高数教学资料 第八章大作业答案

合集下载

高等数学(同济第七版)第八章课后答案

高等数学(同济第七版)第八章课后答案

a -c.
l)3 A = -(1IH + Ill)一;)= - 卡 - c.
4
一、《高等数学》{第七版)下00习�全解
言。 .
D4r1 =
?’ … -
(
,18
+
b
BD4)
=

a
- c.
a,i 4.已知l网点M 1 (0.l.2)利l M2 (1. -l. 0).试用卢I生 f,T; .-t< ,1�式表不,:., :,, .11 , 叫戊
nt Fi,, 14.试iif.nJJ以气!!X A(4. I.9). R( 10. - I.的.r.(2.4.3)为顶点的 · ((1 ff�{(: :Y 1'1 <r1
?角:/巳.
iiF. 111 I A革I :=/(10-4) 1 +(-I-I) ) +(。-9) 2 ::7.
I |元 =/(2-4) 2 +<.:i-门 2 +(3-9)1::7,
” 17. 的,,Jr,川
I I I ..!.. = 饵 U知 Ir =4.贝lj l勺’j,, r
r ,·o执 0=4 ·叫 王 : 4X =2.
3
2
: J: 18. 才句 (I() 1 右,-�� fl:点IJ(2. 叶 ,7). 'l;:.° (1: .t 输 、y圳和 z 4111 l二的投影依次为4, -4和1

yOz

( 2) 111 ("O揭 β=!!刘lβ=0 , 攸向;,t与 ) 4·111 la]向.JliJI'β=0知。=β= 旦 2 . 伙向没if'i自于宫和h和I J'轨,且II与z都Ii平行,

高等代数(北大版)第8章习题参考答案

高等代数(北大版)第8章习题参考答案

第八章 —矩阵1. 化下列矩阵成标准形1) 2)3) 4)5)6)解 1)对矩阵作初等变换,有A= B,B即为所求。

2)对矩阵作初等变换,有A= B,B即为所求。

3)因为的行列式因子为1=1, 2 =, 3 = ,所以1 = 1,2 = = ,3 = = ,从而A= B,B即为所求。

4)因为的行列式因子为1=1, 2 =, 3 = , 4 = ,所以1 = 1,2 = = ,3 = = ,4 = = ,从而A= B,B即为所求。

5)对矩阵作初等变换,有A= B,B即为所求。

6)对矩阵作初等变换,有A,在最后一个行列式中3=1, 4 =, 5 = ,所以1 =2 =3 =1,4 = =,5 = =。

故所求标准形为B= 。

2.求下列矩阵的不变因子:1) 2)3) 4)5)解 1)所给矩阵的右上角的二阶子式为1,所以其行列式因子为1=1, 2 =1, 3 = ,故该矩阵的不变因子为1 =2 =1,3 =。

2)因为所给矩阵的右上角的三阶子式为-1,所以其行列式因子为3 =2 =1=1,4 =,故矩阵的不变因子为1 =2 =3 =1,4 =。

3)当时,有4 = = ,且在矩阵中有一个三阶子式= ,于是由,3 = 1,可得3 = 1,故该矩阵的不变因子为1 =2 =3 =1,4 = 。

当时,由1=1, 2 =1, 3 = , 4 = ,从而1 =2 =1,3 = ,4 = = 。

4)因为所给矩阵的左上角三阶子式为1,所以其行列式因子为1=1, 2 =1, 3 =1, 4 = ,从而所求不变因子为1 =2 =3 =1,4 = 。

5)因为所给矩阵的四个三阶行列式无公共非零因式,所以其行列式因子为3 =1,4 = ,故所求不变因子为1 =2 =3 =1,4 = 。

3.证明:的不变因子是,其中= 。

证因为n = ,按最后一列展开此行列式,得n == ,= ,因为矩阵左下角的阶子式= ,所以= 1,从而1=2 = … = = 1,故所给矩阵的不变因子为1 =2 = … = = 1,= = ,即证。

高等数学课后习题答案--第八章

高等数学课后习题答案--第八章

第八章 多元函数积分学 §3 三重积分的计算及其应用 习 题
1. 计算下列三重积分 (1) ∫∫∫ xy 2 z 3 dσ ,其中 Ω 是曲面 z = xy 和平面 y = x, x = 1, z = 0 所围成的区域;

(2) ∫∫∫ xzdσ ,其中 Ω 是由平面 z = 0 , x = y, y = z 以及抛物柱面 y = x 2 所围成的
D D
的大小。 【解】 利用 sin 2 x ≤ x 2 .则 sin 2 ( x + 2 y + 3z ) ≤ ( x + 2 y + 3z ) 2 积分得
∫∫∫ sin
D
2
( x + 2 y + 3 z )dσ ≤ ∫∫∫ ( x + 2 y + 3 z ) 2 dσ
D
4. 利用重积分的性质,估计积分值
(1) ∫∫ sin( x 2 + y 2 )dσ ,其中 D = {( x, y ) |
D
π
4
≤ x2 + y2 ≤
3π }; 4
dxdy , 其中 D = {( x, y ) | 0 ≤ x ≤ 4,0 ≤ y ≤ 8}; ln(4 + x + y ) D 2 2 1 (3) ∫∫ e x + y dσ ,其中 D = {( x, y ) | x 2 + y 2 ≤ }. 4 D
习题参考资料
第八章 多元函数积分学 §2 二重积分的计算 习 题
1. 计算二重积分
(1) ∫∫ xye xy dσ ,其中 D = {( x, y ) | 0 ≤ x ≤ 1,0 ≤ y ≤ 1};
2
D
(2) ∫∫

