2019高考数学模拟试题及答案解析理

合集下载

2019年高考真题和模拟题分项汇编数学(理):专题03 导数及其应用 (含解析).docx

2019年高考真题和模拟题分项汇编数学(理):专题03 导数及其应用 (含解析).docx

专题03导数及其应用1. [2019年高考全国III 卷理数】已知曲线y = ae x +xlnx 在点(1, ae)处的切线方程为y=2x+b,贝9 A. a = e, b = —1 B. a=e, b=l C. a — e _1, b = lD. a = e"1 > b = -\【答案】D【解析】T y' = ae* + lnx+l,切线的斜率 k = y' |Y=1= ae+1 = 2,a = e _1, 将(1,1)代入 y = 2x + b,得 2 + b = l,b = -l. 故选D.【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a, b 的等式,从而求解,属于常考题 型.了2 O XTTV 2d V* V 12. [2019年高考天津理数】已知tzeR ,设函数/(%)=' _ '若关于X 的不等式/(x)>0在R 上x-alnx, x>l.恒成立,则a 的取值范围为A. [0,1]B. [0,2]C. [0,e]D. [l,e]【答案】C【解析】当兀=1时,/(1) = 1 —2a + 2a = l>0恒成立;当 x<l 时,/(%) = x 2-2ajc + 2a>0^ 2a>^-恒成立,x-1令g(x) =—7x-1(1 —兀―1)2_ (1—兀)2—2(1 —兀)+ 1 1 — X 1 — X当1 —兀=丄,即x = 0时取等号,1-X贝0g(x) = ——1-X2a= 0,则a>0.Y当 x 〉l 时,f(x) = x-a\nx>0,即a< ---------------- 11 成立,lnx当x>e 时,h'(x) >0,函数〃(x)单调递增, 当0<x<e 时,h'(x) <0,函数力(x)单调递减, 则x = e 时,〃(x)取得最小值A(e) = e,•■- a<h(x)nin =e,综上可知,a 的取值范围是[0,e ]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成 立问题.x,x<03. (2019浙江)已知a,bwR ,函数/(%) = < 1 1 2.若函数f(x)-ax-b 恰有3个零点, —X ——(Q + 1)兀 + ax, X > 0 13 2A. a<-\, b<0 C. tz>—1, Z?<0D. a>—1, Z?>0【答案】C【解析】当 x<0 时,y=f (x) -ax - b=x - ax - b= (1 - a) x - b=0,得 x= 丿丿 l-a则y=f (x) -ax-b 最多有一个零点;当 x>0 时,y=f (兀)-ax - b= -x 3—- (a+1) x^+ax - ax - b= -x 3—- (a+1) x 2 - b, —)J3 2 3 2y = x 2-(€l + l)x,当 a+lwo,即來-1 时,y>0, y=f (x) -ax-b 在[0, +oo)上单调递增, 则y =f -ax-b 最多有一个零点,不合题意;当a+l>0,即°>-1时,令y'>0得兀丘@+1, +oo),此时函数单调递增, 令WVO 得用[0, d+1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y=f (x) -ax-b 恰有3个零点o 函数y=f (x) - ax - b 在(-oo, 0)上有一个零点,在[0, +oo)令〃(x)=—, lnx则 h\x)=lnx-1(In x)2 B. a<-l, b>0上有2个零点,如图:b—b>01-a (a + l)3 - j (a + l)(a + l)2- b<0解得b<0, 1 - a>0, b> -- (a+1) 3,6则a>-l, b<0.故选C・【名师点睛】本题考查函数与方程,导数的应用.当兀V0时,y=f (x) -ax - b=x - ax - b= (l-°) x~ b最多有一个零点;当空0时,y=/(x) -ax-b=^-\ (a+1) - b,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.[2019年高考全国I卷理数】曲线y = 3(x2+x)e x在点(0,0)处的切线方程为_________________ .【答案】3x-y-0【解析】y = 3(2x+l)e A + 3(x2 + x)e r = 3(x2 +3x+l)e r,所以切线的斜率k = y' |x=0=3,则曲线y = 3(x2 + x)^在点(0,0)处的切线方程为y = 3x,即3x — y = 0 .【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误•求导要“慢”, 计算要准,是解答此类问题的基本要求._ 45.[2019年高考江苏】在平面直角坐标系xOy中,P是曲线y = x + —(无>0)上的一个动点,则点P到直线x+ y = 0的距离的最小值是一▲•【答案】44 4【解析】由y = x (x〉0),得丁' = 1 ——,X X4 4设斜率为一1的直线与曲线_y = x + -(x>0)切于(x0,x0+—),x 勺由1一一 =一1得x0 = A/2(x0=-A/2舍去),x o曲线y = x + -(x>o)±,点P(V2,3A/2)到直线x+y = o的距离最小,最小值为故答案为4 .【名师点睛】本题考查曲线上任意一点到己知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.6.[2019年高考江苏】在平面直角坐标系中,点A在曲线y=lnr上,且该曲线在点A处的切线经过点(-e, -l)(e 为自然对数的底数),则点A的坐标是▲.【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点A(x0,y0),则y Q =lnx0.又# =丄,X则曲线y = InX在点A处的切线为y - %=丄(X —勺),即yin”。

2019年陕西省高考数学全真模拟试卷(理科)

2019年陕西省高考数学全真模拟试卷(理科)

2019年陕西省高考数学全真模拟试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.集合P={x|x2﹣9<0},Q={x∈Z|﹣1≤x≤3},则P∩Q=()A.{x|﹣3<x≤3}B.{x|﹣1≤x<3}C.{﹣1,0,1,2,3}D.{﹣1,0,1,2}3.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.74.若命题p:对任意的x∈R,都有x3﹣x2+1<0,则¬p为()A.不存在x∈R,使得x3﹣x2+1<0B.存在x∈R,使得x3﹣x2+1<0C.对任意的x∈R,都有x3﹣x2+1≥0D.存在x∈R,使得x3﹣x2+1≥05.在等比数列{a n}中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q等于()A.2 B.﹣2 C.3 D.﹣36.已知向量=(1,1),2+=(4,2),则向量,的夹角的余弦值为()A.B.C.D.7.函数f(x)=sin(2x+φ)+cos(2x+φ)的图象关于原点对称的充要条件是()A.φ=2kπ﹣,k∈Z B.φ=kπ﹣,k∈Z C.φ=2kπ﹣,k∈Z D.φ=kπ﹣,k∈Z8.执行如图所示的程序框图(算法流程图),输出的结果是()A.9 B.121 C.130 D.170219.双曲线的离心率为2,则的最小值为()A.B. C.2 D.110.5的展开式中,x5y2的系数为()A.﹣90 B.﹣30 C.30 D.9011.已知不等式组表示平面区域D,现在往抛物线y=﹣x2+x+2与x 轴围成的封闭区域内随机地抛掷一小颗粒,则该颗粒落到区域D中的概率为()A.B.C.D.12.定义在R上的函数f(x)满足(x﹣1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1﹣1|<|x2﹣1|时,有()A.f(2﹣x1)≥f(2﹣x2)B.f(2﹣x1)=f(2﹣x2)C.f(2﹣x1)<f(2﹣x2)D.f(2﹣x1)≤f(2﹣x2)第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(),0a t =r ,()1,3b =-r,若4a b ⋅=r r ,则2a b -=r r . 14.若()52132x a x x ⎛⎫-- ⎪⎝⎭的展开式中3x 的系数为80,则a = .15.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且ABC ∆的外接圆半径为1,若6abc =,则ABC ∆的面积为 .16.已知抛物线()2:20C x py p =>的焦点为F ,O 为坐标原点,点4,2p M ⎛⎫- ⎪⎝⎭,1,2p N ⎛⎫-- ⎪⎝⎭,射线,MO NO 分别交抛物线C 于异于点O 的点,A B ,若,,A B F 三点共线,则p = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知正项数列3n n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列,且12,9,a a 成等比数列.(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S .18. 2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.根据短道速滑男子500米的比赛规则,运动员自出发点出发进入滑行阶段后,每滑行一圈都要依次经过4个直道与弯道的交接口()1,2,3,4k A k =.已知某男子速滑运动员顺利通过每个交接口的概率均为34,摔倒的概率均为14.假定运动员只有在摔倒或到达终点时才停止滑行,现在用X 表示一名顺利进入最后一圈的运动员在滑行结束后,在最后一圈顺利通过的交接口数.(1)求该运动员停止滑行时恰好已顺利通过3个交接口的概率; (2)求X 的分布列及数学期望()E X .19. 如图,在三棱锥P ABC -中,D 为棱PA 上的任意一点,,,F G H 分别为所在棱的中点.(1)证明:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB BC ⊥,2AB =,45BAC ∠=︒,当二面角C GF H --的平面角为3π时,求棱PC 的长.20. 已知椭圆()2222:10x y E a b a b+=>>的焦距为2c ,且b =,圆()222:0O x y r r +=>与x 轴交于点,,M N P 为椭圆E 上的动点,2PM PN a +=,PMN ∆(1)求圆O 与椭圆E 的方程;(2)设圆O 的切线l 交椭圆E 于点,A B ,求AB 的取值范围.21. 已知函数()()326,f x x x ax b a b =-++∈R 的图象在与x 轴的交点处的切线方程为918y x =-. (1)求()f x 的解析式; (2)若()()212910kx x f x x k -<<+对()2,5x ∈恒成立,求k 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C的极坐标方程为3cos ρθ=. (1)求圆C 的参数方程;(2)设P 为圆C 上一动点,()5,0A ,若点P 到直线sin 3πρθ⎛⎫-= ⎪⎝⎭求ACP ∠的大小.23.选修4-5:不等式选讲 已知函数()3121f x x x a =--++. (1)求不等式()f x a >的解集;(2)若恰好存在4个不同的整数n ,使得()0f n <,求a 的取值范围.2019年陕西省高考数学全真模拟试卷(理科)一、选择题1.复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简复数,求出复数在复平面上对应的点的坐标,则答案可求.【解答】解:=,则复数在复平面上对应的点的坐标为:(,),位于第一象限.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.2.集合P={x|x2﹣9<0},Q={x∈Z|﹣1≤x≤3},则P∩Q=()A.{x|﹣3<x≤3}B.{x|﹣1≤x<3}C.{﹣1,0,1,2,3}D.{﹣1,0,1,2}【考点】交集及其运算.【分析】求出集合P中一元二次不等式的解集确定出集合P,取集合Q中解集的整数解确定出集合Q,然后找出既属于P又属于Q的元素即可确定出两集合的交集.【解答】解:由集合P中的不等式x2﹣9<0,解得:﹣3<x<3,∴集合P={x|﹣3<x<3};由集合Q中的解集﹣1≤x≤3,取整数为﹣1,0,1,2,3,∴集合Q={﹣1,0,1,2,3},则P∩Q={﹣1,0,1,2}.故选D【点评】此题属于以不等式解集为平台,考查了交集的元素,是一道基础题,也是高考中常考的题型.3.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.7【考点】两角和与差的正切函数;弦切互化.【分析】先根据cosα的值求出tanα的值,再由两角和与差的正切公式确定答案.【解答】解析:由cosα=﹣且α∈()得tanα=﹣,∴tan(α+)==,故选C.【点评】本题主要考查两角和与差的正切公式.属基础题.4.若命题p:对任意的x∈R,都有x3﹣x2+1<0,则¬p为()A.不存在x∈R,使得x3﹣x2+1<0B.存在x∈R,使得x3﹣x2+1<0C.对任意的x∈R,都有x3﹣x2+1≥0D.存在x∈R,使得x3﹣x2+1≥0【考点】命题的否定.【分析】利用全称命题的否定是特称命题,去判断.【解答】解:因为命题是全称命题,根据全称命题的否定是特称命题,所以命题的否定¬p为:存在x∈R,使得x3﹣x2+1≥0故选:D【点评】本题主要考查全称命题的否定,要求掌握全称命题的否定是特称命题.5.在等比数列{a n}中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q等于()A.2 B.﹣2 C.3 D.﹣3【考点】等比关系的确定.【分析】由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列,即(s2+2)2=(S+2)(S3+2)1代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解方程即可求解【解答】解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.【点评】等比数列得前n项和公式的应用需要注意公式的选择,解题时要注意对公比q=1,q≠1的分类讨论,体现了公式应用的全面性.6.已知向量=(1,1),2+=(4,2),则向量,的夹角的余弦值为()A.B.C.D.【考点】数量积表示两个向量的夹角.【分析】利用向量的坐标运算求出;利用向量的数量积公式求出两个向量的数量积;利用向量模的坐标公式求出两个向量的模;利用向量的数量积公式求出两个向量的夹角余弦.【解答】解:∵∴∴∵∴两个向量的夹角余弦为故选C【点评】本题考查向量的数量积公式,利用向量的数量积公式求向量的夹角余弦、考查向量模的坐标公式.7.函数f(x)=sin(2x+φ)+cos(2x+φ)的图象关于原点对称的充要条件是()A.φ=2kπ﹣,k∈Z B.φ=kπ﹣,k∈Z C.φ=2kπ﹣,k∈Z D.φ=kπ﹣,k∈Z【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先利用辅助角公式对函数化简可得,f(x)=sin(2x+φ)+cos(2x+φ)=2sin(2x+φ+),由函数的图象关于原点对称可知函数f(x)为奇函数,由奇函数的性质可得,f(0)=0代入可得sin(φ)=0,从而可求答案.【解答】解:∵f(x)=sin(2x+φ)+cos(2x+φ)=2sin(2x+φ+)的图象关于原点对称∴函数f(x)为奇函数,由奇函数的性质可得,f(0)=0∴sin(φ)=0∴φ=kπ∴φ=故选:D【点评】本题主要考查了利用辅助角公式把不同名的三角函数化为y=Asin(x+)的形式,进而研究函数的性质;还考查了奇函数的性质(若奇函数的定义域内有0,则f(0)=0)的应用,灵活应用性质可以简化运算,减少运算量.8.执行如图所示的程序框图(算法流程图),输出的结果是()A.9 B.121 C.130 D.17021【考点】程序框图.【分析】执行程序框图,依次写出每次循环得到的a,b,c的值,当c=16900时,不满足条件c<2016,退出循环,输出a的值为121.【解答】解:模拟执行程序,可得a=1,b=2,c=3满足条件c<2016,a=2,b=9,c=11满足条件c<2016,a=9,b=121,c=130满足条件c<2016,a=121,b=16900,c=17021不满足条件c<2016,退出循环,输出a的值为121.故选:B.【点评】本题主要考察了程序框图和算法,正确理解循环结构的功能是解题的关键,属于基本知识的考查.9.双曲线的离心率为2,则的最小值为()A.B. C.2 D.1【考点】双曲线的简单性质;基本不等式.【分析】根据基本不等式,只要根据双曲线的离心率是2,求出的值即可.【解答】解:由于已知双曲线的离心率是2,故,解得,所以的最小值是.故选A.【点评】本题考查双曲线的性质及其方程.双曲线的离心率e和渐近线的斜率之间有关系,从这个关系可以得出双曲线的离心率越大,双曲线的开口越大.10.(x2+3x﹣y)5的展开式中,x5y2的系数为()A.﹣90 B.﹣30 C.30 D.90【考点】二项式系数的性质.=(﹣y)5﹣r(x2+3x)r,令5【分析】(x2+3x﹣y)5的展开式中通项公式:T r+1﹣r=2,解得r=3.展开(x2+3x)3,进而得出.=(﹣y)5﹣r(x2+3x)r,【解答】解:(x2+3x﹣y)5的展开式中通项公式:T r+1令5﹣r=2,解得r=3.∴(x2+3x)3=x6+3(x2)2•3x+3(x2)×(3x)2+(3x)3,∴x5y2的系数=×9=90.故选:D.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.11.已知不等式组表示平面区域D,现在往抛物线y=﹣x2+x+2与x轴围成的封闭区域内随机地抛掷一小颗粒,则该颗粒落到区域D中的概率为()A.B.C.D.【考点】几何概型.【分析】根据积分的知识可得先求y=﹣x2+x+2与x轴围成的封闭区域为曲面MEN,的面积,然后根据线性规划的知识作出平面区域D,并求面积,最后代入几何概率的计算公式可求.【解答】解:根据积分的知识可得,y=﹣x2+x+2与x轴围成的封闭区域为曲面MEN,面积=等式组表示平面区域D即为△AOB,其面积为根据几何概率的计算公式可得P=故选:C【点评】本题主要考查了利用积分求解曲面的面积,还考查了几何概率的计算公式的应用,属于基础试题.12.定义在R上的函数f(x)满足(x﹣1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1﹣1|<|x2﹣1|时,有()A.f(2﹣x1)≥f(2﹣x2)B.f(2﹣x1)=f(2﹣x2)C.f(2﹣x1)<f(2﹣x2)D .f (2﹣x 1)≤f (2﹣x 2)【考点】函数的单调性与导数的关系.【分析】①若函数f (x )为常数,可得当|x 1﹣1|<|x 2﹣1|时,恒有f (2﹣x 1)=f (2﹣x 2).②若f (x )不是常数,可得y=f (x )关于x=1对称.当x 1≥1,x 2≥1,则由|x 1﹣1|<|x 2﹣1|可得f (x 1)>f (x 2).当x 1<1,x 2<1时,同理可得f (x 1)>f (x 2).综合①②得出结论.【解答】解:①若f (x )=c ,则f'(x )=0,此时(x ﹣1)f'(x )≤0和y=f (x +1)为偶函数都成立,此时当|x 1﹣1|<|x 2﹣1|时,恒有f (2﹣x 1)=f (2﹣x 2).②若f (x )不是常数,因为函数y=f (x +1)为偶函数,所以y=f (x +1)=f (﹣x +1), 即函数y=f (x )关于x=1对称,所以f (2﹣x 1)=f (x 1),f (2﹣x 2)=f (x 2). 当x >1时,f'(x )≤0,此时函数y=f (x )单调递减,当x <1时,f'(x )≥0,此时函数y=f (x )单调递增.若x 1≥1,x 2≥1,则由|x 1﹣1|<|x 2﹣1|,得x 1﹣1<x 2﹣1,即1≤x 1<x 2,所以f (x 1)>f (x 2).同理若x 1<1,x 2<1,由|x 1﹣1|<|x 2﹣1|,得﹣(x 1﹣1)<﹣(x 2﹣1),即x 2<x 1<1,所以f (x 1)>f (x 2).若x 1,x 2中一个大于1,一个小于1,不妨设x 1<1,x 2≥1,则﹣(x 1﹣1)<x 2﹣1, 可得1<2﹣x 1<x 2,所以f (2﹣x 1)>f (x 2),即f (x 1)>f (x 2). 综上有f (x 1)>f (x 2),即f (2﹣x 1)>f (2﹣x 2), 故选A .【点评】本题主要考查函数的导数与函数的单调性的关系,体现了分类讨论的数学思想,属于中档题.二、填空题13.()2,6-- 14.-2 15.3216.2 三、解答题17.解:(1)因为数列3n n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列,所以212233a a -=, 则21318a a =+,又12,9,a a 成等比数列,所以()212113189a a a a =+=,解得13a =或19a =-,因为数列3n n a ⎧⎫⎨⎬⎩⎭为正项数列,所以13a =.所以()3212133n n a n n =+-=-, 故()213n n a n =-⋅.(2)由(1)得()21333213n n S n =⨯+⨯++-⋅L , 所以()23131333213n n S n +=⨯+⨯++-⋅L ,所以()231332333213n n n n S S n +⎡⎤-=+⨯+++--⋅⎣⎦L ,即()2133323221313n n n S n +-⨯-=+⨯--⋅-()1136123n n n ++=-+-⋅()12236n n +=-⋅-, 故()1133n n S n +=-⋅+.18.解:(1)由题意可知:3312744256P ⎛⎫=⨯= ⎪⎝⎭.(2)X 的所有可能值为0,1,2,3,4.则()()31,2,3,44k P A k ==,且1234,,,A A A A 相互独立. 故()()1104P X P A ===,()()121P X P A A ==⋅=3134416⨯=,()()1232P X P A A A ==⋅⋅=23194464⎛⎫⨯= ⎪⎝⎭,()()12343P X P A A A A ==⋅⋅⋅=3312744256⎛⎫⨯= ⎪⎝⎭,()()12344P X P A A A A ==⋅⋅⋅=43814256⎛⎫=⎪⎝⎭.从而X 的分布列为所以()139********E X =⨯+⨯+⨯+278152534256256256⨯+⨯=.19.(1)证明:因为,G H 分别为,AC BC 的中点, 所以AB GH ∥,且GH ⊂平面FGH ,AB ⊄平面FGH ,所以AB ∥平面FGH .又因为,F G 分别为,PC AC 的中点,所以有GF AP ∥,FG ⊂平面FGH , 且AP ⊄平面FGH ,所以AP ∥平面FGH . 又因为AP AB A =I ,所以平面ABP ∥平面FGH . 因为BD ⊂平面ABP ,所以BD ∥平面FGH .(2)解:在平面ABC 内过点C 作CM AB ∥,如图所示,以C 为原点,,,CB CM CF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系C xyz -.由ABC ∆为等腰直角三角形知BG AC ⊥,又BG C F ⊥,AC CF C =I ,所以有BG ⊥平面PAC .设CF a =,则()2,0,0B ,()1,1,0G -,所以()1,1,0BG =--uuu r为平面PAC 的一个法向量.又()0,0,F a ,()1,0,0H ,所以()1,0,FH a =-uuu r ,()1,1,FG a =--uuu r,设(),,m x y z =u r 为平面FGH 的一个法向量,则有0m FH m FG ⎧⋅=⎪⎨⋅=⎪⎩u r uuu r u r uu u r,即有0x az x y az -=⎧⎨--=⎩,所以可取(),0,1m a =u r .由1cos ,2m BG ==u r uu u r,得1a =,从而22a =. 所以棱PC 的长为2.20.解:(1)因为b =,所以2a c =.①因为2PM PN a +=,所以点,M N 为椭圆的焦点,所以,22214r c a ==. 设()00,P x y ,则0b x b -≤≤,所以0012PMN S r y a y ∆=⋅=, 当0y b =时,()max 12PMN S ab ∆== 由①,②解得2a =,所以b =1c =,所以圆O 的方程为221x y +=,椭圆E 的方程为22143x y +=. (2)①当直线l 的斜率不存在时,不妨取直线l 的方程为1x =,解得31,2A ⎛⎫⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭,3AB =.②当直线l 的斜率存在时,设直线l 的方程为y kx m =+,()11,A x kx m +,()22,B x kx m +.因为直线l1=,即221m k =+,联立22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 可得()2224384120k x kmx m +++-=, ()224843k m ∆=+-=()248320k +>,122843kmx x k +=-+,212241243m x x k -=+.AB ===24k+=令2134t k =+,则214034t k <=≤+,所以AB =,403t <≤,所以AB =33AB <≤.综上,AB 的取值范围是⎛ ⎝⎦.21.解:(1)由9180x -=得2x =,∴切点为()2,0. ∵()2312f x x x a '=-+,∴()2129f a '=-=,∴21a =,又()282420f a b =-++=,∴26b =-,()3262126f x x x x =-+-. (2)由()9f x x k <+得()9k f x x >-=3262126x x x -+-,设()3261226g x x x x =-+-,()()2344g x x x '=-+=()2320x ->对()2,5x ∈恒成立,∴()g x 在()2,5上单调递增,∴()59k g ≥=.∵()()32612892f x x x x x =-+-+-=()()3292x x -+-,∴由()()21210kx x f x -<对()2,5x ∈恒成立得()129102x k x x x -<+-213212x x x -=+-对()2,5x ∈恒成立,设()()21321252x h x x x x -=+<<-,()()22213132x x h x x x -+'=-, 当25x <<时,213130x x -+<,∴()0h x '<,∴()h x 单调递减,∴()165105k h ≤=,即12k ≤. 综上,k 的取值范围为[]9,12.22.解:(1)∵3cos ρθ=,∴23cos ρρθ=,∴223x y x +=,即223924x y ⎛⎫-+= ⎪⎝⎭,∴圆C 的参数方程为33cos ,223sin 2x y αα⎧=+⎪⎪⎨⎪=⎪⎩(α为参数).(2)由(1)可设333cos ,sin 222P θθ⎛⎫+ ⎪⎝⎭,[)0,2θπ∈,sin 3πρθ⎛⎫-= ⎪⎝⎭0y -+=, 则P到直线sin 3πρθ⎛⎫-= ⎪⎝⎭=3sin 23πθ⎛⎫-=⎪⎝⎭, ∴sin 03πθ⎛⎫-= ⎪⎝⎭,∵[)0,2θπ∈,∴3πθ=或43π,故3ACP π∠=或23ACP π∠=. 23.解:(1)由()f x a >,得3121x x ->+, 不等式两边同时平方得,22961441x x x x -+>++, 即2510x x >,解得0x <或2x >.所以不等式()f x a >的解集为()(),02,-∞+∞U .(2)设()3121g x x x =--+=12,2115,2312,3x x x x x x ⎧-≤-⎪⎪⎪--<<⎨⎪⎪-≥⎪⎩,作出()g x 的图象,如图所示,因为()()020g g ==,()()()34213g g g <=<-=, 又恰好存在4个不同的整数n ,使得()0f n <,所以()()30,40,f f <⎧⎪⎨≥⎪⎩即1020a a +<⎧⎨+≥⎩,故a 的取值范围为[)2,1--.。

