因式分解和分式化简

合集下载

【初中数学】因式分解的九种方法

【初中数学】因式分解的九种方法

【初中数学】因式分解的九种方法一、运用公式法我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a -b =(a+b)(a-b)a +2ab+b =(a+b)a -2ab+b =(a-b)如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

二、平方差公式1、式子:a -b =(a+b)(a-b)2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

四、完全平方公式1、把乘法公式(a+b) =a +2ab+b 和(a-b) =a -2ab+b 反过来,就可以得到: a +2ab+b =(a+b) 和a -2ab+b =(a-b) ,这两个公式叫完全平方公式。

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a +2ab+b 和a -2ab+b 这样的式子叫完全平方式。

2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。

3、当多项式中有公因式时,应该先提出公因式,再用公式分解。

4、完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

5、分解因式,必须分解到每一个多项式因式都不能再分解为止。

五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。

原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。

因式分解与分式

因式分解与分式

1、用提公因式法把多项式进行因式分解【知识精读】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。

提公因式法是因式分解的最基本也是最常用的方法。

它的理论依据就是乘法分配律。

多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。

(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。

下面我们通过例题进一步学习用提公因式法因式分解 【分类解析】1. 把下列各式因式分解(1)-+--+++a x a b x a c xa xm m m m 2213 (2)a a b a b a a b b a ()()()-+---32222 分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。

解:-+--=--+++++a x a b xa c x a x a x a x b x c x m m m m m 221323()(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a n n n n -=--=----222121;,是在因式分解过程中常用的因式变换。

解:a a b a b a a b b a ()()()-+---32222 )243)((]2)(2))[(()(2)(2)(222223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-=2. 利用提公因式法简化计算过程 例:计算1368987521136898745613689872681368987123⨯+⨯+⨯+⨯分析:算式中每一项都含有9871368,可以把它看成公因式提取出来,再算出结果。

解:原式)521456268123(1368987+++⨯==⨯=987136813689873. 在多项式恒等变形中的应用 例:不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x yx y x x y +-++的值。

人教版八年级上册数学知识点归纳

人教版八年级上册数学知识点归纳

新人教版八年级数学上册知识点总结(上)(含思维导图)因式分解:1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.3.公因式的确定:系数的最大公约数·相同因式的最低次幂.5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂.13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.数的开方2.平方根的性质:(1)正数的平方根是一对相反数;(2)0的平方根还是0;(3)负数没有平方根.8.立方根的性质:(1)正数的立方根是一个正数;(2)0的立方根还是0;(3)负数的立方根是一个负数.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.12.符合“AAA”“SSA”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线. 15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.※18.几何重要图形和辅助线:(1)选取和作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图.附思维导图:.谢谢观看! 欢迎您的下载,资料仅供参考,如有雷同纯属意外。

初中中考数学因式分解的九种方法解析

初中中考数学因式分解的九种方法解析

初中中考数学因式分解的九种方法解析初中中考数学因式分解的九种方法解析把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

xx小编整理了初中中考数学因式分解的九种方法,希望能帮助到您。

一、运用公式法我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

二、平方差公式1、式子:a^2-b^2=(a+b)(a-b)2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

四、完全平方公式1、把乘法公式(a+b)^2=a^2+2ab+b^2 和(a-b)^2=a^2-2ab+b^2反过来,就可以得到:a^2+2ab+b^2=(a+b)^2 和 a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。

2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。

3、当多项式中有公因式时,应该先提出公因式,再用公式分解。

4、完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

5、分解因式,必须分解到每一个多项式因式都不能再分解为止。

五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

因式分解的方法有哪些

因式分解的方法有哪些

在初高中,同学们都会接触到很多因式分解的例子与试题,那有什么因式分解的方法呢,须注意什么。

以下是由编辑为大家整理的“因式分解的方法有哪些”,仅供参考,欢迎大家阅读。

因式分解的方法一、运用公式法我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

二、平方差公式1、式子: a^2-b^2=(a+b)(a-b)。

2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

四、完全平方公式1、把乘法公式(a+b)^2=a^2+2ab+b^2 和 (a-b)^2=a^2-2ab+b^2反过来,就可以得到:a^2+2ab+b^2=(a+b)^2 和 a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。