高等数学下册第八章课后习题解答

高等数学下册第八章课后习题解答

习题8−11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界.(1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为{(x , y )|x =0或y =0}.(2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为{(x , y )|1≤x 2+y 2≤4},边界为{(x , y )|x 2+y 2=1或x 2+y 2=4}.(3){(x , y )|y >x 2};解 开集, 区域, 无界集, 导集为{(x , y )| y ≥x 2}, 边界为{(x , y )| y =x 2}.(4){(x , y )|x 2+(y −1)2≥1}∩{(x , y )|x 2+(y −2)2≤4}.解 闭集, 有界集, 导集与集合本身相同,边界为{(x , y )|x 2+(y −1)2=1}∪{(x , y )|x 2+(y −2)2=4}.2. 已知函数yx xy y x y x f tan ),(22−+=, 试求f (tx , ty ). 解 )(tan )()()()(),(22tytx ty tx ty tx ty tx f ⋅⋅−+= ),(tan 2222y x f t y x xy y x t =⎟⎠⎞⎜⎝⎛−+=. 3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v=F (x , u )+F (x , v )+F (y , u )+F (y , v ).4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x −y , xy ).解 f (x +y , x −y , xy )=(x +y )xy +(xy )(x +y )+(x −y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域:(1)z =ln(y 2−2x +1);高等数学下册第八章习题解答解 要使函数有意义, 必须y 2−2x +1>0,故函数的定义域为D ={(x , y )|y 2−2x +1>0}.(2)yx y x z −++=11; 解 要使函数有意义, 必须x +y >0, x −y >0,故函数的定义域为D ={(x , y )|x +y >0, x −y >0}.(3)y x z −=;解 要使函数有意义, 必须y ≥0,0≥−y x 即y x ≥, 于是有x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }.(4)221)ln(yx x x y z −−+−=; 解 要使函数有意义, 必须y −x >0, x ≥0, 1−x 2−y 2>0,故函数的定义域为D ={(x , y )| y −x >0, x ≥0, x 2+y 2<1}.(5)222222221rz y x z y x R u −+++−−−=(R >r >0); 解 要使函数有意义, 必须R 2−x 2−y 2−z 2≥0且x 2+y 2+z 2−r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}.(6)22arccos yx z u +=. 解 要使函数有意义, 必须x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限:(1)22)1,0(),(1limy x xy y x +−→; 解110011lim 22)1,0(),(=+−=+−→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y y x . (3)xy y x 42lim)0,0(),(+−→; 解 xy y x 42lim)0,0(),(+−→)42()42)(42(lim )0,0(),(+++++−=→xy xy xy xy y x 41)42(1lim)0,0(),(−=++−=→xy y x . (4)11lim )0,0(),(−+→xy xy y x ; 解 11lim )0,0(),(−+→xy xy y x )11)(11()11(lim )0,0(),(−+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xy xy xy y x y x . (5)y xy y x )sin(lim )0,2(),(→; 解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xyxy y x . (6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++−→. 解 22221lim )cos(1lim )()cos(1lim )0,0(),(2222)0,0(),(2222)0,0(),(y x y x y x y x y x e y x y x e y x y x →→→⋅++−=++− 01sin lim cos 1lim 00==−=→→t t t t t . 7. 证明下列极限不存在:(1)y x y x y x −+→)0,0(),(lim; 证明 如果动点p (x , y )沿y =0趋向(0, 0),则 1lim lim00)0,0(),(==−+→=→x x y x y x x y y x ; 如果动点p (x , y )沿x =0趋向(0, 0),则 1lim lim00)0,0(),(−=−=−+→=→y y y x y x y x y x . 因此, 极限y x y x y x −+→)0,0(),(lim不存在. (2)22222)0,0(),()(lim y x y x y x y x −+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0),则 1lim )(lim 44022222 )0,0(),(==−+→=→x x y x y x y x x xy y x ; 如果动点p (x , y )沿y =2x 趋向(0, 0),则 044lim )(lim 2440222222 )0,0(),(=+=−+→=→x x x y x y x y x x xy y x . 因此, 极限22222)0,0(),()(lim y x y x y x y x −+→不存在. 8. 函数xy x y z 2222−+=在何处间断? 解 因为当y 2−2x =0时, 函数无意义,所以在y 2−2x =0处, 函数x y x y z 2222−+=间断. 9. 证明0lim 22)0,0(),(=+→yx xy y x .证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+, 所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x yx xy y x y x . 因此 0lim 22)0,0(),(=+→yx xy y x . 证明 因为2||22y x xy +≤, 故22||22222222y x yx y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤−+22|0|2222y x yx xy , 所以0lim 22)0,0(),(=+→yx xy y x . 10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x −x 0|<δ时, 有|f (x )−f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x −x 0|<δ, 从而 |F (x , y )−F (x 0, y 0)|=|f (x )−f (x 0)|<ε,所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8−21. 求下列函数的偏导数:(1) z =x 3y −y 3x ;解 323y y x xz −=∂∂, 233xy x y z −=∂∂. (2)uvv u s 22+=; 解 21)(u v v u v v u u u s −=+∂∂=∂∂, 21)(v u u u v v u v v s −=+∂∂=∂∂. (3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理)ln(21xy y y z =∂∂. (4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅−⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y −= 根据对称性可知)]2sin()[cos(xy xy x yz −=∂∂. (5)yx z tan ln =; 解 y x y y y x yxx z 2csc 21sec tan 12=⋅⋅=∂∂, y x y x y x y x yx y z 2csc 2sec tan 1222−=−⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(−−+=⋅+=∂∂y y xy y y xy y xz , ]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xy xy xy y ++++=. (7)z yx u =;解 )1(−=∂∂z y x zy x u , x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂, x x zy z y x x z u z y z y ln )(ln 22⋅−=−=∂∂. (8) u =arctan(x −y )z ;解 z z y x y x z x u 21)(1)(−+−=∂∂−, z z y x y x z y u 21)(1)(−+−−=∂∂−, z z y x y x y x z u 2)(1)ln()(−+−−=∂∂. 2. 设gl T π2=, 试证0=∂∂+∂∂g T g l T l . 解 因为l g l T ⋅⋅=∂∂1π, g g g l gT 121(223⋅−=⋅−⋅=∂∂−ππ, 所以 0=⋅−⋅=∂∂+∂∂gl g l g T g l T l ππ. 3. 设)11(y x e z +−=, 求证z yz y x z x 222=∂∂+∂∂. 解 因为211(1xe x z y x ⋅=∂∂+−, 2)11(1y e y z y x ⋅=∂∂+−, 所以 z e e y z y x z x y x y x 2)11()11(22=+=∂∂+∂∂+−+− 4. 设yx y x y x f arcsin )1(),(−+=, 求. )1 ,(x f x解 因为x x x x f =−+=1arcsin )11()1 ,(, 所以1)1 ,()1 ,(==x f dxd x f x . 5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 242x x x z ==∂∂, αtan 1)5,4,2(==∂∂xz , 故4πα=. 6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4−4x 2y 2;解 2384xy x x z −=∂∂, 2222812y x xz −=∂∂; y x y y z 2384−=∂∂, 2222812x y yz −=∂∂; xy y x y yy x z 16)84(232−=−∂∂=∂∂∂. (2)x y z arctan=; 解 22222)(11y x y x y xy x z +−=−⋅+=∂∂, 22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy y z +=⋅+=∂∂, 22222)(2y x xy y z +−=∂∂; 22222222222222)()(2)()(y x x y y x y y x y x y y y x z +−=+−+−=+−∂∂=∂∂∂. (3) z =y x .解 y y x z x ln =∂∂, y y xzx 222ln =∂∂; 1−=∂∂x xy y z , 222)1(−−=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂−−y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, −1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x ,f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0,所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2,f yz (0, −1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyy x xy x z , x xy y x z 122==∂∂, 023∂∂∂yx z , y xy x y x z 12==∂∂∂, 2231y y x z −=∂∂∂. 9. 验证:(1)满足nx e y tkn sin 2−=22xy k t y ∂∂=∂∂; 证明 因为nx e kn kn nx e ty t kn t kn sin )(sin 2222⋅−=−⋅⋅=∂∂−−, nx ne x y t kn cos 2−=∂∂, nx e n xy t kn sin 2222−−=∂∂, nx e kn xy k t kn sin 222−−=∂∂, 所以22x y k t y ∂∂=∂∂. (2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂.证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r x r −=∂∂−=∂∂, 由对称性知32222ry r y r −=∂∂, 32222r z r z r −=∂∂, 因此 322322322222222rz r r y r r x r z r y r x r −+−+−=∂∂+∂∂+∂∂ r r r r r z y x r 23)(332232222=−=++−=.习题8−31. 求下列函数的全微分:(1)yx xy z +=; 解 dy y z dx x z dz ∂∂+∂∂=dy yxx dx y y )()1(2−++=. (2)x ye z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+−=∂∂+∂∂=. (3) 22yx y z +=; 解 因为2/3222322)()(21y x xy y x y x z +−=+−=∂∂−, 2/3222222222)(y x x y x y x y y y x z +=++⋅−+=∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++−=)()(2/322xdy ydx y x x −+−=. (4)u =x yz .解 因为1−⋅=∂∂yz x yz x u , x zx y u yz ln =∂∂, x yx zu yz ln =∂∂, 所以xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=− 2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分.解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x x z, 3221=∂∂==y x y z,所以 dy dx dz y x 323121⋅+===. 3. 求函数xy z =当x =2, y =1, Δx =0.1, Δy =−0.2时的全增量和全微分. 解 因为x y x x y y z −Δ+Δ+=Δ, y x x xy dz Δ+Δ−=12, 所以, 当x =2, y =1, Δx =0.1, Δy =−0.2时,119.0211.02)2.0(1−=−+−+=Δz , 125.0)2.0(211.041−=−+×−=dz . 4. 求函数z =e xy 当x =1, y =1, Δx =0.15, Δy =0.1时的全微分.解 因为y xe x ye y yz x x z dz xy xy Δ+Δ=Δ∂∂+Δ∂∂= 所以, 当x =1, y =1, Δx =0.15, Δy =0.1时,e e e dz 25.01.015.0=⋅+⋅=*5. 计算33)97.1()102(+的近似值.解 设33y x z +=, 由于y y z x x z y x y y x x Δ∂∂+Δ∂∂++≈Δ++Δ+3333)()(332233233y x y y x x y x +Δ+Δ++=, 所以取x =1, y =2, Δx =0.02, Δy =−0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+−⋅⋅+⋅++≈+.*6. 计算(1.97)1.05的近似值(ln2=0.693).解 设z =x y , 由于y yz x x z x x x y y y Δ∂∂+Δ∂∂+≈Δ+Δ+)(y x x x yx x y y y Δ+Δ+=−ln 1, 所以取x =2, y =1, Δx =−0.03, Δy =0.05可得(1.97)1.05≈2−0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cn 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z Δ+Δ+=Δ+Δ=≈Δ, 当x =6, y =8, Δx =0.05, Δy =−0.1时,05.0)1.0805.0686122−=⋅−⋅+≈Δz . 这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h ,ΔV ≈dV =2πRh ΔR +πR 2Δh ,当R =4, h =20, ΔR =Δh =0.1时,ΔV ≈2×3.14×4×20×0.1+3.14×42×0.1≈55.3(cm 3)这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差.解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z Δ⋅∂∂+Δ⋅∂∂≤≈Δ|)|||(122y y x x yx Δ+Δ+=. 令x =7, y =24, |Δx |≤0.1, |Δy |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm . *10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60°±1°, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=. zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈Δ. 令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则 55.2718021278631.0232631.023278=×××+××+××≈πδs , 82.21273sin 786321=⋅⋅⋅=πS , %29.182.212755.27==S s δ, 所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55 m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和. 证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u Δ+Δ≤Δ+Δ=Δ∂∂+Δ∂∂=≈Δ. 所以两数之和的绝对误差|Δu |等于它们各自的绝对误差|Δx |与|Δy |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和.证明 设u =xy , yx v =, 则Δu ≈du =ydx +xdy , 2y xdy ydx dv v −=≈Δ, 由此可得相对误差;ydy x dx xy xdy ydx u du u u +=+=≈Δy y x x y dy x dx Δ+Δ=+≤; y dy x dx yx y xdy ydx v dv v v −=⋅−==Δ2y y x x y dy x dx Δ+Δ=+≤.习题8−41. 设z =u 2−v 2, 而u =x +y , v =x −y , 求x z ∂∂, yz ∂∂. 解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x , yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(−1)=2(u −v )=4y . 2. 设z =u 2ln v , 而yx u =, v =3x −2y , 求x z ∂∂, y z ∂∂. 解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ 31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2yy x x y x y x −+−=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ )2()(ln 222−+−⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x −−−−=. 3. 设z =e x −2y , 而x =sin t , y =t 3, 求dtdz . 解 dtdy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅−⋅+=−− .)6(cos )6(cos 22sin 223t t e t t e t t y x −=−=−− 4. 设z =arcsin(x − y ), 而x +3t , y =4t 3, 求dtdz . 解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x −−−+⋅−−= 232)43(1)41(3t t t −−−=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz . 解 dx dy y z x z dx dz ⋅∂∂+∂∂=xx x e x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+−=a z y e u ax , 而y =a sin x , z =cos x , 求dx du . 解 dxdz dz u dx dy y u x u dx du ⋅∂+⋅∂∂+∂∂= )sin (1cos 11)(222x a e x a a e a z y ae ax ax ax −⋅+−⋅+++−= )sin cos cos sin (122x x a x a x a a e ax ++−+=x e ax sin =. 7. 设y x z arctan =, 而x =u +v , y =u −v , 验证22v u v uv z u z +−=∂∂+∂∂. 证明 )()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂ )()(111)(11222y x y x y y x −⋅++⋅+=)1()()(111)(11222−⋅−⋅++⋅++y x yx y y x 22222v u v u y x y +−=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数):(1) u =f (x 2−y 2, e xy );解 将两个中间变量按顺序编为1, 2号,2122212)()(f ye f x xe f x y x f x u xy xy ′+′=∂∂⋅′+∂−∂⋅′=∂∂, 212)2212)((f xe f y ye f y y x f y u xy xy ′+′−=∂∂⋅′+∂−∂⋅′=∂∂. (2) ,(zy y x f u =; 解 1211)()(f yz y x f y x x f x u ′=∂∂⋅′+∂∂⋅′=∂∂, )()(21z y y f y x y f y u ∂∂⋅′+∂∂′=∂∂2121f z f yx′+′−=,)()(21z y z f z x z f z u ∂∂⋅′+∂∂′=∂∂22f z y ′−=. (3) u =f (x , xy , xyz ).解 yz f y f f xu ⋅′+⋅′+⋅′=∂∂3211321f yz f y f ′+′+′=, 3232f xz f x xz f x f yu ′+′=⋅′+⋅′=∂∂, 33f xy xy f zu ′=⋅′=∂∂. 9. 设z =xy +xF (u ), 而xy u =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅)([])()([yu u F x x y x u u F x u F y x ∂∂′+⋅+∂∂′++= )]([)]()([u F x y u F xy u F y x ′+⋅+′−+= =xy +xF (u )+xy =z +xy .10. 设)(22y x f y z −=, 其中f (u )为可导函数, 验证211y zy z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222′−=⋅′⋅−=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()(′−+=−⋅′⋅−=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+′+′−=∂∂⋅+∂∂⋅211y z zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22xz ∂∂, y x z ∂∂∂2, 22y z ∂∂. 解 令u =x 2+y 2, 则z =f (u ),f x xu u f x z ′=∂∂′=∂∂2)(, f y y u u f y z ′=∂∂′=∂∂2)(, f x f x u f x f xz ′′+′=∂∂⋅′′+′=∂∂2224222,f xy yu f x y x z ′′=∂∂⋅′′=∂∂∂422, f y f y u f y f y z ′′+′=∂∂⋅′′+′=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数): (1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).u f y vf y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0, vf u f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1. 因为f (u , v )是u 和v 的函数, 所以u f ∂∂和v f ∂∂也是u 和v 的函数, 从而u f ∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数.)()()(22u f x y uf y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂ 222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=, )(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yv v u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂= v u f y uf xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(, )()()()(22v f y u f y x vf u f x y y z y y z ∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ yv v f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)( 1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=vf x u v f v u f x u f x2222222v f v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =; 解 令u =x , yx v =, 则z =f (u , v ). v f y u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1, vf y xdy dv v f y z ∂∂⋅−=⋅∂∂=∂∂2. 因为f (u , v )是u 和v 的函数, 所以u f ∂∂和v f ∂∂也是u 和v 的函数, 从而u f ∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xv v f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂= 22222212v f y v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=, 1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂)(1)1()(v f y y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂= yv v f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅−∂∂⋅∂∂∂=22211 221v f y x v f y v u f y x ∂∂⋅−∂∂⋅−∂∂∂⋅−= ()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅−∂∂⋅−∂∂=∂∂∂∂=∂∂22423222322vf y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅−∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1′⋅y 2+f 2′⋅2xy =y 2f 1′+2xyf 2′,z y =f 1′⋅2xy +f 2′⋅x 2=2xyf 1′+x 2f 2′;z xx =y 2[f 11′′⋅y 2+f 12′′⋅2xy ]+2yf 2′′+2xy [f 21′′⋅y 2+f 22′′⋅2xy ] =y 4f 11′′+2xy 3f 12′′+2yf 2′′+2xy 3f 21′′+4x 2y 2 f 22′′=y 4f 11′′+4xy 3f 12′′+2yf 2′′+4x 2y 2 f 22′′,z xy =2y f 1′+y 2[f 11′′⋅2xy +f 12′′⋅x 2]+2xf 2′+2xy [f 21′′⋅2xy +f 22′′⋅x 2] =2y f 1′+2xy 3f 11′′+x 2y 2 f 12′′+2xf 2′+4x 2y 2f 21′′+2x 3yf 22′′ =2y f 1′+2xy 3f 11′′+5x 2y 2 f 12′′+2xf 2′+2x 3yf 22′′,z yy =2xf 1′+2xy [f 11′′⋅2xy +f 12′′⋅x 2]+x 2[f 21′′⋅2xy +f 22′′⋅x 2] =2xf 1′+4x 2y 2f 11′′+2x 3y f 12′′+2x 3yf 21′′+x 4f 22′′=2xf 1′+4x 2y 2f 11′′+4x 3y f 12′′+x 4f 22′′.(4) z =f (sin x , cos y , e x +y ).解 z x =f 1′⋅cos x + f 3′⋅e x +y =cos x f 1′+e x +y f 3′,z y =f 2′⋅(−sin y )+ f 3′⋅e x +y =−sin y f 2′+e x +y f 3′,z xx =−sin x f 1′+cos x ⋅(f 11′′⋅cos x + f 13′′⋅e x +y )+e x +y f 3′+e x +y (f 31′′⋅cos x + f 33′′⋅e x +y ) =−sin x f 1′+cos 2x f 11′′+e x +y cos x f 13′′+e x +y f 3′+e x +y cos x f 31′′+e 2(x +y ) f 33′′ =−sin x f 1′+cos 2x f 11′′+2e x +y cos x f 13′′+e x +y f 3′+e 2(x +y ) f 33′′, z xy =cos x [f 12′′⋅(−sin y )+ f 13′′⋅e x +y ]+e x +y f 3′+e x +y [f 32′′⋅(−sin y )+ f 33′′⋅e x +y ] =−sin y cos x f 12′′+e x +y cos x f 13′+e x +y f 3′−e x +y sin y f 32′+e 2(x +y )f 33′ =−sin y cos x f 12′′+e x +y cos x f 13′′+e x +y f 3′−e x +y sin y f 32′′+e 2(x +y )f 33′′, z yy =−cos y f 2′−sin y [f 22′′⋅(−sin y )+ f 23′′⋅e x +y ]+e x +y f 3′+e x +y [f 32′′⋅(−sin y )+ f 33′′⋅e x +y ] =−cos y f 2′+sin 2y f 22′′−e x +y sin y f 23′′+e x +y f 3′−e x +y sin y f 32′′+ f 33′′⋅e 2(x +y ) =−cos y f 2′+sin 2y f 22′′−2e x +y sin y f 23′′+e x +y f 3′+f 33′′⋅e 2(x +y ).13. 设u =f (x , y )的所有二阶偏导数连续, 而3t s x −=, 3t s y +=, 证明2222)()()()(t u s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321y u x u t yy u t x x u t u ∂∂⋅+∂∂⋅−=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂−+∂∂+∂∂=∂∂+∂∂22)()(y u x u ∂∂+∂∂=. 又因为)2321()(2yu x u s s u s s u ∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ (23)(212222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= 2321(23)2321(212222y u x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅= 222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(2yu x u t t u t t u∂∂⋅+∂∂⋅−∂∂=∂∂∂∂=∂∂ )(21)(232222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂−= )2123(21)2123(232222y u x y u y x u x u ∂∂⋅+∂∂∂⋅−+∂∂∂⋅+∂∂⋅−−=22222412343y uy x u x u ∂∂⋅+∂∂∂⋅−∂∂⋅=,所以 22222222y u x u t u s u ∂∂+∂∂=∂∂+∂∂.习题8−51. 设sin y +e x −xy 2=0, 求dxdy . 解 令F (x , y )=sin y +e x −xy 2, 则F x =e x −y 2, F y =cos y −2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222−−=−−−=−=.2. 设x y y x arctan ln 22=+, 求dxdy. 解 令xyy x y x F arctan ln ),(22−+=, 则22222222)()(11221y x y x xy x y y x x y x F x ++=−⋅+−+⋅+=,22222221)(11221yx x y x xy y x y y x F y +−=⋅+−+⋅+=,yx y x F F dx dyy x −+=−=. 3. 设022=−++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(−++=, 则 xyz yz F x −=1, xyzxz F y −=2, xyz xyF z −=1,xy xyz xyz yz F F x z z x −−=−=∂∂, xy xyz xyz xz F F y zz y −−=−=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及yz ∂∂, 解 令yz z x z y x F ln ),,(−=, 则z F x 1=, y yzyz F y 1)(12=−⋅−=, 2211z z x y y z z x F z +−=⋅−−=,所以 z x z F F x z z x +=−=∂∂, )(2z x y z F F y z z y +=−=∂∂.5. 设2sin(x +2y −3z )=x +2y −3z , 证明1=∂∂+∂∂yz x z证明 设F (x , y , z )=2sin(x +2y −3z )−x −2y +3z , 则 F x =2cos(x +2y −3z )−1,F y =2cos(x +2y −3z )⋅2−2=2F x , F z =2cos(x +2y −3z )⋅(−3)+3=−3F x ,313=−−=−=∂∂x x z x F F F F x z , 3232=−−=−=∂∂x x z y F F F F y z ,于是 13231=+=−−=∂∂+∂∂z z z x F FF F yz x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1−=∂∂⋅∂∂⋅∂∂xz z yy x .解 因为x y F F y x −=∂∂, y z F F zy −=∂∂, z x F F x z−=∂∂,所以 1()()(−=−⋅−⋅−=∂∂⋅∂∂⋅∂∂z x y z x y F F F F F F xz z yy x .7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx −az , cy −bz )=0 所确定的函数z =f (x , y )满足c yz b x z a =∂∂+∂∂.证明 因为v u uv u u b a c b a c x z ϕϕϕϕϕϕ+=⋅−⋅−⋅−=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅−⋅−⋅−=∂∂,所以 c b a c b b a c a y z b x z a v u vv u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z−xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z −xyz , 则F x =−yz , F z =e z −xy , xye yzF F x z z x −=−=∂∂,222)()()()(xy e y x z e yz xy e x z y x z x x z z z z −−∂∂−−∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y z z z −−−−+=32232)(22xy e e z y z xy ze y z zz −−−=. 9. 设z 3−3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3−3xyz −a 3, 则xy z yz xy z yz F F x z z x −=−−−=−=∂∂22333, xyz xz xy z xz F F y z z y −=−−−=−=∂∂22333, )()(22xyz yzy x z y y x z −∂∂=∂∂∂∂=∂∂∂222)()2())((xy z x y z z yz xy z yz y z −−∂∂−−∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz y z −−−−−⋅−+=322224)()2(xy z y x xyz z z −−−=.10. 求由下列方程组所确定的函数的导数或偏导数:(1)设, 求⎩⎨⎧=+++=203222222z y x y x z dx dy , dx dz; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧−=+−=−xdx dz z dxdy y xdx dz dx dy y 3222.解方程组得)13(2)16(++−=∂∂z y z x x y , 13+=z x dx dz.(2)设, 求⎩⎨⎧=++=++10222z y x z y x dz dx ,dz dy ;解 视x =x (z ), y =y (z ), 方程两边对z 求导得⎪⎩⎪⎨⎧=++=++022201z dz dy y dzdx x dz dy dz dx , 即⎪⎩⎪⎨⎧−=+−=+zdz dy y dz dx x dz dy dz dx 2221.解方程组得y x z y z x −−=∂∂, yx xz z y −−=∂∂. (3)设, 其中f , g 具有一阶连续偏导数, 求⎩⎨⎧−=+=),(),(2y v x u g v y v ux f u x u ∂∂,x v ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅′+−∂∂⋅′=∂∂∂∂⋅′+∂∂+⋅′=∂∂x v yv g x u g x v x v f x u x u f x u 21212)1()( , 即⎪⎩⎪⎨⎧′=∂∂⋅⋅−′+∂∂′′′−=∂∂⋅′+∂∂−′121121)12()1(g x v g yv x u g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ′′−−′−′′′−−′′−=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ′′−−′−′−′+′′=∂∂.(4)设, 求⎩⎨⎧−=+=v u e y v u e x u u cos sin x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得, 即, ⎩⎨⎧+−=++=vdv u vdu du e dy vdv u vdu du e dx uu sin cos cos sin ⎩⎨⎧=+−=++dy vdv u du v e dxvdv u du v e u u sin )cos (cos )sin (从中解出du , dv 得dy v v e v dxv v e v du u u 1)cos (sin cos 1)cos (sin sin +−−++−=, v v e u e v dx v v e u e v dv u uu u ]1)cos (sin [sin ]1)cos (sin [cos +−+++−−=,从而1)cos (sin sin +−=∂∂v v e v x u u , 1)cos (sin cos +−−=∂∂v v e vy u u ,]1)cos (sin [cos +−−=∂∂v v e u e v x v u , ]1)cos (sin [sin +−+=∂∂v v e u e v y v u.11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tF y F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂−∂∂⋅∂∂=. 证明 由方程组可确定两个一元隐函数, 方⎩⎨⎧==0),,(),(t y x F t x f y ⎩⎨⎧==)()(x t t x y y 程两边对x 求导可得⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dxdt t f x f dx dy ,移项得⎪⎩⎪⎨⎧∂∂−=∂∂+⋅∂∂∂∂=⋅∂∂−x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂−=y F t f t F tF y F t fD 的条件下 yF t f t F x Ft f t F x f t Fx F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂−∂∂⋅∂∂=∂∂∂∂−∂∂−∂∂⋅=1.习题8−61. 求曲线x =t −sin t , y =1−cos t , 2sin 4t z =在点)22 ,1 ,12 (−π处的切线及法平面方程.解 x ′(t )=1−cos t , y ′(t )=sin t , 2cos 2)(t t z =′. 因为点)22 ,1 ,12 (−π所对应的参数为2 π=t , 故在点)22 ,1 ,12 (−π处的切向量为)2 ,1 ,1(=T .因此在点)22 ,1 ,12(−π处, 切线方程为22211121−=−=−+z y x π, 法平面方程为0)22(2)1(1)12(1=−+−⋅++−⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程. 解 2)1(1)(t t x +=′, 21)(t t y −=′, z ′(t )=2t .在t =1所对应的点处, 切向量)2 ,1 ,41(−=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为21124121−=−−=−z y x , 即8142121−=−−=−z y x ; 法平面方程为0)1(2)2()21(41=−+−−−z y x , 即2x −8y +16z −1=0.3. 求曲线y 2=2mx , z 2=m −x 在点(x 0, y 0, z 0)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m −x 的两边 对x 求导, 得m dx dyy22=, 12−=dxdz z , 所以y m dx dy=, z dx dz 21−=.曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m −=T , 所求的切线方程为000211z z z y m y y x x −−=−=−, 法平面方程为0)(21)()(00000=−−−+−z z z y y y m x x . 4. 求曲线在点(1, 1, 1)处的切线及法平面方程.⎩⎨⎧=−+−=−++0453203222z y x x z y x 解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+−=−++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=−+−=+2533222dxdz dx dy x dx dz z dx dy y .解此方程组得z y z x dx dy 61015410−−−−=, z y y x dx dz 610946−−−+=. 因为169)1,1,1(=dx dy, 161)1,1,1(−=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111−−=−=−z y x , 即1191161−−=−=−z y x ; 法平面方程为0)1(161)1(169)1(=−−−+−z y x , 即16x +9y −z −24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4. 解 已知平面的法线向量为n =(1, 2, 1).因为x ′=1, y ′=2t , z ′=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =−1, 31−=t . 于是所求点的坐标为(−1, 1, −1)和)271 ,91 ,31(−−. 6. 求曲面e z −z +xy =3在点(2,1,0)处的切平面及法线方程.解 令F (x , y , z )=e z −z +xy −3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z −1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x −2)+2(y −1)+0⋅(z −0)=0, 即x +2y −4=0,法线方程为02112−=−=−z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2−1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x −x 0)+by 0(y −y 0)+cz 0(z −z 0)=0,即 , 202020000cz by ax z cz y by x ax ++=++法线方程为00000cz z z by y y ax x x −=−=−.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x −y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2−1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, −1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =−=, 即z x 21=, z y 41−=, 代入椭球面方程得1)4(2)2(222=+−+z z z , 解得1122±=z , 则1122±=x , 11221∓=y . 所以切点坐标为)1122,11221,112(±±∓. 所求切平面方程为0)1122(2)11221()112(=±+−±z y x ∓, 即 2112±=+−z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(−1, −2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2−16, 则点(−1, −2, 3)处的法向量为n 2=(F x , F y , F z )|(−1, −2, 3)=(6x , 2y , 2z )|(−1, −2, 3)=(−6, −4, 6).点(−1, −2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F −++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=−+−+−z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8−71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数 解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故)cos ,(cos 23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy ′=4, 解得yy 2=′. 在抛物线y 2=4x 上点(1, 2)处, 切线的斜率为y ′(1)=1, 切向量为l =(1, 1), 单位切向量为)cos ,(cos )21 ,21(βα==l e . 又因为31 1)2,1()2,1(=+=∂∂y x x z , 31 1)2,1()2,1(=+=∂∂y x y z , 故所求方向导数为3221312131cos cos =⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 3. 求函数)(12222b y a x z +−=在点)2,2(b a 处沿曲线12222=+b y a x 在这点的内法线方向的方向导数.解 令1),(2222−+=b y a x y x F , 则22a x F x =, 22b y F y =. 从而点(x , y )处的法向量为)2 ,2() ,(22by a xF F y x ±=±=n . 在)2,2(b a 处的内法向量为 )2 ,2()2 ,2()2,2(22b a b y a x b a −=−=n , 单位内法向量为)cos ,(cos ,(2222βα=+−+−=b a a b a b n e . 又因为a a x x zb a b a 222,2(2)2,2(−=−=∂∂, bb y y z b a b a 222,2(2)2,2(−=−=∂∂, 所以 222222222cos cos b a abb a a b b a b a y z x z n z +=+⋅++⋅=∂∂+∂∂=∂∂βα. 4. 求函数u =xy 2+z 3−xyz 在点(1, 1, 2)处沿方向角为3 πα=, 4 πβ=, 3 πγ=的方向的方向导数.解 因为方向向量为)21 ,22 ,21()cos ,cos ,(cos ==γβαl , 又因为 1)()2,1,1(2)2,1,1(−=−=∂∂yz y x u, 0)2()2,1,1()2,1,1(=−=∂∂xz xy y u , 11)3()2,1,1(2)2,1,1(=−=∂∂xy z z u , 所以 5211122021)1(cos cos cos =⋅+⋅+⋅−=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u .5. 求函数u =xyz 在点(5,1,2)处沿从点(5, 1, 2)到点(9, 4, 14)的方向的方向导数.解 因为l =(9−5, 4−1, 14−2)=(4, 3, 12), )1312 ,133 ,134(||==l l e l , 并且 2)2,1,5()2,1,5(==∂∂yz x u , 10)2,1,5()2,1,5(==∂∂xz y u , 5)2,1,5()2,1,5(==∂∂xy z u, 所以 139813125133101342cos cos cos =⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u . 6. 求函数u =x 2+y 2+z 2在曲线x =t , y =t 2, z =t 3上点(1, 1, 1)处, 沿曲线在该点的切线正方向(对应于t 增大的方向)的方向导.解 曲线x =t , y =t 2, z =t 3上点(1, 1, 1)对应的参数为t =1, 在点(1, 1, 1)的切线正向为)3 ,2 ,1()3 ,2 ,1(12===t t t l , )143,142,141(||==l l e l , 又 22)1,1,1()1,1,1(==∂∂x x u , 22)1,1,1()1,1,1(==∂∂y y u , 22)1,1,1()1,1,1(==∂∂z z u, 所以 1412143214221412cos cos cos )1,1,1(=⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u . 7. 求函数u =x +y +z 在球面x 2+y 2+z 2=1上点(x 0, y 0, z 0)处, 沿球面在该点的外法线方向的方向导数.解 令F (x , y , z )=x 2+y 2+z 2−1, 则球面x 2+y 2+z 2=1在点(x 0, y 0, z 0)处的外法向量为)2 ,2 ,2() , ,(000),,(000z y x F F F z y x z y x ==n , )cos ,cos ,(cos ) , ,(||000γβα===z y x n n n e , 又 1=∂∂=∂∂=∂∂zu y u x u , 所以 000000111cos cos cos z y x z y x zu y u x u n u ++=⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβα. 8. 设f (x , y , z )=x 2+2y 2+3z 2+xy +3x −2y −6z , 求grad f (0, 0, 0)及grad f (1, 1, 1).。