2019年高考数学(理)模拟试题(三)含答案及解析

2019年高考数学(理)模拟试题(三)含答案及解析

2019年高考数学(理)模拟试题(三)含答案及解析2019年高考数学(理)模拟试题(三)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z满足(1-i)z=2+i,则z的共轭复数在复平面内对应的点在()A。

第一象限B。

第二象限C。

第三象限D。

第四象限2.设集合M={x|x<36},N={2,4,6,8},则M∩N=()A。

{2,4}B。

{2,4,6}C。

{2,6}D。

{2,4,6,8}3.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A。

1/4B。

1/3C。

1/2D。

2/34.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A。

42种B。

48种C。

54种D。

60种5.如图所示是一个几何体的三视图,则这个几何体外接球的体积为()A。

32π/3B。

64π/3C。

32πD。

64π/26.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后入称之为三角形的欧拉线.已知△ABC的顶点A(2,0),B(0,4),AC=BC,则△ABC的欧拉线方程为()A。

2x+y-3=0B。

2x-y+3=0C。

x-2y-3=0D。

x-2y+3=07.执行如图所示的程序框图,则输出S的值为()A。

2019年湖南省六校联考高考数学模拟试卷(理科)(解析版)

2019年湖南省六校联考高考数学模拟试卷(理科)(解析版)