2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。

3、当多项式中有公因式时,应该先提出公因式,再用公式分解。

4、完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

5、分解因式,必须分解到每一个多项式因式都不能再分解为止。

五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

因式分解与分式

因式分解与分式

第二部分 代数式与恒等变形部分★五、多项式的因式分解:1、把一个多项式化成几个整式的积的形式,叫做因式分解。

《因式分解和整式乘法是互逆变形.如,22))((n m n m n m -=-+是整式乘法,=-22n m ))((n m n m -+是因式分解》2、因式分解的方法、步骤和要求:(1)若多项式的各项有公因式,则先提公因式.如=+--cm bm am ⋅-m ( )。

(2)若各项没有公因式或对于提取公因式后剩下的多项式,可以尝试运用公式法. 如229b a -= ,=++-=---)2(22222b ab a n n b abn n a 。

(3)如果用上述方法不能分解,那么可以尝试用其他方法.*十字相乘法:))(()(2b x a x ab x b a x ++=+++.如)1)(3(322-+=-+x x x x 。

*分组分解法(适用于超过三项的多项式,有分组后再提公因式和分组后再用公式两种情况).如=++-1222x y x =-++2212y x x 22)1(y x -+=)1)(1(y x y x -+++。

(4)因式分解必须分解到每一个因式不能再分解为止。

《因式分解要在指定的范围内进行.如,在有理数范围内分解)2)(2(4224-+=-x x x ,若在实数范围,还可继续分解至)2)(2)(2(2-++x x x .*在高中时还可进一步分解》【拓展型问题】:1.根据“因式分解和整式乘法是互逆变形”,你能对下列整式乘法的结果进行因式分解吗?①)1)(32(-+x x ;②))((z y x z y x --+-;③()()n m b a ++.2.试整理:能进行因式分解的二项式和三项式一般可用哪些方法?【中考真题】:1.代数式3322328714b a b a b a -+的公因式是( )A.327b aB.227b aC.b a 27D.3328b a2.若7,6=-=-mn n m ,则n m mn 22-的值是( )A.-13B.13C.42D.-423.分解因式:①31255x x -;②3228y y x -;③()()()x y x y y x -+----4423;④81721624+-x x .⑤122--x x ;⑥2)()(2-+-+y x y x ;⑦20)2)(1(---x x . 4.下列分解因式正确的是( ) A.1)12(24422+-=+-x x xB.)(2n m m m mn m +=++C.)2)(4(822+-=--a a a aD.22)21(21-=+-x x x 5.若A n m n m mn n m ⋅+=+-+)()()(3,则A 是( )A.22n m +B.22n mn m +-C.223n mn m +-D.22n mn m ++6.若16)4(292+-+x m x 是一个完全平方式,则m 的值为 。