高等数学课后答案 第八章 习题详细解答

高等数学课后答案 第八章 习题详细解答

习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆= .任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设12231()d D I x y σ=+⎰⎰其中1{(,)11,22}D x y x y =-≤≤-≤≤;又22232()d D I x y σ=+⎰⎰其中2{(,)01,02}D x y x y =≤≤≤≤.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面223()z x y =+的曲顶柱体1Ω的体积;2I 表示底为2D 、顶为曲面223()z x y =+的曲顶柱体2Ω的体积.由于位于1D 上方的曲面223()z x y =+关于yOz 面和zOx 面均对称,故yOz 面和zOx 面将1Ω分成四个等积的部分,其中位于第一卦限的部分即为2Ω.由此可知124I I =.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3)12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D D D= ,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。

高等数学课后习题答案第八章1

高等数学课后习题答案第八章1

高等数学课后习题答案第八章1第八章习题解答节8.1部分习题解答 5、求极限(1)、101011l i m 2201=+-=+-→→yx xy y x (2)、xy y x y x 1sin)(lim 0+→→。

由y x xyy x +≤+≤1sin )(0,而0)(lim 00=+→→y x y x 所以01sin)(lim 00=+→→xyy x y x (3)、2ln 214)02ln()sin ln(lim2202=++=++→→y x y x y x (4)、=+-→→xy xy y x 42lim 041421)42(lim 00-=+-=++-→→xy xy xy y x (5)、110c o s 1c o s l i m000==++→→e y x y e x y x (6)、=++-→→xy y x ey x y x )()cos(1lim22220=++→→xy y x ey x y x )()(21sin 2lim 222220 )(21)(21sin lim 222200y x y x y x ++→→0101)(21sin lim 2200=?=+?→→xy y x e y x 6、证明下列极限不存在(1)、yx yx y x -+→→00l i m 证明:取路径0=x 有=-+→→y x y x y x 00lim1lim0-=-→=yyy x 取路径0=y 有=-+→→y x y x y x 00lim1lim 00=→=xx x y ,所以y x yx y x -+→→00lim 不存在(2)、xy x x y x -+→→2220l i m证明:取路径x y =有xy x x y x -+→→22200lim x x x y x -=→→2202lim 0142lim 00=-=→→x x y x 取路径x y =有x y x x y x -+→→2220 0lim 1lim 220==→→x x y x ,所以xy x x y x -+→→22200lim 不存在。

高数教学资料 第八章大作业答案

高数教学资料 第八章大作业答案

5 .若 在 点 (x 0 ,y 0 ) 处 f(x ,y ) 可 微 , 且 点 (x 0 ,y 0 ) 为 极 值 点 , 则 该 点
必 为 ( A )
A.驻点; B.最值点;
C.拐点;
D.以上都不对.
注意 可 微 偏 导 数 存 在 , ( 课 本 P 3 1 3 定 理 1 )
Q ( x 0 , y 0 ) 为 极 值 点 , 所 以 该 点 为 驻 点 。
则 f ( x, y)在点 P0( x0 , y0 )处是否取得极值的条件如下: (1) AC B2 0时具有极值,
当 A 0时有极大值, 当 A 0时有极小值;
(2) AC B2 0时没有极值; (3) AC B2 0时可能有极值,也可能没有极值,还需
另作讨论.
三、计算题
1、求极限:
2 xy4 lim
(x, y)(0,0)
xy
解:
原 式
(2 xy4)(2 xy4) lim
(x,y) (0,0)
xy(2 xy4)
lim
1
2 (x,y)(0,0) xy4
lim
1
2 (x,y)(0,0) 004
1 4
三 、 计 算 题
2 求 由 方 程 x ln (y z ) 确 定 的 函 数 z z (x ,y ) 的 一 阶 , 二 阶 偏 导 数
k 1 k2 ,
ykx
其值随k的不同而变化,故极限不存在.
(x,y l) i m (0 ,0 )x 2x yy2f(0 ,0 ) 在 (0 ,0 )不 连 续
(2)fx(0,0) lixm 0f(0 x, 0 x )f(0,0) lixm 0(0 (0 x )x 2) 0 0 x2f(0,0)0,

高等数学课后习题及参考答案(第八章)

高等数学课后习题及参考答案(第八章)

