=AD=AC=a.在△PAB中,由PA2+AB2=2a2=PB2,知PA⊥AB.同理,PA⊥AD,所以PA⊥平面ABCD.(2)连结BD,则平面PBD与平面AEC的交线为EO,在△PBD中作BM ∥OE交PD于M,则BM∥平面AEC,在△PCE中过M作MF∥CE交PC于F,则MF∥平面AEC,故平面BFM∥平面AEC,所以BF∥平面AEC,F点即为所求的满足条件的点.由条件O为BD的中点可知,E为MD的中点.又由PE:ED=2:1,∴M为PE的中点,又FM∥CE,故F是PC的中点,∴此时PF:FC=1.3.如图,正方形ABCD和四边形ACEF所在平面互相垂直,EF∥AC,AB=2,CE=EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.[证明](1)设AC∩BD=G,在正方形ABCD中,AB=2,∴AC=2,又∵EF=1,AG=12AC=1,又∵EF∥AG,∴四边形AGEF为平行四边形,∴AF∥EG,∵EG平面BDE,AF平面BDE,∴AF∥平面BDE.(2)连结FG.∵EF∥CG,EF=CG=1且CE=1,∴四边形CEFG为菱形,∴EG⊥CF.∵四边形ABCD为正方形,∴AC⊥BD.又∵平面ACEF⊥平面ABCD且平面ACEF∩平面ABCD=AC,∴BD⊥平面ACEF,∴CF⊥BD.又∵BD∩EG=G,∴CF⊥平面BDE.。

2023年高考数学一轮复习第七章立体几何与空间向量4空间直线平面的平行练习含解析

2023年高考数学一轮复习第七章立体几何与空间向量4空间直线平面的平行练习含解析

空间直线、平面的平行考试要求 1.理解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.2.掌握直线与平面、平面与平面平行的判定与性质,并会简单应用.知识梳理1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行错误!⇒a∥α性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行错误!⇒a∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行错误!⇒β∥α性质定理两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行错误!⇒a∥b常用结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即a⊥α,b⊥α,则a∥b.(4)若α∥β,a⊂α,则a∥β.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ×)(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.( ×)(3)若直线a⊂平面α,直线b⊂平面β,a∥b,则α∥β.( ×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √)教材改编题1.下列说法中,与“直线a∥平面α”等价的是( )A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交答案 D解析因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交.2.已知不重合的直线a,b和平面α,则下列选项正确的是( )A.若a∥α,b⊂α,则a∥bB.若a∥α,b∥α,则a∥bC.若a∥b,b⊂α,则a∥αD.若a∥b,a⊂α,则b∥α或b⊂α答案 D解析若a∥α,b⊂α,则a∥b或异面,A错;若a∥α,b∥α,则a∥b或异面或相交,B错;若a∥b,b⊂α,则a∥α或a⊂α,C错;若a∥b,a⊂α,则b∥α或b⊂α,D对.3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为______.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定例1 如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,E ,F 分别是BC ,PD 的中点,求证:(1)PB ∥平面ACF ;(2)EF ∥平面PAB .证明 (1)如图,连接BD 交AC 于O ,连接OF ,∵四边形ABCD 是平行四边形, ∴O 是BD 的中点,又∵F 是PD 的中点,∴OF ∥PB , 又∵OF ⊂平面ACF ,PB ⊄平面ACF , ∴PB ∥平面ACF .(2)取PA 的中点G ,连接GF ,BG . ∵F 是PD 的中点, ∴GF 是△PAD 的中位线, ∴GF 綉12AD ,∵底面ABCD 是平行四边形,E 是BC 的中点, ∴BE 綉12AD ,∴GF 綉BE ,∴四边形BEFG 是平行四边形, ∴EF ∥BG ,又∵EF ⊄平面PAB ,BG ⊂平面PAB , ∴EF ∥平面PAB .命题点2 直线与平面平行的性质例2 如图所示,在四棱锥P-ABCD中,四边形ABCD是平行四边形,M是PC的中点,在DM 上取一点G,过G和PA作平面交BD于点H.求证:PA∥GH.证明如图所示,连接AC交BD于点O,连接OM,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴PA∥OM,又OM⊂平面BMD,PA⊄平面BMD,∴PA∥平面BMD,又平面PAHG∩平面BMD=GH,∴PA∥GH.教师备选如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.证明∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD.∵平面BCFE∩平面PAD=EF,BC⊂平面BCFE,∴BC∥EF.∵AD=BC,AD≠EF,∴BC≠EF,∴四边形BCFE是梯形.思维升华(1)判断或证明线面平行的常用方法①利用线面平行的定义(无公共点).②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).③利用面面平行的性质(α∥β,a⊂α⇒a∥β).④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.跟踪训练1 如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.(1)证明如图,记AC与BD的交点为O,连接OE.因为O,M分别为AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)解l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.题型二平面与平面平行的判定与性质例3 如图所示,在三棱柱ABC-A1B1C1中,过BC的平面与上底面A1B1C1交于GH(GH与B1C1不重合).(1)求证:BC∥GH;(2)若E,F,G分别是AB,AC,A1B1的中点,求证:平面EFA1∥平面BCHG.证明(1)∵在三棱柱ABC-A1B1C1中,∴平面ABC∥平面A1B1C1,又∵平面BCHG∩平面ABC=BC,且平面BCHG∩平面A1B1C1=HG,∴由面面平行的性质定理得BC∥GH.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,A1E,EF⊂平面EFA1,∴平面EFA1∥平面BCHG.延伸探究在本例中,若将条件“E,F,G分别是AB,AC,A1B1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求ADDC的值.解如图,连接A1B交AB1于O,连接OD1.由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB=1. 又由题设A 1D 1D 1C 1=DC AD, 所以DC AD=1,即AD DC=1. 教师备选如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G 分别为B 1C 1,A 1B 1,AB 的中点.(1)求证:平面A 1C 1G ∥平面BEF ;(2)若平面A 1C 1G ∩BC =H ,求证:H 为BC 的中点. 证明 (1)∵E ,F 分别为B 1C 1,A 1B 1的中点, ∴EF ∥A 1C 1,∵A 1C 1⊂平面A 1C 1G ,EF ⊄平面A 1C 1G , ∴EF ∥平面A 1C 1G ,又F ,G 分别为A 1B 1,AB 的中点, ∴A 1F =BG , 又A 1F ∥BG ,∴四边形A 1GBF 为平行四边形, 则BF ∥A 1G ,∵A 1G ⊂平面A 1C 1G ,BF ⊄平面A 1C 1G , ∴BF ∥平面A 1C 1G ,又EF ∩BF =F ,EF ,BF ⊂平面BEF , ∴平面A 1C 1G ∥平面BEF .(2)∵平面ABC∥平面A1B1C1,平面A1C1G∩平面A1B1C1=A1C1,平面A1C1G与平面ABC有公共点G,则有经过G的直线,设交BC于点H,如图,则A1C1∥GH,得GH∥AC,∵G为AB的中点,∴H为BC的中点.思维升华证明面面平行的常用方法(1)利用面面平行的判定定理.(2)利用垂直于同一条直线的两个平面平行(l⊥α,l⊥β⇒α∥β).(3)利用面面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(α∥β,β∥γ⇒α∥γ).跟踪训练2 如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面CD1B1=直线l,证明:B1D1∥l.证明(1)由题设知BB1綉DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1綉B1C1綉BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面CD1B1=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B 1D 1∥BD ,所以B 1D 1∥l .题型三 平行关系的综合应用例4 如图,在正方体ABCD -A 1B 1C 1D 1中,P ,Q 分别为对角线BD ,CD 1上的点,且CQ QD 1=BP PD =23.(1)求证:PQ ∥平面A 1D 1DA ;(2)若R 是AB 上的点,AR AB的值为多少时,能使平面PQR ∥平面A 1D 1DA ?请给出证明. (1)证明 连接CP 并延长,与DA 的延长线交于M 点,如图,连接MD 1,因为四边形ABCD 为正方形, 所以BC ∥AD ,故△PBC ∽△PDM , 所以CP PM =BP PD =23,又因为CQ QD 1=BP PD =23, 所以CQ QD 1=CP PM =23, 所以PQ ∥MD 1.又MD 1⊂平面A 1D 1DA ,PQ ⊄平面A 1D 1DA , 故PQ ∥平面A 1D 1DA .(2)解 当AR AB 的值为35时,能使平面PQR ∥平面A 1D 1DA .如图,证明如下:因为AR AB =35,即BR RA =23, 故BR RA =BP PD. 所以PR ∥DA .又DA ⊂平面A 1D 1DA ,PR ⊄平面A 1D 1DA , 所以PR ∥平面A 1D 1DA ,又PQ ∥平面A 1D 1DA ,PQ ∩PR =P ,PQ ,PR ⊂平面PQR , 所以平面PQR ∥平面A 1D 1DA . 教师备选如图,四边形ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明 (1)如图,连接AE ,则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO . 又BE ⊄平面DMF ,MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN , 又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 的中点,所以MN 为△ABD 的中位线,所以BD ∥MN , 又MN ⊂平面MNG ,BD ⊄平面MNG , 所以BD ∥平面MNG ,又DE ,BD ⊂平面BDE ,DE ∩BD =D ,所以平面BDE ∥平面MNG .思维升华 证明平行关系的常用方法熟练掌握线线、线面、面面平行关系间的相互转化是解决线线、线面、面面平行的综合问题的关键.面面平行判定定理的推论也是证明面面平行的一种常用方法.