分式化简求值的若干方法与技巧

分式化简求值的若干方法与技巧

分式化简求值的若干方法与技巧
分式化简是指将一个分式写成一个最简形式的过程。

下面列举一些分式化简的方法与技巧:
1. 因式分解法:如果分子和分母都可以被一个公因子因式分解,可以先进行因式分解,然后约去公因子。

2. 公约法:将分子和分母的公因子约去,使分子和分母无公因子。

3. 分子与分母分别除以最大公约数法:先求出分子和分母的最大公约数,然后将分子和分母都除以最大公约数,使得分子和分母互质。

4. 乘法逆元法:如果分子和分母互为乘法逆元,即分子和分母互为倒数关系,可以将分式化简为整数。

5. 积化和差法:对于有相同分子或分母的分式,可以将其化为积或差的形式,然后进行约分或运算。

6. 公倍数法:如果分式的分子和分母都是整数,可以找到一个公倍数使得分子和分母变为整数,然后约去公倍数。

7. 有理化法:对于含有根号的分式,可以通过有理化的方法将其转化为整数或分数。

8. 倒数法:对于一个分式,可以将其倒数的分子和分母对换位
置,然后约分。

以上是一些常见的分式化简的方法与技巧,根据具体的情况选择合适的方法进行求解。

初中数学知识归纳分式的化简和运算

初中数学知识归纳分式的化简和运算

初中数学知识归纳分式的化简和运算在初中数学中,分式的化简和运算是一个重要的知识点。

我们将在本文中对这一内容进行归纳和总结。

一、分式的化简要化简一个分式,我们需要将其化简为最简形式。

在化简分式时,我们可以使用以下方法:1.因式分解法如果分子和分母都是多项式,我们可以尝试使用因式分解法来化简分式。

首先,我们需要对分子和分母进行因式分解,然后消去分子和分母的公因式,并将得到的结果写成最简形式。

例如,化简分式$\frac{6x^2}{12x}$,我们可以将分子和分母都因式分解为$2 \cdot 3 \cdot x \cdot x$和$2 \cdot 2 \cdot 3 \cdot x$,然后消去公因式$2 \cdot 3 \cdot x$,得到最简形式$\frac{x}{2}$。

2.约分法如果分式的分子和分母存在公因式,我们可以使用约分法来化简。

具体做法是将分子和分母的公因式约去,保留最简形式。

例如,化简分式$\frac{8y}{12}$,我们可以发现分子和分母都可以被2整除,即存在公因式2。

约去公因式2后,得到最简形式$\frac{4y}{6}$。

再次约分,得到$\frac{2y}{3}$。

二、分式的运算在进行分式运算时,我们主要涉及到加法、减法、乘法和除法。

下面我们将分别介绍这些运算的方法。

1.分式的加法和减法要进行分式的加法和减法,我们需要先找到这些分式的公共分母,然后将分子进行相应的加法或减法操作,并保持公共分母不变。

例如,我们要计算$\frac{1}{2}+\frac{2}{3}$,首先找到这两个分式的公共分母,由于2和3的最小公倍数为6,因此通分后,我们得到$\frac{3}{6}+\frac{4}{6}=\frac{7}{6}$。

最后,我们可以将$\frac{7}{6}$化简为最简形式,得到$\frac{7}{6}$。

2.分式的乘法对于分式的乘法,我们只需要将两个分式的分子相乘,分母相乘即可。

代数式的因式分解与分式化简

代数式的因式分解与分式化简

代数式的因式分解与分式化简代数式是数学中常见的一类表达式,由数、字母和运算符号组成。

在数学问题中,经常需要对代数式进行因式分解和分式化简,以方便进行运算和推导。

本文将介绍代数式的因式分解和分式化简的方法和步骤。

一、代数式的因式分解因式分解是指将一个代数式表示为几个乘积的乘积形式,其中每个乘积因子称为因式。

因式分解的目的在于将复杂的代数式拆解为简单的成分,以便进行进一步的计算和推导。

1.1 一元二次三项式的因式分解一元二次三项式的一般形式为ax²+bx+c,其中a、b、c 为已知实数,且a≠0。

对于此类代数式,我们可以通过配方法进行因式分解。

步骤如下:1. 将三项式中的第一项和最后一项相乘,得到 ac。

2. 找出两个因数 m 和 n,使得它们的和等于第二项的系数 b,且乘积等于 ac。

3. 将第二项拆分为 mx 和 nx(注意要保持等式成立)。

4. 通过提取公因式的方式进行因式分解。

例如:ax²+bx+c =a(x+m)(x+n)。

1.2 多项式的因式分解对于多项式的因式分解,一般需要使用更复杂的方法,如提取公因式、分组分解、平方法、差二次平方和公式等。

例如,对于代数式 x³+3x²-4x-12,我们可以通过以下步骤进行因式分解:1. 尝试提取公因式,如果存在公因式,则进行提取。

例如,x³+3x²-4x-12 = x²(x+3)-4(x+3) = (x+3)(x²-4)。

2. 继续对括号中的二次式进行因式分解,如公式 a²-b² = (a+b)(a-b)。

例如,x²-4 = (x+2)(x-2)。

3. 将分解得到的因式整合,得到最终的因式分解形式。

例如,x³+3x²-4x-12 = (x+3)(x+2)(x-2)。

二、代数式的分式化简分式化简是指将一个复杂的分式表示为简单分式和整式的和的形式,以便进行运算和推导。

人教版初二数学上册知识点归纳

人教版初二数学上册知识点归纳

人教版初二数学上册知识点归纳因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化. 2.因式分解的方法:常用“提取公因式法"、“公式法”、“分组分解法"、“十字相乘法”.3.公因式的确定:系数的最大公约数·相同因式的最低次幂。