高等数学课后习题及参考答案(第八章)习题8-11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界. (1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为 {(x , y )|x =0或y =0}. (2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为 {(x , y )|1≤x 2+y 2≤4}, 边界为 {(x , y )|x 2+y 2=1或x 2+y 2=4}. (3){(x , y )|y >x 2}; 解 开集, 区域, 无界集, 导集为 {(x , y )| y ≥x 2}, 边界为 {(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}. 解 闭集, 有界集, 导集与集合本身相同, 边界为 {(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ).解 )(tan )()()()(),(22ty tx ty tx ty tx ty tx f ⋅⋅-+=),()tan (2222y x f t y x xy y x t =-+=.3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v =F (x , u )+F (x , v )+F (y , u )+F (y , v ). 4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ). 解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域: (1)z =ln(y 2-2x +1); 解 要使函数有意义, 必须 y 2-2x +1>0, 故函数的定义域为D ={(x , y )|y 2-2x +1>0}. (2)y x y x z -++=11;解 要使函数有意义, 必须 x +y >0, x -y >0, 故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须 y ≥0,0≥-y x 即y x ≥, 于是有 x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }. (4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须 y -x >0, x ≥0, 1-x 2-y 2>0, 故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221r z y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}. (6)22arccos y x z u +=.解 要使函数有意义, 必须 x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限: (1)22)1,0(),(1lim y x xyy x +-→;解110011lim22)1,0(),(=+-=+-→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y yx . (3)xyxy y x 42lim )0,0(),(+-→; 解xy xy y x 42lim)0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1lim )0,0(),(-=++-=→xy y x .(4)11lim )0,0(),(-+→xy xyy x ;解11lim)0,0(),(-+→xy xyy x )11)(11()11(lim)0,0(),(-+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xyxy xy y x y x . (5)yxy y x )sin(lim)0,2(),(→;解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xy xyy x .(6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 2222)()(21lim )()cos(1lim 22222)0,0(),(2222)0,0(),(yx y x y x y x e y x y x e y x y x ++=++-→→ 0lim 212222)0,0(),(=+=→y x y x e y x (用等价无穷小代换). 7. 证明下列极限不存在: (1)yx yx y x -+→)0,0(),(lim;证明 如果动点p (x , y )沿y =0趋向(0, 0), 则1lim lim00 )0,0(),(==-+→=→x x y x yx x y y x ;如果动点p (x , y )沿x =0趋向(0, 0), 则1lim lim00 )0,0(),(-=-=-+→=→y yy x y x y x y x .因此, 极限yx yx y x -+→)0,0(),(lim不存在.(2)22222)0,0(),()(lim y x y x y x y x -+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0), 则1lim )(lim 44022222 )0,0(),(==-+→=→x x y x y x y x x xy y x ;如果动点p (x , y )沿y =2x 趋向(0, 0), 则044lim )(lim 2440222222 )0,0(),(=+=-+→=→x x x y x y x y x x xy y x .因此, 极限22222)0,0(),()(lim y x y x y x y x -+→不存在.8. 函数xy xy z 2222-+=在何处间断?解 因为当y 2-2x =0时, 函数无意义, 所以在y 2 -2x =0处, 函数xy x y z 2222-+=间断.9. 证明0lim 22)0,0(),(=+→yx xyy x . 证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+,所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x y x xyy x y x .因此 0lim22)0,0(),(=+→yx xyy x . 方法二:证明 因为2||22y x xy +≤, 故22||22222222y x y x y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤-+22|0|2222y x y x xy,所以 0lim22)0,0(),(=+→yx xyy x .10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x -x 0|<δ时, 有|f (x )-f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x -x 0|<δ, 从而|F (x , y )-F (x 0, y 0)|=|f (x )-f (x 0)|<ε, 所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8-21. 求下列函数的偏导数: (1) z =x 3y -y 3x ; 解 323y y x xz -=∂∂,233xy x y z -=∂∂.(2)uvvu s 22+=;解 21)(uv v u v v u u u s -=+∂∂=∂∂,21)(vu u u v v u v v s -=+∂∂=∂∂.(3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理 )ln(21xy y y z =∂∂.(4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅-⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y -=根据对称性可知)]2sin()[cos(xy xy x yz -=∂∂.(5)yx z tan ln =;解 yx y y y x yx x z 2csc 21sec tan 12=⋅⋅=∂∂,yx y x y x y x yx y z 2csc 2sec tan 1222-=-⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(--+=⋅+=∂∂y y xy y y xy y xz ,]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xyxy xy y ++++=.(7)zy x u =;解 )1(-=∂∂z y x zy x u ,x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂,x x zy z y x x z u z yz y ln )(ln 22⋅-=-=∂∂.(8) u =arctan(x -y )z ;解 zz y x y x z x u 21)(1)(-+-=∂∂-, zz y x y x z y u 21)(1)(-+--=∂∂-, zz y x y x y x z u 2)(1)ln()(-+--=∂∂. 2. 设g l T π2=, 试证0=∂∂+∂∂g T g l T l .解 因为lg l T ⋅⋅=∂∂1π,gg g l g T 1)21(223⋅-=⋅-⋅=∂∂-ππ, 所以 0=⋅-⋅=∂∂+∂∂g l g l g T g l T l ππ. 3. 设)11(yx ez +-=, 求证z yz y x z x 222=∂∂+∂∂.解 因为2)11(1x ex z yx ⋅=∂∂+-, 2)11(1y e yz y x ⋅=∂∂+-, 所以 z eeyz y x z x yx yx 2)11()11(22=+=∂∂+∂∂+-+-4. 设y x y x y x f arcsin )1(),(-+=, 求)1 ,(x f x .解 因为x x x x f =-+=1arcsin )11()1 ,(,所以 1)1 ,()1 ,(==x f dx d x f x .5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 因为242x x x z ==∂∂,αtan 1)5,4,2(==∂∂xz ,故 4πα=.6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4-4x 2y 2;解 2384xy x xz -=∂∂, 2222812y x x z -=∂∂; y x y yz 2384-=∂∂, 2222812x y y z -=∂∂;xy y x y yy x z 16)84(232-=-∂∂=∂∂∂. (2)xyz arctan =;解 22222)(11y x y x y xy x z +-=-⋅+=∂∂,22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy yz +=⋅+=∂∂, 22222)(2y x xy y z +-=∂∂;22222222222222)()(2)()(y x x y y x y y x y x y y y x z +-=+-+-=+-∂∂=∂∂∂. (3) z =y x .解 y y xz xln =∂∂, y y x z x 222ln =∂∂; 1-=∂∂x xy yz , 222)1(--=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂--y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, -1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x , f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0, 所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2, f yz (0, -1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyyx xy x z ,x xy y x z 122==∂∂, 023=∂∂∂y x z ,y xy x y x z 12==∂∂∂, 2231y y x z -=∂∂∂. 9. 验证:(1)nx e y tkn sin 2-=满足22xy k t y ∂∂=∂∂;证明 因为nx e kn kn nx e t y t kn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx ne x y tkn cos 2-=∂∂, nx e n x y t kn sin 2222--=∂∂, nx e kn xy k t kn sin 2222--=∂∂,所以 22xyk t y ∂∂=∂∂.(2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂. 证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r xr -=∂∂-=∂∂, 由对称性知32222ry r y r -=∂∂, 32222r z r z r -=∂∂,因此 322322322222222rz r r y r r x r z r y r x r -+-+-=∂∂+∂∂+∂∂ rr r r r z y x r 23)(332232222=-=++-=. 习题8-31. 求下列函数的全微分: (1)yx xy z +=;解 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y y )()1(2-++=.(2)xy e z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+-=∂∂+∂∂=.(3) 22yx y z +=;解 因为2/3222322)()(21y x xy y x y x z +-=+-=∂∂-, 2/3222222222)(y x x y x y x yy y x y z +=++⋅-+=∂∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++-=)()(2/322xdy ydx y x x -+-=.(4)u =x yz . 解 因为1-⋅=∂∂yz x yz x u , x zx yu yz ln =∂∂, x yx z u yz ln =∂∂,所以 xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-.2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分. 解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x xz, 3221=∂∂==y x y z , 所以 dy dx dz y x 323121⋅+===.3. 求函数xyz =当x =2, y =1, ∆x =0.1, ∆y =-0.2时的全增量和全微分. 解 因为xy x x y y z -∆+∆+=∆, y x x x ydz ∆+∆-=12,所以, 当x =2, y =1, ∆x =0.1, ∆y =-0.2时,119.0211.02)2.0(1-=-+-+=∆z , 125.0)2.0(211.041-=-⨯+⨯-=dz .4. 求函数z =e xy 当x =1, y =1, ∆x =0.15, ∆y =0.1时的全微分. 解 因为y xe x ye y yz x x z dz xy xy ∆+∆=∆∂∂+∆∂∂=所以, 当x =1, y =1, ∆x =0.15, ∆y =0.1时, e e e dz 25.01.015.0=⋅+⋅=.*5. 计算33)97.1()102(+的近似值. 解 设33y x z +=, 由于y yz x x z y x y y x x ∆∂∂+∆∂∂++≈∆++∆+3333)()(332233233y x y y x x y x +∆+∆++=, 所以取x =1, y =2, ∆x =0.02, ∆y =-0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+-⋅⋅+⋅++≈+. *6. 计算(1.97)1.05的近似值(ln2=0.693). 解 设z =x y , 由于y yz x x z x x x y y y ∆∂∂+∆∂∂+≈∆+∆+)(y x x x yx x y y y ∆+∆+=-ln 1,所以取x =2, y =1, ∆x =-0.03, ∆y =0.05可得(1.97)1.05≈2-0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cm 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z ∆+∆+=∆+∆=≈∆,当x =6, y =8, ∆x =0.05, ∆y =-0.1时,05.0)1.0805.06(86122-=⋅-⋅+≈∆z .这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h , ∆V ≈dV =2πRh ∆R +πR 2∆h , 当R =4, h =20, ∆R =∆h =0.1时,∆V ≈2⨯3.14⨯4⨯20⨯0.1+3.14⨯42⨯0.1≈55.3(cm 3), 这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差. 解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z ∆⋅∂∂+∆⋅∂∂≤≈∆|)|||(122y y x x y x ∆+∆+=.令x =7, y =24, |∆x |≤0.1, |∆y |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm .*10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60︒±1︒, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=.zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈∆.令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则55.2718021278631.0232631.023278=⨯⨯⨯+⨯⨯+⨯⨯≈πδs ,82.21273sin 786321=⋅⋅⋅=πS ,%29.182.212755.27==S s δ,所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和.证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u ∆+∆≤∆+∆=∆∂∂+∆∂∂=≈∆.所以两数之和的绝对误差|∆u |等于它们各自的绝对误差|∆x |与|∆y |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和. 证明 设u =xy , y x v =, 则∆u ≈du =ydx +xdy ,2yxdyydx dv v -=≈∆, 由此可得相对误差;||||||||y dy x dx xy xdy ydx u du u u +=+=≈∆||||||||yyx x y dy x dx ∆+∆=+≤;||||||||2y dy x dx yxy xdy ydx v dv v v -=⋅-==∆||||||||y yx x y dy x dx ∆+∆=+≤.习题8-41. 设z =u 2-v 2, 而u =x +y , v =x -y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x ,y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(-1)=2(u -v )=4y .2. 设z =u 2ln v , 而y x u =, v =3x -2y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2y y x x y x y x -+-=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2()(ln 222-+-⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x ----=. 3. 设z =e x -2y , 而x =sin t , y =t 3, 求dtdz .解 dt dyy z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅-⋅+=--)6(cos )6(cos 22sin 223t t e t t e t t y x -=-=--.4. 设z =arcsin(x - y ), 而x +3t , y =4t 3, 求dtdz .解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--= 232)43(1)41(3t t t ---=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz .解 dx dy y z x z dx dz ⋅∂∂+∂∂=x xxe x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+-=a z y e u ax , 而y =a sin x , z =cos x , 求dxdu .解 dxdz dz u dx dyy u x u dx du ⋅∂+⋅∂∂+∂∂=)sin (1cos 11)(222x a e x a a e a z y ae ax ax ax -⋅+-⋅+++-= )sin cos cos sin (122x x a x a x a a e ax ++-+=x e ax sin =. 7. 设yx z arctan =, 而x =u +v , y =u -v , 验证22v u v uv z u z +-=∂∂+∂∂. 证明)()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂)()(111)(11222y x yx y y x -⋅++⋅+=)1()()(111)(11222-⋅-⋅++⋅++y x yx y y x22222v u v u y x y +-=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1) u =f (x 2-y 2, e xy );解 将两个中间变量按顺序编为1, 2号, 2122212)()(f ye f x xe f x y x f x u xy xy '+'=∂∂⋅'+∂-∂⋅'=∂∂, 212)2212)((f xe f y y e f y y x f y u xy xy '+'-=∂∂⋅'+∂-∂⋅'=∂∂.(2)) ,(zyy x f u =;解1211)()(f yz y x f y x x f x u '=∂∂⋅'+∂∂⋅'=∂∂, )()(21z yy f y x y f y u ∂∂⋅'+∂∂'=∂∂2121f z f y x '+'-=,)()(21z y z f z x z f z u ∂∂⋅'+∂∂'=∂∂22f zy'⋅-=.(3) u =f (x , xy , xyz ).解 yz f y f f x u ⋅'+⋅'+⋅'=∂∂3211321f yz f y f '+'+'=,3232f xz f x xz f x f y u '+'=⋅'+⋅'=∂∂,33f xy xy f zu '=⋅'=∂∂.9. 设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z yz y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅])([])()([y u u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .10. 设)(22y x f yz -=, 其中f (u )为可导函数, 验证211y z y z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222'-=⋅'⋅-=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()('-+=-⋅'⋅-=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+'+'-=∂∂⋅+∂∂⋅211yz zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22x z ∂∂, y x z ∂∂∂2, 22yz ∂∂. 解 令u =x 2+y 2, 则z =f (u ), f x xu u f x z '=∂∂'=∂∂2)(,f y yu u f y z '=∂∂'=∂∂2)(,f x f x u f x f x z ''+'=∂∂⋅''+'=∂∂2224222,f xy yu f x y x z ''=∂∂⋅''=∂∂∂422, f y f yu f y f y z ''+'=∂∂⋅''+'=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数):(1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).ufy v f y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0,vfu f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )()()(22uf x y u f y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=,)(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yvv u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂=v u fy u f xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(,)()()()(22vf y u f y x v f u f x y y z y y z∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ y vv f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)(1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=v fx u v f v u f x u f x 2222222vf v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =;解 令u =x ,yx v =, 则z =f (u , v ).v fy u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1,vfy x dy dv v f y z ∂∂⋅-=⋅∂∂=∂∂2.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和v f ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xvv f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂=22222212vfy v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=,)1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂ )(1)1()(vfy y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂=y vv f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅-∂∂⋅∂∂∂=222112232221v f y x v f y v u f y x ∂∂⋅-∂∂⋅-∂∂∂⋅-= )()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅-∂∂⋅-∂∂=∂∂∂∂=∂∂ 22423222322v f y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅-∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1'⋅y 2+f 2'⋅2xy =y 2f 1'+2xyf 2',z y=f1'⋅2xy+f2'⋅x2=2xyf1'+x2f2';z xx=y2[f11''⋅y2+f12''⋅2xy]+2yf2''+2xy[f21''⋅y2+f22''⋅2xy]=y4f11''+2xy3f12''+2yf2''+2xy3f21''+4x2y2 f22''=y4f11''+4xy3f12''+2yf2''+4x2y2 f22'',z xy=2y f1'+y2[f11''⋅2xy+f12''⋅x2]+2xf2'+2xy[f21''⋅2xy+f22''⋅x2]=2y f1'+2xy3f11''+x2y2f12''+2xf2'+4x2y2f21''+2x3yf22''=2y f1'+2xy3f11''+5x2y2f12''+2xf2'+2x3yf22'',z yy=2xf1'+2xy[f11''⋅2xy+f12''⋅x2]+x2[f21''⋅2xy+f22''⋅x2]=2xf1'+4x2y2f11''+2x3y f12''+2x3yf21''+x4f22''=2xf1'+4x2y2f11''+4x3y f12''+x4f22''.(4) z=f(sin x, cos y,e x+y).解z x=f1'⋅cos x+ f3'⋅e x+y=cos x f1'+e x+y f3',z y=f2'⋅(-sin y)+ f3'⋅e x+y=-sin y f2'+e x+y f3',z xx=-sin x f1'+cos x⋅(f11''⋅cos x+ f13''⋅e x+y)+e x+y f3'+e x+y(f31''⋅cos x+ f33''⋅e x+y)=-sin x f1'+cos2x f11''+e x+y cos x f13''+e x+y f3'+e x+y cos x f31''+e2(x+y) f33''=-sin x f1'+cos2x f11''+2e x+y cos x f13''+e x+y f3'+e2(x+y) f33'', z xy=cos x[f12''⋅(-sin y)+ f13''⋅e x+y]+e x+y f3'+e x+y [f32''⋅(-sin y)+ f33''⋅e x+y]=-sin y cos x f12''+e x+y cos x f13'+e x+y f3'-e x+y sin y f32'+e2(x+y)f33'=-sin y cos x f12''+e x+y cos x f13''+e x+y f3'-e x+y sin y f32''+e2(x+y)f33'',z yy=-cos y f2'-sin y[f22''⋅(-sin y)+ f23''⋅e x+y]+e x+y f3'+e x+y[f32''⋅(-sin y)+ f33''⋅e x+y]=-cos y f 2'+sin 2y f 22''-e x +y sin y f 23'' +e x +y f 3'-e x +y sin y f 32''+ f 33''⋅e 2(x +y )=-cos y f 2'+sin 2y f 22''-2e x +y sin y f 23''+e x +y f 3'+f 33''⋅e 2(x +y ). 13. 设u =f (x , y )的所有二阶偏导数连续, 而23t s x -=,23ts y +=, 证明2222)()()()(tu s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂.证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321yu x u t yy u t x x u t u ∂∂⋅+∂∂⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂22)()(yu x u ∂∂+∂∂=.又因为)2321()(22yu x u s s u s s u∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ )(23)(21222222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= )2321(23)2321(21222222yu x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅=22222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(22yu x u t t u t t u ∂∂⋅+∂∂⋅-∂∂=∂∂∂∂=∂∂ )(21)(23222222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂-= )2123(21)2123(23222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅-+∂∂∂⋅+∂∂⋅--= 22222412343yu y x u x u ∂∂⋅+∂∂∂⋅-∂∂⋅=, 所以 22222222yu x u t u s u ∂∂+∂∂=∂∂+∂∂. 习题8-51. 设sin y +e x-xy 2=0, 求dxdy.解 令F (x , y )=sin y +e x -xy 2, 则F x =e x -y 2, F y =cos y -2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222--=---=-=. 2. 设xy y x arctan ln 22=+, 求dx dy.解 令xy y x y x F arctan ln ),(22-+=, 则22222222)()(11221y x y x x y xy y x x y x F x ++=-⋅+-+⋅+=, 22222221)(11221yx x y x xy y x y y x F y +-=⋅+-+⋅+=, y x y x F F dx dyy x -+=-=. 3. 设022=-++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(-++=, 则 xyz yz F x -=1, xyzxz F y -=2, xyz xyF z -=1, xy xyz xyz yz F F x z z x --=-=∂∂, xy xyz xyz xz F F y z z y --=-=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及y z ∂∂,解 令yz z x z y x F ln ),,(-=, 则 z F x 1=, y y z y z F y 1)(12=-⋅-=, 2211z z x y yz z x F z +-=⋅--=, 所以 z x z F F x z z x +=-=∂∂, )(2z x y z F F yz z y +=-=∂∂.5. 设2sin(x +2y -3z )=x +2y -3z , 证明1=∂∂+∂∂y z x z证明 设F (x , y , z )=2sin(x +2y -3z )-x -2y +3z , 则F x =2cos(x +2y -3z )-1, F y =2cos(x +2y -3z )⋅2-2=2F x ,F z =2cos(x +2y -3z )⋅(-3)+3=-3F x ,313=--=-=∂∂x x z x F F F F x z ,3232=--=-=∂∂x x z y F F F F y z , 于是 13231=+=--=∂∂+∂∂z z z x F FF F y z x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1-=∂∂⋅∂∂⋅∂∂x z z yy x .解 因为x y F F y x -=∂∂, y z F F z y -=∂∂, zx F F x z -=∂∂, 所以 1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx -az , cy -bz )=0 所确定的函数z =f (x , y )满足 c y z b x z a =∂∂+∂∂.证明 因为vu u v u u b a c b a c x z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,所以 c b a c b b a c a y z b x z a vu v v u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z-xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z -xyz , 则F x =-yz , F z =e z-xy , xye yz F F x z zz x -=-=∂∂, 222)()()()(xy e y x z e yz xy e x z y x z x x z z z z --∂∂--∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y zz z z ----+=32232)(22xy e e z y z xy ze y z zz ---=. 9. 设z 3-3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3-3xyz -a 3, 则 xy z yzxy z yz F F x z z x -=---=-=∂∂22333,xyz xz xy z xz F F y z z y -=---=-=∂∂22333, )()(22xyz yz y x z y y x z -∂∂=∂∂∂∂=∂∂∂ 222)()2())((xy z x yz z yz xy z y z y z --∂∂--∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz yz -----⋅-+=322224)()2(xy z y x xyz z z ---=. 10. 求由下列方程组所确定的函数的导数或偏导数: (1)设⎩⎨⎧=+++=203222222z y x y x z , 求dx dy , dx dz ; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得 ⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧-=+-=-xdx dzz dxdy y x dx dz dx dy y 3222.解方程组得 )13(2)16(++-=∂∂z y z x x y , 13+=z x dx dz.(2)设⎩⎨⎧=++=++10222z y x z y x , 求dz dx ,dz dy ; 解 视x =x (z ), y =y (z ), 方程两边对z 求导得 ⎪⎩⎪⎨⎧=++=++022201z dz dy y dz dx x dz dy dz dx , 即⎪⎩⎪⎨⎧-=+-=+zdz dy y dzdxx dz dy dz dx 2221.解方程组得y x z y z x --=∂∂, yx xz z y --=∂∂.(3)设⎩⎨⎧-=+=),(),(2y v x u g v y v ux f u , 其中f , g 具有一阶连续偏导数, 求x u ∂∂,xv ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅'+-∂∂⋅'=∂∂∂∂⋅'+∂∂+⋅'=∂∂x v yv g x u g xv x vf x u x u f x u 21212)1()( , 即 ⎪⎩⎪⎨⎧'=∂∂⋅⋅-'+∂∂'''-=∂∂⋅'+∂∂-'121121)12()1(g x v g yv xu g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ''--'-'''--''-=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ''--'-'-'+''=∂∂.(4)设⎩⎨⎧-=+=vu e y v u e x u u cos sin , 求x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得⎩⎨⎧+-=++=vdv u vdu du e dy vdv u vdu du e dx u u sin cos cos sin , 即 ⎩⎨⎧=+-=++dy vdv u du v e dx vdv u du v e u u sin )cos (cos )sin (, 从中解出du , dv 得dy v v e v dx v v e v du u u 1)cos (sin cos 1)cos (sin sin +--++-=, dy v v e u e v dx v v e u e v dv u u u u ]1)cos (sin [sin ]1)cos (sin [cos +-+++--=, 从而 1)cos (sin sin +-=∂∂v v e v x u u , 1)cos (sin cos +--=∂∂v v e v y u u , ]1)cos (sin [cos +--=∂∂v v e u e v x v u u , ]1)cos (sin [sin +-+=∂∂v v e u e v y v u u . 11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tFy F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂-∂∂⋅∂∂=. 证明 由方程组⎩⎨⎧==0),,(),(t y x F t x f y 可确定两个一元隐函数⎩⎨⎧==)()(x t t x y y , 方程两边对x 求导可得 ⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dx dt t f x f dx dy , 移项得 ⎪⎩⎪⎨⎧∂∂-=∂∂+⋅∂∂∂∂=⋅∂∂-x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂-=y F t f t F t F y F t fD 的条件下 yF t f t F x F t f t F x f t F x F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂-∂∂⋅∂∂=∂∂∂∂-∂∂-∂∂⋅=1.习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12 (-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T . 因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程. 解 令F (x , y , z )=e z -z +xy -3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为 ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++,法线方程为00000cz z z by y y ax x x -=-=-.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z ,解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为 n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6). 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8-71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数.解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故 )cos ,(cos )23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy '=4, 解得y y 2='.。