跟踪训练3 如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形. (1)求证:AB ∥平面EFGH ;(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围.(1)证明 ∵四边形EFGH 为平行四边形, ∴EF ∥HG .∵HG ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD . 又∵EF ⊂平面ABC , 平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH . (2)解 设EF =x (0<x <4), 由(1)知EF ∥AB , ∴CF CB =EF AB =x4, 与(1)同理可得CD ∥FG , ∴FG CD =BF BC, 则FG 6=BF BC=BC -CF BC =1-x4, ∴FG =6-32x .∴四边形EFGH 的周长L =2⎝⎛⎭⎪⎫x +6-32x =12-x .又∵0<x <4,∴8<L <12,故四边形EFGH 周长的取值范围是(8,12).课时精练1.(2022·宁波模拟)下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a⊂α,b⊄α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可能相交;D中,由直线与平面平行的判定定理知b∥α,正确.2.(2022·呼和浩特模拟)设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α答案 D解析对于A,一条直线与两个平面都平行,两个平面不一定平行,故A不正确;对于B,一个平面中的一条直线平行于另一个平面,两个平面不一定平行,故B不正确;对于C,两个平面中的两条直线平行,不能保证两个平面平行,故C不正确;对于D,如图,在直线b上取点B,过点B和直线a确定一个平面γ,交平面β于a′,因为a∥β,所以a∥a′,又a′⊄α,a⊂α,所以a′∥α,又因为b∥α,b∩a′=B,b⊂β,a′⊂β,所以β∥α.3.(2022·广州模拟)如图,在三棱柱ABC-A1B1C1中,AM=2MA1,BN=2NB1,过MN作一平面分别交底面△ABC的边BC,AC于点E,F,则( )A.MF∥EBB.A1B1∥NEC.四边形MNEF为平行四边形D.四边形MNEF为梯形答案 D解析由于B,E,F三点共面,F∈平面BEF,M∉平面BEF,故MF,EB为异面直线,故A错误;由于B1,N,E三点共面,B1∈平面B1NE,A1∉平面B1NE,故A1B1,NE为异面直线,故B错误;∵在平行四边形AA1B1B中,AM=2MA1,BN=2NB1,∴AM∥BN,AM=BN,故四边形AMNB为平行四边形,∴MN∥AB.又MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC.又MN⊂平面MNEF,平面MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB,显然在△ABC中,EF≠AB,∴EF≠MN,∴四边形MNEF为梯形,故C错误,D正确.4.(2022·杭州模拟)已知P为△ABC所在平面外一点,平面α∥平面ABC,且α交线段PA,PB,PC于点A′,B′,C′,若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC等于( )A.2∶3B.2∶5C.4∶9D.4∶25答案 D解析∵平面α∥平面ABC,∴A′C′∥AC,A′B′∥AB,B′C′∥BC,∴S△A′B′C′∶S△ABC=(PA′∶PA)2,又PA′∶AA′=2∶3,∴PA′∶PA=2∶5,∴S△A′B′C′∶S△ABC=4∶25.5.(多选)(2022·济宁模拟)如图,在下列四个正方体中,A,B为正方体的两个顶点,D,E,F为所在棱的中点,则在这四个正方体中,直线AB与平面DEF平行的是( )答案AC解析对于A,AB∥DE,AB⊄平面DEF,DE⊂平面DEF,∴直线AB与平面DEF平行,故A正确;对于B,如图,取正方体所在棱的中点G,连接FG并延长,交AB延长线于H,则AB与平面DEF相交于点H,故B错误;对于C,AB∥DF,AB⊄平面DEF,DF⊂平面DEF,∴直线AB与平面DEF平行,故C正确;对于D,AB与DF所在平面的正方形对角线有交点B,DF与该对角线平行,∴直线AB与平面DEF相交,故D错误.6.(多选)如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜程度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜程度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图(3)所示时,AE ·AH 为定值 答案 AD解析 根据棱柱的特征(有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行),结合题中图形易知A 正确;由题图可知水面EFGH 的边EF 的长保持不变,但邻边的长却随倾斜程度而改变,可知B 错误;因为A 1C 1∥AC ,AC ⊂平面ABCD ,A 1C 1⊄平面ABCD ,所以A 1C 1∥平面ABCD ,当平面EFGH 不平行于平面ABCD 时,A 1C 1不平行于水面所在平面,故C 错误;当容器倾斜如题图(3)所示时,因为水的体积是不变的,所以棱柱AEH -BFG 的体积V 为定值,又V =S △AEH ·AB ,高AB 不变,所以S △AEH 也不变,即AE ·AH 为定值,故D 正确.7.考查①②两个命题,①⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α;②⎭⎪⎬⎪⎫l ∥m m ∥α ⇒l ∥α,它们都缺少同一个条件,补上这个条件就可以使其构成真命题(其中l ,m 为直线,α为平面),则此条件为__________. 答案 l ⊄α解析 ①由线面平行的判定定理知l ⊄α;②由线面平行的判定定理知l ⊄α.8.如图所示,在正四棱柱ABCD —A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件______,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案 点M 在线段FH 上(或点M 与点H 重合) 解析 连接HN ,FH ,FN (图略), 则FH ∥DD 1,HN ∥BD ,∴平面FHN ∥平面B 1BDD 1,只需M ∈FH , 则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1.9.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,AA 1的中点,求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H . 证明 如图.(1)取B 1B 的中点M ,连接HM ,MC 1,易证四边形HMC 1D 1是平行四边形, ∴HD 1∥MC 1. 又MC 1∥BF , ∴BF ∥HD 1.(2)取BD 的中点O ,连接OE ,OD 1, 则OE 綉12DC .又D 1G 綉12DC ,∴OE 綉D 1G .∴四边形OEGD 1是平行四边形, ∴EG ∥D 1O .又D 1O ⊂平面BB 1D 1D ,EG ⊄平面BB 1D 1D , ∴EG ∥平面BB 1D 1D .(3)由(1)知BF ∥HD 1,由题意易证B 1D 1∥BD .又B 1D 1,HD 1⊂平面B 1D 1H ,BF ,BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1,DB ∩BF =B , ∴平面BDF ∥平面B 1D 1H .10.如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面PAD . 证明 (1)如图,连接EC , 因为AD ∥BC ,BC =12AD ,所以BC ∥AE ,BC =AE ,所以四边形ABCE 是平行四边形, 所以O 为AC 的中点. 又因为F 是PC 的中点, 所以FO ∥AP , 因为FO ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点, 所以FH ∥PD ,因为PD ⊂平面PAD ,FH ⊄平面PAD , 所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点, 所以OH ∥AD ,因为AD ⊂平面PAD ,OH ⊄平面PAD , 所以OH ∥平面PAD .又FH ∩OH =H ,FH ,OH ⊂平面OHF , 所以平面OHF ∥平面PAD . 又因为GH ⊂平面OHF , 所以GH ∥平面PAD .11.(多选)已知α,β是两个平面,m,n是两条直线.下列命题正确的是( )A.如果m∥n,n⊂α,那么m∥αB.如果m∥α,m⊂β,α∩β=n,那么m∥nC.如果α∥β,m⊂α,那么m∥βD.如果α⊥β,α∩β=n,m⊥n,那么m⊥β答案BC解析如果m∥n,n⊂α,那么m∥α或m⊂α,故A不正确;如果m∥α,m⊂β,α∩β=n,那么m∥n,这就是线面平行推得线线平行的性质定理,故B正确;如果α∥β,m⊂α,那么m∥β,这就是利用面面平行推线面平行的性质定理,故C正确;缺少m⊂α这个条件,故D不正确.12.(2022·福州检测)如图所示,正方体ABCD-A1B1C1D1中,点E,F,G,P,Q分别为棱AB,C1D1,D1A1,D1D,C1C的中点,则下列叙述中正确的是( )A.直线BQ∥平面EFGB.直线A1B∥平面EFGC.平面APC∥平面EFGD.平面A1BQ∥平面EFG答案 B解析过点E,F,G的截面如图所示(H,I分别为AA1,BC的中点),连接A1B,BQ,AP,PC,易知BQ与平面EFG相交于点Q,故A错误;∵A1B∥HE,A1B⊄平面EFG,HE⊂平面EFG,∴A1B∥平面EFG,故B正确;AP⊂平面ADD1A1,HG⊂平面ADD1A1,延长HG与PA必相交,故C错误;易知平面A1BQ与平面EFG有交点Q,故D错误.13.(多选)(2022·临沂模拟)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将△ABE 沿AE 翻折,使得二面角B -AE -D 为直二面角,得到图2所示的四棱锥B -AECD ,点F 为线段BD 上的动点(不含端点),则在四棱锥B -AECD 中,下列说法正确的有( )图1 图2A .B ,E ,C ,F 四点不共面 B .存在点F ,使得CF ∥平面BAE C .三棱锥B -ADC 的体积为定值D .存在点E 使得直线BE 与直线CD 垂直 答案 AB解析 对于A ,假设直线BE 与直线CF 在同一平面上,所以E 在平面BCF 上, 又因为E 在折前线段BC 上,BC ∩平面BCF =C ,所以E 与C 重合,与E 异于C 矛盾, 所以直线BE 与直线CF 必不在同一平面上,即B ,E ,C ,F 四点不共面,故A 正确; 对于B ,如图,当点F 为线段BD 的中点,EC =12AD 时,直线CF ∥平面BAE ,证明如下:取AB 的中点G ,连接GE ,GF , 则EC ∥FG 且EC =FG ,所以四边形ECFG 为平行四边形, 所以FC ∥EG ,又因为EG ⊂平面BAE , 则直线CF 与平面BAE 平行,故B 正确;对于C ,在三棱锥B -ADC 中,因为点E 的移动会导致点B 到平面ACD 的距离发生变化,所以三棱锥B -ADC 的体积不是定值,故C 不正确;对于D ,过D 作DH ⊥AE 于H ,因为平面BAE ⊥平面AECD ,平面BAE ∩平面AECD =AE ,所以DH ⊥平面BAE ,所以DH ⊥BE ,若存在点E 使得直线BE 与直线CD 垂直,DH ⊂平面AECD ,且DC ⊂平面AECD ,DH ∩DC =D ,所以BE ⊥平面AECD ,所以BE ⊥AE ,与△ABE 是以B 为直角的三角形矛盾,所以不存在点E 使得直线BE 与直线CD 垂直,故D 不正确.14.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =DD 1=1,AB =3,E ,F ,G 分别是AB ,BC ,C 1D 1的中点,点P 在平面ABCD 内,若直线D 1P ∥平面EFG ,则线段D 1P 长度的最小值是________.答案72解析 如图,连接D 1A ,AC ,D 1C .