2019年湖南省高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x=2n,n∈Z},N={x|x=2n+1,n∈Z},P={x|x=4n,n ∈Z},则()A.M=P B.P≠M C.N∩P≠∅D.M∩N≠∅2.复数(2+i)i的共轭复数的虚部是()A.2 B.﹣2 C.2i D.﹣2i3.若点P到直线y=3的距离比到点F(0,﹣2)的距离大1,则点P 的轨迹方程为()A.y2=8x B.y2=﹣8x C.x2=8y D.x2=﹣8y4.已知数列{a n}满足:对于∀m,n∈N*,都有a n•a m=a n+m,且,那么a5=()A. B. C.D.5.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=3,n=2,依次输入的a为2,2,5,则输出的s=()A .8B .17C .29D .836.若,则=( )A .B .C .D . 7.为响应“精确扶贫”号召,某企业计划每年用不超过100万元的资金购买单价分别为1500元/箱和3000元/箱的A 、B 两种药品捐献给贫困地区某医院,其中A 药品至少100箱,B 药品箱数不少于A 药品箱数.则该企业捐献给医院的两种药品总箱数最多可为( ) A .200 B .350 C .400 D .5008.圆O 的半径为3,一条弦AB=4,P 为圆O 上任意一点,则•的取值范围为( )A .[﹣16,0]B .[0,16]C .[﹣4,20]D .[﹣20,4]9.设函数,则关于函数f (x )有以下四个命题( )①∀x ∈R ,f (f (x ))=1;②∃x 0,y 0∈R ,f (x 0+y 0)=f (x 0)+f (y 0);③函数f (x )是偶函数;④函数f(x)是周期函数.其中真命题的个数是()A.4 B.3 C.2 D.110.若函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是,函数f'(x)的图象的一个对称中心是,则f(x)的最小正周期是()A. B. C.πD.2π11.点P为棱长是的正方体ABCD﹣AB1C1D1的内切球O球面上的动点,点M为B1C1的中点,若满足DP⊥BM,则动点P的轨迹的长度为()A.πB.2πC.4πD.12.已知函数与g(x)=|x|+log2(x+a)的图象上存在关于y轴对称的点,则a的取值范围是()A.B. C.D.二、填空题:本题共4小题,每小题5分,满分20分.13.一个总体分为A,B两层,其个体数之比为5:1,用分层抽样方法从总体中抽取一个容量为12的样本,已知B层中甲、乙都被抽到的概率为,则总体中的个数为.14.中国古代数学名著《九章算术》中记载了公元前344年商鞅制造一种标准量器﹣﹣﹣﹣商鞅铜方升,其三视图(单位:寸)如图所示,若π取3,其体积为12.6(立方寸),则图中的x为.15.设F是双曲线的右焦点,若点F关于双曲线的一条渐近线的对称点P恰好落在双曲线的左支上,则双曲线的离心率为.16.已知数列{a n}是各项均为正整数的等差数列,公差d∈N*,且{a n}中任意两项之和也是该数列中的一项.若,其中m为给定的正整数,则d的所有可能取值的和为.三、解答题:解答应写出文字说明、证明过程或演算步骤.)17.某学校的平面示意图为如下图五边形区域ABCDE,其中三角形区域ABE为生活区,四边形区域BCDE为教学区,AB,BC,CD,DE,EA,BE为学校的主要道路(不考虑宽度).,.(1)求道路BE的长度;(2)求生活区△ABE面积的最大值.18.如图,三棱柱ABC﹣A1B1C1中,∠ACB=90°,CC1⊥底面ABC,AC=BC=CC1=2,D,E,F分别是棱AB,BC,B1C1的中点,G是棱BB1上的动点.(1)当为何值时,平面CDG⊥平面A1DE?(2)求平面AB1F与平面AD1E所成的锐二面角的余弦值.19.随着生活水平和消费观念的转变,“三品一标”(无公害农产品、绿色食品、有机食品和农产品地理标志)已成为不少人的选择,为此某品牌植物油企业成立了有机食品快速检测室,假设该品牌植物油每瓶含有机物A的概率为p(0<p<1),需要通过抽取少量油样化验来确定该瓶油中是否含有有机物A,若化验结果呈阳性则含A,呈阴性则不含A.若多瓶该种植物油检验时,可逐个抽样化验,也可将若干瓶植物油的油样混在一起化验,仅当至少有一瓶油含有有机物A时混合油样呈阳性,若混合油样呈阳性,则该组植物油必须每瓶重新抽取油样并全部逐个化验.(1)若,试求3瓶该植物油混合油样呈阳性的概率;(2)现有4瓶该种植物油需要化验,有以下两种方案:方案一:均分成两组化验;方案二:混在一起化验;请问哪种方案更适合(即化验次数的期望值更小),并说明理由.20.已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆M:(x+1)2+y2=r2(0<r<1).过椭圆C的上顶点A作圆M的两条切线分别与椭圆C相交于B,D两点(不同于点A),直线AB,AD的斜率分别为k1,k2.(1)求椭圆C的方程;(2)当r变化时,①求k1•k2的值;②试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.21.已知函数f(x)=xe x﹣a(lnx+x).(1)若函数f(x)恒有两个零点,求a的取值范围;(2)若对任意x>0,恒有不等式f(x)≥1成立.①求实数a的值;②证明:x2e x>(x+2)lnx+2sinx.[选修4-4:坐标系与参数方程]22.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2ρ2﹣ρ2cos2θ=12.若曲线C的左焦点F在直线l上,且直线l与曲线C交于A,B两点.(1)求m的值并写出曲线C的直角坐标方程;(2)求的值.[选修4-5:不等式选讲]23.设函数f(x)=2x﹣a,g(x)=x+2.(1)当a=1时,求不等式f(x)+f(﹣x)≤g(x)的解集;(2)求证:中至少有一个不小于.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x=2n,n∈Z},N={x|x=2n+1,n∈Z},P={x|x=4n,n ∈Z},则()A.M=P B.P≠M C.N∩P≠∅D.M∩N≠∅【考点】交集及其运算;集合的包含关系判断及应用.【分析】利用交集定义、集合相等的定义直接求解.【解答】解:∵集合M={x|x=2n,n∈Z},N={x|x=2n+1,n∈Z},P={x|x=4n,n∈Z},∴M≠P,N∩P=∅,M∩N=∅,故选:B.2.复数(2+i)i的共轭复数的虚部是()A.2 B.﹣2 C.2i D.﹣2i【考点】复数的基本概念;复数代数形式的乘除运算.【分析】利用复数代数形式的乘法运算化简,再求出其共轭复数得答案.【解答】解:∵(2+i)i=﹣1+2i,∴复数(2+i)i的共轭复数为﹣1﹣2i,其虚部为﹣2.故选:B.3.若点P到直线y=3的距离比到点F(0,﹣2)的距离大1,则点P 的轨迹方程为()A.y2=8x B.y2=﹣8x C.x2=8y D.x2=﹣8y【考点】轨迹方程.【分析】由题意得,点P到直线y=1的距离和它到点(0,﹣1)的距离相等,故点P的轨迹是以点(0,﹣1)为焦点,以直线y=1为准线的抛物线,可得轨迹方程.【解答】解:∵点P到直线y=3的距离比到点F(0,﹣1)的距离大2,∴点P到直线y=1的距离和它到点(0,﹣1)的距离相等,故点P的轨迹是以点(0,﹣1)为焦点,以直线y=1为准线的抛物线,方程为x2=﹣4y.故选:D.4.已知数列{a n}满足:对于∀m,n∈N*,都有a n•a m=a n+m,且,那么a5=()A. B. C.D.【考点】数列递推式.【分析】数列{a n}对任意的m,n∈N*满足a n•a m=a n+m,且,可得a2,a3,a4,a5.即可.【解答】解:∵数列{a n}满足:对于∀m,n∈N*,都有a n•a m=a n+m,且,∴a2=a1a1=,a3=a1•a2=.那么a4=a2•a2=.a5=a3•a2=.故选:A.5.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=3,n=2,依次输入的a为2,2,5,则输出的s=()A.8 B.17 C.29 D.83【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】解:∵输入的x=3,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=8,k=2,不满足退出循环的条件;当输入的a为5时,S=29,k=3,满足退出循环的条件;故输出的S值为29,故选:C6.若,则=()A.B.C. D.【考点】两角和与差的余弦函数;两角和与差的正弦函数.【分析】由已知利用诱导公式可求cos(α+)=,进而利用二倍角的余弦函数公式即可计算得解.【解答】解:∵=cos(α+),∴=cos[2(α+)]=2cos2(α+)﹣1=2×﹣1=﹣.故选:D.7.为响应“精确扶贫”号召,某企业计划每年用不超过100万元的资金购买单价分别为1500元/箱和3000元/箱的A、B两种药品捐献给贫困地区某医院,其中A药品至少100箱,B药品箱数不少于A药品箱数.则该企业捐献给医院的两种药品总箱数最多可为()A.200 B.350 C.400 D.500【考点】简单线性规划的应用.【分析】设A药品为x箱,B药品为y箱,该企业捐献给医院的两种药品总箱数为z=x+y,则x,y满足的关系式为,根据约束条件对目标函数的范围进行验证即可【解答】解:设A药品为x箱,B药品为y箱,该企业捐献给医院的两种药品总箱数为z=x+y,则x,y满足的关系式为,若x+y=500,又因为≥x,∴y≥250,则0.15x+0.3y=0.15+0.3y=75+0.15y>100,不合题意.若x+y=400,又因为y≥x,∴y≥200,则0.15x+0.3y=0.15+0.3y=60+0.15y≥90,合题意.故选:C8.圆O的半径为3,一条弦AB=4,P为圆O上任意一点,则•的取值范围为()A.[﹣16,0]B.[0,16]C.[﹣4,20]D.[﹣20,4]【考点】平面向量数量积的运算.【分析】如图所示,连接OA,OB.过点O作OC⊥AB,垂足为C.利用垂径定理可得BC=AB=2.可得cos∠OBA.利用向量的三角形法则,可得•==,代入数量积即可得出•的取值范围.【解答】解:如图所示,连接OA,OB.过点O作OC⊥AB,垂足为C.则BC=AB=2.∴cos∠OBA=.∴•===.==.∵cos∈[﹣1,1],∴12cos﹣8∈[﹣20,4].故选:D.9.设函数,则关于函数f(x)有以下四个命题()①∀x∈R,f(f(x))=1;②∃x0,y0∈R,f(x0+y0)=f(x0)+f(y0);③函数f(x)是偶函数;④函数f(x)是周期函数.其中真命题的个数是()A.4 B.3 C.2 D.1【考点】命题的真假判断与应用.【分析】由函数的值的求法、函数的性质逐一核对四个命题得答案.【解答】解:由,可得f(x)=0或1,则∀x∈R,f(f(x))=1,故①正确;当时,f(x0+y0)=f(x0)+f(y0),故②正确;∵x为有理数,则﹣x为有理数,x为无理数,则﹣x为无理数,∴函数f(x)是偶函数,故③正确;任何一个非0的有理数都是函数的周期,∴函数f(x)是周期函数,故④正确.∴真命题的个数是4个.故选:A.10.若函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是,函数f'(x)的图象的一个对称中心是,则f(x)的最小正周期是()A. B. C.πD.2π【考点】三角函数的周期性及其求法.【分析】由题意可得f(0)=f(),由此得到a=b,再根据函数f′(x)的图象的一个对称中心是,求得ω的值,可得f(x)的最小正周期.【解答】解:∵函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是,∴f(0)=f(),即b=asin(ω•)+bcos(ω•)=a,∴f(x)=asinωx+acosωx=a•sin(ωx+).又函数f'′(x)=a•ω•cos(ωx+)的图象的一个对称中心是,∴a•ωcos(ω•+)=0,∴ω•+=kπ+,k∈Z,即ω=8k+2,故取ω=2,则f(x)的最小正周期是=π,故选:C.B1C1D1的内切球O球面上的11.点P为棱长是的正方体ABCD﹣A动点,点M为B1C1的中点,若满足DP⊥BM,则动点P的轨迹的长度为()A.πB.2πC.4πD.【考点】轨迹方程.【分析】首先,求解其内切球的半径,然后,结合球面的性质求解点O到平面DCN的距离,然后,确定其周长.【解答】解:根据题意,该正方体的内切球半径为r=,由题意,取BB1的中点N,连接CN,则CN⊥BM,∵正方体ABCD﹣A1B1C1D1,∴CN为DP在平面B1C1CB中的射影,∴点P的轨迹为过D,C,N的平面与内切球的交线,B1C1D1的棱长为2,∵正方体ABCD﹣A∴O到过D,C,N的平面的距离为1,∴截面圆的半径为:=2,∴点P的轨迹周长为:2π×2=4π.故选:C.12.已知函数与g(x)=|x|+log2(x+a)的图象上存在关于y轴对称的点,则a的取值范围是()A.B. C.D.【考点】函数的图象.【分析】令f(﹣x)=g(x)在(0,+∞)上有解,根据函数图象得出a的范围.【解答】解:f(x)关于y轴对称的函数为h(x)=f(﹣x)=x+2﹣x﹣(x>0),令h(x)=g(x)得2﹣x﹣=log2(x+a)(x>0),则方程2﹣x﹣=log2(x+a)在(0,+∞)上有解,作出y=2﹣x﹣与y=log2(x+a)的函数图象如图所示:当a≤0时,函数y=2﹣x﹣与y=log2(x+a)的函数图象在(0,+∞)上必有交点,符合题意;若a>0,若两图象在(0,+∞)上有交点,则log2a,解得0,综上,a.故选:B.二、填空题:本题共4小题,每小题5分,满分20分.13.一个总体分为A,B两层,其个体数之比为5:1,用分层抽样方法从总体中抽取一个容量为12的样本,已知B层中甲、乙都被抽到的概率为,则总体中的个数为48.【考点】分层抽样方法.【分析】设出B层中的个体数,根据条件中所给的B层中甲、乙都被抽到的概率值,写出甲和乙都被抽到的概率,使它等于,算出n 的值,由已知A和B之间的比值,得到总体中的个体数.【解答】解:设B层中有n个个体,∵B层中甲、乙都被抽到的概率为,∴=,∴n2﹣n﹣56=0,∴n=﹣7(舍去),n=8,∵总体分为A,B两层,其个体数之比为5:1,∴共有个体(5+1)×8=48,故答案为:48.14.中国古代数学名著《九章算术》中记载了公元前344年商鞅制造一种标准量器﹣﹣﹣﹣商鞅铜方升,其三视图(单位:寸)如图所示,若π取3,其体积为12.6(立方寸),则图中的x为3.【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由此构造关于x的方程,解得答案.【解答】解:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4﹣1.6)•x×1+π•()2×1.6=12.6,∵π=3.解得x=3,故答案为:3.15.设F是双曲线的右焦点,若点F关于双曲线的一条渐近线的对称点P恰好落在双曲线的左支上,则双曲线的离心率为.【考点】双曲线的简单性质.【分析】设F(﹣c,0),渐近线方程为y=x,对称点为F'(m,n),运用中点坐标公式和两直线垂直的条件:斜率之积为﹣1,求出对称点的坐标,代入双曲线的方程,由离心率公式计算即可得到所求值.【解答】解:设F(﹣c,0),渐近线方程为y=x,对称点为F'(m,n),即有=﹣,且•n=•,解得m=,n=﹣,将F'(,﹣),即(,﹣),代入双曲线的方程可得﹣=1,化简可得﹣4=1,即有e2=5,解得e=.故答案为:16.已知数列{a n}是各项均为正整数的等差数列,公差d∈N*,且{a n}中任意两项之和也是该数列中的一项.若,其中m为给定的正整数,则d的所有可能取值的和为.【考点】等差数列的通项公式.【分析】由公差d是的约数,得到d=2i•3j,(i,j=0,1,2,…,m),由此能求出d的所有可能取值之和.【解答】解:∵数列{a n}是各项均为正整数的等差数列,公差d∈N*,且{a n}中任意两项之和也是该数列中的一项,∴公差d是的约数,∴d=2i•3j,(i,j=0,1,2,…,m),∴d的所有可能取值之和为:=.故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.)17.某学校的平面示意图为如下图五边形区域ABCDE,其中三角形区域ABE为生活区,四边形区域BCDE为教学区,AB,BC,CD,DE,EA,BE为学校的主要道路(不考虑宽度).,.(1)求道路BE的长度;(2)求生活区△ABE面积的最大值.【考点】余弦定理的应用;解三角形的实际应用;点、线、面间的距离计算.【分析】(1)连接BD,在△BCD中,由余弦定理得:BD,在Rt△BDE 中,求解BE即可.(2)设∠ABE=α,在△ABE中,由正弦定理,求解AB,AE,表示S△,然后求解最大值.ABE【解答】解:(1)如图,连接BD,在△BCD中,由余弦定理得:,∴.∵BC=CD,∴,又,∴.在Rt△BDE中,所以.(2)设∠ABE=α,∵,∴.在△ABE中,由正弦定理,得,∴.∴=.∵,∴.∴当,即时,S△ABE取得最大值为,即生活区△ABE面积的最大值为.注:第(2)问也可用余弦定理和均值不等式求解.18.如图,三棱柱ABC﹣A1B1C1中,∠ACB=90°,CC1⊥底面ABC,AC=BC=CC1=2,D,E,F分别是棱AB,BC,B1C1的中点,G是棱BB1上的动点.(1)当为何值时,平面CDG⊥平面A1DE?(2)求平面AB1F与平面AD1E所成的锐二面角的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)当G为BB1中点(即)时,平面CDG⊥平面A1DE.证明D,E,C1,A1四点共面.连接C1E交GC于H.证明CG⊥C1E.DE⊥CG,推出CG⊥平面A1DE,即可证明平面CDG⊥平面A1DE.(2)以C为原点,CA,CB,CC1所在的直线分别为x,y,z轴建立空间直角坐标系,求出平面A1DE的法向量,平面A1BF的法向量,设平面A1BF与平面A1DE所成的锐二面角为θ,利用数量积求解即可.【解答】解:(1)当G为BB1中点(即)时,平面CDG⊥平面A1DE.证明如下:由于DE∥AC且,∴,故D,E,C1,A1四点共面.连接C1E交GC于H.在正方形CBB1C1中,,故∠CHE=90°,即CG⊥C1E.又A1C1⊥平面CBB1C1,CG⊂平面CBB1C1,所以DE⊥CG,又因为C1E∩DE=E,故CG⊥平面A1DE,从而平面CDG ⊥平面A1DE.(2)三棱柱ABC﹣A1B1C1中,∠ACB=90°,CC1⊥底面ABC,于是可以以C为原点,CA,CB,CC1所在的直线分别为x,y,z轴建立空间直角坐标系,如图所示.因为AC=BC=CC1=2,D,E,F分别是棱AB,BC,B1C1的中点,所以A1(2,0,2),D(1,1,0),E(0,1,0),B(0,2,0),F (0,1,2),G(0,2.1),=(﹣2,2,﹣2),=(﹣2,1,0).由(1)知平面A1DE的法向量为=(0,2,1),设平面A1BF的法向量为=(x,y,z),则,即:,令x=1得,设平面A1BF与平面A1DE所成的锐二面角为θ,则cosθ===.19.随着生活水平和消费观念的转变,“三品一标”(无公害农产品、绿色食品、有机食品和农产品地理标志)已成为不少人的选择,为此某品牌植物油企业成立了有机食品快速检测室,假设该品牌植物油每瓶含有机物A的概率为p(0<p<1),需要通过抽取少量油样化验来确定该瓶油中是否含有有机物A,若化验结果呈阳性则含A,呈阴性则不含A.若多瓶该种植物油检验时,可逐个抽样化验,也可将若干瓶植物油的油样混在一起化验,仅当至少有一瓶油含有有机物A时混合油样呈阳性,若混合油样呈阳性,则该组植物油必须每瓶重新抽取油样并全部逐个化验.(1)若,试求3瓶该植物油混合油样呈阳性的概率;(2)现有4瓶该种植物油需要化验,有以下两种方案:方案一:均分成两组化验;方案二:混在一起化验;请问哪种方案更适合(即化验次数的期望值更小),并说明理由.【考点】离散型随机变量的期望与方差;相互独立事件的概率乘法公式.【分析】(1)设X为3瓶该植物油中油样呈阳性的瓶数,利用相互对立事件的概率计算公式可得所求的概率为P(X≥1)=1﹣P(X=0).(2)设q=1﹣p,则0<q<1.方案一:设所需化验的次数为Y,则Y的所有可能取值为2,4,6次,利用二项分布列的概率计算公式及其数学期望计算公式即可得出.方案二:设所需化验的次数为Z,则Z的所有可能取值为1,5次,P (Z=1)=q4,P(Z=5)=1﹣q4,E(Z)=1×q4+5×(1﹣q4).进而得出数学期望.【解答】解:(1)设X为3瓶该植物油中油样呈阳性的瓶数,所求的概率为,所以3瓶该种植物油的混合油样呈阳性的概率为.(2)设q=1﹣p,则0<q<1.方案一:设所需化验的次数为Y,则Y的所有可能取值为2,4,6次,,.方案二:设所需化验的次数为Z,则Z的所有可能取值为1,5次,P (Z=1)=q4,P(Z=5)=1﹣q4,E(Z)=1×q4+5×(1﹣q4)=5﹣4q4.因为E(Y)﹣E(Z)=6﹣4q2﹣(5﹣4q4)=(2q2﹣1)2≥0,即E(Y)≥E(Z),所以方案二更适合.20.已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆M:(x+1)2+y2=r2(0<r<1).过椭圆C的上顶点A作圆M的两条切线分别与椭圆C相交于B,D两点(不同于点A),直线AB,AD的斜率分别为k1,k2.(1)求椭圆C的方程;(2)当r变化时,①求k1•k2的值;②试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.【考点】圆锥曲线的定值问题;椭圆的标准方程;直线与椭圆的位置关系.【分析】(1)利用已知条件求出a,b即可求解椭圆C的方程.(2)AB:y=k1x+1,则有,化简得,直线AD:y=k2x+1,同理有,推出k1,k2是方程(1﹣r2)k2﹣2k+1﹣r2=0的两实根,故k1•k2=1.考虑到r→1时,D是椭圆的下顶点,B趋近于椭圆的上顶点,故BD若过定点,则猜想定点在y轴上.联立直线与椭圆方程,求出相关点的坐标,求出直线BD的方程,推出直线BD过定点.【解答】解:(1)由题设知,,,又a2﹣b2=c2,解得a=2,b=1.故所求椭圆C的方程是.(2)AB:y=k1x+1,则有,化简得,对于直线AD:y=k2x+1,同理有,于是k1,k2是方程(1﹣r2)k2﹣2k+1﹣r2=0的两实根,故k1•k2=1.考虑到r→1时,D是椭圆的下顶点,B趋近于椭圆的上顶点,故BD 若过定点,则猜想定点在y轴上.由,得,于是有.直线BD的斜率为,直线BD的方程为,令x=0,得,故直线BD过定点.21.已知函数f(x)=xe x﹣a(lnx+x).(1)若函数f(x)恒有两个零点,求a的取值范围;(2)若对任意x>0,恒有不等式f(x)≥1成立.①求实数a的值;②证明:x2e x>(x+2)lnx+2sinx.【考点】导数在最大值、最小值问题中的应用;函数恒成立问题;不等式的证明.【分析】(1)利用导数的运算法则可得f′(x),对a分类讨论,当a ≤0时,f'(x)>0,故f(x)单调递增,舍去.当a>0时,f'(x)=0有唯一解x=x0,此时,求出极值,进而得出答案.(2)①当a≤0时,不符合题意.当a>0时,由(1)可知,f(x)=a﹣alna,故只需a﹣alna≥1.令,上式即转化为lnt≥t﹣1,min利用导数研究其单调性极值即可得出.②由①可知x2e x﹣xlnx≥x2+x,因而只需证明:∀x>0,恒有x2+x>2lnx+2sinx.注意到前面已经证明:x﹣1≥lnx,因此只需证明:x2﹣x+2>2sinx.对x分类讨论,利用导数研究函数的单调性极值即可得出.【解答】解:(1)f(x)=xe x﹣alnx﹣ax,x>0,则.当a≤0时,f'(x)>0,故f(x)单调递增,故不可能存在两个零点,不符合题意;当a>0时,f'(x)=0有唯一解x=x0,此时,则.注意到,因此.(2)①当a<0时,f(x)单调递增,f(x)的值域为R,不符合题意;当a=0时,则,也不符合题意.当a>0时,由(1)可知,f(x)min=a﹣alna,故只需a﹣alna≥1.令,上式即转化为lnt≥t﹣1,设h(t)=lnt﹣t+1,则,因此h(t)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)max=h(1)=0,所以lnt≤t﹣1.因此,lnt=t﹣1⇒t=1,从而有.故满足条件的实数为a=1.②证明:由①可知x2e x﹣xlnx≥x2+x,因而只需证明:∀x>0,恒有x2+x>2lnx+2sinx.注意到前面已经证明:x﹣1≥lnx,因此只需证明:x2﹣x+2>2sinx.当x>1时,恒有2sinx≤2<x2﹣x+2,且等号不能同时成立;当0<x≤1时,设g(x)=x2﹣x+2﹣2sinx,则g'(x)=2x﹣1﹣2cosx,当x∈(0,1]时,g'(x)是单调递增函数,且,因而x∈(0,1]时恒有g'(x)<0;从而x∈(0,1]时,g(x)单调递减,从而g(x)≥g(1)=2﹣2sin1>0,即x2﹣x+2>2sinx.故x2e x>(x+2)lnx+2sinx.[选修4-4:坐标系与参数方程]22.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2ρ2﹣ρ2cos2θ=12.若曲线C的左焦点F在直线l上,且直线l与曲线C交于A,B两点.(1)求m的值并写出曲线C的直角坐标方程;(2)求的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)直线l的参数方程为(t为参数),消去参数t可得普通方程.曲线C的极坐标方程为2ρ2﹣ρ2cos2θ=12.利用互化公式可得曲线C的直角坐标方程,可得其左焦点,即可得出m.(2)直线l的参数方程为,与曲线C的方程联立,利用根与系数的关系、弦长公式即可得出.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t可得普通方程:x﹣y=m.曲线C的极坐标方程为2ρ2﹣ρ2cos2θ=12.可得曲线C的直角坐标方程:2(x2+y2)﹣(x2﹣y2)=12,∴曲线C的标准方程为,则其左焦点为,故,曲线C的方程.(2)直线l的参数方程为,与曲线C的方程联立,得t'2﹣2t'﹣2=0,则|FA|•|FB|=|t'1t'2|=2,第31页(共31页),故.[选修4-5:不等式选讲]23.设函数f (x )=2x ﹣a ,g (x )=x +2.(1)当a=1时,求不等式f (x )+f (﹣x )≤g (x )的解集; (2)求证:中至少有一个不小于. 【考点】反证法的应用;绝对值不等式的解法.【分析】(1)利用绝对值的意义,分类讨论,即可求不等式f (x )+f (﹣x )≤g (x )的解集;(2)利用反证法证明即可.【解答】(1)解:当a=1时,|2x ﹣1|+|2x +1|≤x +2,无解;,解得;,解得.综上,不等式的解集为. (2)证明:若都小于, 则,前两式相加得与第三式矛盾.故中至少有一个不小于.。

2019年最新(统考)江西省百所重点高中高考数学模拟试卷(理科)及答案解析

2019年最新(统考)江西省百所重点高中高考数学模拟试卷(理科)及答案解析
(1)求甲、乙两家公司共答对2道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?
19.如图,在三棱锥ABC﹣A1B1C1中,侧面ACC1A1⊥底面ABC,△A1AC为等边三角形,AC⊥A1B.
(1)求证:AB=BC;
(2)若∠ABC=90°,求A1B与
6.函数f(x)=sin(πx+θ)(|θ|< )的部分图象如图,且f(0)=﹣ ,则图中m的值为( )
A.1B. C.2D. 或2
7.在公差大于0的等差数列{an}中,2a7﹣a13=1,且a1,a3﹣1,a6+5成等比数列,则数列{(﹣1)n﹣1an}的前21项和为( )
A.21B.﹣21C.441D.﹣441
A. B. C. D.
【考点】A5:复数代数形式的乘除运算.
【分析】利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.
【解答】解:复数z=a+bi(a,b∈R,b>0),且 ,
8.中国古代数学名著《九章算术》卷第五“商功”共收录28个题目,其中一个题目如下:今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺,问积几何?其译文可用三视图来解释:某几何体的三视图如图所示(其中侧视图为等腰梯形,长度单位为尺),则该几何体的体积为( )
A.3795000立方尺B.2024000立方尺
(1)求不等式f( )<6的解集;
(2)若k>0且直线y=kx+5k与函数f(x)的图象可以围成一个三角形,求k的取值范围.
江西省百所重点高中高考数学模拟试卷(理科)
参考答案与试题解析
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

2019届浙江省杭州市高三高考仿真模拟考试数学试卷(3)及答案

2019届浙江省杭州市高三高考仿真模拟考试数学试卷(3)及答案

2019届杭州市高三高考仿真模拟考试
数学试卷(3)
考生须知:
1. 本卷满分150分,考试时间120分钟;
2. 答题前务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的地方。

3. 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范答题,在本试卷纸上答题一律无效。

4. 考试结束后,只需上交答题卷。

参考公式:
如果事件,A B 互斥,那么 柱体的体积公式 ()()()P A B P A P B +=+ V Sh =
如果事件,A B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高
()()()P AB P A P B = 锥体的体积公式
如果事件A 在一次试验中发生的概率为p ,那么n 1
3V Sh = 次独立重复试验中事件A 恰好发生k 次的概率为 其中S 表示锥体的底面积,h 表示锥体的高
()()10,1,2),,(k k n k n n P k C p p k n -==⋯- 球的表面积公式
台体的体积公式 24S R =π
121()3
V S S h = 球的体积公式 其中12,S S 分别表示台体的上、下底面积, 34
3V R =π h 表示为台体的高 其中R 表示球的半径
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选。

2019年北京市高考数学一模试卷(理科)(解析版)

2019年北京市高考数学一模试卷(理科)(解析版)

2019年北京市高考数学一模试卷(理科)(解析版)2019年北京市高考数学一模试卷(理科)一、选择题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z=i(1+i),则|z|等于()A。

2B。

√2C。

1D。

2√22.在方程r=2cosθ+3sinθ(θ为参数)所表示的曲线上的点是()A。

(2.-7)B。

(3.1)C。

(1.5)D。

(2.1)3.设公差不为零的等差数列{an}的前n项和为Sn,若a4=2(a2+a3),则Sn=()A。

5anB。

6anC。

7anD。

14an4.将函数y=sin2x的图象向左平移π/4个单位后得到函数y=g(x)的图象。

则函数g(x)的一个增区间是()A。

(π/4.3π/4)B。

(3π/4.5π/4)C。

(5π/4.7π/4)D。

(7π/4.9π/4)5.使“a>b”成立的一个充分不必要条件是()A。

a>b+1B。

a>b-1C。

a^2>b^2D。

a^3>b^36.下列函数:①y=-|x|;②y=(x-1)^3;③y=log2(x-1);④y=-6.在x中,在(1.+∞)上是增函数且不存在零点的函数的序号是()A。

①④B。

②③C。

②④D。

①③④7.某三棱锥的正视图和侧视图如图所示,则该三棱锥的俯视图的面积为()A。

6B。

8C。

10D。

128.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是()A。

336B。

510C。

1326D。

3603二、填空题共6小题,每小题5分,共30分。

9.在(1-x)^5的展开式中,x^2的系数为______(用数字作答)。

答案:1010.已知向量a=(1.b)。

b=(-2.-1),且向量a+b的模长为√10.则实数x=______。

2019高考理科数学模拟试题(二)

2019高考理科数学模拟试题(二)