高等数学课后习题解答 上海交通大学出版社 第三版 习题8解答

高等数学课后习题解答 上海交通大学出版社 第三版 习题8解答

第八章 多元函数的定义1.求下列函数的定义域,并作图表示:(1)arcsin 3xz =+ (2)()2ln 48;z y x =-+(3)z x = (4)z =(5))0;z R r =>>(6)z =解答: 本题图略(1)30,03,0,0;x x y y -≤≤≤≤⎧⎧⎨⎨≤≥⎩⎩ (2)()242y x >-;(3),0x y <+∞≤<+∞;(4)x ≥且0y ≥;(5)2222r x y R <+≤; (6) 1.xy >所属章节:第八章第一节 难度:一级2.试用不等式表示由抛物线2y x =和2y x =所围成的区域(含边界)。

解答:201,x x y ≤≤≤≤ 所属章节:第八章第一节 难度:一级3.设(),,x f x y xy y=+求1,32f ⎛⎫⎪⎝⎭及()1,1.f - 解答:()15,3,1,1 2.23f f ⎛⎫=-=- ⎪⎝⎭所属章节:第八章第一节 难度:一级4.设()22,tan ,xf x y x y xy y=+-求(),.f tx ty解答:()()2,,.f tx ty t f x y = 所属章节:第八章第一节 难度:一级5.设22,,x f x y x y y ⎛⎫+=- ⎪⎝⎭求(),.f x y解答: 令11uv u x y x v xv u y y v ⎧=+⎧=⎪⎪⎪+⇒⎨⎨=⎪⎪=⎩⎪+⎩,代入原式得 222(1)(,)()()111uv u u v f u v v v v -=-=+++,即2(1)(,)1x y f x y y -=+注:如果题目是“设22,,y f x y x x y ⎛⎫=⎪⎭-+ ⎝求(),.f x y ”则答案为令11u u x y x v yuv v y x v ⎧=+=⎧⎪⎪⎪+⇒⎨⎨=⎪⎪=⎩⎪+⎩ ,代入原式得 222(1)(,)()()111u uv u v f u v v v v -=-=+++,即2(1)(,)1x y f x y y -=+。