因为E ,F ,G 分别为AB ,BC ,C 1D 1的中点, 所以AC ∥EF ,又EF ⊄平面ACD 1,AC ⊂平面ACD 1, 则EF ∥平面ACD 1.同理可得EG ∥平面ACD 1,又EF ∩EG =E ,EF ,EG ⊂平面EFG ,所以平面ACD 1∥平面EFG . 因为直线D 1P ∥平面EFG , 所以点P 在直线AC 上.在△ACD 1中,易得AD 1=2,AC =2,CD 1=2, 所以1AD C S △=12×2×22-⎝⎛⎭⎪⎫222=72, 故当D 1P ⊥AC 时,线段D 1P 的长度最小,最小值为7212×2=72.15.(2022·合肥市第一中学模拟)正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ,N 分别是棱BC ,CC 1的中点,动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1∥平面AMN ,则PA 1的长度范围为( )A.⎣⎢⎡⎦⎥⎤1,52B.⎣⎢⎡⎦⎥⎤324,52C.⎣⎢⎡⎦⎥⎤324,32 D.⎣⎢⎡⎦⎥⎤1,32答案 B解析 取B 1C 1的中点E ,BB 1的中点F ,连接A 1E ,A 1F ,EF , 取EF 的中点O ,连接A 1O ,如图所示,∵点M ,N 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1中棱BC ,CC 1的中点, ∴AM ∥A 1E ,MN ∥EF ,∵AM ∩MN =M ,A 1E ∩EF =E ,AM ,MN ⊂平面AMN ,A 1E ,EF ⊂平面A 1EF , ∴平面AMN ∥平面A 1EF ,∵动点P 在正方形BCC 1B 1(包括边界)内运动, 且PA 1∥平面AMN ,∴点P 的轨迹是线段EF ,∵A 1E =A 1F =12+⎝ ⎛⎭⎪⎫122=52,EF =1212+12=22,∴A 1O ⊥EF ,∴当P 与O 重合时,PA 1的长度取最小值A 1O , A 1O =⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324,当P 与E (或F )重合时,PA 1的长度取最大值A 1E 或A 1F ,A 1E =A 1F =52.∴PA 1的长度范围为⎣⎢⎡⎦⎥⎤324,52.16.如图,正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为AB 1,A 1C 1上的点,A 1N =AM .(1)求证:MN ∥平面BB 1C 1C ;(2)求MN 的最小值.(1)证明 如图,作NE ∥A 1B 1交B 1C 1于点E ,作MF ∥AB 交BB 1于点F ,连接EF , 则NE ∥MF .∵NE ∥A 1B 1,∴NEA 1B 1=C 1NA 1C 1.又MF ∥AB ,∴MF AB =B 1MAB 1,∵A 1C 1=AB 1,A 1N =AM ,∴C 1N =B 1M .∴NE A 1B 1=MF AB,又AB =A 1B 1,∴NE =MF .∴四边形MNEF 是平行四边形,∴MN ∥EF , 又MN ⊄平面BB 1C 1C ,EF ⊂平面BB 1C 1C , ∴MN ∥平面BB 1C 1C .(2)解 设B 1E =x ,∵NE ∥A 1B 1, ∴B 1E B 1C 1=A 1NA 1C 1.又∵MF ∥AB ,∴B 1F BB 1=B 1M AB 1,∵A 1N =AM ,A 1C 1=AB 1=2a ,B 1C 1=BB 1=a ,B 1E =x ,∴B 1E B 1C 1+B 1F BB 1=A 1N A 1C 1+B 1MAB 1,∴x a +B 1F a =1,∴B 1F =a -x ,从而MN =EF =B 1E 2+B 1F 2 =x 2+a -x2 =2⎝ ⎛⎭⎪⎫x -a 22+⎝ ⎛⎭⎪⎫a 22, ∴当x =a 2时,MN 的最小值为22a .。

直线与平面、平面与平面平行的判定(附答案)

直线与平面、平面与平面平行的判定(附答案)

直线与平⾯、平⾯与平⾯平⾏的判定(附答案)直线与平⾯、平⾯与平⾯平⾏的判定[学习⽬标] 1.理解直线与平⾯平⾏、平⾯与平⾯平⾏判定定理的含义.2.会⽤图形语⾔、⽂字语⾔、符号语⾔准确描述直线与平⾯平⾏、平⾯与平⾯平⾏的判定定理,并知道其地位和作⽤.3.能运⽤直线与平⾯平⾏的判定定理、平⾯与平⾯平⾏的判定定理证明⼀些空间线⾯关系的简单问题.知识点⼀直线与平⾯平⾏的判定定理思考若⼀条直线平⾏于⼀个平⾯内的⼀条直线,则这条直线和这个平⾯平⾏吗?答根据直线与平⾯平⾏的判定定理可知该结论错误. 知识点⼆平⾯与平⾯平⾏的判定定理思考如果⼀条直线与两个平⾏平⾯中的⼀个平⾏,那么这条直线与另⼀个平⾯也平⾏吗?答不⼀定.这条直线与另⼀个平⾯平⾏或在另⼀个平⾯内.题型⼀直线与平⾯平⾏的判定定理的应⽤例1 如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH ∥平⾯BCD ; (2)BD ∥平⾯EFGH .证明 (1)∵EH 为△ABD 的中位线,∴EH ∥BD .∵EH ?平⾯BCD ,BD ?平⾯BCD ,∴EH∥平⾯BCD.(2)∵BD∥EH,BD?平⾯EFGH,EH?平⾯EFGH,∴BD∥平⾯EFGH.跟踪训练1在四⾯体A-BCD中,M,N分别是△ABD和△BCD的重⼼,求证:MN∥平⾯ADC.证明如图所⽰,连接BM,BN并延长,分别交AD,DC于P,Q两点,连接PQ.因为M,N分别是△ABD和△BCD的重⼼,所以BM∶MP=BN∶NQ=2∶1.所以MN∥PQ.⼜因为MN?平⾯ADC,PQ?平⾯ADC,所以MN∥平⾯ADC.题型⼆⾯⾯平⾏判定定理的应⽤例2如图所⽰,在三棱柱ABC-A1B1C1中,点D,E分别是BC与B1C1的中点.求证:平⾯A1EB∥平⾯ADC1.证明由棱柱性质知,B1C1∥BC,B1C1=BC,⼜D,E分别为BC,B1C1的中点,所以C1E綊DB,则四边形C1DBE为平⾏四边形,因此EB∥C1D,⼜C1D?平⾯ADC1,EB?平⾯ADC1,所以EB∥平⾯ADC1.连接DE,同理,EB1綊BD,所以四边形EDBB1为平⾏四边形,则ED綊B1B.因为B1B∥A1A,B1B=A1A(棱柱的性质),所以ED綊A1A,则四边形EDAA1为平⾏四边形,所以A 1E ∥AD ,⼜A 1E ?平⾯ADC 1,AD ?平⾯ADC 1,所以A 1E ∥平⾯ADC 1.由A 1E ∥平⾯ADC 1,EB ∥平⾯ADC 1, A 1E ?平⾯A 1EB ,EB ?平⾯A 1EB ,且A 1E ∩EB =E ,所以平⾯A 1EB ∥平⾯ADC 1.跟踪训练2 已知ABCD -A 1B 1C 1D 1是棱长为3的正⽅体,点E 在AA 1上,点F 在CC 1上,点G 在BB 1上,且AE =FC 1=B 1G =1,H 是B 1C 1的中点. 求证:(1)E ,B ,F ,D 1四点共⾯; (2)平⾯A 1GH ∥平⾯BED 1F .证明 (1)∵AE =B 1G =1,∴BG =A 1E =2. ⼜∵BG ∥A 1E ,∴四边形A 1EBG 是平⾏四边形,∴A 1G ∥BE .连接FG .∵C 1F =B 1G ,C 1F ∥B 1G ,∴四边形C 1FGB 1是平⾏四边形,∴FG =C 1B 1=D 1A 1,FG ∥C 1B 1∥D 1A 1,∴四边形A 1GFD 1是平⾏四边形,∴A 1G ∥D 1F ,∴D 1F ∥EB . 故E ,B ,F ,D 1四点共⾯. (2)∵H 是B 1C 1的中点,∴B 1H =32.⼜∵B 1G =1,∴B 1G B 1H =23.⼜FC BC =23,且∠FCB =∠GB 1H =90°,∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG ,∴HG ∥FB .⼜由(1)知,A 1G ∥BE ,且HG ∩A 1G =G ,FB ∩BE =B ,∴平⾯A 1GH ∥平⾯BED 1F .题型三线⾯平⾏、⾯⾯平⾏判定定理的综合应⽤例3 在正⽅体ABCD -A 1B 1C 1D 1中,O 为底⾯ABCD 的中⼼,P 是DD 1的中点,设Q 是CC 1上的点.问:当点Q 在什么位置时,平⾯D 1BQ ∥平⾯P AO ?请说明理由.解当Q 为CC1的中点时,平⾯D 1BQ ∥平⾯P AO .理由如下:连接PQ .∵Q 为CC 1的中点,P 为DD 1的中点,∴PQ ∥DC ∥AB ,PQ =DC =AB ,∴四边形ABQP 是平⾏四边形,∴QB ∥P A . ⼜∵O 为DB 的中点,∴D 1B ∥PO . ⼜∵PO ∩P A =P ,D 1B ∩QB =B ,∴平⾯D 1BQ ∥平⾯P AO .跟踪训练3 如图,三棱柱ABC -A 1B 1C 1的底⾯为正三⾓形,侧棱A 1A ⊥底⾯ABC ,E ,F 分别是棱CC 1,BB 1上的点,EC =2FB .M 是线段AC 上的动点,当点M 在何位置时,BM ∥平⾯AEF ?请说明理由.解当M 为AC 中点时,BM ∥平⾯AEF .理由如下:⽅法⼀如图1,取AE 的中点O ,连接OF ,OM . ∵O ,M 分别是AE ,AC 的中点,∴OM ∥EC ,OM =12EC .⼜∵BF ∥CE ,EC =2FB ,∴OM ∥BF ,OM =BF ,∴四边形OMBF 为平⾏四边形,∴BM ∥OF . ⼜∵OF ?⾯AEF ,BM ?⾯AEF ,∴BM ∥平⾯AEF .⽅法⼆如图2,取EC 的中点P ,连接PM ,PB . ∵PM 是△ACE 的中位线,∴PM ∥AE .∵EC=2FB=2PE,CC1∥BB1,∴PE=BF,PE∥BF,∴四边形BPEF是平⾏四边形,∴PB∥EF.⼜∵PM?平⾯AEF,PB?平⾯AEF,∴PM∥平⾯AEF,PB∥平⾯AEF.⼜∵PM∩PB=P,∴平⾯PBM∥平⾯AEF.⼜∵BM?⾯PBM,∴BM∥平⾯AEF.⾯⾯平⾏的判定例4已知在正⽅体ABCD-A′B′C′D′中,M,N分别是A′D′,A′B′的中点,在该正⽅体中是否存在过顶点且与平⾯AMN平⾏的平⾯?若存在,试作出该平⾯,并证明你的结论;若不存在,请说明理由.分析根据题意画出正⽅体,根据平⾯AMN的特点,试着在正⽅体中找出⼏条平⾏于该平⾯的直线,然后作出判断,并证明.解如图,与平⾯AMN平⾏的平⾯有以下三种情况:下⾯以图①为例进⾏证明.如图①,取B′C′的中点E,连接BD,BE,DE,ME,B′D′,可知四边形ABEM是平⾏四边形,所以BE∥AM.⼜因为BE?平⾯BDE,AM?平⾯BDE,所以AM∥平⾯BDE.因为MN是△A′B′D′的中位线,所以MN∥B′D′.因为四边形BDD′B′是平⾏四边形,所以BD∥B′D′.所以MN∥BD.⼜因为BD?平⾯BDE,MN?平⾯BDE,所以MN∥平⾯BDE.⼜因为AM?平⾯AMN,MN?平⾯AMN,且AM∩MN=M,所以由平⾯与平⾯平⾏的判定定理可得,平⾯AMN∥平⾯BDE.1.过直线l外两点,作与l平⾏的平⾯,则这样的平⾯()A.不可能作出B.只能作出⼀个C.能作出⽆数个D.上述三种情况都存在2.经过平⾯α外两点,作与α平⾏的平⾯,则这样的平⾯可以作()A.1个或2个B.0个或1个C.1个D.0个3.若线段AB,BC,CD不共⾯,M,N,P分别为线段AB,BC,CD的中点,则直线BD与平⾯MNP的位置关系是()A.平⾏B.直线在平⾯内C.相交D.以上均有可能4.在正⽅体EFGH-E1F1G1H1中,下列四对截⾯彼此平⾏的⼀对是()A.平⾯E1FG1与平⾯EGH1B.平⾯FHG1与平⾯F1H1GC.平⾯F1H1H与平⾯FHE1D.平⾯E1HG1与平⾯EH1G5.梯形ABCD中,AB∥CD,AB?平⾯α,CD?平⾯α,则直线CD与平⾯α的位置关系是________.⼀、选择题1.下列说法正确的是()①若⼀个平⾯内有两条直线都与另⼀个平⾯平⾏,则这两个平⾯平⾏;②若⼀个平⾯内有⽆数条直线都与另⼀个平⾯平⾏,则这两个平⾯平⾏;③若⼀个平⾯内任何⼀条直线都平⾏于另⼀个平⾯,则这两个平⾯平⾏;④若⼀个平⾯内的两条相交直线都与另⼀个平⾯平⾏,则这两个平⾯平⾏.A.①③B.②④C.②③④D.③④2.平⾯α与平⾯β平⾏的条件可以是()A.α内有⽆穷多条直线与β平⾏B.直线a∥α,a∥β,且直线a不在α与β内C.直线a?α,直线b?β,且b∥α,a∥βD.α内的任何直线都与β平⾏3.六棱柱的表⾯中,互相平⾏的平⾯最多有()A.2对B.3对C.4对D.5对4.如果直线a平⾏于平⾯α,那么下列命题正确的是()A.平⾯α内有且只有⼀条直线与a平⾏B.平⾯α内有⽆数条直线与a平⾏C.平⾯α内不存在与a平⾏的直线D.平⾯α内的任意直线与直线a都平⾏5.