注意公式:a+b=b+a ; a-b=-(b —a); (a-b)2=(b —a)2; (a-b )3=-(b —a)3。

4.因式分解的公式:(1)平方差公式: a2—b2=(a+ b )(a — b);(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a —b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式。

6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项. 7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“ x2+px+q 是完全平方式 ⇔ q2p 2=⎪⎭⎫⎝⎛”。

分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A的形式,如果B 中含有字母,式子B A叫做分式.2.有理式:整式与分式统称有理式;即⎩⎨⎧分式整式有理式。

3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义。

分式化简的方法和步骤

分式化简的方法和步骤

分式化简的方法和步骤
首先,我们来看一般的分式化简步骤:
1. 因式分解,如果分子和分母都是多项式,我们可以尝试对其
进行因式分解,将分子和分母分别写成不可约的因式相乘的形式。

2. 约分,将分子和分母中的公因式约去,使分式的值保持不变。

3. 化简,对于含有根式、指数、对数等的分式,可以尝试化简
这些部分,使分式更加简洁。

其次,我们来看具体的化简方法:
1. 因式分解,对于多项式的因式分解,可以运用公式、分组、
换元等方法,将多项式分解为不可约的因式相乘的形式。

例如,对
于分式 (x^2-1)/(x^2-4),我们可以将分子和分母都进行因式分解,然后约分得到最简分式。

2. 约分,约分是化简分式的重要步骤,通过找到分子和分母的
公因式,将其约去,使分式的值保持不变。

例如,对于分式
6x^2/9x,我们可以约去分子和分母中的公因式3和x,得到最简分式2x/3。

3. 化简,对于含有根式、指数、对数等的分式,可以尝试化简这些部分,使分式更加简洁。

例如,对于分式(2√3+√6)/(√2),我们可以利用根式的性质进行化简,将根式部分合并或者有理化等操作,得到最简分式。

最后,需要注意的是,在化简分式的过程中,我们需要遵循数学运算的基本规则,如乘法法则、除法法则、加法法则、减法法则等,确保化简的过程和结果是准确的。

总的来说,分式化简是数学中的基本操作,通过因式分解、约分和化简等步骤,可以将复杂的分式表达式简化为最简形式,使其更易于理解和计算。

希望以上介绍能够帮助你更好地理解分式化简的方法和步骤。

分式化简的解题思路及方法

分式化简的解题思路及方法

分式化简的解题思路及方法分式化简是代数学习中常见的问题,正确化简分式可以简化计算过程,提高求解效率。

本文将介绍分式化简的解题思路及方法,帮助读者更好地掌握这一技能。

下面是本店铺为大家精心编写的5篇《分式化简的解题思路及方法》,供大家借鉴与参考,希望对大家有所帮助。

《分式化简的解题思路及方法》篇1一、分式化简的解题思路分式化简的解题思路主要包括以下几个方面:1. 熟悉分式的基本形式:分式通常写成 $frac{a}{b}$ 的形式,其中 $a$ 和 $b$ 都是代数式。

要化简分式,需要先将其转化为这种基本形式。

2. 确定公因式:在分式中,如果有公共的因子,可以先提出来,这样可以简化分式的形式。

3. 利用分式性质:分式具有一些特殊的性质,如分子分母同乘以一个数或一个代数式,分式的值不变。

利用这些性质,可以对分式进行化简。

4. 运用运算法则:分式的化简也需要运用代数运算法则,如合并同类项、分配律、结合律等。

二、分式化简的方法分式化简的方法主要有以下几种:1. 提取公因式法:这种方法是指在分式中提取公共的因子,将分式化简为最简形式。

例如,将 $frac{2x+4y}{x+2y}$ 化简为$frac{2(x+2y)}{x+2y}$,再进一步化简为 $2$。

2. 拆分分式法:这种方法是指将分式拆分成两个或多个分式,以便更好地提取公因式或运用运算法则。

例如,将$frac{x+y}{x-y}$ 拆分成 $frac{x+y}{x-y} cdot frac{x+y}{x+y} = frac{x^2+2xy+y^2}{x^2-y^2}$。