高等数学下册第八章习题答案详解

高等数学下册第八章习题答案详解

高等数学下册第八章习题答案详解1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1) {(,)|0}x y x ≠; (2)22{(,)| 14}x y xy ≤<+;(3)2{(,)|}x y y x <;(4)2222{(,)|(1)1}{(,)|(1)1}x y x y x y x y ≤≤-+++.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}. (2)既非开集又非闭集,有界集, 聚点集:{(x ,y )|1≤x 2+y 2≤4},边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )| x 2+y 2=4}. (3)开集、区域、无界集, 聚点集:{(x ,y )|y ≤x 2}, 边界:{(x ,y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}. 2.已知22tan (,)f x y x y xy x y=+-,试求(,)f tx ty . 解:222(,)()()tan (,).tx f tx ty tx ty tx ty t f x y ty=+-⋅=3.已知(,,)wu vf u v w u w +=+,试求(,,)f x y x y xy +-.解:f (x +y , x -y , xy ) =(x +y )xy +(xy )x +y +x -y=(x +y )xy +(xy )2x.4.求下列各函数的定义域:(1)2ln(21)z y x =-+;(2) z =;(3)z =;(4) u =;(5) z =;(6) ln()z y x =-;(7) u =.解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥习题8-21.求下列各极限:(1)1y x y →→; (2)222()2211lim(1)x y x y xy +→∞→++;(3)00x y →→;(4)x y →→(5)00sin lim x y xy x →→; (6)22222201cos()lim()e xy x y x y x y +→→-++.解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=001.4x y →→=- (4)原式=02.x y →→=(5)原式=0sin lim 100.x y xyy xy→→⋅=⨯= (6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+ 2.判断下列函数在原点(0,0)O 处是否连续:(1)33222222sin(),00,0x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩;(2)33333333sin(),00,0x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩;(3) 222222222,0()0,0x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩.解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==. 故函数在O (0,0)处连续.(2)00sin lim lim 1(0,0)0x u y uz z u→→→==≠= 故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故0lim x y z →→不存在.故函数z 在O (0,0)处不连续. 3.指出下列函数在何处间断:(1)233(,)x y x f y y x -=+; (2)222,2()y f xy xy x +-=;(3)22 (,)ln(1)f x y xy =--.解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.习题8-31.求下列函数的偏导数: (1)22x z x y y =+;(2)22u v s uv+=;(3)z x = (4)ln tan x z y=; (5)(1)yz xy =+; (6)xyu z =; (7)arctan()zu x y =- (8)yz xu xy z =++.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s vu=+ 2211,.s v s u uv u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tanz x x xxy y y yy∂=⋅⋅=∂ 222122sec ()csc .tanz x x x x xyy y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+ 故[]221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+ []ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u u z z y z z x xy z xyz-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂(7)11221()().1[()]1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+-112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z zzz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-1118ln ln ln y x y z z x uyx z zx u x x zy y u y y xz z---∂=+∂∂=+∂∂=+∂() 2.已知22x y u x y=+,求证:3u ux y u x y∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++.由对称性知 22322()u x y yx y x y ∂+=∂+.于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 3.设11ex y z ⎛⎫-+ ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1121ex y z y y ⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂4.设(,)(1)f y y x x -+=(,1)xf x .解:1(,)1(x f x y y y =+-则(,1)101x f x =+=.5.求曲线224x y z x y y ⎧+=⎪+⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z zx xx ∂∂==∂∂设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4.6.求下列函数的二阶偏导数: (1)4422-4z xy x y =+; (2)arc tan y z x=;(3)xz y =; (4)2e x yz +=.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211z y y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x yy x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++(3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂(4)22e 2,e ,x y x y z z x x y++∂∂=⋅=∂∂222222222e 22e 22e (21),e ,2e ,2e .x y x y x yx y x y x yz x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂ 习题8-41.求下列函数的全微分: (1)22ex y z +=;(2)z =;(3)yzx u =; (4)yzu x =.解:(1)∵2222e 2,e 2x y x y z z x y x y++∂∂=⋅=⋅∂∂∴222222d 2e d 2e d 2e (d d )x y x y x y z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+∴ 223/2d (d d ).()xz y x x y x y =--+(3)xdzyx xdy zx dx yzx dz xyx zux zx y u yzx x u yz yz yz yz yz yz ln ln ln ln ,11++=∴=∂∂=∂∂=∂∂--(4)∵1y zu y x x z-∂=∂1ln yz u x x y z∂=⋅⋅∂ ln y z u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭2.求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,Δ0.2,Δ0.1z x xy y x y x y =-+==-==-;(2)11Δ0.15Δ0.e1,xyx y x y z =====,,,.解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265e e e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=3.利用全微分代替全增量,近似计算: (1)32(1.02)(0.97)⋅;;(3) 1.05(1.97).解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1. (2)设f (x ,y则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d 0.05d 0.07(4.05,2.93)(4,3)d (4,3)0.053(0.07)]15(0.01)54.998x y f f f ==-=≈+=⨯+⨯-=+⨯-=(3)设f (x ,y )=x y ,则d f (x ,y )=yx y -1d x +x yln x d y , 取x =2,y =1,d x =-0.03,d y =0.05,则1.05d 0.03d 0.05(1.97)(1.97,1.05)(2,1)d (2,1)20.0393 2.0393.x y f f f =-==≈+=+=4.矩形一边长10a =cm ,另一边长24b =cm ,当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l,则d d).l l x x y y==+当x=10,y=24,d x=0.4,d y=-0.1时,d0.4240.1)0.062l=⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.5. 当圆锥体形变时,它的底半径R由30cm增到30.1cm,高h 由60cm减到59.5cm,试求体积变化的近似值.()22231.30,60,0.1,0.5321332130600.1300.5333030cm.V R h R h R hV dV Rh R R hπππππππ===∆=∆=-∆≈=∆+∆=⨯⨯⨯+⨯⨯-=-解:所以,体积减小6. 用水泥做一个长方形无盖水池,其外形长5m,宽4m,深3m,侧面和底均厚20cm,求所需水泥的精确值和近似值.()()()()()()()543520.2420.230.2=13.632.,,,0.4,0.2.=430.4530.4540.214.8z f x y z xyz x y zV z dz yz x xz y xy z⨯⨯--⨯⨯-⨯⨯-==∆=∆=-∆=-∆≈=∆+∆+∆=⨯⨯-+⨯⨯-+⨯⨯-=解:水池体积的精确值为水池的体积可看做函数当时的增量所以可用微分的增量计算,即习题8-51.求下列复合函数的偏导数或全导数:(1)22cos sinz x y xy x u v y u v=-==,,,求,z zu v∂∂∂∂;(2)arc ,,tan z x y x u v u v y==+=-,求,z zu v∂∂∂∂; (3)3ln(e e ),xy u y x +==,求d d u x;(4)222,e cos ,e sin ,e t t tu xy z x t y t z =++===,求d d u t.解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z yxy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=- 223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y ux uy uyx yu v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v-∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y x x x y x y x y x y x x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++(4)d d d d d d d d u u x u y u z tx ty tz t∂∂∂=⋅+⋅+⋅∂∂∂22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.2.设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)()22e ,xy uf x y=-; (2),x y u f y z⎛⎫= ⎪⎝⎭; (3) (,,)z f x xy xyz =. 解:(1)12122e 2e .xy xy u f x f y xf y f x∂''''=⋅+⋅⋅=+∂1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂(2)1111u f f xy y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,u f f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂3.设(),z xy xF u y xu ==+,()F u 为可导函数,证明:z z xy z xy x y∂∂+=+∂∂. 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+--⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+4.设22()y z f x y =-,其中()f u 为可导函数,验证211z z zx x y y y ∂∂+=∂∂.证明:∵ 2222z yfx xyf x f f ''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f ''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅5.22()z f x y =+,其中f 具有二阶导数,求22222,,z z zx y x y ∂∂∂∂∂∂∂.解:2,2,z z xf yf xy∂∂''==∂∂222222224,224,z f x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂由对称性知,22224.zf y f y∂'''=+∂6.设f 是具有连续二阶偏导函数,求下列函数的二阶偏导数:(1),y z f x x ⎛⎫= ⎪⎝⎭; (2)22(,)z f xy x y =;(3)(sin ,cos ,e )x yz f x y +=.解:(1)1212111,z f f f f xy y∂''''=⋅+⋅=+∂2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭, (2)22121222,z f y f xy y f xyf x∂''''=⋅+⋅=+∂()()22222211122122432221112222222244,z y yf xy f y f xy f y f xy xyf y f xy f x y f ∂'''''''''=++⋅+⋅⋅+⋅∂'''''''=+++()()()()222212111221223322121122122212122222121112212212222222225,22,22222zyf y xf xy f xy f x f xy f x x yyf xf xy f x yf x y f zf xy f x xyf x f yz xf xy x f xy f x f xy f x y xf ∂''''''''''=+++⋅+⋅⋅+⋅∂∂''''''''=++++∂''''=⋅+⋅=+∂∂'''''''''=++⋅+⋅⋅+⋅∂'=223411122244.x y f x yf x f ''''''+++(3)1313cos e cos e ,x y x y z f x f xf f x++∂''''=⋅+⋅=+∂()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y z xf x f f x f f x f x f xf xf xf f z x f f y f f y f x y++++++++++∂''''''''''=-+++⋅+⋅+⋅∂''''''''=-+++∂'⎡⎤''''''=++⋅⋅-+⋅⋅-+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y+++++++++++⎡⎤''⋅⎣⎦'''''''''=-+-+∂''''=-+=-+∂∂''⎡⎤⎡''''''''=--++-+⋅-+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦''''''''=-+-+习题8-61.求下列隐函数的导数或偏导数: (1)2sin 0exy xy -+=,求d d y x;(2)arct nl a yx ,求d d y x;(3)02x y z ++-=,求,z zx y ∂∂∂∂; (4)33-3z xyz a =,求22,z zx y∂∂∂∂解:(1)[解法1] 用隐函数求导公式,设F (x ,y )=sin y +e x -xy 2,则 2e ,cos 2,x x y F y F y xy =-=-故 22d e e d cos 2cos 2x xx y F y y y x F y xy y xy--=-=-=--. [解法2] 方程两边对x 求导,得()2cos e 02x y y y x yy '⋅+-='+⋅故 2e .cos 2xy y y xy-'=- (2)设()221(,)ln arctanln arctan ,2y y F x y x y x x==-+ ∵222222121,21x xx y y F x yx y x y x +⎛⎫=-⋅=- ⎪++⎝⎭⎛⎫+ ⎪⎝⎭222221211,21y yy x F x y x x y y x -=-⋅=++⎛⎫+ ⎪⎝⎭∴d .d xyF y x yxF x y+=-=- (3)方程两边求全微分,得d 2d d 0,x y z ++-=,z x y =则d ,z x y =+故z z xy ∂∂==∂∂(4)设33(,,)3F x y z z xyz a =--,23,3,33,x y z F yz F xz F z xy =-=-=-则 223,33xzF z yz yzxF z xy z xy∂-=-=-=∂--223,33y z F z xz xz y F z xy z xy∂-=-=-=∂-- ()()()()22222222322232222()zzz x x xz z xy xz y z y z xy y y z xy xz xz z x x xz z xy z xy x yzz xy xy z z xy ∂∂⎛⎫--- ⎪∂∂∂∂⎛⎫⎝⎭== ⎪-∂∂⎝⎭-⎛⎫⋅--- ⎪--⎝⎭==--2.设(,,)0F x y z =可以确定函数(,),(,),(,)x x y z y x z z z x y ===,证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂. 证明:∵,,,y x z xy zF F F x y zyF z F x F ∂∂∂=-=-=-∂∂∂∴ 1.y z x y z x F F F x y z F F F y z x ⎛⎫⎛⎫∂∂∂⎛⎫---⋅⋅=⋅⋅=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭3.设11,0F y z x y ⎛⎫++= ⎪⎝⎭确定了函数(,)z z x y =,其中F 可微,求,z zx y∂∂∂∂. 解:12122110x F F F F x x ⎛⎫'''=⋅+⋅=--⎪⎝⎭122122121222122221222011111z y x z y zF F F F F F F y F F F z x x F F x F F F F F y F z y y F F y F '''=⋅+⋅=⎛⎫''-=⋅+⋅ ⎪⎝⎭'-'∂=-=-=∂''''-''-∂=-=-=∂''4.求由下列方程组所确定的函数的导数或偏导数: (1)22222,2320.z x y x y z ⎧=+⎨++=⎩求d d ,d d y z x x;(2)10xu yv yu xv +=⎧⎨-=⎩求,,,u v u vx x y y∂∂∂∂∂∂∂∂;(3)2(,),(,)u f ux v y v g u x v y =+⎧⎨=-⎩其中,f g 是连续偏导函数,求,u vx x∂∂∂∂; (4)e sin e cos u ux u v y u v⎧=+⎨=-⎩求,,,u v u v x x y y∂∂∂∂∂∂∂∂.解:(1)原方程组变为222222320y z xy z x⎧-=-⎪⎨+=-⎪⎩ 方程两边对x 求导,得d d 22d d d d 23d d y z y x x xy z y z x xx ⎧-=-⎪⎪⎨⎪-=-⎪⎩ 当 2162023y J yz y y z-==+≠21d 16(61),3d 622(31)22d 12.2d 6231x y xz x x z x z x J yz y y z y x z xy x y x x J yz y z ----+===--++-===-++(2)设(,,,)1,(,,,),F x y u v xu yv G x y u v yu xv =+-=-,,,,,,,,x y u v x y u v F u F v F x F y G v G u G y G x =====-===-22u v uvF F xyJ x y G G y x ===---故 22x v xvF F u yG G v x u ux yvx J J x y--∂-+=-=-=∂+222222,,.u xu x y v yvuy u y F F x uG G y v vvx uy x J J x y F F v yG G u x u vx uy yJ J x yF F x vG G y u v xu vy y J J x y-∂--=-=-=∂+-∂--=-=-=∂+∂-=-=-=∂+ (3)设(,,,)(,),F u v x y f ux v y u =+-2(,,,)(,),G u v x y g u x v y v =--则 121221121(1)(21),21uv uvFF xf f J xf yvg f gG G g vyg ''-''''===---''- 故 12121221122121(21),(1)(21)xv xvuf f F F G G g yvg uf yvg f g u xJ J xf yvg f g ''''''''-----∂=-=-=∂''''--- 111111112211(1).(1)(21)u x uxxf uf F F G G g g g xf uf v xJ Jxf yvg f g ''-'''''-+-∂=-=-=∂''''--- (4)(,),(,)u u x y v v x y ==是已知函数的反函数,方程组两边对x 求导,得1e sin cos ,0e cos (sin ),u u u u v v u v x x xu u v v u v x x x ∂∂∂⎧=++⎪⎪∂∂∂⎨∂∂∂⎪=---⎪∂∂∂⎩整理得 (e sin )cos 1,(e cos )sin 0,uu u v v u v x xu v v u v x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪-+=⎪∂∂⎩解得 sin e (sin cos )1u u vx v v ∂=∂-+cos e [e (sin cos )1]uu v v x u v v ∂-=∂-+ 方程组两边对y 求导得0e sin cos 1e cos sin u u u u v v u v y y y u u v v u v y y y ∂∂∂⎧=++⎪∂∂∂⎪⎨∂∂∂⎪=-+⎪∂∂∂⎩整理得 (e sin )cos 0(e cos )sin 1uu u v v u v y yu v v u v y y ∂∂⎧++=⎪∂∂⎪⎨∂∂⎪-+=⎪∂∂⎩ 解得 cos sin ,.e (sin cos )[e (sin cos )1]uuuu v v v e y v v y u v v ∂-∂+==∂-∂-+ 5.设ecos ,e sin ,uu x v y v z uv ===,试求.,z zx y∂∂∂∂解:由方程组e cos e sin uux vy v⎧=⎪⎨=⎪⎩ 可确定反函数(,),(,)u u x y v v x y ==,方程组两边对x 求导,得1e cos e sin 0e sin e cos uu u u u v v v x xu v v vx x ∂∂⎧=-⎪⎪∂∂⎨∂∂⎪=+⎪∂∂⎩解得 cos sin ,e eu uu v v vx x ∂∂==-∂∂ 所以 cos sin e uz u v v v u vv u x x x ∂∂∂-=+=∂∂∂方程组两边对y 求导,得0e cos e sin 1e sin e cos uu u u u v v v y y u v v vy y ∂∂⎧=-⎪∂∂⎪⎨∂∂⎪=+⎪∂∂⎩解得 sin cos ,eeu uu v v vxy∂∂==∂∂所以 sin cos eu z u v v v u v v u yyy∂∂∂+=+=∂∂∂.习题8-71.求函数322(,)51054f x y xx xy y x y =--+++-在点()2,1-处的泰勒公式.解:(2,1)2f -=231010,(2,1)325,(2,1)1610,(2,1)21,6,2,x x y y xx xx xy xxx yy f x x y f f x y f f x f f f f =--+-==-++-==--==-==故223223(,)(2,1)(2)(2,1)(1)(2,1)1(2)(2,1)2(2)(1)(2,1)(1)(2,1)2!1(2)(2,1)3!23(2)(1)(2)(2)(1)(1)(2)x y xx xy yy xxx f x y f x f y f x f x y f y f x f x y x x y y x =-+--++-⎡⎤+--+-+-++-⎣⎦+⎡⎤--⎣⎦=+-+++---++++-2.将函数(,)xf x y y =在点()1,1处展到泰勒公式的二次项.解:(1,1)1,f =(1,1)(1,1)1(1,1)(1,1)ln 0,1,x x x yf y y f xy -====2(1,1)(1,1)1(1,1)(1,1)2(1,1)(1,1)2(ln )0,1ln 1,(1)0,(,)1(1)(1)(1)0().xxx x x xy x yyx f y y xy y y f y f xy x f x y y y x y ρ--==⎛⎫+⋅== ⎪⎝⎭=-===+-+--+3. 求函数x yz e +=在点()1,1-处展到泰勒公式。

华理高数答案第8章

华理高数答案第8章


2(k 1) k
(1)
2k 2 , (k 1)
2(k 1) 2 , k
从而对(1)式用夹逼定理知 lim

n 0
sin x dx n
n

2

.
**7.若 lim a n a ,试证明 lim | an || a |
n
n
(a 0) ,反之如何?若 a=0 又如何?

证明: lim a n a ,则 0, N N ,当 n N ,有: a n a ,
n
而 | an | | a | | an a | , 若 a 0 ,不能由
n
lim a n a 。
n
n
lim a n a lim an a ,
证明:显见 xn 0 ,且 x n ( xn1
xn xn 1
1 xn 1 0, 2 xn 1
2
{xn } 单调下降,且有下界,
对 xn 所以
lim xn 存在。设此极限为 A,
n
1 1 1 1 ( xn1 ) 两边取极限得: A ( A ) , 解得 A 1 (舍负根). 2 A 2 xn1
则当 n=k+1 时,
xk 1 2 xk 2 2 2 ,
x n 2 , (n =1,2,„)
x n 1 x n 2 x n x n
2 2 xn xn
2 xn xn

( x n 2)( x n 1) 2 xn xn为 ,且
k


0
sin x dx 2 .
n

高等数学练习册第八章习题参考答案(1)

高等数学练习册第八章习题参考答案(1)

解 令x a cos t, y a sin t,
I
2 0
1 a2
[a 2
(cos
t
sin
t
)(
sin
t
)
(cos
t
sin
t
)
cos
t
]dt
2
0 dt 2 .
p55. 2.计算 ( x2 2xy)dx ( y2 2xy)dy,其中 L
L为抛物线y x2上从点(1,1)到点(1,1)的一段弧.
C
(2)曲线弧C的重心坐标为
xG
1 x( x, y)ds
MC
,yG
1 y( x, y)ds .
MC
p51.2.设光滑曲线L关于x轴对称, L1是L在x轴上方的部分, (1)若f ( x, y)在L上连续,且关于y为奇函数,则Biblioteka f ( x, y)ds 0 ; L
(2)若f ( x, y)在L上连续,且关于y为偶函数,
(1)当p点从点A(a , 0)经位于第一象限的弧段到 B(0,b)时, F所作的功;
(2)当p点经过全椭圆时,F所作的功.
p56. 解 F | F | F 0 x2 y2 ( x , y ) x2 y2 x2 y2
( x, y),
(1) W F d s ( x)dx ( y)dy
0
22
a2
2
| cos
t
| dt
2a 2
2 cos udu 2a2 .
20
2
0
p52. 3.计算 | xy | ds,其中L :圆周x2 y2 a2. L
解法1
I 4
2
a3
sin t

高等数学第八章习题解答

高等数学第八章习题解答

习题8.11. 设有一平面薄板(不计其厚度),占有Oxy 平面上的闭区域D ,薄板上分布着面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q 。

解:据题意,薄板区域D 是Oxy 平面上的有界闭域,(,)x y μ是定义在D 上的面密度函数,那么用任意曲线把D 分成n 个可求面积的小区域12,,n σσσ ,以i σ∆表示小区域的面积,这些小区域构成了D 的一个分割T ,在每个i σ上任取一点(,)i i εη,那么电荷Q 即为D 上的一个积分和1(,)ni i i i Q u εησ==∆∑。

当d 足够小时,1(,)(,)ni i i i DQ u u x y d εησσ==∆=∑⎰⎰2. 下列二重积分表达怎样的空间立体的体积?试画出下列空间立体的图形:(1)()221Dx y d σ++⎰⎰,其中区域D 是圆域221x y +≤;解:(1)在圆域221x y +≤上以抛物面2221z x y =++为顶的曲顶柱体的体积。