2019高考理科数学模拟试题(二)考试时间:120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意)1.已知集合A={x|x2﹣4x+3≤0 },B=(1,3],则A∩B=()A.[1,3]B.(1,3]C.[1,3) D.(1,3)2.若2﹣i是关于x的方程x2+px+q=0的一个根(其中i为虚数单位,p,q∈R),则q的值为()A.﹣5 B.5 C.﹣3 D.3,1],ax−1≤0,则p是3.已知p:函数f(x)=(a−1)x为增函数,q:∀x∈[12¬q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.2017年高考考前第二次适应性训练考试结束后,对全市的英语成绩进行统计,发现英语成绩的频率分布直方图形状与正态分布N(95,82)的密度曲线非常拟合.据此估计:在全市随机柚取的4名高三同学中,恰有2名同学的英语成绩超过95分的概率是()A.B.C.D.5.设函数f(x)=2cos(ωx+φ)对任意的x∈R,都有,若函数g(x)=3sin(ωx+φ)﹣2,则的值是()A.1 B.﹣5或3 C.﹣2 D.6.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)()A.16 B.20 C.24 D.487.已知如图是一个空间几何体的三视图,则该几何体的外接球的表面积为()A.8πB.16πC.32πD.64π8.定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[﹣1,0]上单调递减,设a=f(﹣2.8),b=f(﹣1.6),c=f(0.5),则a,b,c大小关系是()A.a>b>c B.c>a>b C.b>c>a D.a>c>b9.在二项式(2x+a)5的展开式中,含x2项的系数等于320,则=()A.e2﹣e+3 B.e2+4 C.e+1 D.e+210.过平面区域内一点P作圆O:x2+y2=1的两条切线,切点分别为A,B,记∠APB=α,则当α最小时cosα的值为()A.B.C.D.11.双曲线(a≥1,b≥1)的离心率为2,则的最小值为()A.B.C.2 D.12.定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)−3m,则=(x﹣1)2,且当x≤1时,恒有f'(x)+2<x.若f(m)−f(1−m)≥32实数m的取值范围是()A.(﹣∞,1]B.C.[1,+∞)D.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.花园小区内有一块三边长分别是5m,5m,6m的三角形绿化地,有一只小狗在其内部玩耍,若不考虑小狗的大小,则在任意指定的某时刻,小狗与三角形三个顶点的距离均超过2m的概率是.14.已知O为原点,点P为直线2x+y﹣2=0上的任意一点.非零向量=(m,n).若•恒为定值,则=.15.对于数列{a n},定义H n=为{a n}的“优值”,现在已知某数列{a n}的“优值”H n=2n+1,记数列{a n﹣kn}的前n项和为S n,若S n≤S6对任意的n 恒成立,则实数k的取值范围是.16.已知函数f(x)=cos(ωx+φ)(ω>0,|φ|≤),当x=﹣时函数f(x)能取得最小值,当x=时函数y=f(x)能取得最大值,且f(x)在区间(,)上单调.则当ω取最大值时φ的值为.三、解答题(共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(12分)设等差数列{a n}的前n项和为S n,a5+a6=24,S11=143,数列{b n}的前n项和为T n,满足.(Ⅰ)求数列{a n}的通项公式及数列的前n项和;(Ⅱ)判断数列{b n}是否为等比数列?并说明理由.18.(12分)某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过本地养鱼场年利润率的调研,得到如图所示年利润率的频率分布直方图.对远洋捕捞队的调研结果是:年利润率为60%的可能性为0.6,不赔不赚的可能性为0.2,亏损30%的可能性为0.2.假设该公司投资本地养鱼场的资金为x(x≥0)千万元,投资远洋捕捞队的资金为y(y≥0)千万元.(1)利用调研数据估计明年远洋捕捞队的利润ξ的分布列和数学期望Eξ.(2)为确保本地的鲜鱼供应,市政府要求该公司对本地养鱼场的投资不得低于远洋捕捞队的一半.适用调研数据,给出公司分配投资金额的建议,使得明年两个项目的利润之和最大.19.(12分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,点E,F分别是PB,DC的中点.(1)求证:EF∥平面PAD;(2)求EF与平面PDB所成角的正弦值.20.(12分)如图,已知椭圆C:,其左右焦点为F1(﹣1,0)及F2(1,0),过点F1的直线交椭圆C于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点,且|AF1|、|F1F2|、|AF2|构成等差数列.(1)求椭圆C的方程;(2)记△GF1D的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.21.(12分)已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求C的普通方程和l的倾斜角;(2)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.23.(10分)设函数f(x)=|2x﹣7|+1.(1)求不等式f(x)≤x的解集;(2)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求实数a的取值范围.2018高考理科数学模拟试题(二)参考答案与试题解析一.选择题(共12小题)1.已知集合A={x|x2﹣4x+3≤0 },B=(1,3],则A∩B=()A.[1,3]B.(1,3]C.[1,3) D.(1,3)【分析】先分别求出集合A,B,由此能求出A∩B.【解答】解:∵集合A={x|x2﹣4x+3≤0 }={x|1≤x≤3},B=(1,3],∴A∩B=(1,3].故选:B.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.若2﹣i是关于x的方程x2+px+q=0的一个根(其中i为虚数单位,p,q∈R),则q的值为()A.﹣5 B.5 C.﹣3 D.3【分析】直接利用实系数一元二次方程的虚根成对原理及根与系数的关系求解.【解答】解:∵2﹣i是关于x的实系数方程x2+px+q=0的一个根,∴2+i是关于x的实系数方程x2+px+q=0的另一个根,则q=(2﹣i)(2+i)=|2﹣i|2=5.故选:B.【点评】本题考查实系数一元二次方程的虚根成对原理,考查复数模的求法,是基础题.,1],ax−1≤0,则p是3.已知p:函数f(x)=(a−1)x为增函数,q:∀x∈[12¬q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】p:函数f(x)=(a﹣1)x为增函数,则a﹣1>1,解得a范围.,1],ax−1≤0,a.即可判断出关系.q:∀x∈[12【解答】解:p:函数f(x)=(a﹣1)x为增函数,则a﹣1>1,解得a>2.,1],ax−1≤0,a=1.¬q:a>1.q:∀x∈[12则p是¬q的充分不必要条件.故选:A.【点评】本题考查了函数的单调性、不等式的性质与解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.2017年高考考前第二次适应性训练考试结束后,对全市的英语成绩进行统计,发现英语成绩的频率分布直方图形状与正态分布N(95,82)的密度曲线非常拟合.据此估计:在全市随机柚取的4名高三同学中,恰有2名同学的英语成绩超过95分的概率是()A.B.C.D.【分析】由题意,英语成绩超过95分的概率是,利用相互独立事件的概率公式,即可得出结论.【解答】解:由题意,英语成绩超过95分的概率是,∴在全市随机柚取的4名高三同学中,恰有2名冋学的英语成绩超过95分的概率是=,故选:D.【点评】本题考查正态分布,考查相互独立事件的概率公式,比较基础.5.设函数f(x)=2cos(ωx+φ)对任意的x∈R,都有,若函数g(x)=3sin(ωx+φ)﹣2,则的值是()A.1 B.﹣5或3 C.﹣2 D.【分析】根据f(+x)=f(﹣x)确定x=是函数f(x)的对称轴,再由正余弦函数在其对称轴上取最值,求得g()的值.【解答】解:函数f(x)=2cos(ωx+φ)对任意的x∈R,都有,∴函数f(x)的一条对称轴方程为x=,且x=时函数f(x)过最高点或最低点;∴cos(ω+φ)=±1,解得ω+φ=kπ,k∈Z;∴g()=3sin(ω+φ)﹣2=3sinkπ﹣2=﹣2.故选:C.【点评】本题主要考查了三角函数的图象与性质的应用问题,注意正余弦函数在其对称轴上取最值.6.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)()A.16 B.20 C.24 D.48【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:C.【点评】本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.7.已知如图是一个空间几何体的三视图,则该几何体的外接球的表面积为()A.8πB.16πC.32πD.64π【分析】由三视图判断出几何体是直三棱锥,且底面是等腰直角三角形,求出对应的高和底面的边长,根据它的外接球是对应直三棱锥的外接球,由外接球的结构特征,求出它的半径,代入表面积公式进行求解.【解答】解:由三视图知该几何体是直三棱锥,且底面是等腰直角三角形,直三棱锥的高是2,底面的直角边长为,斜边为2,则直三棱锥的外接球是对应直三棱柱的外接球,设几何体外接球的半径为R,因底面是等腰直角三角形,则底面外接圆的半径为1,∴R2=1+1=2,故外接球的表面积是4πR2=8π,故选A.【点评】本题考查球的表面积的求法,几何体的三视图与直观图的应用,考查空间想象能力,计算能力.8.定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[﹣1,0]上单调递减,设a=f(﹣2.8),b=f(﹣1.6),c=f(0.5),则a,b,c大小关系是()A.a>b>c B.c>a>b C.b>c>a D.a>c>b【分析】由条件可得函数的周期为2,再根据a=f(﹣2.8)=f(﹣0.8),b=f(﹣1.6)=f(0.4)=f(﹣0.4),c=f(0.5)=f(﹣0.5),﹣0.8<﹣0.5<﹣0.4,且函数f(x)在[﹣1,0]上单调递减,可得a,b,c大小关系【解答】解:∵偶函数f(x)满足f(x+2)=f(x),∴函数的周期为2.由于a=f(﹣2.8)=f(﹣0.8),b=f(﹣1.6)=f(0.4)=f(﹣0.4),c=f(0.5)=f(﹣0.5),﹣0.8<﹣0.5<﹣0.4,且函数f(x)在[﹣1,0]上单调递减,∴a>c>b,故选:D【点评】本题主要考查函数的单调性、奇偶性、周期性的应用,体现了转化的数学思想,属于中档题.9.在二项式(2x+a)5的展开式中,含x2项的系数等于320,则=()A.e2﹣e+3 B.e2+4 C.e+1 D.e+2【分析】二项式(2x+a)5的展开式中,含x2项,利用通项公式求出含有x2的项,可得系数,从而求出a,利用定积分公式求解即可.【解答】解:二项式(2x+a)5的展开式中,含x2项,由通项公式,∵含x2项,∴r=3.∴含有x2的项的系数为=320,可得:a=2.则==e2﹣e+22﹣1=e2﹣e+3.故选:A.【点评】本题主要考查二项式定理的通项公式的应用,以及定积分公式的计算.属于基础题10.过平面区域内一点P作圆O:x2+y2=1的两条切线,切点分别为A,B,记∠APB=α,则当α最小时cosα的值为()A.B.C.D.【解答】解:作出不等式组对应的平面区域如图,要使α最小,则P到圆心的距离最大即可,由图象可知当P位于点D时,∠APB=α最小,由,解得,即D(﹣4,﹣2),此时|OD|=,|OA|=1,则,即sin=,此时cosα=1﹣2sin2=1﹣2()2=1﹣=,故选:C11.双曲线(a≥1,b≥1)的离心率为2,则的最小值为()A.B.C.2 D.【分析】根据双曲线(a≥1,b≥1)的离心率为2,可得a,b的关系,代入化简,利用单调性,即可求得的最小值.【解答】解:∵双曲线(a≥1,b≥1)的离心率为2,∴∴∴b2=3a2∴==∵a≥1∴在[1,+∞)上单调增∴≥故选A.【点评】本题考查双曲线的几何性质,考查函数的单调性,正确运用双曲线的几何性质是关键.12.定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)−3m,则=(x﹣1)2,且当x≤1时,恒有f'(x)+2<x.若f(m)−f(1−m)≥32实数m的取值范围是()A.(﹣∞,1]B.C.[1,+∞)D.【分析】令g(x)=f(x)+2x﹣,求得g(x)+g(2﹣x)=3,则g(x)关于(1,3)中心对称,则g(x)在R上为减函数,再由导数可知g(x)在R上为−3m为g(m)≥g(1﹣m),利用单调性求解.减函数,化f(m)−f(1−m)≥32【解答】解:令g(x)=f(x)+2x﹣,g′(x)=f′(x)+2﹣x,当x≤1时,恒有f'(x)+2<x.∴当x≤1时,g(x)为减函数,而g(2﹣x)=f(2﹣x)+2(2﹣x)﹣,∴f(x)+f(2﹣x)=g(x)﹣2x++g(2﹣x)﹣2(2﹣x)+=g(x)+g(2﹣x)+x2﹣2x﹣2=x2﹣2x+1.∴g(x)+g(2﹣x)=3.则g(x)关于(1,)中心对称,则g(x)在R上为减函数,−3m,得f(m)+2m≥f(1﹣m)+2(1﹣m)﹣,由f(m)−f(1−m)≥32即g(m)≥g(1﹣m),∴m≤1﹣m,即m.∴实数m的取值范围是(﹣∞,].故选:D.【点评】本题考查利用导数研究函数的单调性,构造函数是解答该题的关键,是压轴题.二.填空题(共4小题)13.花园小区内有一块三边长分别是5m,5m,6m的三角形绿化地,有一只小狗在其内部玩耍,若不考虑小狗的大小,则在任意指定的某时刻,小狗与三角形三个顶点的距离均超过2m的概率是1﹣.【分析】根据题意,记“小狗距三角形三个顶点的距离均超过2”为事件A,则其对立事件为“小狗与三角形的三个顶点的距离不超过2”,先求得边长为4的等边三角形的面积,再计算事件构成的区域面积,由几何概型可得P(),进而由对立事件的概率性质,可得答案【解答】解:记“小狗距三角形三个顶点的距离均超过2”为事件A,则其对立事件为“小狗与三角形的三个顶点的距离不超过2”,三边长分别为5m、5m、6m的三角形的面积为S=×6×4=12,则事件构成的区域可组合成一个半圆,其面积为S()=π×22=2π,由几何概型的概率公式得P()=;P(A)=1﹣P()=1﹣;故答案为:1﹣【点评】本题考查几何概型,涉及对立事件的概率性质;解题时关键是求出小狗与三角形三个顶点的距离均不超过2m区域面积.14.已知O为原点,点P为直线2x+y﹣2=0上的任意一点.非零向量=(m,n).若•恒为定值,则=2.【分析】设点P(x,y),由P为直线2x+y﹣2=0上的任意一点,用x表示,写出•的解析式;根据•恒为定值,x的系数为0,求出m、n的关系,可得的值.【解答】解:设点P(x,y),∵点P为直线2x+y﹣2=0上的任意一点,∴y=2﹣2x,∴=(x,2﹣2x);又非零向量=(m,n),∴•=mx+n(2﹣2x)=(m﹣2n)x+2n恒为定值,∴m﹣2n=0,∴=2.故答案为:2.【点评】本题考查了平面向量数量积的定义与应用问题,是基础题.15.对于数列{a n},定义H n=为{a n}的“优值”,现在已知某数列{a n}的“优值”H n=2n+1,记数列{a n﹣kn}的前n项和为S n,若S n≤S6对任意的n 恒成立,则实数k的取值范围是.【分析】由题意,H n==2n+1,则a1+2a2+…+2n﹣1a n=n•2n+1,n≥2时,a1+2a2+…+2n﹣2a n﹣1=(n﹣1)2n,相减可得a n=2(n+1),对a1也成立,可得a n﹣kn=(2﹣k)n+2.由于数列{a n﹣kn}为等差数列,S n≤S6对任意的n(n ∈N*)恒成立可化为a6﹣6k≥0,a7﹣7k≤0,即可得出.【解答】解:由题意,H n==2n+1,则a1+2a2+…+2n﹣1a n=n•2n+1,n≥2时,a1+2a2+…+2n﹣2a n﹣1=(n﹣1)2n,则2n﹣1a n=n2n+1﹣(n﹣1)2n=(n+1)2n,则a n=2(n+1),对a1也成立,故a n=2(n+1),则a n﹣kn=(2﹣k)n+2,则数列{a n﹣kn}为等差数列,故S n≤S6对任意的n(n∈N*)恒成立可化为a6﹣6k≥0,a7﹣7k≤0;即解得,,故答案为:.【点评】本题考查了新定义、等差数列的通项公式与单调性、数列递推关系,考查了推理能力与计算能力,属于中档题.16.已知函数f(x)=cos(ωx+φ)(ω>0,|φ|≤),当x=﹣时函数f(x)能取得最小值,当x=时函数y=f(x)能取得最大值,且f(x)在区间(,)上单调.则当ω取最大值时φ的值为﹣.【分析】根据x=﹣时f(x)取得最小值,x=时f(x)取得最大值,得出(n+)•T=,求出T以及ω的值;再由f(x)在(,)上单调,得出T以及ω的取值;讨论ω的取值,求出满足条件的ω的最大值以及对应φ的值.【解答】解:当x=﹣时f(x)能取得最小值,x=时f(x)能取得最大值,∴(n+)•T=﹣(﹣),即T=,(n∈N)解得ω=4n+2,(n∈N)即ω为正偶数;∵f(x)在(,)上单调,∴﹣=≤,即T=≥,解得ω≤12;当ω=12时,f(x)=cos(12x+φ),且x=﹣,12×(﹣)+φ=﹣π+2kπ,k∈Z,由|φ|≤,得φ=0,此时f(x)=cos12x在(,)不单调,不满足题意;当ω=10时,f(x)=cos(10x+φ),且x=﹣,10×(﹣)+φ=﹣π+2kπ,k∈Z,由|φ|≤,得φ=﹣,此时f(x)=cos(10x﹣)在(,)单调,满足题意;故ω的最大值为10,此时φ的值为﹣.故答案为:﹣.【点评】本题考查了余弦型函数的图象和性质的应用问题,也考查了转化思想与分类讨论思想的应用问题,难度较大.三.解答题(共7小题,满分70分)17.(12分)设等差数列{a n}的前n项和为S n,a5+a6=24,S11=143,数列{b n}的前n项和为T n,满足.(Ⅰ)求数列{a n}的通项公式及数列的前n项和;(Ⅱ)判断数列{b n}是否为等比数列?并说明理由.【分析】(Ⅰ)由S11=11a6=143,得a6=13,由a5+a6=24,得a5=11,从而d=2,进崦{a n}的通项公式是a n=2n+1(n∈N*),再由,能求出前n项的和.(Ⅱ)由a1=3,,,得b1=7;当n≥2时,,从而b n=4b n(n≥2.若{b n}是等比数列,则+1有b2=4b1,与b2=4b1矛盾,从而得到数列{b n}不是等比数列.【解答】(本小题满分12分)解:(Ⅰ)设数列{a n}的公差为d,由S11=11a6=143,∴a6=13.又a5+a6=24,解得a5=11,d=2,因此{a n}的通项公式是a n=2n+1(n∈N*),所以,从而前n项的和为:===.…(6分)(Ⅱ)因为a1=3,,.当n=1时,b1=7;当n≥2时,;=4b n(n≥2.若{b n}是等比数列,则有b2=4b1,所以b n+1而b1=7,b2=12,所以与b2=4b1矛盾,故数列{b n}不是等比数列.…(12分)【点评】本题考查数列的通项公式、前n项和的求法,考查数列是否是等比数列的判断与求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.18.(12分)某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过本地养鱼场年利润率的调研,得到如图所示年利润率的频率分布直方图.对远洋捕捞队的调研结果是:年利润率为60%的可能性为0.6,不赔不赚的可能性为0.2,亏损30%的可能性为0.2.假设该公司投资本地养鱼场的资金为x(x≥0)千万元,投资远洋捕捞队的资金为y(y≥0)千万元.(1)利用调研数据估计明年远洋捕捞队的利润ξ的分布列和数学期望Eξ.(2)为确保本地的鲜鱼供应,市政府要求该公司对本地养鱼场的投资不得低于远洋捕捞队的一半.适用调研数据,给出公司分配投资金额的建议,使得明年两个项目的利润之和最大.【解答】解:(1)随机变量ξ的可能取值为0.6y,0,﹣0.3y,随机变量ξ的分布列为,ξ0.6y0﹣0.3yP0.60.20.2∴Eξ=0.36y﹣0.06y=0.3y;(2)根据题意得,x,y满足的条件为①,由频率分布直方图得本地养鱼场的年平均利润率为:﹣0.3×0.2×0.5+(﹣0.1)×0.2×0.5+0.1×0.2×1.0+0.3×0.2×2.0+0.5×0.2×1.0=0.20,∴本地养鱼场的年利润为0.20x千万元,∴明年连个个项目的利润之和为z=0.2x+0.3y,作出不等式组①所表示的平面区域若下图所示,即可行域.当直线z=0.2x+0.3y经过可行域上的点M时,截距最大,即z最大.解方程组,得∴z的最大值为:0.20×2+0.30×4=1.6千万元.即公司投资本地养鱼场和远洋捕捞队的资金应分别为2千万元、4千万元时,明年两个项目的利润之和的最大值为1.6千万元.19.(12分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,点E,F分别是PB,DC的中点.(1)求证:EF∥平面PAD;(2)求EF与平面PDB所成角的正弦值.【分析】取CB的中点G,连结DG,建立空间直角坐标系:(1)=(12,0,0)为平面PAD的一个法向量,根据,进而可证EF ∥面PAD(2)平面PAD的法向量=(5,﹣12,0),代和线面夹角公式,可得答案.【解答】证明:取CB的中点G,连结DG,因为AD∥BG且AD=BD,所以四边形ABGD为平行四边形,所以DG=AB=12,又因为AB⊥AD,所以DG⊥AD,又PD⊥平面ABCD,故以点D原点建立如图所示的空间直角坐标系.…(2分)因为BC=10,AD=5,PD=8,所以有D(0,0,0),P(0,0,8),B(12,5,0),C(12,﹣5,0),因为E,F分别是PB,DC的中点,所以E(6,﹣2.5,0),F(6,2.5,4),(1)因为PD⊥平面ABCD,DG⊂平面ABCD,所以PD⊥DG,又因为DG⊥AD,AD∩PD=D,AD,PD⊂平面PAD,所以DG⊥平面PAD,所以=(12,0,0)为平面PAD的一个法向量,…(4分)又=(0,5,4),=0,所以,又EF⊄平面PAD,所以EF∥平面PAD;…(6分)(2)设平面PAD的法向量为=(x,y,z),所以,即,即,令x=5,则=(5,﹣12,0)…(9分)所以EF与平面PDB所成角θ满足:sinθ===,…(11分)所以EF与平面PDB所成角的正弦值为…(12分)【点评】本题考查的知识点是直线与平面平行的证明,直线与平面的夹角,难度中档.20.(12分)如图,已知椭圆C:,其左右焦点为F1(﹣1,0)及F2(1,0),过点F1的直线交椭圆C于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点,且|AF1|、|F1F2|、|AF2|构成等差数列.(1)求椭圆C的方程;(2)记△GF1D的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.【分析】(1)依题意,|AF1|、|F1F2|、|AF2|构成等差数列,求出a,再利用c=1,求出b,即可求椭圆C的方程;(2)假设存在直线AB,使得S1=S2,确定G,D的坐标,利用△GFD∽△OED,即可得到结论.【解答】解:(1)因为|AF1|、|F1F2|、|AF2|构成等差数列,所以2a=|AF1|+|AF2|=2|F1F2|=4,所以a=2.…(2分)又因为c=1,所以b2=3,…(3分)所以椭圆C的方程为.…(4分)(2)假设存在直线AB,使得S1=S2,显然直线AB不能与x,y轴垂直.设AB方程为y=k(x+1)将其代入,整理得(4k2+3)x2+8k2x+4k2﹣12=0…(5分)设A(x1,y1),B(x2,y2),所以.故点G的横坐标为.所以G(,).…(6分)因为DG⊥AB,所以×k=﹣1,解得x D=,即D(,0)…(8分)∵Rt△GDF1和∵Rt△ODE相似,∴若S1=S2,则|GD|=|OD|所以,…(10分)整理得8k2+9=0.因为此方程无解,所以不存在直线AB,使得S1=S2.…(12分)【点评】本题考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题.21.(12分)已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值;(2)得到e x+ax+ln(x+1)﹣1≥0.(*)令g(x)=e x+ax+ln(x+1)﹣1,通过讨论a的范围,确定函数的单调性,从而求出满足条件的a的具体范围即可;【解答】解:(1)当a=﹣1时,f(x)=e﹣x+x,则f′(x)=﹣+1.令f'(x)=0,得x=0.当x<0时,f'(x)<0;当x>0时,f'(x)>0.∴函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x=0时,函数f(x)取得最小值,其值为f(0)=1f(x)的最小值为1.(2)若x≥0时,f(﹣x)+ln(x+1)≥1,即e x+ax+ln(x+1)﹣1≥0(*)令g(x)=e x+ax+ln(x+1)﹣1,则①若a≥﹣2,由(1)知e﹣x+x≥1,即e﹣x≥1﹣x,故e x≥1+x∴函数g(x)在区间[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴(*)式成立.②若a<﹣2,令,则∴函数ϕ(x)在区间[0,+∞)上单调递增,由于ϕ(0)=2+a<0,.故∃x0∈(0,﹣a),使得ϕ(x0)=0,则当0<x<x0时,ϕ(x)<ϕ(x0)=0,即g'(x)<0.∴函数g(x)在区间(0,x0)上单调递减,∴g(x0)<g(0)=0,即(*)式不恒成立.综上所述,实数a的取值范围是[﹣2,+∞).【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,考查分类讨论思想、转化思想,是一道综合题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求C的普通方程和l的倾斜角;(2)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.【分析】(1)直接把曲线的参数方程转化为直角坐标方程,进一步把极坐标方程转化为直角坐标方程,在求出直线的倾斜角.(2)利用定点把直线的直角坐标式转化为参数式,进一步建立一元二次方程根与系数的关系,最后求出结果.【解答】解:(1)由消去参数α,得即C的普通方程为由,得ρsinθ﹣ρcosθ①将代入①得y=x+2所以直线l的斜率角为.(2)由(1)知,点P(0,2)在直线l上,可设直线l的参数方程为(t为参数)即(t为参数),代入并化简得设A,B两点对应的参数分别为t1,t2.则,所以t1<0,t2<0所以.【点评】本题考查的知识要点:直角坐标方程与参数方程的互化,直线和曲线的位置关系的应用,一元二次方程根与系数的关系的应用.23.(10分)设函数f(x)=|2x﹣7|+1.(1)求不等式f(x)≤x的解集;(2)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求实数a的取值范围.【分析】(1)问题转化为解不等式组问题,解出取并集即可;(2)先求出g(x)的分段函数,求出g(x)的最小值,从而求出a的范围.【解答】解:(1)由f(x)≤x得|2x﹣7|+1≤x,∴,∴不等式f(x)≤x的解集为;(2)令g(x)=f(x)﹣2|x﹣1|=|2x﹣7|﹣2|x﹣1|+1,则,∴g(x)min=﹣4,∵存在x使不等式f(x)﹣2|x﹣1|≤a成立,∴g(x)min≤a,∴a≥﹣4.【点评】本题考查了绝对值不等式的解法,考查函数的最值问题,是一道基础题.。