3. 合并同类项法:这种方法是指将分式中的同类项合并在一起,从而简化分式的形式。

例如,将 $frac{3x+2y}{x+y}$ 化简为$frac{3x+2y}{x+y} cdot frac{x+y}{x+y} =frac{3x^2+2xy+2xy+2y^2}{x^2+2xy+y^2} =frac{3x^2+4xy+2y^2}{x^2+2xy+y^2}$。

因式分解和分式

因式分解和分式

龙文教育学科教师辅导讲义课 题因式分解,分式教学内容专题一、因式分解一、因式分解的意义:因式分解是把一个多项式化成几个整式的乘积形式注意:①结果应是整式乘积,而不能是分式或者是n 个整式的积与某项的和差形式;②因式分解与整式的乘法在运算过程上是完全相反的。

例01.下列四个从左到右的变形,是因式分解的是( )A .1)1)(1(2-=-+x x xB .))(())((m n a b n m b a --=--C .)1)(1(1--=+--b a b a abD .)32(322mm m m m --=-- 二、因式分解的方法类型一、提公因式法提公因式时应注意:⑴如果多项式的第一项系数是负的一般要提出“-”号,使括号内的第一项系数为正; ⑵公因式的系数和字母应分别考虑:①系数是各项系数的最大公约数; ②字母是各项共有的字母,并且各字母的指数取次数最低的。

例01.在下面因式分解中,正确的是( )A .)5(522x x y y xy y x +=-+B .2)()()()(c b a c a b c b a c b c b a a ---=+-++-+--C .)1)(2()2()2(2--=-+-x a x a x a xD .)12(2422232--=--b b ab ab ab ab 例02.把y x y x y x 3234268-+-分解因式的结果为 。

例03.分解因式:323)(24)(18)(6x y x y y x ---+--.说明:⑴观察题目结构特征 ⑵对于)(y x -与)(x y -的符号有下面的关系:⎪⎪⎩⎪⎪⎨⎧--=--=---=- 3322)()(,)()(),(x y y x x y y x x y y x例04.解方程:0)2313)(21(6)1823)(612(=-++-+x x x x例05.不解方程组⎩⎨⎧=+=-,134,32n m n m 求:32)2(2)2(5m n n m n ---的值.类型二、公式法1、利用平方差公式因式分解:()()b a b a b a -+=-22注意:①条件:两个二次幂的差的形式; ②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。

北师大版八年级上册数学第一单元知识点(6篇)

北师大版八年级上册数学第一单元知识点(6篇)

北师大版八年级上册数学第一单元知识点(6篇)1.北师大版八年级上册数学第一单元知识点篇一因式分解1、因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。

2、因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”。

3、公因式的确定:系数的公约数,相同因式的最低次幂。

注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.4、因式分解的公式:(1)平方差公式:a2-b2=(a+b)(a-b);(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.5、因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式。

6、因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项。

2.北师大版八年级上册数学第一单元知识点篇二分式1、分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式。

2、有理式:整式与分式统称有理式;3、对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义。

4、分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单。

实数化简、整式及因式分解、分式计算

实数化简、整式及因式分解、分式计算

整式和分式一、整式的分类及其中延伸的相关概念0,e π⎧⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎩⎩⎪⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⨯⎪⎪⎪⎪⎪⎪⨯⎩⎪⎪⎪⎪⎩⎪⎪⎩正整数整数负整数有理数正分数分数单个数字—实数负分数单项式整式无法开方的二次根式代数式无理数带根式的三角函数值无限不循环小数单个字母字母字母数字母多项式分式二、针对第1题的知识点复习1、负数2、相反数:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