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,⼜H,G分别为BC,CD的中点,则()A.BD∥平⾯EFG,且四边形EFGH是平⾏四边形B.EF∥平⾯BCD,且四边形EFGH是梯形C.HG∥平⾯ABD,且四边形EFGH是平⾏四边形D.EH∥平⾯ADC,且四边形EFGH是梯形6.平⾯α内有不共线的三点到平⾯β的距离相等且不为零,则α与β的位置关系为()A.平⾏B.相交C.平⾏或相交D.可能重合7.已知直线l,m,平⾯α,β,下列命题正确的是()A.l∥β,l?α?α∥βB.l∥β,m∥β,l?α,m?α?α∥βC.l∥m,l?α,m?β?α∥βD.l∥β,m∥β,l?α,m?α,l∩m=M?α∥β⼆、填空题8.三棱锥SABC中,G为△ABC的重⼼,E在棱SA上,且AE=2ES,则EG与平⾯SBC的关系为________.9.如图是正⽅体的平⾯展开图.在这个正⽅体中,①BM∥平⾯DE;②CN∥平⾯AF;③平⾯BDM∥平⾯AFN;④平⾯BDE∥平⾯NCF.以上四个命题中,正确命题的序号是________.10.右图是⼀⼏何体的平⾯展开图,其中四边形ABCD为正⽅形,E,F,G,H分别为P A,PD,PC,PB的中点,在此⼏何体中,给出下⾯五个结论:①平⾯EFGH∥平⾯ABCD;②P A∥平⾯BDG;③EF∥平⾯PBC;④FH∥平⾯BDG;⑤EF∥平⾯BDG;其中正确结论的序号是________.三、解答题11.如图,在已知四棱锥P-ABCD中,底⾯ABCD为平⾏四边形,点M,N,Q分别在P A,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平⾯MNQ∥平⾯PBC.12.如图,在正四棱柱ABCD-A1B1C1D1中,M是棱AB的中点,点N在侧⾯AA1D1D上运动,点N满⾜什么条件时,MN∥平⾯BB1D1D?当堂检测答案1.答案 D解析设直线外两点为A、B,若直线AB∥l,则过A、B可作⽆数个平⾯与l平⾏;若直线AB与l异⾯,则只能作⼀个平⾯与l平⾏;若直线AB与l相交,则过A、B没有平⾯与l 平⾏.2.答案 B解析①当经过两点的直线与平⾯α平⾏时,可作出⼀个平⾯β使β∥α.②当经过两点的直线与平⾯α相交时,由于作出的平⾯⼜⾄少有⼀个公共点,故经过两点的平⾯都与平⾯α相交,不能作出与平⾯α平⾏的平⾯.故满⾜条件的平⾯有0个或1个. 3.答案 A解析连接NP,因为N、P分别是BC、CD的中点,M是AB的中点,AB、BC、CD不共⾯,所以直线BD不在平⾯MNP上.∴直线BD与平⾯MNP平⾏.4.答案 A解析如图,∵EG∥E1G1,EG?平⾯E1FG1,E1G1?平⾯E1FG1,∴EG∥平⾯E1FG1,⼜G1F∥H1E,同理可证H1E∥平⾯E1FG1,⼜H1E∩EG=E,∴平⾯E1FG1∥平⾯EGH1.5.答案CD∥α解析因为AB∥CD,AB?平⾯α,CD?平⾯α,由线⾯平⾏的判定定理可得CD∥α.课时精练答案⼀、选择题1.答案 D解析如图,长⽅体ABCD-A1B1C1D1中,在平⾯ABCD内,在AB上任取⼀点E,过点E作EF∥AD,交CD于点F,则由线⾯平⾏的判定定理,知EF,BC都平⾏于平⾯ADD1A1,⽤同样的⽅法可以在平⾯ABCD内作出⽆数条直线都与平⾯ADD1A1平⾏,但是平⾯ABCD与平⾯ADD 1A 1不平⾏,因此①②都错;③正确,事实上,因为⼀个平⾯内任意⼀条直线都平⾏于另⼀个平⾯,所以这两个平⾯必⽆公共点(要注意“任意⼀条直线”与“⽆数条直线”的区别);④是平⾯与平⾯平⾏的判定定理,正确. 2.答案 D解析对于A 项,当α与β相交时,α内也有⽆数条直线都与交线平⾏,故A 错误;对于B 项,当a 平⾏于α与β的交线时,也能满⾜,但此时α与β相交,故B 错误;对于C 项,当a 和b 都与α与β的交线平⾏时,也能满⾜,但此时α与β相交,故C 错误;对于D 项,α内的任何直线都与β平⾏,故在⼀个平⾯内存在两条相交直线平⾏于另⼀平⾯,故D 正确. 3.答案 C解析侧⾯中有3对,对⾯相互平⾏,上下两底⾯也相互平⾏. 4.答案 B解析如图,直线B 1C 1∥平⾯ABCD ,B 1C 1∥BC ,B 1C 1∥AD ,B 1C 1∥EF (E ,F 为中点)等,平⾯ABCD 内平⾏于BC 的所有直线均与B 1C 1平⾏.但AB 与B 1C 1不平⾏.5.答案 B解析易证EF ∥平⾯BCD .由AE ∶EB =AF ∶FD ,知EF ∥BD ,且EF =15BD .⼜因为H ,G 分别为BC ,CD 的中点,所以HG ∥BD ,且HG =12BD .综上可知,EF ∥HG ,EF ≠HG ,所以四边形EFGH 是梯形,且EF ∥平⾯BCD . 6.答案 C解析若三点分布于平⾯β的同侧,则α与β平⾏,若三点分布于平⾯β的两侧,则α与β相交. 7.答案 D解析如图所⽰,在长⽅体ABCDA 1B 1C 1D 1中,AB ∥CD ,则AB ∥平⾯DC 1,AB ?平⾯AC ,但是平⾯AC 与平⾯DC 1不平⾏,所以A 错误;取BB 1的中点E ,CC 1的中点F ,则可证EF ∥平⾯AC ,B1C1∥平⾯AC.EF?平⾯BC1,B1C1?平⾯BC1,但是平⾯AC与平⾯BC1不平⾏,所以B 错误;可证AD∥B1C1,AD?平⾯AC,B1C1?平⾯BC1,⼜平⾯AC与平⾯BC1不平⾏,所以C错误;很明显D是⾯⾯平⾏的判定定理,所以D正确.⼆、填空题8.答案平⾏解析如图,延长AG交BC于F,连接SF,则由G为△ABC的重⼼知AG∶GF=2,⼜AE∶ES=2,∴EG∥SF,⼜SF?平⾯SBC,EG?平⾯SBC,∴EG∥平⾯SBC.9.答案①②③④解析以ABCD为下底⾯还原正⽅体,如图:则易判定四个命题都是正确的.10.答案①②③④解析把图形还原为⼀个四棱锥,然后根据线⾯、⾯⾯平⾏的判定定理判断即可.三、解答题11.证明因为PM∶MA=BN∶ND=PQ∶QD,所以MQ∥AD,NQ∥BP.因为BP?平⾯PBC,NQ?平⾯PBC,所以NQ∥平⾯PBC.⼜因为底⾯ABCD为平⾏四边形,所以BC∥AD,所以MQ∥BC.因为BC?平⾯PBC,MQ?平⾯PBC,所以MQ∥平⾯PBC.⼜因为MQ∩NQ=Q,所以根据平⾯与平⾯平⾏的判定定理,得平⾯MNQ∥平⾯PBC.12.解如图,在正四棱柱ABCD-A1B1C1D1中,分别取棱A1B1,A1D1,AD的中点E,F,G,连接ME,EF,FG,GM.因为M是AB的中点,所以ME∥AA1∥FG,且ME=AA1=FG.所以四边形MEFG是平⾏四边形.因为ME∥BB1,BB1?平⾯BB1D1D,ME?平⾯BB1D1D,所以ME∥平⾯BB1D1D.在△A1B1D1中,因为EF∥B1D1,B1D1?平⾯BB1D1D,EF?平⾯BB1D1D,所以EF∥平⾯BB1D1D.⼜因为ME∩EF=E,且ME?平⾯MEFG,EF?平⾯MEFG,所以平⾯MEFG∥平⾯BB1D1D.在FG上任取⼀点N,连接MN,所以MN?平⾯MEFG.所以MN与平⾯BB1D1D⽆公共点.所以MN∥平⾯BB1D1D.总之,当点N在平⾯AA1D1D内的直线FG上(任意位置)时,都有MN∥BB1D1D,即当点N在矩形AA1D1D中过A1D1与AD的中点的直线上运动时,都有MN∥平⾯BB1D1D.。

线面、面面平行的判定与性质随堂练习(含答案)

线面、面面平行的判定与性质随堂练习(含答案)

线面、面面平行的判定与性质基础巩固强化1.(文)(2011·北京海淀期中)已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误..的是()A.若m∥β,则m∥l B.若m∥l,则m∥βC.若m⊥β,则m⊥l D.若m⊥l,则m⊥β[答案] D[解析]A符合直线与平面平行的性质定理;B符合直线与平面平行的判定定理;C符合直线与平面垂直的性质;对于D,只有α⊥β时,才能成立.(理)(2011·泰安模拟)设m、n表示不同直线,α、β表示不同平面,则下列命题中正确的是()A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β[答案] D[解析]A选项不正确,n还有可能在平面α内,B选项不正确,平面α还有可能与平面β相交,C选项不正确,n也有可能在平面β内,选项D正确.2.(文)(2011·邯郸期末)设m,n为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是()A.若m⊂α,n⊂α,且m∥β,n∥β,则α∥βB.若m∥α,m∥n,则n∥αC.若m∥α,n∥α,则m∥nD.若m,n为两条异面直线,且m∥α,n∥α,m∥β,n∥β,则α∥β[答案] D[解析]选项A中的直线m,n可能不相交;选项B中直线n可能在平面α内;选项C中直线m,n的位置可能是平行、相交或异面.(理)(2011·浙江省温州市测试)已知m,n,l为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是()A.α∥β,m⊂α,n⊂β⇒m∥nB.l⊥β,α⊥β⇒l∥αC.m⊥α,m⊥n⇒n∥αD.α∥β,l⊥α⇒l⊥β[答案] D[解析]对于选项A,m,n平行或异面;对于选项B,可能出现l⊂α这种情形;对于选项C,可能出现n⊂α这种情形.故选D.3.(2011·宁波模拟)已知直线l、m,平面α、β,则下列命题中的假命题是()A.若α∥β,l⊂α,则l∥βB.若α∥β,l⊥α,则l⊥βC.若l∥α,m⊂α,则l∥mD.若α⊥β,α∩β=l,m⊂α,m⊥l,则m⊥β[答案] C[解析]对于选项C,直线l与m可能构成异面直线,故选C.4.(2011·广东揭阳模拟)若a 不平行于平面α,且a ⊄α,则下列结论成立的是( )A .α内的所有直线与a 异面B .α内与a 平行的直线不存在C .α内存在唯一的直线与a 平行D .α内的直线与a 都相交[答案] B[解析] 由条件知a 与α相交,故在平面α内的直线与a 相交或异面,不存在与a 平行的直线.5.(2012·石家庄二模)三棱锥的三组相对的棱(相对的棱是指三棱锥中成异面直线的一组棱)分别相等,且长分别为2、m 、n ,其中m 2+n 2=6,则该三棱锥体积的最大值为( )A.12B.8327C.33D.23[答案] D[解析] 令m =n ,由m 2+n 2=6得m =n =3,取AB 的中点E ,则BE =22,PB =3,∴PE =102,CE =102,∴EF =2,∴V P -ABC =13S △PEC ·AB =13×(12×2×2)×2=23,∵23>12,∴23>33,23>8327,故选D.6.(2011·苏州模拟)下列命题中,是假命题的是()A.三角形的两条边平行于一个平面,则第三边也平行于这个平面B.平面α∥平面β,a⊂α,过β内的一点B有唯一的一条直线b,使b∥aC.α∥β,γ∥δ,α、β与γ、δ的交线分别为a、b和c、d,则a ∥b∥c∥dD.一条直线与两个平面成等角是这两个平面平行的充要条件[答案] D[解析]三角形的任意两边必相交,故三角形所在的平面与这个平面平行,从而第三边也与这个平面平行,∴A真;假设在β内经过B点有两条直线b、c都与a平行,则b∥c,与b、c都过B点矛盾,故B真;∵γ∥δ,α∩γ=a,α∩δ=b,∴a∥b,同理c∥d;又α∥β,γ∩α=a,γ∩β=c,∴a∥c,∴a∥b∥c∥d,故C真;正方体ABCD-A1B1C1D1中,AC与平面AA1D1D和平面CC1D1D所成角相等,但平面AA1D1D∩平面CC1D1D=DD1,故D假.7.(2012·北京东城区综合练习)在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;②若平面α∥平面β,则平面α内任意一条直线m∥平面β;③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β;④若平面α内的三点A、B、C到平面β的距离相等,则α∥β.其中正确命题的序号为________.[答案]②[解析]①中,互相平行的两条直线的射影可能重合,①错误;②正确;③中,平面α与平面β不一定垂直,所以直线n就不一定垂直于平面β,③错误;④中,若平面α内的三点A、B、C在一条直线上,则平面α与平面β可以相交,④错误.8.(2011·福建文,15)如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF 的长度等于________.[答案] 2[解析]∵EF∥平面AB1C,平面ABCD经过直线EF与平面AB1C相交于AC,∴EF∥AC,∵E为AD的中点,∴F为CD的中点,∴EF=12AC=12×22= 2.9.(2011·郑州一检)已知两条不重合的直线m、n,两个不重合的平面α、β,有下列命题:①若m∥n,n⊂α,则m∥α;②若n⊥α,m⊥β,且n∥m,则α∥β;③若m⊂α,n⊂α,m∥β,n∥β,则α∥β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.