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。

2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。

1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。

2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。

已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。

6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。

设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。

若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。

e)。

11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。

现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。

2019年全国百所名校联盟高考理科数学模拟试卷5套(含解析)

2019年全国百所名校联盟高考理科数学模拟试卷5套(含解析)

2019年全国百所名校联盟高考模拟试卷理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2i1iz =+(i 为虚数单位),则z =( ) A .3 B .2 CD【答案】D2.已知集合{}220A x x x =∈-≥R ,{}2210B x x x =∈--=R ,则()A B =R I ð( )A .∅B .12⎧⎫-⎨⎬⎩⎭C .{}1D .1 12⎧⎫-⎨⎬⎩⎭,【答案】C3.已知椭圆2222:1y x E a b +=(0a b >>)经过点)A,()0 3B ,,则椭圆E 的离心率为( )A .23BC .49D .59【答案】A4.已知111 2 3 23α⎧⎫∈-⎨⎬⎩⎭,,,,,若()f x x α=为奇函数,且在()0 +∞,上单调递增,则实数α的值是( )A .1-,3B .13,3C .1-,13,3D .13,12,3【答案】B5.若l m ,为两条不同的直线,α为平面,且l α⊥,则“//m α”是“m l ⊥”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A6.已知()()*12nx n -∈N 展开式中3x 的系数为80-,则展开式中所有项的二项式系数之和为( )A .64B .32C .1D .1-【答案】B7.已知非零实数a ,b 满足a a b b >,则下列不等式一定成立的是( ) A .33a b > B .22a b >C .11a b< D .1122log log a b <【答案】A8.运行如图所示的程序框图,若输出的s 值为10-,则判断框内的条件应该是( ) A .3?k <B .4?k <C .5?k <D .6?k <【答案】C9.若正项等比数列{}n a 满足()2*12n n n a a n +=∈N ,则65a a -的值是( ) AB.-C .2D.【答案】D10.如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有( )A .24B .48C .96D .120【答案】C11.我国古代《九章算术》将上下两面为平行矩形的六面体称为刍童.如图所示为一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号A.B .40C.16+D.16+【答案】D12.已知函数()22f x x x a =---有零点1x ,2x ,函数()2(1)2g x x a x =-+-有零点3x ,4x ,且3142x x x x <<<,则实数a 的取值范围是( )A .924⎛⎫-- ⎪⎝⎭,B .9 04⎛⎫- ⎪⎝⎭,C .()20-,D .()1 +∞,【答案】C第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若实数x ,y 满足条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =-的最大值为___________.【答案】414.已知()OA =uu r,()0 2OB =u u u r ,,AC t AB =uuu r uu u r ,t ∈R ,当OC uuu r 最小时,t =___________. 【答案】3415.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .若45A =︒,2sin sin 2sin b B c C a A -=,且ABC △的面积等于3,则b =___________. 【答案】316.设等差数列{}n a 的公差为d ,前n 项的和为n S,若数列也是公差为d 的等差数列,则=n a ___________.【答案】1n a =-或1524n a n =-三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数()1πcos cos 223f x x x x ⎛⎫-- ⎪⎝⎭.(1)求函数()f x 图象的对称轴方程; (2)将函数()f x 图象向右平移π4个单位,所得图象对应的函数为()g x .当π0 2x ⎡⎤∈⎢⎥⎣⎦,时,求函数()g x 的值域.【答案】(1)ππ32k x =+,k ∈Z ;(2)12⎡-⎢⎣⎦.【解析】(1)()1π11πcos cos 22cos 2sin 223426f x x x x x x x ⎛⎫⎛⎫=--=-=- ⎪ ⎪⎝⎭⎝⎭. 令ππ2π62x k -=+,k ∈Z ,解得ππ32k x =+. ∴函数()f x 图象的对称轴方程为ππ32k x =+,k ∈Z .…………………………5分 (2)易知()12πsin 223g x x ⎛⎫=- ⎪⎝⎭.∵π0 2x ⎡⎤∈⎢⎥⎣⎦,,∴2π2ππ2 333x ⎡⎤-∈-⎢⎥⎣⎦,,∴2πsin 213x ⎡⎛⎫-∈-⎢ ⎪⎝⎭⎣⎦,∴()12π1sin 2232g x x ⎡⎛⎫=-∈-⎢ ⎪⎝⎭⎣⎦,即当π0 2x ⎡⎤∈⎢⎥⎣⎦,时,函数()g x的值域为12⎡-⎢⎣⎦.…………………………12分 18.(本小题满分12分)2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:(1(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加2022年北京冬奥会志愿者宣传活动. (i )问男、女学生各选取了多少人?(ii )若从这12人中随机选取3人到校广播站开展冬奥会及冰雪项目的宣传介绍,设选取的3人中女生人数为X ,写出X 的分布列,并求()E X . 附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【解析】(1)因为()22120602020207.5 6.63580408040K ⨯⨯-⨯==>⨯⨯⨯,所以有99%的把握认为,收看开幕式与性别有关.………………………5分 (2)(i )根据分层抽样方法得,男生31294⨯=人,女生11234⨯=人,所以选取的12人中,男生有9人,女生有3人.………………………8分 (ii )由题意可知,X 的可能取值有0,1,2,3.()3093312C C 840220C P X ===,()2193312C C 1081220C P X ===,()1293312C C 272220C P X ===,()0393312C C 13220C P X ===,∴X 的分布列是:∴()8401232202202202204E X =⨯+⨯+⨯+⨯=.……………………12分19.(本小题满分12分)如图,在多面体ABCDE 中,平面ABD ⊥平面ABC ,ABAC ⊥,AE BD ⊥,12DE AC ∥=,1AD BD ==. (1)求AB 的长;(2)已知24AC ≤≤,求点E 到平面BCD 的距离的最大值.EDCBA【答案】(1(2【解析】(1)∵平面ABD ⊥平面ABC ,且交线为AB ,而AC AB ⊥,∴AC ⊥平面ABD . 又∵DE AC ∥,∴DE ⊥平面ABD ,从而DE BD ⊥. 注意到BD AE ⊥,且DE AE E =,∴BD ⊥平面ADE ,于是BD AD ⊥.而1AD BD ==,∴AB (5)分 (2)∵AD BD =,取AB 的中点为O ,∴DO AB ⊥. 又∵平面ABD ⊥平面ABC,∴DO ⊥平面ABC .过O 作直线OY AC ∥,以点O 为坐标原点,直线OB ,OY ,OD分别为x ,y ,z 轴,建立空间直角坐标系O xyz -,如图所示.记2AC a =,则12a ≤≤, 0 0A ⎛⎫ ⎪ ⎪⎝⎭, 0 0B ⎫⎪⎪⎝⎭, 2 0C a ⎛⎫ ⎪⎪⎝⎭,,0 0D ⎛ ⎝⎭,0E a ⎛- ⎝⎭,, ()0BC a=,, 0BD ⎛=- ⎝⎭. 令平面BCD 的一个法向量为()x y z =,,n .由00BC BD ⎧⋅=⎪⎨⋅=⎪⎩n n 得200ay⎧+=⎪⎨=⎪⎩.令x =,得1a=,n . 又∵()0 0DE a =-,,,∴点E 到平面BCD 的距离||DE d ⋅==nn∵12a ≤≤,∴当2a =时,d 取得最大值,max d .………………………12分20.(本小题满分12分)已知抛物线2:2C y px =(0p >)的焦点为F ,以抛物线上一动点M 为圆心的圆经过点F .若圆M 的面积最小值为π. (1)求p 的值;(2)当点M 的横坐标为1且位于第一象限时,过M 作抛物线的两条弦MA ,MB ,且满足AM F BM F ∠=∠.若直线AB 恰好与圆M 相切,求直线AB 的方程.【答案】(1)2;(2)3y x =-+-【解析】(1)由抛物线的性质知,当圆心M 位于抛物线的顶点时,圆M 的面积最小, 此时圆的半径为2p OF =,∴2ππ4P =,解得2p =.……………………4分(2)依题意得,点M 的坐标为()12,,圆M 的半径为2. 由()10F ,知,MF x ⊥轴.由AM F BM F ∠=∠知,弦MA ,MB 所在直线的倾斜角互补,∴0MA MB k k +=. 设MA k k =(0k ≠),则直线MA 的方程为()12y k x =-+,∴()121x y k=-+, 代入抛物线的方程得,()21421y y k ⎛⎫=-+ ⎪⎝⎭,∴24840y y k k -+-=,∴42A y k +=,42A y k=-. 将k 换成k -,得42B y k=--,∴22441444A B AB AB A B A B A B y y y y k x x y y y y --=====--+--.设直线AB 的方程为y x m =-+,即0x y m +-=. 由直线AB 与圆M 2=,解得3m =±经检验3m =+3m =+∴所求直线AB的方程为3y x =-+-……………………12分 21.(本小题满分12分)已知函数()21e 2x f x x ax =--有两个极值点1x ,2x (e 为自然对数的底数).(1)求实数a 的取值范围; (2)求证:()()122f x f x +>. 【答案】(1)()1 +∞,;(2)见解析. 【解析】(1)∵()21e 2x f x x ax =--,∴()e x f x x a '=--.设()e x g x x a =--,则()e 1x g x '=-. 令()e 10x g x '=-=,解得0x =.∴当() 0x ∈-∞,时,()0g x '<;当()0x ∈+∞,时,()0g x '>. ∴()()min 01g x g a ==-.当1a ≤时,()()0g x f x '=≥,∴函数()f x 单调递增,没有极值点;当1a >时,()010g a =-<,且当x →-∞时,()g x →+∞;当x →+∞时,()g x →+∞. ∴当1a >时,()()e x g x f x x a '==--有两个零点12x x ,. 不妨设12x x <,则120x x <<.∴当函数()f x 有两个极值点时,a 的取值范围为()1 +∞,.…………………5分 (2)由(1)知,1x ,2x 为()0g x =的两个实数根,120x x <<,()g x 在() 0-∞,上单调递减. 下面先证120x x <-<,只需证()()210g x g x -<=.∵()222e 0x g x x a =--=,得22e x a x =-,∴()222222e e e 2x x x g x x a x ---=+-=-+.设()e e 2x x h x x -=-+,0x >, 则()1e 20ex xh x '=--+<,∴()h x 在()0 +∞,上单调递减, ∴()()00h x h <=,∴()()220h x g x =-<,∴120x x <-<. ∵函数()f x 在()1 0x ,上单调递减,∴()()12f x f x >-. ∴要证()()122f x f x +>,只需证()()222f x f x -+>,即证2222e e20x x x -+-->.设函数()2e e 2xxk x x -=+--,()0x ∈+∞,,则()e e 2x x k x x -'=--. 设()()e e 2x x x k x x ϕ-'==--,则()e e 20x x x ϕ-'=+->, ∴()x ϕ在()0+∞,上单调递增,∴()()00x ϕϕ>=,即()0k x '>. ∴()k x 在()0+∞,上单调递增,∴()()00k x k >=. ∴当()0x ∈+∞,时,2e e 20x x x -+-->,则2222e e 20x x x -+-->, ∴()()222f x f x -+>,∴()()122f x f x +>.………………………12分请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,直线l的参数方程为11x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),圆C 的方程为 ()()22215x y -+-=.以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求直线l 及圆C 的极坐标方程;(2)若直线l 与圆C 交于A ,B 两点,求cos AOB ∠的值. 【答案】(1)见解析;(2【解析】(1)由直线l的参数方程11x y ⎧=-+⎪⎪⎨⎪=⎪⎩得,其普通方程为2y x =+, ∴直线l 的极坐标方程为sin cos 2ρθρθ=+. 又∵圆C 的方程为()()22215x y -+-=, 将cos sin x y ρθρθ=⎧⎨=⎩代入并化简得4cos 2sin ρθθ=+,∴圆C 的极坐标方程为4cos 2sin ρθθ=+.……………………5分 (2)将直线l :sin cos 2ρθρθ=+,与圆C :4cos 2sin ρθθ=+联立,得()()4cos 2sin sin cos 2θθθθ+-=,整理得2sin cos 3cos θθθ=,∴π2θ=或tan 3θ=. 不妨记点A 对应的极角为π2,点B 对应的极角为θ,且tan =3θ.于是πcos cos sin 2AOB θθ⎛⎫∠=-== ⎪⎝⎭……………………10分23.(本小题满分10分)选修4-5:不等式选讲已知函数()13f x x x =-+-. (1)解不等式()1f x x ≤+;(2)设函数()f x 的最小值为c ,实数a b ,满足0a >,0b >,a b c +=,求证:22111a b a b +≥++.【答案】(1)[]1 5,;(2)见解析.【解析】(1)()1f x x ≤+,即131x x x -+-≤+. ①当1x <时,不等式可化为421x x -≤+,1x ≥. 又∵1x <,∴x ∈∅;②当13x ≤≤时,不等式可化为21x ≤+,1x ≥. 又∵13x ≤≤,∴13x ≤≤.③当3x >时,不等式可化为241x x -≤+,5x ≤. 又∵3x >,∴35x <≤.综上所得,13x ≤≤或35x <≤,即15x ≤≤. ∴原不等式的解集为[]1 5,.…………………5分(2)由绝对值不等式性质得,()()13132x x x x -+-≥-+-=, ∴2c =,即2a b +=.令1a m +=,1b n +=,则1m >,1n >,1a m =-,1b n =-,4m n +=,()()2222211114441112m n a b m n a b m n m n mn m n --+=+=+++-=≥=+++⎛⎫ ⎪⎝⎭,当且仅当2m n ==时取等号, 原不等式得证.…………………10分2019年全国百所名校联盟高考模拟试卷理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)