(0的相反数是0)3、倒数:乘积为1的两个有理数互为倒数。

注意: ①零没有倒数。

②求分数的倒数,就是把分数的分子分母颠倒位置。

一个带分数要先化成假分数。

③正数的倒数是正数,负数的倒数是负数。

4、绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

数a 的绝对值记作|a|。

正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a课堂练习1、4的算术平方根是( ) A . ﹣2 B . 2 C . ±2 D . 162、计算:(﹣)0=( )A . 1B .﹣C . 0D .3、计算:(﹣)×2=( ) A .﹣1 B .1 C .4 D .﹣44、计算:(﹣12)2﹣1=( ) A .﹣54B .﹣14C .﹣34D .05、﹣的倒数是( ) A . B .C .D .6、计算:(-3)0=( ) A .1B .0C .3D .-137、计算:= .2-的相反数是( )A .2-B .2C .12D .12-﹣23的相反数是( ) A .﹣8 B .8C .﹣6D .6当1<a<2时,代数式|a -2|+|1-a|的值是( ) A .-1 B .1C .3D .-3若 |x | =-x ,则x 一定是( ) A .非正数 B .正数C .非负数D .负数实数1,-1,-12,0,四个数中,最小的数是()A.0 B.1 C.-1 D.-1 2-94和(-32)2的关系是()A.相等B.互为相反数C.互为倒数D.上述答案都不正确- 14的绝对值是()A.-4 B.14C.4 D.0.4已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大三、针对15题的计算知识点复习1、有理数计算:(1)计算规则:先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