其中正确命题的序号是________.[答案]②④[解析]对于①,直线m可能位于平面α内,此时不能得出m∥α,因此①不正确;对于②,由n ⊥α,m ∥n ,得m ⊥α,又m ⊥β,所以α∥β,因此②正确;对于③,直线m ,n 可能是两条平行直线,此时不一定能得出α∥β,因此③不正确;对于④,由“如果两个平面相互垂直,则在一个平面内垂直于它们交线的直线必垂直于另一个平面”可知,④正确.综上所述,其中正确命题的序号是②④.10.(文)(2012·辽宁文,18)如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =2,AA ′=1,点M 、N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)求三棱锥A ′-MNC 的体积(锥体体积公式V =13Sh ,其中S为底面面积,h 为高).[分析] (1)欲证MN ∥平面A ′ACC ′,须在平面A ′ACC ′内找到一条直线与MN 平行,由于M 、N 分别为A ′B ,B ′C ′的中点,B ′C ′与平面A ′ACC ′相交,又M 为直三棱柱侧面ABB ′A ′的对角线A′B的中点,从而M为AB′的中点,故MN为△AB′C′的中位线,得证.(2)欲求三棱锥A′-MNC的体积,注意到直三棱柱的特殊性和点M、N为中点,可考虑哪一个面作为底面有利于问题的解决,视A′MC为底面,则S△A′MC=12S△A′BC,∴V A′-MNC=12V N-A′BC,又V N-A′BC=V A′-NBC,易知A′N为三棱锥A′-NBC的高,于是易得待求体积.[解析](1)连结AB′,AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,所以M为AB′中点.又因为N为B′C′的中点,所以MN∥AC′.又MN⊄平面A′ACC′,AC ′⊂平面A ′ACC ′,因此MN ∥平面A ′ACC ′.(2)连结BN ,由题意A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′,所以A ′N ⊥平面NBC .又A ′N =12B ′C ′=1,故V A ′-MNC =V N -A ′MC =12V N -A ′BC =12V A ′-NBC =16.[点评] 本题考查了线面平行的证明,锥体的体积两方面的问题,对于(1)还可以利用面面平行(平面MPN ∥平面A ′ACC ′,其中P 为A ′B ′的中点)来证明;(2)还可利用割补法求解.(理)(2012·浙江文,20)如图,在侧棱垂直底面的四棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,AD ⊥AB ,AB =2,AD =2,BC =4,AA 1=2,E 是DD 1的中点,F 是平面B 1C 1E 与直线AA 1的交点.(1)证明:①EF ∥A 1D 1;②BA 1⊥平面B 1C 1EF ;(2)求BC1与平面B1C1EF所成角的正弦值.[分析](1)①欲证EF∥A1D1,∵B1C1∥A1D1,∴只需证EF∥B1C1,故由线面平行的性质定理“线面平行⇒线线平行”可推证.②要证BA1⊥平面B1C1EF,需证BA1⊥B1C1,BA1⊥B1F,要证BA1⊥B1C1,只需证B1C1⊥平面AA1B1B,要证BA1⊥B1F,通过在侧面正方形AA1B1B中计算证明即可.(2)设BA1与B1F交于点H,连结C1H,则∠BC1H就是所求的角.[解析](1)①∵C1B1∥A1D1,C1B1⊄平面ADD1A1,∴C1B1∥平面A1D1DA.又∵平面B1C1EF∩平面A1D1DA=EF,∴C1B1∥EF,∴A1D1∥EF.②∵BB1⊥平面A1B1C1D1,∴BB1⊥B1C1,又∵B1C1⊥B1A1,∴B1C1⊥平面ABB1A1.∴B1C1⊥BA1.在矩形ABB1A1中,F是AA1的中点,tan∠A1B1F=tan∠AA1B=22,即∠A1B1F=∠AA1B,∴BA1⊥B1F.又∵BA1⊥B1C1,所以BA1⊥平面B1C1EF.(2)设BA1与B1F交点为H,连结C1H.由(1)知BA 1⊥平面B 1C 1EF ,所以∠BC 1H 是BC 1与平面B 1C 1EF 所成的角.在矩形AA 1B 1B 中,由AB =2,AA 1=2,得BH =46.在Rt △BHC 1中,由BC 1=25,BH =46得, sin ∠BC 1H =BH BC 1=3015. 所以BC 1与平面B 1C 1EF 所成角的正弦值是3015.[点评] 本题主要考查空间点、线、面的位置关系,线面角等基础知识,同时考查空间想象能力和推理论证能力.能力拓展提升11.(文)(2011·北京模拟)给出下列关于互不相同的直线l 、m 、n 和平面α、β、γ的三个命题:①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β;②若α∥β,l ⊂α,m ⊂β,则l ∥m ;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数为()A.3B.2C.1D.0[答案] C[解析]①设α∩β=a,当l,m都与a相交且交点不重合时,满足①的条件,故①假;②中分别在两个平行平面内的两条直线可能平行,也可能异面,故②假;由三棱柱知③真;故选C.(理)如图,在三棱柱ABC-A′B′C′中,点E、F、H、K分别为AC′、CB′、A′B、B′C′的中点,G为△ABC的重心.从K、H、G、B′中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P为()A.K B.HC.G D.B′[答案] C[解析]假如平面PEF与侧棱BB′平行则和三条侧棱都平行,不满足题意,而FK ∥BB ′,排除A ;假如P 为B ′点,则平面PEF 即平面A ′B ′C ,此平面只与一条侧棱AB 平行,排除D.若P 为H 点,则HF 为△BA ′C ′的中位线,∴HF ∥A ′C ′;EF 为△ABC ′的中位线,∴EF ∥AB ,HE 为△AB ′C ′的中位线,∴HE ∥B ′C ′,显然不合题意,排除B.[点评] 此题中,∵EF 是△ABC ′的中位线,∴EF ∥AB ∥A ′B ′,故点P 只要使得平面PEF 与其他各棱均不平行即可,故选G 点.12.(文)(2012·江西文,7)若一个几何体的三视图如图所示,则此几何体的体积为( )A.112B .5 C.92D .4[答案] D[解析] 由三视图知该几何体为直六棱柱.其底面积为S =2×[12×(1+3)×1]=4,高为1.所以体积V =4.(理)(2012·四川文,6)下列命题正确的是( )A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行[答案] C[解析]本题考查了线面角,面面垂直,线面平行,面面平行等位置关系的判定与性质,对于A选项,两条直线也可相交,B选项若三点在同一条直线上,平面可相交.D选项这两个平面可相交(可联系墙角),而C项可利用线面平行的性质定理,再运用线面平行的判定与性质可得.本题需要我们熟练掌握各种位置关系的判定与性质.13.(2012·南昌二模)若P是两条异面直线l、m外的任意一点,则下列命题中假命题的序号是________.①过点P有且仅有一条直线与l,m都平行;②过点P有且仅有一条直线与l,m都垂直;③过点P有且仅有一条直线与l,m都相交;④过点P有且仅有一条直线与l,m都异面.[答案]①③④[解析]①是假命题,因为过点P不存在一条直线与l,m都平行;②是真命题,因为过点P有且仅有一条直线与l,m都垂直,这条直线与两异面直线的公垂线平行或重合;③是假命题,因为过点P也可能没有一条直线与l ,m 都相交;④是假命题,因为过点P 可以作出无数条直线与l ,m 都异面,这无数条直线在过点P 且与l ,m 都平行的平面上.[点评] 第③个命题易判断错误.当点P 与l 确定的平面α∥m 时,或点P 与m 确定的平面β∥l 时,过点P 与l 、m 都相交的直线不存在.14.(2012·佛山一模)过两平行平面α、β外的一点P 作两条直线,分别交α于A 、C 两点,交β于B 、D 两点,若P A =6,AC =9,PB =8,则BD =________.[答案] 12[解析] 由面面平行的性质定理可知AC ∥BD ,又由平行线分线段成比例定理可得P A PB =AC BD ,即68=9BD ,得BD =12.15.(文)如图,在三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,AB ⊥BB 1,AC =BC =BB 1=2,D 为AB 的中点,且CD ⊥DA 1.(1)求证:BB 1⊥平面ABC ;(2)求证:BC 1∥平面CA 1D ;(3)求三棱锥B 1-A 1DC 的体积.[解析] (1)∵AC =BC ,D 为AB 的中点,∴CD ⊥AB ,又∵CD ⊥DA 1,∴CD ⊥平面ABB 1A 1,∴CD ⊥BB 1,又BB 1⊥AB ,AB ∩CD =D ,∴BB 1⊥平面ABC .(2)连接BC 1,连接AC 1交CA 1于E ,连接DE ,易知E 是AC 1的中点,又D 是AB 的中点,则DE ∥BC 1,又DE ⊂平面CA 1D ,BC 1⊄平面CA 1D ,∴BC 1∥平面CA 1D .(3)由(1)知CD ⊥平面AA 1B 1B ,故CD 是三棱锥C -A 1B 1D 的高,在Rt △ACB 中,AC =BC =2,∴AB =22,CD =2,又BB 1=2,∴V B 1-A 1DC =V C -A 1B 1D =13S △A 1B 1D ·CD=16A1B1×B1B×CD=16×22×2×2=43.(理)如图,PO⊥平面ABCD,点O在AB上,EA∥PO,四边形ABCD为直角梯形,BC⊥AB,BC=CD=BO=PO,EA=AO=12CD.(1)求证:BC⊥平面ABPE;(2)直线PE上是否存在点M,使DM∥平面PBC,若存在,求出点M;若不存在,说明理由.[解析](1)∵PO⊥平面ABCD,BC⊂平面ABCD,∴BC⊥PO,又BC⊥AB,AB∩PO=O,AB⊂平面ABP,PO⊂平面ABP,∴BC ⊥平面ABP,又EA∥PO,AO⊂平面ABP,∴EA⊂平面ABP,∴BC⊥平面ABPE.(2)点E即为所求的点,即点M与点E重合.取PO的中点N,连结EN并延长交PB于F,∵EA=1,PO=2,∴NO=1,又EA与PO都与平面ABCD垂直,∴EF∥AB,∴F为PB的中点,∴NF=12OB=1,∴EF=2,又CD=2,EF∥AB∥CD,∴四边形DCFE为平行四边形,∴DE∥CF,∵CF⊂平面PBC,DE⊄平面PBC,∴DE∥平面PBC.∴当M与E重合时,DM∥平面PBC.16.(2012·北京海淀区二模)在正方体ABCD-A′B′C′D′中,棱AB、BB′、B′C′、C′D′的中点分别为E、F、G、H,如图所示.(1)求证:AD′∥平面EFG;(2)求证:A′C⊥平面EFG;(3)判断点A、D′、H、F是否共面,并说明理由.[解析](1)证明:连结BC′.在正方体ABCD-A′B′C′D′中,AB=C′D′,AB∥C′D′. 所以四边形ABC′D′是平行四边形.所以AD′∥BC′.因为F、G分别是BB′、B′C′的中点,所以FG∥BC′,所以FG∥AD′.因为EF、AD′是异面直线,所以AD′⊄平面EFG.因为FG⊂平面EFG,所以AD′∥平面EFG.(2)证明:连结B′C.在正方体ABCD-A′B′C′D′中,A′B′⊥平面BCC′B′,BC′⊂平面BCC′B′,所以A′B′⊥BC′.在正方体BCC′B′中,B′C⊥BC′,因为A′B′⊂平面A′B′C,B′C′⊂平面A′B′C,A′B′∩B′C′=B′,所以BC′⊥平面A′B′C.因为A′C⊂平面A′B′C,所以BC′⊥A′C.因为FG∥BC′,所以A′C⊥FG.同理可证:A′C⊥EF.因为EF⊂平面EFG,FG⊂平面EFG,EF∩FG=F,所以A′C⊥平面EFG.(3)点A、D′、H、F不共面.理由如下:假设A、D′、H、F共面.连结C′F、AF、HF.由(1)知,AD′∥BC′,因为BC′⊂平面BCC′B′,AD′⊄平面BCC′B′.所以AD′∥平面BCC′B′.因为C′∈D′H,所以平面AD′HF∩平面BCC′B′=C′F.因为AD′⊂平面AD′HF,所以AD′∥C′F.所以C′F∥BC′,而C′F与BC′相交,矛盾.所以A,D′、H、F点不共面.1.设m、l是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m[答案] B[解析]两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面,故选B.2.如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,P A =AC=a,PB=PD=2a,点E在PD上,且PE:ED=2:1.(1)证明:P A⊥平面ABCD;(2)在棱PC上是否存在一点F,使BF∥平面AEC?如果存在,请求出此时PF FC的值;如果不存在,请说明理由.[解析](1)因为底面ABCD是菱形,∠ABC=60°,所以AB=AD =AC=a.在△P AB中,由P A2+AB2=2a2=PB2,知P A⊥AB.同理,P A⊥AD,所以P A⊥平面ABCD.(2)连结BD,则平面PBD与平面AEC的交线为EO,在△PBD中作BM∥OE交PD于M,则BM∥平面AEC,在△PCE中过M作MF∥CE交PC于F,则MF∥平面AEC,故平面BFM∥平面AEC,所以BF ∥平面AEC,F点即为所求的满足条件的点.由条件O为BD的中点可知,E为MD的中点.又由PE:ED=2:1,∴M为PE的中点,又FM∥CE,故F是PC的中点,∴此时PF:FC=1.3.如图,正方形ABCD 和四边形ACEF 所在平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE .[证明] (1)设AC ∩BD =G ,在正方形ABCD 中,AB =2,∴AC =2,又∵EF =1,AG =12AC =1,又∵EF ∥AG ,∴四边形AGEF 为平行四边形,∴AF ∥EG ,∵EG ⊂平面BDE ,AF ⊄平面BDE ,∴AF ∥平面BDE .(2)连结FG.∵EF∥CG,EF=CG=1且CE=1,∴四边形CEFG为菱形,∴EG⊥CF.∵四边形ABCD为正方形,∴AC⊥BD.又∵平面ACEF⊥平面ABCD且平面ACEF∩平面ABCD=AC,∴BD⊥平面ACEF,∴CF⊥BD.又∵BD∩EG=G,∴CF⊥平面BDE.。