2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B I 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .3B .1C 3D .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数”的个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=I ,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =,60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;(2)若直线PA ∥平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值.20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为2,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R . (1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足32x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4-5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =I ,∴集合A B I 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0, 则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =, 则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=,若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B . 6.【答案】A【解析】 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A .7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误;周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos 12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C .10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA u u u r,OB u u u r 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到1sin sin 2S ab C C =⨯⇒=∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e'y x=,曲线2y mx =的导数为2y mx '=,由e2mx x =,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)∵2n S 是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=, 将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2219565【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥,又∵23DP=,2AP=,60PAD∠=︒,由sin sinPD PAPAD PDA=∠∠,可得1sin2PDA∠=,∴30PDA∠=︒,90APD∠=︒,即DP AP⊥,∵AB AP A=I,∴DP⊥平面PAB,∵DP⊂平面PCD,∴平面PAB⊥平面PCD;(2)以点A为坐标原点,AD所在的直线为y轴,AB所在的直线为z轴,如图所示,建立空间直角坐标系,其中()0,0,0A,()0,0,1B,()0,4,3C,()0,4,0D,)3,1,0P.从而()0,4,1BD=-u u u r,)3,1,0AP=u u u r,()3,3,3PC=-u u u r,设PM PCλ=u u u u r u u u r,从而得()33,31,3Mλλλ+,()33,31,31BMλλλ=+-u u u u r,设平面MBD的法向量为(),,x y z=n,若直线PA∥平面MBD,满足BMBDAP⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩u u u u ru u u ru u u rnnn,即)()()31313104030x y zy zx yλλλ-+++-=-=⎨+=,得14λ=,取()3,3,12=--n,且()3,1,1BP=-u u u r,直线BP与平面MBD所成角的正弦值等于33122sin195651565BPBPθ⋅-+===⨯⋅u u u ru u u rnn20.【答案】(1)2212xy+=;(2)直线l过定点()2,0.【解析】(1)由题意可知,抛物线2C的准线方程为1x=,又椭圆1C2,∴点2⎛⎝⎭在椭圆上,∴221112a b+=,①又2cea==,∴222212a bea-==,∴222a b=,②,由①②联立,解得22a=,21b=,∴椭圆1C的标准方程为2212xy+=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增. (2)由()23ln f x x ax x =+-,()123f x x a x'=+-, 则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-, 又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根,不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<,当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=,即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)222x y a -=,3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432. 【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =得112y t =+,∴直线l 的参数方程为3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数). (2)将3212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()222231230t t a ++-=, 依题意知()()222231830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()122231t t +=-, ∴432PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。

2019-2020学年江西省九江市高考数学三模试卷(理科)(有答案)

2019-2020学年江西省九江市高考数学三模试卷(理科)(有答案)

江西省九江市高考数学三模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x<1},N={x|2x>1},则M∩N=()A.∅B.{x|x<0} C.{x|x<1} D.{x|0<x<1}2.复数﹣在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.在Rt△ABC中,∠A=90°,AB=2,AC=4,E,F分别为AB,BC的中点,则=()A.9 B.﹣9 C.7 D.﹣74.已知直线l经过圆C:x2+y2﹣2x﹣4y=0的圆心,且坐标原点到直线l的距离为,则直线l的方程为()A.x+2y+5=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+3=05.设Sn 是等差数列{an}的前n项和,若S672=2,S1344=12,则S2016=()A.22 B.26 C.30 D.346.设x1=18,x2=19,x3=20,x4=21,x5=22,将这五个数据依次输入如图所示的程序框进行计算,则输出的S值及其统计意义分别是()A.S=2,即5个数据的方差为2B.S=2,即5个数据的标准差为2C.S=10,即5个数据的方差为10D.S=10,即5个数据的标准差为107.如图所示,有一条长度为1的线段MN,其端点M,N在边长为3的正方形ABCD的四边上滑动,当点N绕着正方形的四边滑动一周时,MN的中点P所形成轨迹的长度为()A.B.8+π C.D.12+π)满足f(n)=,则f(1)=()8.已知函数f(n)(n∈N+A.97 B.98 C.99 D.1009.高中数学联赛期间,某宾馆随机安排A、B、C、D、E五名男生入住3个标间(每个标间至多住2人),则A、B入住同一标间的概率为()A.B.C.D.10.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则此多面体的体积等于()A.B.16 C.D.3211.若函数f(x)=cosx+axsinx,x∈(﹣,)存在零点,则实数a的取值范围是()A.(0,+∞)B.(1,+∞)C.(﹣∞,﹣1) D.(﹣∞,0)12.如图所示,已知椭圆C: =1(a>b>0),⊙O:x2+y2=b2,点A、F分别是椭圆C的左顶点和左焦点,点P是⊙O上的动点,且为定值,则椭圆C的离心率为()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若二项展开式的第三项系数为80,则实数a=_______.14.若函数f(x)的定义域为[﹣2,2],则函数y=f(2x)•ln(2x+1)的定义域为_______.15.已知数列{a n }各项均不为0,其前n 项和为S n ,且a 1=1,2S n =a n a n+1,则S n =_______.16.如图所示,半径为1的球内切于正三棱锥P ﹣ABC 中,则此正三棱锥体积的最小值为_______.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在△ABC 中,三边a ,b ,c 所对应的角分别是A ,B ,C ,已知a ,b ,c 成等比数列. (1)若+=,求角B 的值;(2)若△ABC 外接圆的面积为4π,求△ABC 面积的取值范围.18.某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据(x 1,y 1)(i=1,2,…6)如表所示: 试销价格x (元) 4 5 6 7 a 9 产品销量y (件) b8483 807568已知变量x ,y 具有线性负相关关系,且x i =39,y i =480,现有甲、乙、丙三位同学通过计算求得其归直线方程分别为:甲y=4x+54;乙y=﹣4x+106;丙y=﹣4.2x+105,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?并求出a ,b 的值;(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据“,现从检测数据中随机抽取3个,求“理想数据“的个数ξ的分布列和数学期望.19.如图所示,四棱锥P ﹣ABCD 中,底面ABCD 为菱形,∠ABC=60°,PA=PC ,PB=PD=AB . (1)求证:平面PAC ⊥平面ABCD ;(2)求直线PB 与平面PCD 所成角的正弦值.20.如图所示,已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 垂直于x 轴的直线与抛物线C 相交于A ,B 两点,抛物线C 在A ,B 两点处的切线及直线AB 所围成的三角形面积为4. (1)求抛物线C 的方程;(2)设M ,N 是抛物线C 上异于原点O 的两个动点,且满足k OM •k ON =k OA •k OB ,求△OMN 面积的取值范围.21.已知函数f (x )=x 2+ax ﹣lnx ,g (x )=e x (a ∈R ).(1)是否存在a 及过原点的直线l ,使得直线l 与曲线y=f (x ),y=g (x )均相切?若存在,求a 的值及直线l 的方程;若不存在,请说明理由; (2)若函数F (x )=在区间(0,1]上是单调函数,求a 的取值范围.四.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图所示,直线AB 为圆O 的切线,切点为B ,点C 在圆O 上,∠ABC 的平分线BE 交圆O 于点E ,DB 垂直BE 交圆O 于点D . (1)证明:DB=DC ; (2)设圆O 的半径为1,BC=,延长CE 交AB 于点F ,求线段BF 的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy 中,直线l 的参数方程为(t 为参数,α∈(0,)),以原点O为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4cosθ. (1)若直线l 与曲线C 有且仅有一个公共点M ,求点M 的直角坐标;(2)若直线l与曲线C相交于A,B两点,线段AB的中点横坐标为,求直线l的普通方程.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|﹣|x+1|.(1)求不等式|f(x)|<1的解集;(2)若不等式|a|f(x)≥|f(a)|对任意a∈R恒成立,求实数x的取值范围.江西省九江市高考数学三模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x<1},N={x|2x>1},则M∩N=()A.∅B.{x|x<0} C.{x|x<1} D.{x|0<x<1}【考点】交集及其运算.【分析】利用指数函数的单调性求出集合N中的解集;利用交集的定义求出M∩N.【解答】解:N={x|2x>1}={x|x>0}∵M={x|x<1},∴M∩N={X|0<X<1}故选D2.复数﹣在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【分析】化简复数为:a+bi的形式,求出对应点的坐标即可.【解答】解:.对应点的坐标()在第三象限.故选:C.3.在Rt△ABC中,∠A=90°,AB=2,AC=4,E,F分别为AB,BC的中点,则=()A.9 B.﹣9 C.7 D.﹣7【考点】平面向量数量积的运算.【分析】结合向量的加法与减法法则把表示出来,并根据向量的数量积运算法则计算即可.【解答】解:,故选:D.4.已知直线l经过圆C:x2+y2﹣2x﹣4y=0的圆心,且坐标原点到直线l的距离为,则直线l的方程为()A.x+2y+5=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+3=0【考点】直线与圆的位置关系.【分析】求出圆C 的圆心C (1,2),设直线l 的方程为y=k (x ﹣1)+2,由坐标原点到直线l 的距离为,求出直线的斜率,由此能求出直线l 的方程.【解答】解:圆C :x 2+y 2﹣2x ﹣4y=0的圆心C (1,2),∵直线l 经过圆C :x 2+y 2﹣2x ﹣4y=0的圆心,且坐标原点到直线l 的距离为,∴当直线l 的斜率不存在时,直线l 的方程为x=1,此时坐标原点到直线l 的距离为1,不成立; 当直线l 的斜率存在时,直线l 的方程为y=k (x ﹣1)+2, 且=,解得k=﹣,∴直线l 的方程为y=﹣(x ﹣1)+2,即x+2y ﹣5=0. 故选:C .5.设S n 是等差数列{a n }的前n 项和,若S 672=2,S 1344=12,则S 2016=( ) A .22 B .26 C .30 D .34 【考点】等差数列的前n 项和.【分析】由等差数列的性质得S 672,S 1344﹣S 672,S 2016﹣S 1344成等差数列,由此能求出S 2016. 【解答】解:∵S n 是等差数列{a n }的前n 项和,S 672=2,S 1344=12, 由等差数列的性质得S 672,S 1344﹣S 672,S 2016﹣S 1344成等差数列, 得到:2×10=2+S 2016﹣12, 解得S 2016=30. 故选:C .6.设x 1=18,x 2=19,x 3=20,x 4=21,x 5=22,将这五个数据依次输入如图所示的程序框进行计算,则输出的S 值及其统计意义分别是( )A .S=2,即5个数据的方差为2B .S=2,即5个数据的标准差为2C .S=10,即5个数据的方差为10D .S=10,即5个数据的标准差为10【考点】程序框图.【分析】算法的功能是求S=++…+的值,根据条件确定跳出循环的i 值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=++…+的值,∵跳出循环的i值为5,∴输出S=×[(18﹣20)2+(19﹣20)2+(20﹣20)2+(21﹣20)2+(22﹣20)2]=×(4+1+0+1+4)=2.故选:A.7.如图所示,有一条长度为1的线段MN,其端点M,N在边长为3的正方形ABCD的四边上滑动,当点N绕着正方形的四边滑动一周时,MN的中点P所形成轨迹的长度为()A.B.8+π C.D.12+π【考点】轨迹方程.【分析】根据题意判断出轨迹是四个角处的四个直角扇形与正方形的四条边上的四条线段组成,然后根据圆的周长公式进行计算即可求解.【解答】解:由题意,轨迹为四条线段加四个四分之一的圆.如图,四个角上的图形合起来刚好是一个半径为0.5的圆,周长为:2π×0.5=π,再加上四个边上滑动为四个等长的线段,长度均为2,合起来就是:2×4+π=8+π.故选:B.8.已知函数f(n)(n∈N)满足f(n)=,则f(1)=()+A.97 B.98 C.99 D.100【考点】函数的值.【分析】由已知条件,利用分段函数的性质推导出f(96)=f[f=97,由此能求出f(1)的值.【解答】解:∵函数f(n)(n∈N)满足f(n)=,+∴f=f[f=98,f(98)=f[f=97,f(97)=f[f=98,f(96)=f[f=97,依此类推,得f(99)=f(97)=…=f(1)=98.故选:B.9.高中数学联赛期间,某宾馆随机安排A、B、C、D、E五名男生入住3个标间(每个标间至多住2人),则A、B入住同一标间的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出A、B入住同一标间包含的基本事件个数,由此能求出A、B入住同一标间的概率.【解答】解:某宾馆随机安排A、B、C、D、E五名男生入住3个标间,共有种情形,A、B入住同一标间有种情形,∴A、B入住同一标间的概率为.故选:B.10.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则此多面体的体积等于()A.B.16 C.D.32【考点】由三视图求面积、体积.【分析】如图所示,该多面体的直观图为直三棱柱ABC ﹣A 1B 1C 1截去一个三棱锥A ﹣A 1B 1C 1,即四棱锥A ﹣BB 1C 1C ,即可得出.【解答】解:如图所示,该多面体的直观图为直三棱柱ABC ﹣A 1B 1C 1截去一个三棱锥A ﹣A 1B 1C 1, 即四棱锥A ﹣BB 1C 1C , ∴.故选:C .11.若函数f (x )=cosx+axsinx ,x ∈(﹣,)存在零点,则实数a 的取值范围是( )A .(0,+∞)B .(1,+∞)C .(﹣∞,﹣1)D .(﹣∞,0)【考点】函数零点的判定定理. 【分析】确定函数是偶函数,a <0,f (x )在上只有一个零点,即可得出结论.【解答】解:∵f (﹣x )=cos (﹣x )﹣axsin (﹣x )=cosx+axsinx=f (x ), ∴函数是偶函数,当a ≥0时,恒成立,函数无零点,当a <0时,,∴函数f (x )在上单调递减,∵,∴f (x )在上只有一个零点,由f (x )是偶函数可知,函数恰有两个零点.故选:D .12.如图所示,已知椭圆C :=1(a >b >0),⊙O :x 2+y 2=b 2,点A 、F 分别是椭圆C 的左顶点和左焦点,点P 是⊙O 上的动点,且为定值,则椭圆C 的离心率为( )A .B .C .D .【考点】椭圆的简单性质. 【分析】设P (x 1,y 1),由是常数,得,然后利用,转化为关于x 1 的方程,由系数相等可得a ,c 的关系式,从而求得椭圆C 的离心率. 【解答】解:设F (﹣c ,0),c 2=a 2﹣b 2, 设P (x 1,y 1),要使得是常数,则有,λ是常数,∵,∴,比较两边系数得b 2a 2=λ(b 2+c 2),a=λc, 故c (b 2+a 2)=a (b 2+c 2),即2ca 2﹣c 3=a 3, 即e 3﹣2e+1=0,即(e ﹣1)(e 2+e ﹣1)=0, 又0<e <1, ∴.故选:D .二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.若二项展开式的第三项系数为80,则实数a=2.【考点】二项式定理的应用.【分析】由条件利用二项展开式的通项公式,求得实数a 的值. 【解答】解:由题意可得二项展开式的第三项系数为,∴10a 3=80,解得a=2, 故答案为:2.14.若函数f (x )的定义域为[﹣2,2],则函数y=f (2x )•ln(2x+1)的定义域为.【考点】函数的定义域及其求法.【分析】由函数f (x )的定义域为[﹣2,2],可得f (2x )的定义域为满足﹣2≤2x ≤2的x 的取值集合,再与2x+1>0的解集取交集即可得到函数y=f (2x )•ln(2x+1)的定义域. 【解答】解:要使原函数有意义,则,解得.∴函数y=f (2x )•ln(2x+1)的定义域为.故答案为:.15.已知数列{a n }各项均不为0,其前n 项和为S n ,且a 1=1,2S n =a n a n+1,则S n =.【考点】数列递推式.【分析】利用递推关系、等差数列的通项公式及其前n 项和公式即可得出. 【解答】解:当n=1时,2S 1=a 1a 2,即2a 1=a 1a 2,∴a 2=2.当n ≥2时,2S n =a n a n+1,2S n ﹣1=a n ﹣1a n ,两式相减得2a n =a n (a n+1﹣a n ﹣1), ∵a n ≠0,∴a n+1﹣a n ﹣1=2,∴{a 2k ﹣1},{a 2k }都是公差为2的等差数列,又a 1=1,a 2=2, ∴{a n }是公差为1的等差数列, ∴a n =1+(n ﹣1)×1=n , ∴S n =.故答案为:.16.如图所示,半径为1的球内切于正三棱锥P ﹣ABC 中,则此正三棱锥体积的最小值为8.【考点】棱柱、棱锥、棱台的体积.【分析】设棱锥底面边长为a,高为h,作过棱锥的高和斜高的截面,根据三角形相似得出a,h的关系,代入棱锥的体积公式,利用导数求出体积的最小值.【解答】解:设正三棱锥P﹣ABC的底面边长AB=a,高为PO=h.设内切球球心为M,与平面PAC的切点为N,D为AC的中点,则MN⊥PD.DO==.MN=1,PM=h﹣1,∴PN===.∵Rt△PMN∽Rt△PDO,∴,即,∴a=.∴,,令V'=0得h=4,故当h=4时,.故答案为8.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,三边a,b,c所对应的角分别是A,B,C,已知a,b,c成等比数列.(1)若+=,求角B的值;(2)若△ABC外接圆的面积为4π,求△ABC面积的取值范围.【考点】正弦定理;余弦定理.【分析】(1)由切化弦、两角和的正弦公式化简式子,由等比中项的性质、正弦定理列出方程,即可求出sinB,由内角的范围和特殊角的三角函数值求出B;(2)由余弦定理和不等式求出cosB的范围,由余弦函数的性质求出B的范围,由正弦定理和三角形的面积公式表示出△ABC面积,利用B的范围和正弦函数的性质求出△ABC面积的范围.【解答】解:(1)由题意得,,∵a,b,c成等比数列,∴b2=ac,○由正弦定理有sin2B=sinAsinC,∵A+C=π﹣B,∴sin(A+C)=sinB,得,即,由b2=ac知,b不是最大边,∴.(2)∵△ABC外接圆的面积为4π,∴△ABC的外接圆的半径R=2,由余弦定理b2=a2+c2﹣2accosB,得,又b2=ac,∴,当且仅当a=c时取等号,∵B为△ABC的内角,∴,由正弦定理,得b=4sinB,∴△ABC的面积,∵,∴,∴.18.某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据(x1,y1)(i=1,2,…6)如表所示:试销价格x(元) 4 5 6 7 a 9 产品销量y(件) b 84 83 80 75 68已知变量x,y具有线性负相关关系,且xi =39, yi=480,现有甲、乙、丙三位同学通过计算求得其归直线方程分别为:甲y=4x+54;乙y=﹣4x+106;丙y=﹣4.2x+105,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?并求出a,b的值;(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据“,现从检测数据中随机抽取3个,求“理想数据“的个数ξ的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)xi =39, yi=480,x的和为39,y的和为480,解得a和b的值,并求得,,由x,y具有线性负相关关系,甲同学的不对,将,,代入验证,乙同学的正确;(2)分别求出有回归方程求得y值,与实际的y相比较,判断是否为“理想数据“,并求得ξ的取值,分别求得其概率,写出分布列和数学期望.【解答】解:(1)已知变量x,y具有线性负相关关系,故甲不对,且xi=39,4+5+6+7+a+9=39,a=8,y=480,b+84+83+80+75+68=480,b=90,i∵=6.5,=80,将,,代入两个回归方程,验证乙同学正确,故回归方程为:y=﹣4x+106;(2)X 4 5 6 7 8 9y 90 84 83 80 75 68y 92 88 84 80 76 72“理想数据“的个数ξ取值为:0,1,2,3;P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.“理想数据“的个数ξ的分布列:X 0 1 2 3P =数学期望E(X)=0×+1×+2×+3×=1.5.19.如图所示,四棱锥P﹣ABCD中,底面ABCD为菱形,∠ABC=60°,PA=PC,PB=PD=AB.(1)求证:平面PAC⊥平面ABCD;(2)求直线PB与平面PCD所成角的正弦值.【考点】直线与平面所成的角;平面与平面垂直的判定.【分析】(1)设AC与BD相交于点O,连接PO,根据三线合一得出PO⊥AC,PO⊥BD,故而PO⊥平面ABCD,得出平面PAC⊥平面ABCD;(2)以O为原点,以OB,OD,OP为坐标轴建立空间直角坐标系,设AB=2,求出和平面PCD的法向量,则|cos<>|即为所求.【解答】(1)证明:设AC与BD相交于点O,连接PO,∵ABCD为菱形,∴O为AC,BD的中点.∵PA=PC,PB=PD,∴PO⊥AC,PO⊥BD.又AC∩BD=O,AC,BD⊂平面ABCD,∴PO⊥平面ABCD,又PO⊂平面PAC,∴平面PAC⊥平面ABCD.(2)解:∵ABCD为菱形,∠ABC=60°,∴△ABC为正三角形,AC⊥BD,不妨设PB=PD=AB=2,则BO=,∴PO=1.以O为原点,以OB,OD,OP为坐标轴建立如图所示的空间直角坐标系O﹣xyz,∴P(0,0,1),B(,0,0),C(0,1,0),D(﹣,0,0).∴=(,0,﹣1),=(0,1,﹣1),=(﹣,0,﹣1).设平面PCD的法向量为=(x,y,z),则,即.令x=1得=(1,﹣,﹣).∴cos<>===.∴直线PB与平面PCD所成角的正弦值为.20.如图所示,已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 垂直于x 轴的直线与抛物线C 相交于A ,B 两点,抛物线C 在A ,B 两点处的切线及直线AB 所围成的三角形面积为4. (1)求抛物线C 的方程;(2)设M ,N 是抛物线C 上异于原点O 的两个动点,且满足k OM •k ON =k OA •k OB ,求△OMN 面积的取值范围.【考点】抛物线的简单性质.【分析】(1)求出A ,B 坐标,利用导数解出切线方程,求出切线与x 轴的交点,利用三角形的面积列方程解出p ;(2)计算k OA •k OB =﹣4,设出MN 方程,求出MN 与x 轴的交点,联立方程组,根据根与系数的关系计算|y M ﹣y N |,得出△OMN 面积S 关于t 的函数,解出函数的最值. 【解答】解:(1)抛物线的焦点坐标为F (,0),∴,由,得,∴抛物线C 在A 处的切线斜率为1,由抛物线C 的对称性,知抛物线C 在B 处的切线卸斜率为﹣1, ∴抛物线过A 点的切线方程为y ﹣p=x ﹣,令y=0得x=﹣. ∴,解得p=2.∴抛物线C 的方程为y 2=4x .(2)k OA =2,k OB =﹣2,∴k OA •k OB =﹣4,设,则,∴y 1y 2=﹣4.令直线MN 的方程为x=ty+n , 联立方程组消去x 得:y 2﹣4ty ﹣4n=0,则y 1y 2=﹣4n ,y 1+y 2=4t ,∵y 1y 2=﹣4,∴n=1.即直线MN 过点(1,0). ∴.∵t 2≥0,∴S △OMN ≥2.综上所示,△OMN 面积的取值范围是[2,+∞).21.已知函数f (x )=x 2+ax ﹣lnx ,g (x )=e x (a ∈R ).(1)是否存在a 及过原点的直线l ,使得直线l 与曲线y=f (x ),y=g (x )均相切?若存在,求a 的值及直线l 的方程;若不存在,请说明理由; (2)若函数F (x )=在区间(0,1]上是单调函数,求a 的取值范围.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出f (x ),g (x )的导数,设出切点,求得切线的斜率,运用点斜式方程可得切线的方程,即可判断存在a=e ﹣1及l :y=ex ; (2)求出F (x )的解析式和导数,令,求出导数,判断单调性,再对a 讨论,分a ≤2,a >2,判断h (x )的单调性,进而得到F (x )的单调性,即可得到所求范围. 【解答】解:(1)g (x )的导数为g'(x )=e x , 设曲线y=g (x )在点处切线过原点,则切线方程为,由点在切线上,可得,解得x 1=1,即有切线方程为y=ex ,设直线y=ex 与曲线y=f (x )切于点(x 2,y 2), 由f (x )的导数为,可得,即有,又,则,可得,解得x 2=1,a=e ﹣1.故存在a=e ﹣1及l :y=ex ,使得直线l 与曲线y=f (x ),y=g (x )均相切. (2),,令,则,易知h'(x )在(0,1]上单调递减,从而h'(x )≥h'(1)=2﹣a .①当2﹣a ≥0时,即a ≤2时,h'(x )≥0,h (x )在区间(0,1]上单调递增, 由h (1)=0,可得h (x )≤0在(0,1]上恒成立, 即F'(x )≤0在(0,1]上恒成立.即F (x )在区间(0,1]上单调递减,则a ≤2满足题意;②当2﹣a <0时,即a >2时,由h'(1)=2﹣a <0,当x >0且x→0时,h'(x )→+∞, 故函数h'(x )存在唯一零点x 0∈(0,1],且h (x )在(0,x 0)上单调递增, 在(x 0,1)上单调递减,又h (1)=0,可得F (x )在(x 0,1)上单调递增.注意到h (e ﹣a )<0,e ﹣a ∈(0,x 0),即有F (x )在(0,e ﹣a )上单调递减, 这与F (x )在区间(0,1]上是单调函数矛盾,则a >2不合题意. 综合①②得,a 的取值范围是(﹣∞,2].四.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图所示,直线AB 为圆O 的切线,切点为B ,点C 在圆O 上,∠ABC 的平分线BE 交圆O 于点E ,DB 垂直BE 交圆O 于点D . (1)证明:DB=DC ; (2)设圆O 的半径为1,BC=,延长CE 交AB 于点F ,求线段BF 的长.【考点】与圆有关的比例线段.【分析】(1)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(2)由(1)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到线段BF的长【解答】(1)证明:连接DE交BC于点G,由弦切角定理得,∠ABE=∠BCE.∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DE⊥BE,∴DE是直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(2)解:设DE与BC相交于点G,由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线.∵,∴.连接BO,∵圆O的半径为1,∴∠BOG=60°,∠ABE=∠BCE=∠CBE=30°,∴CF⊥BF.,∴.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,直线l的参数方程为(t为参数,α∈(0,)),以原点O 为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.(1)若直线l与曲线C有且仅有一个公共点M,求点M的直角坐标;(2)若直线l与曲线C相交于A,B两点,线段AB的中点横坐标为,求直线l的普通方程.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,把ρ2=x2+y2,x=ρcosθ,代入可得C 的直角坐标方程.把直线l的参数方程代入上式并整理得t2﹣6tcosα+5=0.令△=0,解出即可得出点M的直角坐标.(2)设A,B两点对应的参数分别为t1,t2,则t1+t2=6cosα.利用中点坐标公式即可得出.【解答】解:(1)曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,把ρ2=x2+y2,x=ρcosθ,代入可得C的直角坐标方程为:x2﹣4x+y2=0,即(x﹣2)2+y2=4.把直线l的参数方程代入上式并整理得t2﹣6tcosα+5=0.令△=(6cosα)2﹣20=0,解得.∴点M的直角坐标为.(2)设A,B两点对应的参数分别为t1,t2,则t1+t2=6cosα.线段AB的中点对应的参数为.则,解得.∴直线l的普通方程为x﹣y+1=0.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|﹣|x+1|.(1)求不等式|f(x)|<1的解集;(2)若不等式|a|f(x)≥|f(a)|对任意a∈R恒成立,求实数x的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)利用绝对值的几何意义,求不等式|f(x)|<1的解集;(2)若不等式|a|f(x)≥|f(a)|对任意a∈R恒成立,分类讨论,转化为|f(x)|≥2,求实数x的取值范围.【解答】解:(1)x<﹣1时,f(x)=﹣x+1+x+1=2<1,不成立;﹣1≤x≤1时,f(x)=﹣x+1﹣x﹣1=﹣2x,|﹣2x|<1,∴﹣<x<;x>1时,f(x)=x﹣1﹣x﹣1=﹣2,|f(x)|>1,不成立,综上所述不等式|f(x)|<1的解集为{x|﹣<x<};(2)a=0时,不等式成立,a≠0时,|f(x)|≥||1﹣|﹣|1+||∵||1﹣|﹣|1+||<2,∴|f(x)|≥2,x<﹣1时,f(x)=﹣x+1+x+1=2,成立;﹣1≤x≤1时,f(x)=﹣x+1﹣x﹣1=﹣2x,|﹣2x|≥2,∴x=±1;x>1时,f(x)=x﹣1﹣x﹣1=﹣2,|f(x)|=2,成立,综上所述实数x的取值范围为{x|x≤﹣1或x≥1}.。