(2)Dyd σ⎰⎰,其中区域D 是三角形域0,0,1x y x y ≥≥+≤;解: 在三角形域D 上以平面z y =为顶的柱体的体积。

z 轴x 轴y 轴(1) (2) 3. 设12231()D I x y d σ=+⎰⎰, 其中D 1={(x , y )|-1≤x ≤1, -2≤y ≤2 ;又22232()D I x y d σ=+⎰⎰, 其中D 2={(x , y )|0≤x ≤1, 0≤y ≤2}.试利用二重积分的几何意义说明I 1与I 2的关系.解 I 1表示由曲面z =(x 2+y 2)3与平面x =±1, y =±2以及z =0围成的立体V 的体积.I 2表示由曲面z =(x 2+y 2)3与平面x =0, x =1, y =0, y =2以及z =0围成的立体V 1的体积.显然立体V 关于yOz 面、xOz 面对称, 因此V 1是V 位于第一卦限中的部分, 故 V =4V 1, 即I 1=4I 2. 3. 利用二重积分的定义证明: (1)Dd σσ=⎰⎰ (其中σ为D 的面积;证明 由二重积分的定义可知,1(,)lim (,)ni i i i Df x y d f λσξησ→==∆∑⎰⎰其中∆σi 表示第i 个小闭区域的面积. 此处f (x , y )=1, 因而f (ξ, η)=1, 所以 01lim lim ni i Dd λλσσσσ→→==∆==∑⎰⎰.(2)(,)(,)DDkf x y d k f x y d σσ=⎰⎰⎰⎰ (其中k 为常数);证明 011(,)lim (,)lim (,)n ni i i i i i i i Dkf x y d kf k f λλσξησξησ→→===∆=∆∑∑⎰⎰1lim (,)(,)ni i i i Dk f k f x y d λξησσ→==∆=∑⎰⎰.(3)12(,)(,)(,)DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰,其中D =D 1⋃D 2, D 1、D 2为两个无公共内点的闭区域.证明 将D 1和D 2分别任意分为n 1和n 2个小闭区域1i σ∆和2i σ∆,n 1+n 2=n , 作和1211122212111(,)(,)(,)n n ni i i i i i i i i i i i f f f ξησξησξησ===∆=∆+∆∑∑∑.令各1i σ∆和2i σ∆的直径中最大值分别为λ1和λ2, 又λ=ma x (λ1,λ2), 则有1lim (,)n i i i i f λξησ→=∆∑121112221212011lim (,)lim (,)n n i i i i i i i i f f λλξησξησ→→===∆+∆∑∑,即 12(,)(,)(,)DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰.4. 根据二重积分的性质, 比较下列积分大小:(1)2()Dx y d σ+⎰⎰与, 3()Dx y d σ+⎰⎰ 其中积分区域D 是由x 轴, y 轴与直线x +y =1所围成;解 区域D 为: D ={(x , y )|0≤x , 0≤y , x +y ≤1}, 因此当(x , y )∈D 时, 有(x +y )3≤(x +y )2, 从而3()Dx y d σ+⎰⎰≤2()Dx y d σ+⎰⎰.(2)2()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰其中积分区域D 是由圆周(x -2)2+(y -1)2=2所围成;解 区域D 如图所示, 由于直线x +y =1与圆(x -2)2+(y -1)2=2相切,故D 位于直线x +y =1的上方, 所以当(x , y )∈D 时, x +y ≥1, 从而(x +y )3≥(x +y )2, 因而 23()()DDx y d x y d σσ+≤+⎰⎰⎰⎰.(3)ln()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰其中D 是三角形闭区域, 三角顶点分别为(1,0), (1, 1), (2, 0);解 区域D 如图所示, 显然当(x , y )∈D 时, 1≤x +y ≤2, 从而0≤ln(x +y )≤1, 故有 [ln(x +y )]2≤ ln(x +y ),因而 2[ln()]ln()+≤+⎰⎰⎰⎰DDx y d x y d σσ.(4)ln()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰其中D ={(x , y )|3≤x ≤5. 0≤y ≤1}.解 区域D 如图所示, 显然D 位于直线x +y =e 的上方, 故当(x , y )∈D 时, x +y ≥e , 从而ln(x +y )≥1,因而 [ln(x +y )]2≥ln(x +y ),故 2ln()[ln()]DDx y d x y d σσ+≤+⎰⎰⎰⎰.5. 利用二重积分的性质估计下列积分的值:(1)()DI xy x y d σ=+⎰⎰, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤1};解 因为在区域D 上0≤x ≤1, 0≤y ≤1, 所以 0≤xy ≤1, 0≤x +y ≤2, 进一步可得0≤xy (x +y )≤2,于是 0()2DDDd xy x y d d σσσ≤+≤⎰⎰⎰⎰⎰⎰,即 0()2Dxy x y d σ≤+≤⎰⎰.(2)22sin sin DI x yd σ=⎰⎰, 其中D ={(x , y )| 0≤x ≤π, 0≤y ≤π};解 因为0≤sin 2x ≤1, 0≤sin 2y ≤1, 所以0≤sin 2x sin 2y ≤1. 于是可得 220sin sin 1DDDd x yd d σσσ≤≤⎰⎰⎰⎰⎰⎰,即 2220sin sin Dx yd σπ≤≤⎰⎰.(3)(1)DI x y d σ=++⎰⎰, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤2};解 因为在区域D 上, 0≤x ≤1, 0≤y ≤2, 所以1≤x +y +1≤4, 于是可得 (1)4DDDd x y d d σσσ≤++≤⎰⎰⎰⎰⎰⎰,即 2(1)8Dx y d σ≤++≤⎰⎰.22(49)DI x y d σ=++⎰⎰, 其中D ={(x , y )| x 2+y 2 ≤4}.解 在D 上, 因为0≤x 2+y 2≤4, 所以 9≤x 2+4y 2+9≤4(x 2+y 2)+9≤25.于是 229(49)25DDDd x y d d σσσ≤++≤⎰⎰⎰⎰⎰⎰,222292(49)252Dx y d πσπ≤++≤⋅⋅⎰⎰,即 2236(49)100Dx y d πσπ≤++≤⎰⎰.习题8.21. 化二重积分(,)Df x y dxdy ⎰⎰为二次积分(写出两种积分次序).(1)D ={(x , y )| |x |≤1, |y |≤1}; 解 D 为矩形区域, 所以1111(,)(,)Df x y dxdy dx f x y dy --=⎰⎰⎰⎰,1111(,)(,)Df x y dxdy dy f x y dx --=⎰⎰⎰⎰.(2)D 是由y 轴, y =1及y =x 围成的区域; 解 若将D 表示为0≤x ≤1, x ≤y ≤1, 则 11(,)(,)xDf x y dxdy dx f x y dy =⎰⎰⎰⎰.若将D 表示为0≤y ≤1, 0≤x ≤y , 则 1(,)(,)yDf x y dxdy dy f x y dx =⎰⎰⎰⎰.(3)D 是由x 轴, y =ln x 及x =e 围成的区域; 解 若将D 表示为1≤x ≤e , 0≤y ≤ln x , 则 ln 10(,)(,)ex Df x y dxdy dx f x y dy =⎰⎰⎰⎰.若将D 表示为0≤y ≤1, e y ≤x ≤e , 则 1(,)(,)y eeDf x y dxdy dy f x y dx =⎰⎰⎰⎰.(4)D 是由x 轴, 圆x 2+y 2-2x =0在第一象限的部分及直线x +y =2围成的区域; 解 若将D 表示为0≤x ≤1,0y ≤≤1≤x ≤2, 0≤y ≤2-x , 则12201(,)(,)(,)xDf x y dxdy dx f x y dy dx f x y dy -=+⎰⎰⎰⎰⎰.若将D 表示为0≤y ≤1; 12x y ≤≤-, 则 1201(,)(,)yDf x y dxdy dy f x y dx -=⎰⎰⎰⎰(5)D 是由x 轴与抛物线y =4-x 2在第二象限的部分及圆x 2+y 2-4y =0第一象限部分围成的区域. 解 若将D 表示为-2≤x ≤0, 0≤y ≤4-x 2及0≤x ≤2,22y ≤≤ 则242222(,)(,)(,x Df x y dxdy dx f x y dy dx f x y --=+⎰⎰⎰⎰⎰⎰,若将D 表示为0≤y ≤4, x ≤ 则 40(,)(,)Df x y dxdy dy f x y dx =⎰⎰⎰.2. 交换二次积分的次序:(提示: 交换二次积分的次序, 要先根据原积分写出积分区域不等式, 再根据不等式画出积分区域, 然后根据图形写出另一种形式的积分区域不等式, 最后由不等写出二次积分)(1)228812(,)(,)x xxdx f x y dy dx f x y dy +⎰⎰⎰⎰.解 积分区域为D ={(x , y )|1≤x ≤2, x ≤y ≤x 2}⋃{(x , y )|2≤x ≤8, x ≤y ≤8}. 积分区域还可以表示为D ={(x , y )|1≤y ≤4,x ≤y }⋃{(x , y )|4≤y ≤8, 2≤x ≤y }, 于是 原式=48142(,)(,)y ydy f x y dx dy f x y dx +⎰⎰⎰.(2)12201(,)(,)yydy f x y dx dy f x y dx -+⎰⎰⎰⎰.解 积分区域为D ={(x , y )|0≤y ≤1, 0≤x ≤y }⋃{(x , y )|1≤y ≤2, 0≤x ≤2-y }.积分区域还可以表示为xO y281D ={(x , y )|0≤x ≤1, x ≤y ≤2-x }, 于是 原式=120(,)x xdx f x y dy -⎰⎰. (3) 14(4)(,)y dy f x y dx -⎰⎰;解:积分区域{}2442,20|),(x y x x y x D -≤≤+≤≤=,214(4)040224(,)(,)(,);y x Dx f x y d dy f x y dx dx f x y dy σ---+∴==⎰⎰⎰⎰⎰⎰(4) 11(,)dx f x y dy ⎰;解:积分区域{}{212(,)|01,0(,)|12,0D x y y x y D x y y x =≤≤≤≤⋃=≤≤≤≤21212001(,)(,)(,)(,)y D D f x y d f x y d dy f x y dx dy f x y dxσσ=+=+⎰⎰⎰⎰⎰⎰⎰原式(5)224(,)x x f x y dy -⎰⎰。

高等数学(下)第四版-第八章习题答案.doc

高等数学(下)第四版-第八章习题答案.doc

i.判断下列平面点集哪些是开集、闭集、区域、冇界集、无界集?并分别指出它们的聚点集和边界:⑴{g)|20};⑵{(心)| 1<X2+/<4};⑷{(x,y) I (x - I)2 + b G} U {(w) I(X + I)2 + 尸5 1}.解:(1)开集、无界集,聚点集:R2,边界:{(x,y)|尸0}.(2)既非开集乂非闭集,有界集,聚点集:{(x』)|l Wx\y2w4},边界:{(x,叨F+b=l} U {(x』)| xV=4}.(3)开集、区域、无界集,聚点集:{(x』)[yWF}, 边界:{(¥』)|尸<}.(4)闭集、有界集,聚点集即是其木身,边界:{(X^)|(X-1)24-/=1 } U {(x,y)|(x4-l)2+y=l}.2.己知f (x,y)= x2+y~-xy tan —,试求f(tx,ty).y解:f(tx,ty) = (tx)2 + (ty)2-tx-tytan— = t2f(x,y).3•已知/(u,v,w)= w u + 卜严' ,试求f(x + y,x-y,xy).解:Xx+y, x-y, xy)=(巧严+(砂严’心'=(x+)泸'+(初)4•求下列各函数的定义域:(l)z= ln(y2-2x+l);(4) w = —j= 4- —j= + —j=;yjx y]y yjzz - \n(y一x) +u = arccos解:(l)n = {(x,y)|/-2x + l>0}.(2)Z) = {(x,jO|x + y〉0,x-y >0}.(3)D = {(x,y)\4x-y2>0,\-x2-y2>0,x2+y2 ^0}.(4) D = {(x』,z) | x > 0,y > 0,z > 0}.(5) D = {(x,y)ix>0,y> 0, x2 > y}.(6)Z) = {(x』)| y-x > 0,x > 0,x2+y2 < 1}.⑺D = {(x,y,z)|/ + 尸工0,兀? + 尹2 _么2 J。

(完整版)高数同济第六版下高等数学2第八章解答

(完整版)高数同济第六版下高等数学2第八章解答

(完整版)⾼数同济第六版下⾼等数学2第⼋章解答习题8-1向量及其线性运算1.在yOz 平⾯上,求与三点(3,1,2)A 、(4,2,2)B --和(0,5,1)C 等距离的点。

2.设已知两点1(4,2,1)M 和2(3,0,2)M ,计算向量12M M u u u u u u r的模、⽅向余弦和⽅向⾓。

3. 设向量r r的模是4,它与u 轴的夹⾓是3π,求r r在u 轴上的投影。

4. 设358m i j k =++r r r r ,247n i j k =--r r r r 和54p i j k =+-r r r r ,求向量43a m n p =+-r r r r在 x 轴上的投影以及在y 轴上的分向量。

5. 从点()2,1,7A -沿向量8912a i j k =+-rr r r⽅向取长为34的线段AB ,求点B 的坐标。

解设点B 的坐标为(),,x y z ,则()2,1,7AB x y z =-+-u u u r,且AB a λ=u u u r ,即28,19,712x y z λλλ-=+=-=-, ()()()()()()222222342178912AB x y z λλλ==-+++-=++-u u u r从⽽2λ=,所以点B 的坐标为()18,17,17-习题8-2数量积向量积1. 设32a i j k =--r r r r,2b i j k =+-r r r r ,求(1)a b r r g 及a b ?r r ;(2)(2)3a b -r r g 及2a b ?r r ;(3)a r 、b r的夹⾓的余弦。

2.已知1(1,1,2)M -、2(3,3,1)M 和3(3,1,3)M ,求与12M M u u u u u u r 、23M M u u u u u u r 同时垂直的单位向量。