直线与平面、平面与平面平行的判定(附答案)

直线与平面、平面与平面平行的判定(附答案)

直线与平面、平面与平面平行的判定[学习目标] 1.理解直线与平面平行、平面与平面平行判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行、平面与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理、平面与平面平行的判定定理证明一些空间线面关系的简单问题.知识点一直线与平面平行的判定定理语言叙述符号表示图形表示平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行⎭⎪⎬⎪⎫a⊄αb⊂αa∥b⇒a∥α思考若一条直线平行于一个平面内的一条直线,则这条直线和这个平面平行吗答根据直线与平面平行的判定定理可知该结论错误.知识点二平面与平面平行的判定定理语言叙述符号表示图形表示一个平面内的两条相交直线与另一个平面平行,则这两个平面平行⎭⎪⎬⎪⎫a⊂α,b⊂αa∩b=Aa∥β,b∥β⇒α∥β思考如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面也平行吗答不一定.这条直线与另一个平面平行或在另一个平面内.题型一直线与平面平行的判定定理的应用例1 如图,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:(1)EH∥平面BCD;(2)BD∥平面EFGH.证明(1)∵EH为△ABD的中位线,∴EH∥BD.∵EH⊄平面BCD,BD⊂平面BCD,∴EH∥平面BCD.(2)∵BD∥EH,BD⊄平面EFGH,EH⊂平面EFGH,∴BD∥平面EFGH.跟踪训练1 在四面体A-BCD中,M,N分别是△ABD和△BCD的重心,求证:MN∥平面ADC.证明如图所示,连接BM,BN并延长,分别交AD,DC于P,Q两点,连接PQ.因为M,N分别是△ABD和△BCD的重心,所以BM∶MP=BN∶NQ=2∶1.所以MN∥PQ.又因为MN⊄平面ADC,PQ⊂平面ADC,所以MN∥平面ADC.题型二面面平行判定定理的应用例2 如图所示,在三棱柱ABC-A1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB∥平面ADC1.证明由棱柱性质知,B1C1∥BC,B1C1=BC,又D,E分别为BC,B1C1的中点,所以C1E綊DB,则四边形C1DBE为平行四边形,因此EB∥C1D,又C1D⊂平面ADC1,EB⊄平面ADC1,所以EB∥平面ADC1.连接DE,同理,EB1綊BD,所以四边形EDBB1为平行四边形,则ED綊B1B.因为B1B∥A1A,B1B=A1A(棱柱的性质),所以ED綊A1A,则四边形EDAA1为平行四边形,所以A1E∥AD,又A1E⊄平面ADC1,AD⊂平面ADC1,所以A1E∥平面ADC1.由A1E∥平面ADC1,EB∥平面ADC1,A1E⊂平面A1EB,EB⊂平面A1EB,且A1E∩EB=E,所以平面A1EB∥平面ADC1.跟踪训练2 已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,点G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.求证:(1)E,B,F,D1四点共面;(2)平面A1GH∥平面BED1F.证明(1)∵AE=B1G=1,∴BG=A1E=2.又∵BG∥A1E,∴四边形A1EBG是平行四边形,∴A1G∥BE.连接FG.∵C1F=B1G,C1F∥B1G,∴四边形C1FGB1是平行四边形,∴FG=C1B1=D1A1,FG∥C1B1∥D1A1,∴四边形A1GFD1是平行四边形,∴A1G∥D1F,∴D1F∥EB.故E,B,F,D1四点共面.(2)∵H是B1C1的中点,∴B1H=32 .又∵B 1G =1,∴B 1G B 1H =23.又FC BC =23,且∠FCB =∠GB 1H =90°, ∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG ,∴HG ∥FB .又由(1)知,A 1G ∥BE ,且HG ∩A 1G =G ,FB ∩BE =B , ∴平面A 1GH ∥平面BED 1F .题型三 线面平行、面面平行判定定理的综合应用例3 在正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点.问:当点Q 在什么位置时,平面D 1BQ ∥平面PAO 请说明理由.解 当Q 为CC 1的中点时,平面D 1BQ ∥平面PAO .理由如下:连接PQ .∵Q 为CC 1的中点,P 为DD 1的中点, ∴PQ ∥DC ∥AB ,PQ =DC =AB ,∴四边形ABQP 是平行四边形,∴QB ∥PA .又∵O为DB的中点,∴D1B∥PO.又∵PO∩PA=P,D1B∩QB=B,∴平面D1BQ∥平面PAO.跟踪训练3 如图,三棱柱ABC-A1B1C1的底面为正三角形,侧棱A1A⊥底面ABC,E,F分别是棱CC1,BB1上的点,EC=是线段AC上的动点,当点M在何位置时,BM∥平面AEF请说明理由.解当M为AC中点时,BM∥平面AEF.理由如下:方法一如图1,取AE的中点O,连接OF,OM.∵O,M分别是AE,AC的中点,∴OM∥EC,OM=12 EC.又∵BF∥CE,EC=2FB,∴OM∥BF,OM=BF,∴四边形OMBF为平行四边形,∴BM∥OF.又∵OF⊂面AEF,BM⊄面AEF,∴BM∥平面AEF.方法二如图2,取EC的中点P,连接PM,PB.∵PM是△ACE的中位线,∴PM∥AE.∵EC=2FB=2PE,CC1∥BB1,∴PE=BF,PE∥BF,∴四边形BPEF是平行四边形,∴PB∥EF.又∵PM⊄平面AEF,PB⊄平面AEF,∴PM∥平面AEF,PB∥平面AEF.又∵PM∩PB=P,∴平面PBM∥平面AEF.又∵BM⊂面PBM,∴BM∥平面AEF.面面平行的判定例4 已知在正方体ABCD-A′B′C′D′中,M,N分别是A′D′,A′B′的中点,在该正方体中是否存在过顶点且与平面AMN平行的平面若存在,试作出该平面,并证明你的结论;若不存在,请说明理由.分析根据题意画出正方体,根据平面AMN的特点,试着在正方体中找出几条平行于该平面的直线,然后作出判断,并证明.解如图,与平面AMN平行的平面有以下三种情况:下面以图①为例进行证明.如图①,取B′C′的中点E,连接BD,BE,DE,ME,B′D′,可知四边形ABEM是平行四边形,所以BE∥AM.又因为BE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.因为MN是△A′B′D′的中位线,所以MN∥B′D′.因为四边形BDD′B′是平行四边形,所以BD∥B′D′.所以MN∥BD.又因为BD⊂平面BDE,MN⊄平面BDE,所以MN∥平面BDE.又因为AM⊂平面AMN,MN⊂平面AMN,且AM∩MN=M,所以由平面与平面平行的判定定理可得,平面AMN∥平面BDE.1.过直线l外两点,作与l平行的平面,则这样的平面( )A.不可能作出B.只能作出一个C.能作出无数个D.上述三种情况都存在2.经过平面α外两点,作与α平行的平面,则这样的平面可以作( )个或2个个或1个个个3.若线段AB,BC,CD不共面,M,N,P分别为线段AB,BC,CD的中点,则直线BD与平面MNP的位置关系是( )A.平行B.直线在平面内C.相交D.以上均有可能4.在正方体EFGH-E1F1G1H1中,下列四对截面彼此平行的一对是( )A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G5.梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α的位置关系是________.一、选择题1.下列说法正确的是( )①若一个平面内有两条直线都与另一个平面平行,则这两个平面平行;②若一个平面内有无数条直线都与另一个平面平行,则这两个平面平行;③若一个平面内任何一条直线都平行于另一个平面,则这两个平面平行;④若一个平面内的两条相交直线都与另一个平面平行,则这两个平面平行.A.①③B.②④C.②③④D.③④2.平面α与平面β平行的条件可以是( )A.α内有无穷多条直线与β平行B.直线a∥α,a∥β,且直线a不在α与β内C.直线a⊂α,直线b⊂β,且b∥α,a∥βD.α内的任何直线都与β平行3.六棱柱的表面中,互相平行的平面最多有( )对对对对4.如果直线a平行于平面α,那么下列命题正确的是( )A.平面α内有且只有一条直线与a平行B.平面α内有无数条直线与a平行C.平面α内不存在与a平行的直线D.平面α内的任意直线与直线a都平行5.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则( )∥平面EFG,且四边形EFGH是平行四边形∥平面BCD,且四边形EFGH是梯形∥平面ABD,且四边形EFGH是平行四边形∥平面ADC,且四边形EFGH是梯形6.平面α内有不共线的三点到平面β的距离相等且不为零,则α与β的位置关系为( )A.平行B.相交C.平行或相交D.可能重合7.已知直线l,m,平面α,β,下列命题正确的是( )∥β,l⊂α⇒α∥β∥β,m∥β,l⊂α,m ⊂α⇒α∥β∥m,l⊂α,m⊂β⇒α∥β∥β,m∥β,l⊂α,m⊂α,l∩m=M⇒α∥β二、填空题8.三棱锥SABC中,G为△ABC的重心,E在棱SA上,且AE=2ES,则EG与平面SBC的关系为________.9.如图是正方体的平面展开图.在这个正方体中,①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.以上四个命题中,正确命题的序号是________.10.右图是一几何体的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点,在此几何体中,给出下面五个结论:①平面EFGH∥平面ABCD;②PA∥平面BDG;③EF∥平面PBC;④FH∥平面BDG;⑤EF∥平面BDG;其中正确结论的序号是________.三、解答题11.如图,在已知四棱锥P-ABCD中,底面ABCD为平行四边形,点M,N,Q分别在PA,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.12.如图,在正四棱柱ABCD-A1B1C1D1中,M是棱AB的中点,点N在侧面AA1D1D上运动,点N满足什么条件时,MN∥平面BB1D1D当堂检测答案1.答案D解析设直线外两点为A、B,若直线AB∥l,则过A、B可作无数个平面与l平行;若直线AB与l异面,则只能作一个平面与l平行;若直线AB与l相交,则过A、B没有平面与l平行.2.答案B解析①当经过两点的直线与平面α平行时,可作出一个平面β使β∥α.