2019年高考数学(理科)模拟试卷(一)

2019年高考数学(理科)模拟试卷(一)

2019年高考数学(理科)模拟试卷(一) 2019年高考数学(理科)模拟试卷(一)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|y=lg(3-2x)},B={x|x²≤4},则A∪B=()A。

{x|-2≤x<2}B。

{x|x<2}C。

{x|-2<x<2}D。

{x|x≤2}2.若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A。

(-∞,1)B。

(-∞,-1)C。

(1,+∞)D。

(-1,+∞)3.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”根据已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为()A。

6斤B。

9斤C。

9.5斤D。

12斤4.某三棱锥的三视图如图M1-1,则该三棱锥的体积为()A。

60B。

30C。

20D。

105.设x∈R,[x]表示不超过x的最大整数。

若存在实数t,使得[t]=1,[t²]=2,…,[tn]=n同时成立,则正整数n的最大值是()A。

3B。

4C。

5D。

66.执行两次如图M1-2所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次、第二次输出的a 值分别为()A。

0,0B。

1,1C。

0,1D。

1,07.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是()A。

10B。

11C。

12D。

138.若x,y满足约束条件x+y-3≥0,x-2y≤0,则x≥()A。

[0,6]B。

[0,4]C。

[6,+∞)D。

[4,+∞)13.首先求出向量a和b的夹角,由向量点乘公式可得cosθ = (a·b)/(|a||b|) = 9/√20,其中θ为夹角。

2019年高考真题和模拟题分项汇编数学(理):专题11 算法初步(含解析)

2019年高考真题和模拟题分项汇编数学(理):专题11 算法初步(含解析)

专题11 算法初步1.【2019年高考天津卷理数】阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .29【答案】B【分析】根据程序框图,逐步写出运算结果即可.【解析】1,2S i ==;11,1225,3j S i ==+⨯==;8,4S i ==,结束循环,输出8S =.故选B .【名师点睛】解答本题要注意要明确循环体终止的条件是什么,会判断什么时候终止循环体. 2.【2019年高考北京卷理数】执行如图所示的程序框图,输出的s 值为A .1B .2C .3D .4【答案】B【分析】根据程序框图中的条件逐次运算即可. 【解析】初始:1s =,1k =,运行第一次,2212312s ⨯==⨯-,2k =,运行第二次,2222322s ⨯==⨯-,3k =,运行第三次,2222322s ⨯==⨯-,结束循环,输出2s =,故选B .【名师点睛】本题考查程序框图,属于容易题,注重基础知识、基本运算能力的考查.3.【2019年高考全国Ⅰ卷理数】如图是求112122++的程序框图,图中空白框中应填入A .12A A =+ B .12A A =+C .112A A=+D .112A A=+【答案】A【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【解析】初始:1,122A k ==≤,因为第一次应该计算1122+=12A +,1k k =+=2; 执行第2次,22k =≤,因为第二次应该计算112122++=12A +,1k k =+=3, 结束循环,故循环体为12A A=+,故选A .【秒杀速解】认真观察计算式子的结构特点,可知循环体为12A A=+.4.【2019年高考全国Ⅲ卷理数】执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A .4122- B .5122-C .6122-D .7122-【答案】C【分析】根据程序框图,结合循环关系进行运算,可得结果. 【解析】输入的ε为0.01,11,01,0.01?2x s x ==+=<不满足条件; 1101,0.01?24s x =++=<不满足条件;⋅⋅⋅611101,0.00781250.01?22128S x =++++==<满足条件,结束循环;输出676111112(1)22222S =+++=⨯-=-,故选C .【名师点睛】解答本题关键是利用循环运算,根据计算精确度确定数据分析. 5.【2019年高考江苏卷】下图是一个算法流程图,则输出的S 的值是______________.【答案】5【分析】结合所给的流程图运行程序确定输出的值即可. 【解析】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342xS S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442xS S x =+==≥成立,输出 5.S =【名师点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构;(2)要识别、运行程序框图,理解框图所解决的实际问题;(3)按照题目的要求完成解答并验证.6.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查】在如图所示的计算1592017++++L 的程序框图中,判断框内应填入的条件是A .2017?i ≤B .2017?i <C .2013?i <D .2021?i ≤【答案】A【解析】由题意结合流程图可知当2017i =时,程序应执行S S i =+,42021i i =+=, 再次进入判断框时应该跳出循环,输出S 的值;结合所给的选项可知判断框内应填入的条件是2017?i ≤.故选A .7.【吉林省长春市北京师范大学长春市附属中学2019届高三第四次模拟考试】根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于A .1B .eC .1e -D .2e -【答案】C【解析】由题3x =,231x x =-=-,此时0x >,继续运行,1210x =-=-<,程序运行结束,得1e y -=,故选C .8.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)】执行如图所示的程序框图,则输出的值为A .4B .5C .6D .7【答案】C【解析】由题可得3,27,315,431,563,6S i S i S i S i S i ==→==→==→==→==, 此时结束循环,输出6i =,故选C .9.【山东省济宁市2019届高三二模】阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于A .30B .31C .62D .63【答案】B【解析】由流程图可知该算法的功能为计算123412222S =++++的值,即输出的值为512341(12)122223112S ⨯-=++++==-.故选B .10.【辽宁省大连市2019届高三第二次模拟考试】执行如图所示的程序框图,若输出结果为1,则可输入的实数x 值的个数为A .1B .2C .3D .4【答案】B【分析】根据程序框图的含义,得到分段函数221,2log ,2x x y x x ⎧-≤⎪=⎨>⎪⎩,分段解出关于x 的方程,即可得到可输入的实数x 值的个数.【解析】根据题意,该框图的含义是:当2x ≤时,得到函数21y x =-;当2x >时,得到函数2log y x =, 因此,若输出的结果为1时,若2x ≤,得到211x -=,解得x = 若2x >,得到2log 1x =,无解,因此,可输入的实数x 的值可能为2个.故选B . 11.【江西省新八校2019届高三第二次联考】如图所示的程序框图所实现的功能是A .输入a 的值,计算2021(1)31a -⨯+的值B .输入a 的值,计算2020(1)31a -⨯+的值C .输入a 的值,计算2019(1)31a -⨯+的值D .输入a 的值,计算2018(1)31a -⨯+的值 【答案】B【解析】由程序框图,可知1a a =,132n n a a +=-,由i 的初值为1,末值为2019, 可知,此递推公式共执行了201912020+=次,又由132n n a a +=-,得113(1)n n a a +-=-,得11(1)3n n a a --=-⨯即1(1)31n n a a -=-⨯+,故2021120202021(1)31(1)31a a a -=-⨯+=-⨯+,故选B . 12.【山西省2019届高三考前适应性训练(二模)】执行如图所示的程序框图,则输出x 的值为A.2-B.1 3 -C.12D.3【答案】A【分析】根据程序框图进行模拟运算得到x的值具备周期性,利用周期性的性质进行求解即可.【解析】∵12x=,∴当1i=时,13x=-;2i=时,2x=-;3i=时,3x=,4i=时,12x=,即x的值周期性出现,周期数为4,∵201850442=⨯+,则输出x的值为2-,故选A.【名师点睛】本题主要考查程序框图的识别和判断,结合条件判断x的值具备周期性是解决本题的关键,属于中档题.13.【青海省西宁市第四高级中学、第五中学、第十四中学三校2019届高三4月联考】若某程序框图如图所示,则该程序运行后输出的值是A .5B .4C .3D .2【答案】B【分析】模拟执行循环结构的程序得到n 与i 的值,计算得到2n =时满足判断框的条件,退出循环,输出结果,即可得到答案.【解析】模拟执行循环结构的程序框图, 可得:6,1n i ==, 第1次循环:3,2n i ==; 第2次循环:4,3n i ==; 第3次循环:2,4n i ==,此时满足判断框的条件,输出4i =.故选B .【名师点睛】本题主要考查了循环结构的程序框图的应用,其中解答中根据给定的程序框图,根据判断框的条件推出循环,逐项准确计算输出结果是解答的关键,着重考查了考生的运算与求解能力,属于基础题.14.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研】下图是一个算法流程图.若输出 的值为4,则输入x 的值为______________.【答案】1-【解析】当1x ≤时,由流程图得3y x =-, 令34y x =-=,解得1x =-,满足题意. 当1x >时,由流程图得3y x =+, 令34y x =+=,解得1x =,不满足题意. 故输入x 的值为1-.15.【北京市人大附中2019届高三高考信息卷(三)】执行如图所示的程序框图,若输入x 值满足24x -<≤,则输出y 值的取值范围是______________.【答案】[3,2]-【解析】根据输入x 值满足24x -<≤,利用函数的定义域,分成两部分:即22x <<﹣和24x ≤≤,当22x <<﹣时,执行23y x =- 的关系式,故31y -≤<,当24x ≤≤时,执行2log y x =的关系式,故12y ≤≤. 综上所述:[3,2]y ∈-,故输出y 值的取值范围是[3,2]-.。

2019年高考数学模拟考试题含答案解析

2019年高考数学模拟考试题含答案解析

FDCBA 2019年高考数学模拟试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并收回。

一.选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ⋂)(=A .}3,2{B .}4,3,2{C .}2{D .φ2.已知i 是虚数单位,iz +=31,则z z ⋅= A .5B .10C .101D .51 3.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为A .3B .4C .5D .6(第3题) (第4题)4.如图,ABCD 是边长为8的正方形,若13DE EC =,且F 为BC 的中点,则EA EF ⋅=A .10B .12C .16D .205.若实数y x ,满足⎪⎩⎪⎨⎧≥≤-≤+012y x y y x ,则yx z 82⋅=的最大值是A .4B .8C .16D .326.一个棱锥的三视图如右图,则该棱锥的表面积为 A .3228516++ B .32532+C .32216+D .32216516++7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A .101 B .51 C .103 D .548.设n S 是数列}{n a 的前n 项和,且11-=a ,11++⋅=n n n S S a ,则5a = A .301 B .031- C .021 D .201- 9. 函数()1ln1xf x x-=+的大致图像为10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥ABCD P -的外接球体积最小值是A .π625 B .π125 C .π6251 D .π25 11. 已知抛物线()220y px p =>,过焦点且倾斜角为30°的直线交抛物线于A,B 两点,以AB为直径的圆与抛物线的准线相切,切点的纵坐标是3,则抛物线的准线方程为A .1x =-B .2x =-C .3x =- D .x =12. 已知函数x x x f ln )(2-=(22≥x ),函数21)(-=x x g ,直线t y =分别与两函数交于B A ,两点,则AB 的最小值为A .21B .1C .23D .2二.填空题:本大题共4小题,每小题5分,共20分.13. 设样本数据1x ,2x ,...,2018x 的方差是5,若13+=i i x y (2018,...,2,1=i ),则1y ,2y ,...,2018y 的方差是________14. 已知函数x x x f ωωcos 3sin )(-=(0>ω),若3=ω,则方程1)(-=x f 在),0(π的实数根个数是_____15. 我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯ 的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…, 2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则5N =_______16.已知ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且1c =,π3C =.若sin sin()sin 2C A B B +-=,则ABC ∆的面积为三、解答题:本大题共6小题,其中17-21小题为必考题,每小题12分,第22—23题为选考题,考生根据要求做答,每题10分. 17.(本小题满分12分)设数列}{n a 是公差为d 的等差数列. (Ⅰ) 推导数列}{n a 的通项公式;(Ⅱ) 设0≠d ,证明数列}1{+n a 不是等比数列.18.(本小题满分12分)某中学为了解全校学生的上网情况,在全校随机抽取了40名学生(其中男、女生各占一半)进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5组:[0,5),[5,10),[10,15),[15,20),[20,25],得到如图所示的频率分布直方图.(Ⅰ)写出女生组频率分布直方图中a 的值;(Ⅱ)在抽取的40名学生中从月上网次数不少于20的学生中随机抽取2人,并用X 表示随机抽取的2人中男生的人数,求X 的分布列和数学期望.19.(本小题满分12分)在直三棱柱111C B A ABC -中,21===AA AC AB ,CA BA ⊥。

浙江省2019届高考模拟卷(一)数学试题(解析版)

浙江省2019届高考模拟卷(一)数学试题(解析版)