3.求向量(4,3,4)a =-r在向量(2,2,1)b =r 上的投影。

4. 已知3OA i k =+u u u r r r 、3OB j k =+u u u r rr ,求OAB ?的⾯积。

高等数学课后习题答案第八章3

高等数学课后习题答案第八章3

第八章习题解答(3)节8.5部分习题解答1、下列方程确定了)(x f y =,求dxdy,(1)、0sin 2=−+xy e y x 解:设=),(y x F 0sin 2=−+xy e y x ,2y e x F x −=∂∂;xy y yF2cos −=∂∂(2)、xyy x arctanln 22=+解:设=),(y x F xy y x arctanln 22−+,=−+−+=∂∂)()(112222x y x y y x x x F 22y x yx ++;=∂∂y F =+−+)1((11222x xy y x y 22y x xy +−;yx y x F F dx dy y x −+=−=(3)、xy y x =解:设x y y x y x F −=),(,)ln (1ln 1y x y x x y y yx x F y x y −=−=∂∂−)ln (1ln 1x x y x yxy x x y F y x y −=−=∂∂−;y x F F dx dy −=)ln ()ln (x x y x y y x y −−=(4)、1=+y e xy 解:设1),(−+=y e xy y x F ,y x F =∂∂y e x yF+=∂∂;y x F F dx dy −=ye x y +−=2、下列方程确定了),(y x f z =,求x z ∂∂yz ∂∂(1)、0=−xyz e z 解:设=),,(z y x F xyz e z −,yz F x −=zx F y −=xy e F z z −=;x z ∂∂z x F F −=xye yzz −=y z ∂∂z y F F −=xye zxz −=(2)、333a xyz z =−解:设=),,(z y x F 333a xyz z −−,yz F x 3−=zx F y 3−=xy z F z 332−=;x z ∂∂z x F F −=xyz yz−=2y z ∂∂z y F F −=xye zx−=2(3)、122=+−z e yz y x 解:设=),,(z y x F 122−+−z e yz y x ,xy F x 2=z x F y 22−=z z e y F +−=2;x z ∂∂z x F F −=ze y xy−=22y z∂∂z y F F −=ze y z x −−=222(4)、xyzz =sin 解:设=),,(z y x F xyz z −sin ,yz F x 2−=xz F y −=xy z F z −=cos ;x z ∂∂z x F F −=xyz yz −=cos 2y z ∂∂z y F F −=xyz xz−=cos 3、设z y x z y x 32)32sin(2−+=−+确定了),(y x f z =,验证:+∂∂x z 1=∂∂yz证明:设=),,(z y x F )32()32sin(2z y x z y x −+−−+,1)32cos(2−−+=z y x F x 2)32cos(4−−+=z y x F y 3)32cos(6+−+−=z y x F z ;x z ∂∂z x F F −=32=y z∂∂z y F F −=31=所以+∂∂x z 13132=+=∂∂y z 4、设),(),,(),,(y x z z x z y y z y x x ===都是由方程0),,(=z y x F 确定的函数,证明1−=∂∂⋅∂∂⋅∂∂xz z y y x 证明:1)1((3−=−=−−−=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x zz y y x 5、函数),(v u ϕ具有连续的偏导数,验证方程0),(=−−bz cy az cx ϕ所确定的函数),(y x z z =满足+∂∂x z ac yzb =∂∂证明:设bz cy v az cx u −=−=,,则有c x u =∂∂,0=∂∂y u ,a z u −=∂∂,0=∂∂x v ,c yv =∂∂,b z v−=∂∂1ϕϕc x =2ϕϕc y =21ϕϕϕb a z −−=211ϕϕϕϕϕb a ca a x za z x +=−=∂∂212ϕϕϕϕϕb a cb b y zb z y +=−=∂∂于是+∂∂x z a=∂∂y zb ++211ϕϕϕb a ca =+212ϕϕϕb a cbc b a b a c =++2121)(ϕϕϕϕ6、设f 具有连续偏导数,方程),(y z xz f z −=确定了),(y x f z =,求,x z ∂∂yz∂∂解:设=),,(z y x F ),(y z xz f z −−,又设y z v xz u −==,,则有z x u =∂∂,0=∂∂y u ,x z u =∂∂,0=∂∂x v ,1−=∂∂yv ,1=∂∂z v1zf F x −=2f F y =211f xf F z −−=x z∂∂z x F F −=2111f xf zf −−=y z∂∂2121f xf f −−−=7、设f 具有连续偏导数,方程0),,(=+++z y x y x x f 确定了),(y x f z =,求,x z ∂∂yz∂∂解:设=),,(z y x F ),,(z y x y x x f +++,321f f f F x ++=32f f F y +=3f F z =x z∂∂z x F F −=3321f f f f ++−=y z∂∂321f f f +−=8、求由方程组所确定的函数的导数或偏导数(1)、⎩⎨⎧=+++=203222222z y x y x z 求,x y ∂∂,xz∂∂解:对等式两边同时求关于x 的偏导数得⎪⎩⎪⎨⎧=∂∂+∂∂+∂∂+=∂∂064222x zz x y y x x y y x x z就是⎪⎩⎪⎨⎧−=∂∂+∂∂=∂∂−∂∂xx y y x z z x x y y x z2322解得13)13(222321222+=+=−−−=∂∂z xz y xy y z y y x y x x z )13(2)16(2321321++−=−−=∂∂z y z x y z y x z x x y (2)、⎪⎩⎪⎨⎧=++=+221222z y x z y x 求,dz dx ,dz dy解:对等式两边同时求关于z 的偏导数得⎪⎩⎪⎨⎧−=+=+122dzdy dz dx z dz dy y dz dxx解得)(221122112y x y z y x y z dz dx −+=−=)(221122112y x x z y x zx dz dy −+−=−=(3)、⎩⎨⎧=−+=−+0033x yu v y xv u 求,x u ∂∂,x v ∂∂解:对等式两边同时求关于x 的偏导数得⎪⎩⎪⎨⎧=−∂∂+∂∂=+∂∂+∂∂0130322xu y x v v v x vx x u u 就是⎪⎩⎪⎨⎧=∂∂+∂∂−=∂∂+∂∂13322x v v x u y v x v x x uu 解得xy v u x v v yxu v xv x u−+−=−=∂∂223222933331xy v u yv u v yx u yv u x v −+=−=∂∂222222933313(4)、⎩⎨⎧=+=+u y v x v u y x sin sin 求,y u ∂∂,yv∂∂解:对等式两边同时求关于y 的偏导数得⎪⎪⎩⎪⎪⎨⎧∂∂+=∂∂∂∂+∂∂=y u uy u y v v x yv y u cos sin cos 1即⎪⎪⎩⎪⎪⎨⎧−=∂∂−∂∂=∂∂+∂∂u y v v x y u u y y vy u sin cos cos 1解得:u y v x u v x v x u y v x u y u cos cos sin cos cos cos 11cos sin 11+−=−−−=∂∂u y v x u y u vx u y u u y y v cos cos cos sin cos cos 11sin cos 11++=−−=∂∂习题8.6解答1、求下列曲线在指定点的切线和法平面(1)、曲线t t z t y t x +===1,,2在点21,1,1(解:2)1(1)(,2)(,1)(t t z t t y t x +=′=′=′,从而得在点21,1,1(的切线的方向向量为⎭⎬⎫⎩⎨⎧=→41,2,1s ,于是得切线方程为:1218141−=−=−z y x ;法平面方程为021()1(8)1(4=−+−+−z y x ,即0252168=−++z y x (2)、曲线2sin 4,cos 1,sin t z t y t t x =−=−=在2π=t 的对应点解:2cos 2)(,sin )(,cos 1)(tt z t t y t t x =′=′−=′,2π=t 的对应点是点)22,1,12(−π,该的切线的方向向量为{2,1,1=→s ,于是得切线方程为:22211121−=−=−+z y x π;法平面方程为0)22(2)1()2(=−+−+−+z y x π,即02422=−−++πz y x (3)、曲线t z t t y t x 22cos ,cos sin 3,sin 2===在4π=t 的对应点解:t t z t t y t t t t x 2sin )(,2cos 3)(,2sin 2cos sin 4)(−=′=′==′,4π=t 的对应点是点)21,23,1(,该的切线的方向向量为{}1,0,2−=→s ,于是得切线方程为:12102321−−=−=−z y x ;法平面方程为021()1(2=−−−z x ,即0232=−−z x (4)、曲线t z tty t t t x =−=+=,1,12在)01,1(解:tt z t t y t t t t t x 21)(,1)(,)1(2)1(2)1(2)(222=′−=′+=+−+=′,1=t 对应着)01,1(,该的切线的方向向量为{}1,2,22121,1,1−=⎭⎬⎫⎩⎨⎧−=→s ,于是得切线方程为:11221−=−=−z y x ;法平面方程为0)1(2)1(2=−+−−z y x ,即0322=−+−z y x (5)、曲线⎩⎨⎧=−+−=−++0453203222z y x x z y x 在点)1,1,1(解:设x z y x z y x F 3),,(222−++=,4532),,(−+−=z y x z y x G 32−=x F x ,y F y 2=z F z 2=于是{}2211−=→n 2=x G ,3−=y G 5=z G 于是{}5322−=→n 所以切线的方向向量{}191653222121−=−−=×=→→→→→→kj i n n s 于是得切线方程为:1191161−−=−=−z y x ;法平面方程为0)1()1(9)1(16=−−−+−z y x ,即024916=−−+z y x (6)、曲线⎩⎨⎧=+=+222222z x y x 在点)1,1,1(解:设2),,(22−+=y x z y x F ,2),,(22−+=z x z y x G x F x 2=,y F y 2=0=z F 于是{}01121=→n x G x 2=,0=y G z G z 2=于是{}10122=→n 所以切线的方向向量{}11110101121−−==×=→→→→→→k j i n n s 0是得切线方程为:111111−−=−−=−z y x ;法平面方程为0)1()1()1(=−−−−−z y x ,即01=+−−z y x 2、在曲线32,,t z y t x ===上求一点,使在该点的切线与平面102=++z y x 平行解:已知平面的法向为{}121=→n ,曲线的切线的方向{}2321t ts =→,由题设可知•→n 0=→s 即03412=++t t 解得31,121−=−=t t ,所求的点是)1,1,1(−−或者)271,91,31(−−3、求下列曲面在指定点的切平面和法线(1)、zxy z ln+=在点)1,1,1(解:zzxy z y x F −+=ln ),,(,1x F x =,1=y F ,11−−=zF z 切平面的法向为{}211−=→n ,切平面为0)1(2)1()1(=−−−+−z y x 即02=−+z y x 法线为211111−−=−=−z y x (2)、22y x z +=在点)5,1,2(解:zy x z y x F −+=22),,(,2x F x =,2y F y =,1−=z F 切平面的法向为{}124−=→n ,切平面为0)5()1(2)2(4=−−−+−z y x 即0524=−+y x 法线为152142−−=−=−z y x (3)、3=+−xy z e z 在点)0,1,2(解:=),.(z y x F 3−+−xy z e z ,y F x =,x F y =,1−=zz e F 切平面的法向为{}021=→n ,切平面为0)1(2)2(=−+−y x 即042=−+y x 法线为2112zy x =−=−5、在曲面xy z =上求一点,使在该点的法线垂直于平面093=+++z y x 平行解:所求法线的方向为{}131=→n 设=),.(z y x F zxy −,y F x =,x F y =,1−=z F 切平面的法向为{}1−=→x yn ,于是有向量{}131=→n {}1−=x y λ所以1131−==x y 得3,1,3=−=−=z y x ,所求的点是()313−−。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z y
z y
y y2
z
z y y y2
z
2z y2
三、计算题
3.设z z( x, y)由方程x2 y2 z ( x y z)确定,其中
具有一阶导数,求dz
解:(x y z) (u),u x y z
设F (x, y, z) x2 y2 z (x y z)
Fx 2x ', Fx 2 y ', Fx 1 '
Q(x0
,y 0
)为极值点,所以该点为驻点。
驻点
极值点
7设z f ( x, y)的全微分为dz xdx ydy,则点(0, 0) A.不是f ( x, y)的连续点 B.不是f ( x, y)的极值点 C.是f ( x, y)的极大值点 D.是f ( x, y)的极小值点
( D)
分析 zx x, zy y
yf1 '
1 y
f2 '
y x2
g'
(设u xy, v x ,t y ,则z f (u, v) g(t)) yx
6.设z=z(x,y)由方程z=e2x3z 2 y确定,则3 z z 2
x y
解:F(x,y,z)=z-e2x3z 2 y, z Fx , z Fy
x Fz y Fz
4.若f (x0 , y) 及 f (x, y0 ) 在 (x0, y0 )都取得极值,则 f ( x, y) 在 (x0, y0 )
处( A )
A.不一定取得极值; B.取得极值; C.取得最值.
分析: 双曲抛物面 (马鞍面)
z
f (x, y)
x2 a2
y2 b2
在(0, 0)点
f
( x,0)
x2 a2
f
(0, 0)
lim
x 0
(0 x) 0 (0 x)2 02
x
f
(0, 0)
0,
同理fy (0, 0)=0
C 2.已知 x ( y ) ,其中 为可微函数,则 x z y z = (
)
zz
x y
A. x ;
B. y ; C. z ;
D. xyz .
x
z(
y) z
1
z x
.(
y) z
z(
在(0, 0)为极小值,
f
(0,
y)
y2 b2
在(0,
0)为极大值
但是f (x, y)在(0,0)处无极值
5.若在点( x0, y0 )处f ( x, y)可微,且点( x0, y0 )为极值点,则该点
必为( A )
A.驻点; B.最值点;
C.拐点;
D.以上都不对.
注意 可微 偏导数存在,(课本P313定理1)
zx (0,0) 0, zy (0,0) 0, 所以(0,0)为驻点 (课本P331定理2)
zxx 1 0, z yy 1, zxy 0, zxx zyy (zxy )2 1 0,
在点(0,0)是极小值点。
8.
[
f
" xy
(
x0
,
y0 )]2
f
" xx
(
x0
,
y0 )
f
" yy
(
解:设F x, y, z ln yz x
Fx
1, Fy
1 y
, Fz
1 z
z Fx z, z Fy z
x Fz
y Fz y
2 z z
x2
x
() x
z,
2 z ( z ) z z , 2 z z , xy y x y y yx y
2z y2
y
(z ) y
z y
则 f ( x, y)在点 P0( x0 , y0 )处是否取得极值的条件如下: (1) AC B2 0时具有极值,
当 A 0时有极大值, 当 A 0时有极小值;
(2) AC B2 0时没有极值; (3) AC B2 0时可能有极值,也可能没有极值,还需
另作讨论.
三、计算题
1、求极限:
y )( z
y z2
)
z x
z x
z
z
y
x
z(
y )
z
0
z y
.(
y) z
z(
y1 )(
zz
y z2
.
z )
y
z y
z z y
z x
z y
xz
yz
z
x
y
z
x y z y z y
B 3. f (x, y) 在点 ( x, y) 可微是 f (x, y) 在该点连续的( )
A.必要条件;B.充分条件;C.充要条件;D.都不是.
第八章 多元函数微分法
一填空题 1、Q f (x, y) ln(x x2 y2 ),即f (u, v) ln(u u2 v2 ),
令u x y, v x y, f (x y, x y) ln(x y (x y)2 (x y)2 )
4.设z f (xy, x ) g( y ),则 z y x x
2 xy 4 lim
( x, y)(0,0)
xy
解:
原式
lim
(2
xy 4)(2
xy 4)
( x, y)(0,0)
xy(2 xy 4)
lim 2 ( x, y)(0,0)
lim 2 ( x, y)(0,0)
1 xy 4 1 00 4
1 4
三、计算题
2求由方程x ln( yz)确定的函数z z( x, y)的一阶,二阶偏导数
z Fx 2x , z Fy 2y x Fz 1 y Fz 1
dz z dx z dy 2x dx 2y dy
x y
1
1
当点(x, y)沿直线y kx趋向于原点时,
则原式
lim
( x, y)(0,0)
x2
x kx (kx)2
1
k k
2
,
y kx
其值随k的不同而变化,故极限不存在.
xy
lim ( x, y)(0,0)
x2
y2
f (0, 0) 在(0, 0)不连续
(2) fx (0, 0)
lim
x 0f (0 Βιβλιοθήκη , 0) x7.曲线z
x2
y2 4
在点(2, 4,5)处切线对于x轴的倾角是
45o
y 4
解:z = x =1 2 x
(2,4)
二、选择题
xy
1.选(C)
f
( x,
y)
x2
y2
0
(x, y) 0 (x, y) 0
Q
(1)考虑 lim ( x, y )(0,0)
xy (教材300页例2), x2 y2
x0
,
y0 )
0是点( x0 ,
y0 )为极值点的(D)
A、必要条件 B、充分条件 C、充要条件 D、都不是
P331 定理 2(充分条件) 设函数z f ( x, y)在点 P0( x0 , y0 )的某邻域内连续,有一阶及二阶连续偏导数,
又 f x ( x0 , y0 ) 0, f y ( x0 , y0 ) 0, 令 f xx ( x0 , y0 ) A, f xy ( x0 , y0 ) B, f yy ( x0 , y0 ) C ,
相关文档
最新文档