②当经过两点的直线与平面α相交时,由于作出的平面又至少有一个公共点,故经过两点的平面都与平面α相交,不能作出与平面α平行的平面.故满足条件的平面有0个或1个.3.答案A解析连接NP,因为N、P分别是BC、CD的中点,M是AB的中点,AB、BC、CD不共面,所以直线BD不在平面MNP上.∴直线BD与平面MNP平行.4.答案A解析如图,∵EG∥E1G1,EG⊄平面E1FG1,E1G1⊂平面E1FG1,∴EG∥平面E1FG1,又G1F∥H1E,同理可证H1E∥平面E1FG1,又H1E∩EG=E,∴平面E1FG1∥平面EGH1.5.答案CD∥α解析因为AB∥CD,AB⊂平面α,CD⊄平面α,由线面平行的判定定理可得CD∥α.课时精练答案一、选择题1.答案D解析如图,长方体ABCD-A1B1C1D1中,在平面ABCD内,在AB上任取一点E,过点E作EF∥AD,交CD于点F,则由线面平行的判定定理,知EF,BC都平行于平面ADD1A1,用同样的方法可以在平面ABCD内作出无数条直线都与平面ADD1A1平行,但是平面ABCD与平面ADD1A1不平行,因此①②都错;③正确,事实上,因为一个平面内任意一条直线都平行于另一个平面,所以这两个平面必无公共点(要注意“任意一条直线”与“无数条直线”的区别);④是平面与平面平行的判定定理,正确.2.答案D解析 对于A 项,当α与β相交时,α内也有无数条直线都与交线平行,故A 错误;对于B 项,当a 平行于α与β的交线时,也能满足,但此时α与β相交,故B 错误;对于C 项,当a 和b 都与α与β的交线平行时,也能满足,但此时α与β相交,故C 错误;对于D 项,α内的任何直线都与β平行,故在一个平面内存在两条相交直线平行于另一平面,故D 正确. 3.答案 C解析 侧面中有3对,对面相互平行,上下两底面也相互平行. 4.答案 B解析 如图,直线B 1C 1∥平面ABCD ,B 1C 1∥BC ,B 1C 1∥AD ,B 1C 1∥EF (E ,F 为中点)等,平面ABCD 内平行于BC 的所有直线均与B 1C 1平行.但AB与B 1C 1不平行.5.答案 B解析 易证EF ∥平面BCD .由AE ∶EB =AF ∶FD ,知EF ∥BD ,且EF =15BD .又因为H ,G 分别为BC ,CD 的中点,所以HG∥BD,且HG=12BD.综上可知,EF∥HG,EF≠HG,所以四边形EFGH是梯形,且EF∥平面BCD.6.答案C解析若三点分布于平面β的同侧,则α与β平行,若三点分布于平面β的两侧,则α与β相交.7.答案D解析如图所示,在长方体ABCDA1B1C1D1中,AB∥CD,则AB∥平面DC1,AB⊂平面AC,但是平面AC与平面DC1不平行,所以A错误;取BB1的中点E,CC1的中点F,则可证EF∥平面AC,B1C1∥平面⊂平面BC1,B1C1⊂平面BC1,但是平面AC与平面BC1不平行,所以B错误;可证AD∥B1C1,AD⊂平面AC,B1C1⊂平面BC1,又平面AC与平面BC1不平行,所以C错误;很明显D是面面平行的判定定理,所以D正确.二、填空题8.答案平行解析如图,延长AG交BC于F,连接SF,则由G为△ABC的重心知AG∶GF=2,又AE∶ES=2,∴EG∥SF,又SF⊂平面SBC,EG⊄平面SBC,∴EG∥平面SBC.9.答案①②③④解析以ABCD为下底面还原正方体,如图:则易判定四个命题都是正确的.10.答案①②③④解析把图形还原为一个四棱锥,然后根据线面、面面平行的判定定理判断即可.三、解答题11.证明因为PM∶MA=BN∶ND=PQ∶QD,所以MQ∥AD,NQ∥BP.因为BP⊂平面PBC,NQ⊄平面PBC,所以NQ∥平面PBC.又因为底面ABCD为平行四边形,所以BC∥AD,所以MQ∥BC.因为BC⊂平面PBC,MQ⊄平面PBC,所以MQ∥平面PBC.又因为MQ∩NQ=Q,所以根据平面与平面平行的判定定理,得平面MNQ∥平面PBC.12.解如图,在正四棱柱ABCD-A1B1C1D1中,分别取棱A1B1,A1D1,AD的中点E,F,G,连接ME,EF,FG,GM.因为M是AB的中点,所以ME∥AA1∥FG,且ME=AA1=FG.所以四边形MEFG是平行四边形.因为ME∥BB1,BB1⊂平面BB1D1D,ME⊄平面BB1D1D,所以ME∥平面BB1D1D.在△A1B1D1中,因为EF∥B1D1,B1D1⊂平面BB1D1D,EF⊄平面BB1D1D,所以EF∥平面BB1D1D.又因为ME∩EF=E,且ME⊂平面MEFG,EF⊂平面MEFG,所以平面MEFG∥平面BB1D1D.在FG上任取一点N,连接MN,所以MN⊂平面MEFG.所以MN与平面BB1D1D无公共点.所以MN∥平面BB1D1D.总之,当点N在平面AA1D1D内的直线FG上(任意位置)时,都有MN∥BB1D1D,即当点N在矩形AA1D1D中过A1D1与AD的中点的直线上运动时,都有MN∥平面BB1D1D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线面、面面平行的判定与性质基础巩固强化1.(文)(2011·北京海淀期中)已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误..的是( )A.若m∥β,则m∥l B.若m∥l,则m∥βC.若m⊥β,则m⊥l D.若m⊥l,则m⊥β[答案] D[解析]A符合直线与平面平行的性质定理;B符合直线与平面平行的判定定理;C符合直线与平面垂直的性质;对于D,只有α⊥β时,才能成立.(理)(2011·泰安模拟)设m、n表示不同直线,α、β表示不同平面,则下列命题中正确的是( )A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β[答案] D[解析]A选项不正确,n还有可能在平面α内,B选项不正确,平面α还有可能与平面β相交,C选项不正确,n也有可能在平面β内,选项D正确.2.(文)(2011·邯郸期末)设m,n为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是( )A.若m⊂α,n⊂α,且m∥β,n∥β,则α∥βB.若m∥α,m∥n,则n∥αC.若m∥α,n∥α,则m∥nD.若m,n为两条异面直线,且m∥α,n∥α,m∥β,n∥β,则α∥β[答案] D[解析]选项A中的直线m,n可能不相交;选项B中直线n可能在平面α内;选项C中直线m,n的位置可能是平行、相交或异面.(理)(2011·浙江省温州市测试)已知m,n,l为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( ) A.α∥β,m⊂α,n⊂β⇒m∥nB.l⊥β,α⊥β⇒l∥αC.m⊥α,m⊥n⇒n∥αD.α∥β,l⊥α⇒l⊥β[答案] D[解析]对于选项A,m,n平行或异面;对于选项B,可能出现l⊂α这种情形;对于选项C,可能出现n⊂α这种情形.故选D.3.(2011·宁波模拟)已知直线l、m,平面α、β,则下列命题中的假命题是( )A.若α∥β,l⊂α,则l∥βB.若α∥β,l⊥α,则l⊥βC.若l∥α,m⊂α,则l∥mD.若α⊥β,α∩β=l,m⊂α,m⊥l,则m⊥β[答案] C[解析]对于选项C,直线l与m可能构成异面直线,故选C.4.(2011·广东揭阳模拟)若a 不平行于平面α,且a ⊄α,则下列结论成立的是( )A .α内的所有直线与a 异面B .α内与a 平行的直线不存在C .α内存在唯一的直线与a 平行D .α内的直线与a 都相交 [答案] B[解析] 由条件知a 与α相交,故在平面α内的直线与a 相交或异面,不存在与a 平行的直线.5.(2012·石家庄二模)三棱锥的三组相对的棱(相对的棱是指三棱锥中成异面直线的一组棱)分别相等,且长分别为2、m 、n ,其中m 2+n 2=6,则该三棱锥体积的最大值为( )A.12B.8327C.33D.23[答案] D[解析] 令m =n ,由m 2+n 2=6得m =n =3,取AB 的中点E ,则BE =22,PB =3,∴PE =102,CE =102,∴EF =2,∴V P -ABC =13S △PEC ·AB =13×(12×2×2)×2=23,∵23>12,∴23>33,23>8327,故选D.6.(2011·苏州模拟)下列命题中,是假命题的是( )A.三角形的两条边平行于一个平面,则第三边也平行于这个平面B.平面α∥平面β,a⊂α,过β内的一点B有唯一的一条直线b,使b∥aC.α∥β,γ∥δ,α、β与γ、δ的交线分别为a、b和c、d,则a∥b∥c∥dD.一条直线与两个平面成等角是这两个平面平行的充要条件[答案] D[解析]三角形的任意两边必相交,故三角形所在的平面与这个平面平行,从而第三边也与这个平面平行,∴A真;假设在β内经过B点有两条直线b、c都与a平行,则b∥c,与b、c都过B点矛盾,故B真;∵γ∥δ,α∩γ=a,α∩δ=b,∴a∥b,同理c∥d;又α∥β,γ∩α=a,γ∩β=c,∴a∥c,∴a∥b∥c∥d,故C真;正方体ABCD-A1B1C1D1中,AC与平面AA1D1D和平面CC1D1D 所成角相等,但平面AA1D1D∩平面CC1D1D=DD1,故D假.7.(2012·北京东城区综合练习)在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;②若平面α∥平面β,则平面α内任意一条直线m∥平面β;③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β;④若平面α内的三点A、B、C到平面β的距离相等,则α∥β.其中正确命题的序号为________.[答案]②[解析]①中,互相平行的两条直线的射影可能重合,①错误;②正确;③中,平面α与平面β不一定垂直,所以直线n就不一定垂直于平面β,③错误;④中,若平面α内的三点A、B、C在一条直线上,则平面α与平面β可以相交,④错误.8.(2011·福建文,15)如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF 的长度等于________.[答案]2[解析] ∵EF ∥平面AB 1C ,平面ABCD 经过直线EF 与平面AB 1C 相交于AC , ∴EF ∥AC ,∵E 为AD 的中点,∴F 为CD 的中点, ∴EF =12AC =12×22= 2.9.(2011·郑州一检)已知两条不重合的直线m 、n ,两个不重合的平面α、β,有下列命题:①若m ∥n ,n ⊂α,则m ∥α;②若n ⊥α,m ⊥β,且n ∥m ,则α∥β; ③若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ④若α⊥β,α∩β=m ,n ⊂β,n ⊥m ,则n ⊥α. 其中正确命题的序号是________. [答案] ②④[解析] 对于①,直线m 可能位于平面α内,此时不能得出m∥α,因此①不正确;对于②,由n ⊥α,m ∥n ,得m ⊥α,又m⊥β,所以α∥β,因此②正确;对于③,直线m ,n 可能是两条平行直线,此时不一定能得出α∥β,因此③不正确;对于④,由“如果两个平面相互垂直,则在一个平面内垂直于它们交线的直线必垂直于另一个平面”可知,④正确.综上所述,其中正确命题的序号是②④.10.(文)(2012·辽宁文,18)如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =2,AA ′=1,点M 、N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)求三棱锥A ′-MNC 的体积(锥体体积公式V =13Sh ,其中S为底面面积,h 为高).[分析] (1)欲证MN ∥平面A ′ACC ′,须在平面A ′ACC ′内找到一条直线与MN 平行,由于M 、N 分别为A ′B ,B ′C ′的中点,B ′C ′与平面A ′ACC ′相交,又M 为直三棱柱侧面ABB ′A ′的对角线A ′B 的中点,从而M 为AB ′的中点,故MN 为△AB ′C ′的中位线,得证.(2)欲求三棱锥A′-MNC的体积,注意到直三棱柱的特殊性和点M、N为中点,可考虑哪一个面作为底面有利于问题的解决,视A′MC为底面,则S△A′MC=12S△A′BC,∴V A′-MNC=12V N-A′BC,又V N-A′BC=V A′-NBC,易知A′N为三棱锥A′-NBC的高,于是易得待求体积.[解析](1)连结AB′,AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,所以M为AB′中点.又因为N为B′C′的中点,所以MN∥AC′.又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,因此MN∥平面A′ACC′.