高中数学中的因式分解与分式化简

高中数学中的因式分解与分式化简

高中数学中的因式分解与分式化简在高中数学中,因式分解与分式化简是常见的数学技巧,它们在解题过程中起着重要的作用。

因式分解是将一个多项式分解为若干个乘积的形式,而分式化简则是将一个分式转化为最简形式。

这两个技巧在代数运算、方程求解、函数图像等方面都有广泛应用。

一、因式分解因式分解是将一个多项式表示为若干个乘积的形式。

它可以简化计算过程,拓展问题的解决思路。

因式分解的基本原则是根据乘法的分配律和特定的公式,将多项式中的公因式提取出来,然后进行合并和化简。

例如,对于多项式2x² + 4x,我们可以将其因式分解为2x(x + 2)。

这里,公因式2x被提取出来,然后与原多项式中的剩余部分(x + 2)合并。

这样做的好处是可以简化计算,同时也可以找到多项式的特点和性质。

在因式分解中,常见的技巧包括提取公因式、配方法、差平方公式等。

这些技巧在解决方程、求极限、化简表达式等问题时都有重要应用。

因此,掌握因式分解的方法和技巧对于高中数学的学习至关重要。

二、分式化简分式化简是将一个分式转化为最简形式。

分式是数学中的一种表达形式,它将一个整体分为若干个部分。

分式化简的目的是简化计算过程,提高问题解决的效率。

分式化简的基本原则是根据分数的性质,将分子和分母中的公因子约去,并进行合并和化简。

例如,对于分式(2x²+ 4x)/(x + 2),我们可以将其化简为2x。

这里,分子和分母中的公因子(x + 2)被约去,得到最简形式2x。

在分式化简中,常见的技巧包括提取公因子、通分、分子分母的因式分解等。

这些技巧在解决方程、求极限、化简表达式等问题时都有重要应用。

因此,掌握分式化简的方法和技巧对于高中数学的学习至关重要。

三、应用举例因式分解与分式化简在数学中有广泛的应用。

以下是一些具体的应用举例:1. 解方程:通过因式分解和分式化简,可以将一个复杂的方程转化为简单的形式,从而更容易求解。

2. 求极限:在求函数的极限过程中,通过因式分解和分式化简,可以将函数转化为更简单的形式,从而更容易求出极限值。

分式的化简与计算

分式的化简与计算

分式的化简与计算分式(也称为有理数)是由一个整数的比值表示的数,其中分母不等于零。

在数学中,分式的化简与计算是一种重要的运算技巧,它可以使复杂的分式变得简单,并且有助于在解题过程中更加高效地进行计算。

本文将介绍分式的化简和计算方法,并提供一些例子来帮助读者更好地理解和应用这些技巧。

一、分式的化简当我们遇到一个复杂的分式时,我们可以通过化简来简化它,使得操作更加方便。

下面是一些分式的化简方法:1. 因式分解:如果分子和分母都可以因式分解,我们可以通过约去公因子的方式来简化分式。

例如,对于分式3x/6x,我们可以因式分解分子和分母得到3x/(2*3x),然后约去公因子3x,最终得到1/2。

2. 合并同类项:如果分子或分母中包含多个项,我们可以将其中的同类项合并在一起。

同类项指的是具有相同的变量和指数的项。

例如,对于分式(2x+3y)/(4x+2y),我们可以合并分子和分母中的x和y的项,得到(2x+3y)/(2(2x+y)),从而更简化了分式。

3. 分式的乘法和除法:对于两个分式的乘法,我们可以将其合并为一个分式。

例如,对于分式(1/2)*(2/3),我们可以进行分子之间的乘法和分母之间的乘法得到1/3。

类似地,在分子和分母都是分式的除法中,我们可以将其转化为乘法,然后根据分子的性质进行约分。

二、分式的计算在日常生活和数学问题中,我们经常需要对分式进行计算。

下面是一些分式的计算方法:1. 分式的加法和减法:对于两个分式的加法和减法,我们可以先找到它们的公共分母,然后将分子相加或相减,并保持分母不变。

例如,计算(1/2)+(1/3),我们可以找到它们的最小公倍数6,然后将分子相加得到(3+2)/6=5/6。

2. 分式的乘法:对于两个分式的乘法,我们可以将其分子相乘,分母相乘,并将结果化简到最简分式。

例如,计算(2/3)*(4/5),我们可以进行分子之间的乘法和分母之间的乘法得到8/15。

3. 分式的除法:在分式的除法中,我们可以将其转化为乘法,并将两个分式的转置相乘。

因式分解的12种方法的详细解析

因式分解的12种方法的详细解析

因式分解的12种方法的详细解析因式分解是将一个多项式写成几个较简单的乘积的形式。

在数学中,因式分解是一项重要的基础技能,常用于求解方程、化简表达式和研究多项式的性质等方面。

以下是因式分解的12种常见方法的详细解析。

1.提取公因式法:当多项式的各项中存在公共因子时,可以提取出这个公因式,例如,对于多项式2x+6,可以提取出公因式2,得到2(x+3)。

这种方法常用于求解关系式和化简分式等问题。

2.公式法:利用一些常用的公式进行因式分解。

例如,二次平方差公式(x^2-y^2)=(x+y)(x-y),互补公式a^2-b^2=(a+b)(a-b)等。

这种方法常用于解决关于二次方程、三角函数等问题。

3.配方法:对于二次型的多项式,可以利用配方法进行因式分解。

例如,对于多项式x^2+3x+2,可以进行配方法得到(x+1)(x+2)。

这种方法需要将多项式转化为二次型形式,然后利用配方法进行分解。

4.求因子法:当多项式为多个因子的乘积时,可以用求因子的方法进行因式分解。

例如,对于多项式x^3-8,可以将8进行因式分解为2^3,然后利用立方差公式进行因式分解,即x^3-8=(x-2)(x^2+2x+4)。

5.幂的分解法:当多项式中有幂函数时,可以利用幂的分解法进行因式分解。

例如,对于多项式x^3-y^3,可以利用立方差公式进行因式分解,即x^3-y^3=(x-y)(x^2+xy+y^2)。

6.多项式整除法:当多项式可以被另一个多项式整除时,可以利用多项式整除法进行因式分解。

例如,对于多项式x^3-1,可以利用x-1整除得到(x-1)(x^2+x+1)。

7.韦达定理:韦达定理是将多项式表示为二次型的形式,然后利用二次型进行因式分解。

例如,对于多项式x^3+y^3+z^3-3xyz,可以将其表示为(x+y+z)(x^2+y^2+z^2-xy-xz-yz)。

8.根的关系法:利用多项式的根的关系进行因式分解。

例如,对于一元二次多项式ax^2+bx+c,可以利用二次方程求根公式进行因式分解,即ax^2+bx+c=a(x-x1)(x-x2),其中x1和x2为多项式的根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档