(2)连结BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B ′BCC ′=B ′C ′,所以A ′N ⊥平面NBC .又A ′N =12B ′C ′=1,故V A ′-MNC =V N -A ′MC =12V N -A ′BC =12V A ′-NBC =16.[点评] 本题考查了线面平行的证明,锥体的体积两方面的问题,对于(1)还可以利用面面平行(平面MPN ∥平面A ′ACC ′,其中P 为A ′B ′的中点)来证明;(2)还可利用割补法求解.(理)(2012·浙江文,20)如图,在侧棱垂直底面的四棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,AD ⊥AB ,AB =2,AD =2,BC =4,AA 1=2,E 是DD 1的中点,F 是平面B 1C 1E 与直线AA 1的交点.(1)证明:①EF ∥A 1D 1; ②BA 1⊥平面B 1C 1EF ;(2)求BC 1与平面B 1C 1EF 所成角的正弦值.[分析] (1)①欲证EF ∥A 1D 1,∵B 1C 1∥A 1D 1,∴只需证EF ∥B 1C 1,故由线面平行的性质定理“线面平行⇒线线平行”可推证.②要证BA 1⊥平面B 1C 1EF ,需证BA 1⊥B 1C 1,BA 1⊥B 1F ,要证BA 1⊥B1C1,只需证B1C1⊥平面AA1B1B,要证BA1⊥B1F,通过在侧面正方形AA1B1B中计算证明即可.(2)设BA1与B1F交于点H,连结C1H,则∠BC1H就是所求的角.[解析](1)①∵C1B1∥A1D1,C1B1⊄平面ADD1A1,∴C1B1∥平面A1D1DA.又∵平面B1C1EF∩平面A1D1DA=EF,∴C1B1∥EF,∴A1D1∥EF.②∵BB1⊥平面A1B1C1D1,∴BB1⊥B1C1,又∵B1C1⊥B1A1,∴B1C1⊥平面ABB1A1.∴B1C1⊥BA1.在矩形ABB1A1中,F是AA1的中点,tan∠A1B1F=tan∠AA1B=22,即∠A1B1F=∠AA1B,∴BA1⊥B1F.又∵BA1⊥B1C1,所以BA1⊥平面B1C1EF.(2)设BA1与B1F交点为H,连结C1H.由(1)知BA1⊥平面B1C1EF,所以∠BC1H是BC1与平面B1C1EF所成的角.在矩形AA1B1B中,由AB=2,AA1=2,得BH=4 6 .在Rt△BHC1中,由BC1=25,BH=46得,sin∠BC1H=BHBC1=30 15.所以BC1与平面B1C1EF所成角的正弦值是30 15.[点评] 本题主要考查空间点、线、面的位置关系,线面角等基础知识,同时考查空间想象能力和推理论证能力.能力拓展提升11.(文)(2011·北京模拟)给出下列关于互不相同的直线l、m、n 和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为( )A.3 B.2 C.1 D.0[答案] C[解析]①设α∩β=a,当l,m都与a相交且交点不重合时,满足①的条件,故①假;②中分别在两个平行平面内的两条直线可能平行,也可能异面,故②假;由三棱柱知③真;故选C.(理)如图,在三棱柱ABC-A′B′C′中,点E、F、H、K分别为AC′、CB′、A′B、B′C′的中点,G为△ABC的重心.从K、H、G、B′中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P为( ) A.K B.HC.G D.B′[答案] C[解析]假如平面PEF与侧棱BB′平行则和三条侧棱都平行,不满足题意,而FK∥BB′,排除A;假如P为B′点,则平面PEF即平面A′B′C,此平面只与一条侧棱AB平行,排除D.若P为H点,则HF为△BA′C′的中位线,∴HF∥A′C′;EF 为△ABC′的中位线,∴EF∥AB,HE为△AB′C′的中位线,∴HE ∥B′C′,显然不合题意,排除B.[点评] 此题中,∵EF是△ABC′的中位线,∴EF∥AB∥A′B′,故点P只要使得平面PEF与其他各棱均不平行即可,故选G点.12.(文)(2012·江西文,7)若一个几何体的三视图如图所示,则此几何体的体积为( )A.112B .5 C.92D .4[答案] D[解析] 由三视图知该几何体为直六棱柱.其底面积为S =2×[12×(1+3)×1]=4,高为1.所以体积V =4.(理)(2012·四川文,6)下列命题正确的是( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行[答案] C[解析] 本题考查了线面角,面面垂直,线面平行,面面平行等位置关系的判定与性质,对于A 选项,两条直线也可相交,B 选项若三点在同一条直线上,平面可相交.D 选项这两个平面可相交(可联系墙角),而C 项可利用线面平行的性质定理,再运用线面平行的判定与性质可得.本题需要我们熟练掌握各种位置关系的判定与性质.13.(2012·南昌二模)若P 是两条异面直线l 、m 外的任意一点,则下列命题中假命题的序号是________.①过点P 有且仅有一条直线与l ,m 都平行;②过点P 有且仅有一条直线与l ,m 都垂直;③过点P 有且仅有一条直线与l ,m 都相交;④过点P 有且仅有一条直线与l ,m 都异面.[答案] ①③④[解析] ①是假命题,因为过点P 不存在一条直线与l ,m 都平行;②是真命题,因为过点P 有且仅有一条直线与l ,m 都垂直,这条直线与两异面直线的公垂线平行或重合;③是假命题,因为过点P 也可能没有一条直线与l ,m 都相交;④是假命题,因为过点P 可以作出无数条直线与l ,m 都异面,这无数条直线在过点P 且与l ,m 都平行的平面上.[点评] 第③个命题易判断错误.当点P 与l 确定的平面α∥m 时,或点P 与m 确定的平面β∥l 时,过点P 与l 、m 都相交的直线不存在.14.(2012·佛山一模)过两平行平面α、β外的一点P 作两条直线,分别交α于A 、C 两点,交β于B 、D 两点,若PA =6,AC =9,PB =8,则BD =________.[答案] 12[解析] 由面面平行的性质定理可知AC ∥BD ,又由平行线分线段成比例定理可得PA PB =AC BD ,即68=9BD,得BD =12. 15.(文)如图,在三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,AB ⊥BB 1,AC=BC=BB1=2,D为AB的中点,且CD⊥DA1.(1)求证:BB1⊥平面ABC;(2)求证:BC1∥平面CA1D;(3)求三棱锥B1-A1DC的体积.[解析](1)∵AC=BC,D为AB的中点,∴CD⊥AB,又∵CD⊥DA1,∴CD⊥平面ABB1A1,∴CD⊥BB1,又BB1⊥AB,AB∩CD=D,∴BB1⊥平面ABC.(2)连接BC 1,连接AC 1交CA 1于E ,连接DE ,易知E 是AC 1的中点,又D 是AB 的中点,则DE ∥BC 1,又DE ⊂平面CA 1D ,BC 1⊄平面CA 1D ,∴BC 1∥平面CA 1D .(3)由(1)知CD ⊥平面AA 1B 1B ,故CD 是三棱锥C -A 1B 1D 的高,在Rt △ACB 中,AC =BC =2,∴AB =22,CD =2,又BB 1=2,∴V B 1-A 1DC =V C -A 1B 1D =13S △A 1B 1D ·CD =16A 1B 1×B 1B ×CD =16×22×2×2=43. (理)如图,PO ⊥平面ABCD ,点O 在AB 上,EA ∥PO ,四边形ABCD 为直角梯形,BC ⊥AB ,BC =CD =BO =PO ,EA =AO =12CD .(1)求证:BC ⊥平面ABPE ;(2)直线PE 上是否存在点M ,使DM ∥平面PBC ,若存在,求出点M ;若不存在,说明理由.[解析] (1)∵PO ⊥平面ABCD ,BC ⊂平面ABCD ,∴BC ⊥PO ,又BC ⊥AB ,AB ∩PO =O ,AB ⊂平面ABP ,PO ⊂平面ABP ,∴BC ⊥平面ABP ,又EA ∥PO ,AO ⊂平面ABP ,∴EA ⊂平面ABP ,∴BC ⊥平面ABPE .(2)点E 即为所求的点,即点M 与点E 重合.取PO 的中点N ,连结EN 并延长交PB 于F ,∵EA =1,PO =2,∴NO =1,又EA 与PO 都与平面ABCD 垂直,∴EF ∥AB ,∴F 为PB 的中点,∴NF =12OB =1,∴EF =2, 又CD =2,EF ∥AB ∥CD ,∴四边形DCFE 为平行四边形,∴DE ∥CF ,∵CF ⊂平面PBC ,DE ⊄平面PBC ,∴DE ∥平面PBC .∴当M 与E 重合时,DM ∥平面PBC .16.(2012·北京海淀区二模)在正方体ABCD -A ′B ′C ′D ′中,棱AB 、BB ′、B ′C ′、C ′D ′的中点分别为E 、F 、G 、H ,如图所示.(1)求证:AD′∥平面EFG;(2)求证:A′C⊥平面EFG;(3)判断点A、D′、H、F是否共面,并说明理由.[解析](1)证明:连结BC′.在正方体ABCD-A′B′C′D′中,AB=C′D′,AB∥C′D′. 所以四边形ABC′D′是平行四边形.所以AD′∥BC′.因为F、G分别是BB′、B′C′的中点,所以FG∥BC′,所以FG∥AD′.因为EF、AD′是异面直线,所以AD′⊄平面EFG.因为FG⊂平面EFG,所以AD′∥平面EFG.(2)证明:连结B′C.在正方体ABCD-A′B′C′D′中,A′B′⊥平面BCC′B′,BC′⊂平面BCC′B′,所以A′B′⊥BC′.在正方体BCC′B′中,B′C⊥BC′,因为A′B′⊂平面A′B′C,B′C′⊂平面A′B′C,A′B′∩B′C′=B′,所以BC′⊥平面A′B′C.因为A′C⊂平面A′B′C,所以BC′⊥A′C.因为FG∥BC′,所以A′C⊥FG.同理可证:A′C⊥EF.因为EF⊂平面EFG,FG⊂平面EFG,EF∩FG=F,所以A′C⊥平面EFG.(3)点A、D′、H、F不共面.理由如下:假设A、D′、H、F共面.连结C′F、AF、HF.由(1)知,AD′∥BC′,因为BC′⊂平面BCC′B′,AD′⊄平面BCC′B′.所以AD′∥平面BCC′B′.因为C′∈D′H,所以平面AD′HF∩平面BCC′B′=C′F.因为AD′⊂平面AD′HF,所以AD′∥C′F.所以C′F∥BC′,而C′F与BC′相交,矛盾.所以A,D′、H、F点不共面.1.设m、l是两条不同的直线,α是一个平面,则下列命题正确的是( )A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m[答案] B[解析]两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面,故选B.2.如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA =AC=a,PB=PD=2a,点E在PD上,且PE:ED=2:1.(1)证明:PA⊥平面ABCD;(2)在棱PC上是否存在一点F,使BF∥平面AEC?如果存在,请求出此时PF FC的值;如果不存在,请说明理由.[解析](1)因为底面ABCD是菱形,∠ABC=60°,所以AB=AD =AC=a.在△PAB中,由PA2+AB2=2a2=PB2,知PA⊥AB.同理,PA⊥AD,所以PA⊥平面ABCD.(2)连结BD,则平面PBD与平面AEC的交线为EO,在△PBD中作BM∥OE交PD于M,则BM∥平面AEC,在△PCE中过M作MF ∥CE交PC于F,则MF∥平面AEC,故平面BFM∥平面AEC,所以BF∥平面AEC,F点即为所求的满足条件的点.由条件O为BD的中点可知,E为MD的中点.又由PE:ED=2:1,∴M为PE的中点,又FM∥CE,故F是PC的中点,∴此时PF:FC=1.3.如图,正方形ABCD和四边形ACEF所在平面互相垂直,EF ∥AC,AB=2,CE=EF=1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE .[证明] (1)设AC ∩BD =G ,在正方形ABCD 中,AB =2,∴AC =2,又∵EF =1,AG =12AC =1,又∵EF ∥AG ,∴四边形AGEF 为平行四边形,∴AF ∥EG ,∵EG ⊂平面BDE ,AF ⊄平面BDE ,∴AF ∥平面BDE .(2)连结FG .∵EF ∥CG ,EF =CG =1且CE =1,∴四边形CEFG 为菱形,∴EG ⊥CF .∵四边形ABCD为正方形,∴AC⊥BD.又∵平面ACEF⊥平面ABCD且平面ACEF∩平面ABCD=AC,∴BD⊥平面ACEF,∴CF⊥BD.又∵BD∩EG=G,∴CF⊥平面BDE.。

相关文档
最新文档