浙江省2019年高考全真模拟卷(一)数学试卷第Ⅰ卷(选择题部分,共40分)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】A【解析】因为,,所以.故选A.2.若复数满足,在复数的虚部为()A. B. 1 C. -1 D.【答案】C【解析】【分析】由复数的除法运算公式可得,从而可求出z的共轭复数,即可得出结果.【详解】由题意可知,,故,所以其虚部为-1.【点睛】本题主要考查复数的四则运算和共轭复数的概念,属于基础题型.3.已知是双曲线渐近线上的点,则双曲线的离心率是()A. 2B.C.D.【答案】A【解析】【分析】由在双曲线的渐近线上,得=,由e=计算可得.【详解】因为双曲线的渐近线方程为y=,在渐近线上,所以=,则e==2.故选:A.【点睛】本题考查了双曲线的离心率求法,也考查了渐近线方程的应用,属于基础题.4.设,满足约束条件,则的最小值是()A. 1B.C.D.【答案】C【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】满足约束条件的可行域如图:化为,平移直线,经过可行域的时,目标函数取得最小值,由,解得,则的最小值是,故选C .【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.已知圆.设条件,条件圆上至多有个点到直线的距离为,则是的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】解:圆C:(x−1)2+y2=r2(r>0).圆心(1,0)到直线的距离.由条件q:圆C上至多有2个点到直线x−y+3=0的距离为1,则0<r<3.则p是q的充要条件。

2019年河南省六市高考数学二模试卷(理科)(解析版)

2019年河南省六市高考数学二模试卷(理科)(解析版)

2019年河南省六市高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={(x,y)|y=x+1,x∈Z},集合B={y|y=2x,x∈Z},则集合A∩B等于()A. B. C. D.2.若复数z满足(3-4i)z=|3-4i|,则z的虚部为()A. B. C. 4 D.3.某学校为落实学生掌握社会主义核心价值观的情况,用系统抽样的方法从全校2400名学生中抽取30人进行调查.现将2400名学生随机地从1~2400编号,按编号顺序平均分成30组(1~80号,81~160号,…,2321~2400号),若第3组与第4组抽出的号码之和为432,则第6组抽到的号码是()A. 416B. 432C. 448D. 4644.若等差数列{a n}的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和S n取最小值时,n的值等于()A. 7B. 6C. 5D. 45.设P是正方体ABCD-A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P()A. 仅有一个B. 有有限多个C. 有无限多个D. 不存在6.已知Rt△ABC,点D为斜边BC的中点,,,,则等于()A. B. C. 9 D. 147.设变量x,y满足不等式组,则z=|x-y-4|的最大值为()A. B. C. D. 68.函数f(x)=的大致图象为()A.B.C.D.9.设实数a,b,c分别满足,b lnb=1,3c3+c=1,则a,b,c的大小关系为()A. B. C. D.10.在直角坐标系xOy中,F是椭圆C:=1(a>b>0)的左焦点,A,B分别为左、右顶点,过点F作x轴的垂线交椭圆C于P,Q两点,连接PB交y轴于点E,连接AE交PQ于点M,若M是线段PF 的中点,则椭圆C的离心率为()A. B. C. D. 11.在数列{a n}中,已知a1=1,且对于任意的m,n∈N*,都有a m+n=a m+a n+mn,则=()A. B. C. D.12.已知函数f(x)=sin2x的图象与直线2kx-2y-kπ=0(k>0)恰有三个公共点,这三个点的横坐标从小到大依次为x1,x2,x3,则(x1-x2)tan(x2-2x3)=()A. B. C. 0 D. 1二、填空题(本大题共4小题,共20.0分)13.已知tan(x+)=2,x是第三象限角,则cos x=______.14.《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率______.15.抛物线y2=4x的焦点为F,其准线为直线l,过点M(5,2)作直线l的垂线,垂足H,则∠FMH的角平分线所在的直线斜率是______.16.我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何”,羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图粗线所示,其中小正方形网格的边长为1,则该羡除的体积为______.三、解答题(本大题共7小题,共84.0分)17.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足sin2A+sin A sin B-6sin2B=0.(1)求的值;(2)若cos C=,求sin B的值.18.如图,四棱锥P-ABCD,AB∥CD,∠BCD=90°,AB=2BC=2CD=4,△PAB为等边三角形,平面PAB⊥平面ABCD,Q为PB中点.(1)求证:AQ⊥平面PBC;(2)求二面角B-PC-D的余弦值.19.为评估M设备生产某种零件的性能,从该设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到如表:(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ-σ<X<μ+σ)≥0.6826;②p(μ-2σ<X<μ+2σ)≥0.9544;③p(μ-3σ<X<μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断M设备的性能等级.(2)将直径小于等于μ-2σ的零件或直径大于等于μ+2σ的零件认定为是“次品”,将直径小于等于μ-3σ的零件或直径大于等于μ+3σ的零件认定为是“突变品”,从样本的“次品”中随意抽取2件零件,求“突变品”个数ξ的数学期望.20.已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.21.已知函数f(x)=e x(2x-1),g(x)=ax-a(a∈R).(1)若y=g(x)为曲线y=f(x)的一条切线,求a的值;(2)已知a<1,若存在唯一的整数x0,使得f(x0)<g(x0),求a的取值范围.22.在直角坐标系xOy中,抛物线C的方程为y2=4x.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,,求l的倾斜角.23.已知函数f(x)=|x-1|+|2x+m|(m∈R).(1)若m=2时,解不等式f(x)≤3;(2)若关于x的不等式f(x)≤|2x-3|在x∈[0,1]上有解,求实数m的取值范围.答案和解析1.【答案】D【解析】解:由题可得:集合A是点集,集合B是数集,所以A∩B=∅.故选:D.由题可得:集合A是点集,集合B是数集,由交集概念即可得解.本题主要考查了集合的表示及交集运算,属于基础题.2.【答案】B【解析】解:∵(3-4i)z=|3-4i|,∴z==.∴z的虚部为:.故选:B.整理(3-4i)z=|3-4i|得:z=,由复数的基本概念得答案.本题主要考查了复数的模及复数的除法运算,还考查了复数的有关概念,考查计算能力,属于基础题.3.【答案】A【解析】解:样本间隔为2400÷30=80,设首个号码为x,则第三.第四个号码为x+160,x+240,则x+160+x+240=2x+400=432,得2x=32,x=16,则第6组抽到的号码为16+80×5=400+16=416,故选:A.先求出样本间隔,设出首个号码x,建立方程组求出x,利用系统抽样的定义进行求解即可.本题主要考查系统抽样的应用,根据样本间隔,结合条件求出首个号码是解决本题的关键.4.【答案】B【解析】解:由a5是a2与a6的等比中项,可得a52=a2a6,由等差数列{a n}的公差d为2,即(a1+8)2=(a1+2)(a1+10),解得a1=-11,a n=a1+(n-1)d=-11+2(n-1)=2n-13,由a1<0,a2<0,…,a6<0,a7>0,…可得该数列的前n项和S n取最小值时,n=6.故选:B.由题意可得,运用等差数列的通项公式和等比数列的中项的性质,解方程可得a1,结合已知公差,代入等差数列的通项可求,判断数列的单调性和正负,即可得到所求和的最小值时n的值等差数列与等比数列是高考考查的基本类型,本题考查等差数列的通项公式的运用,同时考查等比数列的中项的性质,以及等差数列的单调性和前n项和的最小值,属于中档题.5.【答案】A【解析】解:设P是正方体ABCD-A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P是正方体的中心,故选:A.设P是正方体ABCD-A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P是正方体的中心,即可得出结论.本题考查点面距离,考查学生分析解决问题的能力,比较基础.6.【答案】D【解析】解:如图,分别以边AC,AB所在直线为x,y轴,建立平面直角坐标系,则:;;∴=;∴=,,;∴.故选:D.可分别以直线AC,AB为x,y轴,建立平面直角坐标系,根据条件便可求出点A,B,C,D的坐标,进而求出点E的坐标,从而得出向量的坐标,这样进行数量积的坐标运算即可求出的值.考查建立平面直角坐标系,通过坐标解决向量问题的方法,能求平面上点的坐标,以及向量数乘的几何意义,数量积的坐标运算.7.【答案】D【解析】解:作出不等式组表示的平面区域如下:作出直线l:x-y-4=0,当l往上平移时,x-y-4变小,当直线l经过点B(,)时,x-y-4最大,当直线l经过点C(1,3)时,x-y-4最小.即:1-3-4≤x-y-4≤,所以-6≤x-y-4≤-,所以,所以z=|x-y-4|的最大值为6.故选:D.作出不等式组表示的平面区域,利用线性规划知识求得-6≤x-y-4≤-,问题得解.本题主要考查了利用线性规划知识求目标函数的最值,考查了数形结合思想及转化能力,属于中档题.8.【答案】C【解析】解:函数f(x)=,当x=0时,y=-3,排除选项A,B,D.即可判断选项C正确,故选:C.利用特殊值对应点的坐标排除选项,判断即可.本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.9.【答案】B【解析】解;因为,所以a=,又因为blnb=1>0,所以lnb>0,所以b>1,又因为f(x)=3x3+x-1在R上为增函数,又f(1)=3>0,f ()=-1<0,又f(c)=0,由函数零点定理可得:,即b>c>a,故选:B.由对数不等式得求法得:blnb=1>0,所以lnb>0,所以b>1,由函数的零点定理得:因为f(x)=3x3+x-1在R上为增函数,又f(1)=3>0,f()=-1<0,又f(c)=0,由函数零点定理可得:,得解.本题考查了解对数不等式及函数的零点定理,属中档题.10.【答案】C【解析】解:可令F(-c,0),由x=-c,可得y=±b =±,由题意可设P(-c,),B(a,0),可得BP的方程为:y=-(x-a),x=0时,y=,E(0,),A(-a,0),则AE的方程为:y=(x+a),则M(-c,-),M是线段QF的中点,可得2•(-)=,即2a-2c=a+c,即a=3c,可得e==.故选:C.利用已知条件求出P的坐标,然后求解E的坐标,推出M的坐标,利用中点坐标公式得到双曲线的离心率即可.本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.11.【答案】C【解析】解:数列{a n}中,已知a1=1,且对于任意的m,n∈N*,都有a m+n=a m+a n+mn,则:a2=a1+a1+1×1=3=1+2,a3=a1+a2+1×2=6=1+2+3,…,a n=1+2+3+…+n=,所以:,所以:=,=2(),=,=.故选:C.首先利用赋值法求出数列的通项公式,进一步利用裂项相消法求出数列的和.本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.12.【答案】B【解析】解:由题意得直线2kx-2y-kπ=0(k>0)过定点(,0),且斜率k>0,由对称性可知,直线与三角函数图象切于另外两个点,所以x3+x1=π;x2=,f′(x)=2cos2x,则切线方程过点(x1,sin2x1),(x2,sin2x2),所以2(2x3-π)cos2x3=2sin2x3,,而(x1-x2)tan(x2-2x3)=(-x3)tan (-2x3)=(π-2x3)cot2x3=-.故选:B.求出直线恒过的定点,利用函数的导数求出切线方程,转化求解表达式的值即可.直线与曲线相切一般要应用三点,一是曲线在切点处的导数是切线的斜率,二是切点即在曲线上也在切线上,三是没有切点要设切点.本就用到了上面三点,然后再配求所求式子的结构.13.【答案】【解析】解:因为tan(x+)=2,所以=2,解得:tanx=,即:sinx=cosx,又sin2x+cos2x=1,所以cos2x=,又x是第三象限角,所以cosx=-.故答案为:-.由两角和的正切公式即可求得tanx=,结合sin2x+cos2x=1,即可求得cos2x=,问题得解.本题主要考查了两角和的正切公式及同角三角函数基本关系,考查计算能力,属于基础题.14.【答案】【解析】解:从八卦中任取两卦,共有=28种取法,若两卦的六根线中恰有三根阳线和三根阴线,可按取得卦的阳、阴线的根数分类计算;当有一卦阳、阴线的根数为3、0时,另一卦阳、阴线的根数为0、3,共有1种取法.当有一卦阳、阴线的根数为2、1时,另一卦阳、阴线的根数为1、2,共有3×3=9种取法.所以两卦的六根线中恰有三根阳线和三根阴线的取法有1+9=10种.则从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率为P=,故答案为:由图可得:三根都是阳线的有一卦,三根都是阴线的有一卦,两根阳线一根阴线的有三卦,两根阴线一根阳线的有三卦,利用组合数可得基本事件总数,分类利用计算原理求得符合要求的基本事件个数为10个,问题得解.本题主要考查了组合计数及分类思想,考查古典概型概率计算公式,属于中档题.15.【答案】【解析】解:连接HF,因为点M在抛物线y2=4x上,所以由抛物线的定义可知|MH|=|MF|,所以△MHF为等腰三角形,所以∠FMH的角平分线所在的直线经过HF的中点,因为F(1,0),H(-1,),所以HF的中点为(0,),所以∠FMH的角平分线的斜率为=.故答案为:.由抛物线定义可知|MH|=|MF|,进而可推断出∠FMH的角平分线所在的直线经过HF的中点,利用斜率的两点式即可得到结论.在解决与抛物线有关的问题时,要注意抛物线的定义在解题中的应用.抛物线定义有两种用途:一是当已知曲线是抛物线时,抛物线上的点M满足定义,它到准线的距离为d,则|MF|=d,可解决有关距离、最值、弦长等问题;二是利用动点满足的几何条件符合抛物线的定义,从而得到动点的轨迹是抛物线.16.【答案】24【解析】解:由三视图还原原几何体如图所示,在长宽高分别为6,3,4的长方体中,A1E=D1F=2,BG=CH=1,三视图所对应的几何体是多面体AEG-DHF,该组合体是由一个三棱锥和一个四棱锥组成的组合体,其体积: V=V E-AGHD +V H-EFD=.故答案为:24.首先确定几何体的空间结构特征,然后将其分割之后求解其体积即可.本题考查求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,训练了利用分割补形法求解多面体的体积,是中档题. 17.【答案】解:(1)因为sin 2A +sin A sin B -6sin 2B =0,sin B ≠0,所以( )2+ -6=0,得 =2或=-3(舍去).由正弦定理得 ==2. (2)由余弦定理得cos C ==.① 将=2,即a =2b 代入①,得5b 2-c 2=3b 2,得c = b .由余弦定理cos B =,得:cos B ==,则sin B = =.【解析】(1)由已知可得()2+-6=0,解方程可得=2,由正弦定理得=2.(2)由已知及余弦定理可求c=b ,进而可求cosB 的值,根据同角三角函数基本关系式可求sinB 的值.本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.18.【答案】证明:(1)因为AB ∥CD ,∠BCD =90°, 所以AB ⊥BC ,又平面PAB ⊥平面ABCD ,且平面PAB ∩平面ABCD =AB , 所以BC ⊥平面PAB ,(1分)又AQ ⊂平面PAB ,所以BC ⊥AQ ,(2分)因为Q 为PB 中点,且△PAB 为等边三角形,所以PB ⊥AQ ,(3分) 又PB ∩BC =B ,所以AQ ⊥平面PBC .(4分) 解:(2)取AB 中点为O ,连接PO , 因为△PAB 为等边三角形,所以PO ⊥AB ,由平面PAB ⊥平面ABCD ,因为PO ⊂平面PAB , 所以PO ⊥平面ABCD ,(5分)所以PO ⊥OD ,由AB =2BC =2CD =4,∠ABC =90°, 可知OD ∥BC ,所以OD ⊥AB .以AB 中点O 为坐标原点,分别以OD ,OB ,OP 所在直线为x ,y ,z 轴, 建立如图所示的空间直角坐标系O -xyz .(6分)所以A (0,-2,0),D (2,0,0),C (2,2,0),P (0,0,2 ),B (0,2,0),则 =(2,2,0), =(-2,0,2 ), =(0,-2,0), 因为Q 为PB 中点,所以Q (0,1, ), 由 (1)知,平面PBC 的一个法向量为 =(0,3, ),(7分)设平面PCD 的法向量为=(x ,y ,z ), 由,取z =1,得 =( , , ),(9分) 由cos < , >=== .(11分)因为二面角B -PC -D 为钝角,所以,二面角B -PC -D 的余弦值为.(12分)【解析】(1)推导出AB ⊥BC ,从而BC ⊥平面PAB ,进而BC ⊥AQ ,再求出PB ⊥AQ ,由此能证明AQ ⊥平面PBC .(2)取AB 中点为O ,连接PO ,推导出PO ⊥AB ,PO ⊥平面ABCD ,OD ⊥AB .以AB 中点O 为坐标原点,分别以OD ,OB ,OP 所在直线为x ,y ,z 轴,建立空间直角坐标系O-xyz ,利用向量法能求出二面角B-PC-D 的余弦值.该题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查数形结合思想,是中档题. 19.【答案】解:(1)p (m -s <X <m +s )=p (82.8<X <87.2)=0.8>0.6826p (m -2s <X <m +2s )=p (80.6<X <89.4)=0.94<0.9544p (m -3s <X <m +3s )=p (78.4<X <91.6)=0.98<0.9974,因为设备的数据仅满足一个不等式,故其性能等级为丙.( 2)由题意可知,样本中次品个数为 6,突变品个数为 2,“突变品”个数ξ的可能取值为 0,1,2, P (ξ=0)==,P (ξ=1)==,P (ξ=2)==,可得ξ的分布列:EY =0×+1×+2×=. 【解析】(1)利用正态分布列的概率计算公式即可得出.( 2)由题意可知,样本中次品个数为 6,突变品个数为 2,“突变品”个数ξ的可能取值为 0,1,2,利用超几何分布列的计算公式即可得出ξ的分布列与数学期望.本题考查了正态分布列的概率计算公式、超几何分布列的计算公式,考查了推理能力与计算能力,属于中档题.20.【答案】解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.△ >,△,△,所以,,,四边形==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.【解析】(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.【答案】解:(1)f′(x)=e x(2x-1)+2e x=e x(2x+1),设切点为(m,n),由题意可得a=e m(2m+1),又n=am-a=e m(2m-1),解方程可得,a=1或4;(2)函数f(x)=e x(2x-1),g(x)=ax-a由题意知存在唯一的整数x0使得f(x0)在直线y=ax-a的下方,∵f′(x)=e x(2x-1)+2e x=e x(2x+1),∴当x<-时,f′(x)<0,当x>-时,f′(x)>0,∴当x=-时,f(x)取最小值-2,当x=0时,f(0)=-1,当x=1时,f(1)=e>0,直线y=ax-a恒过定点(1,0)且斜率为a,故-a>f(0)=-1且f(-1)=-3e-1≥-a-a,解得≤a<1.【解析】(1)求出导数,设出切点(m,n),求得切线的斜率,由切线的方程,可得a=e m(2m+1),又n=am-a=e m(2m-1),解方程可得a的值;(2)函数f(x)=e x(2x-1),g(x)=ax-a,问题转化为存在唯一的整数x0使得f(x0)在直线y=ax-a的下方,求导数可得函数的极值,数形结合可得-a>f(0)=-1且f(-1)=-3e-1≥-a-a,解关于k的不等式组可得.本题考查导数的运用:求切线的斜率和极值、最值,涉及数形结合和转化的思想,属中档题.22.【答案】解:(1)∵ ,代入y2=4x,∴ρsin2θ-4cosθ=0(2)不妨设点A,B对应的参数分别是t1,t2,把直线l的参数方程代入抛物线方程得:t2sin2α-4cosα•t-8=0,∴△=16cos2α+32sin2α>0,∴t1+t2=,t1t2=-,则|AB|=|t1-t2|==4,∴,∴或.【解析】(1)由x=ρcosθ,y=ρsinθ可得抛物线C的极坐标方程;(2)不妨设点A,B对应的参数分别是t1,t2,根据弦长公式,即可求解.本题考查普通方程与极坐标方程的转化,考查弦长公式,考查学生分析解决问题的能力,属于中档题.23.【答案】解:(1)若m=2时,|x-1|+|2x+2|≤3,当x≤-1时,原不等式可化为-x+1-2x-2≤3解得x≥-,所以,当-1<x<1时,原不等式可化为1-x+2x+2≤3得x≤0,所以-1<x≤0,当x≥1时,原不等式可化为x-1+2x+2≤3解得x≤,所以x∈Φ,综上述:不等式的解集为;(2)当x∈[0,1]时,由f(x)≤|2x-3|得1-x+|2x+m|≤3-2x,即|2x+m|≤2-x,故x-2≤2x+m≤2-x得-x-2≤m≤2-3x,又由题意知:(-x-2)min≤m≤(2-3x)max,即-3≤m≤2,故m的范围为[-3,2].【解析】(1)通过去掉绝对值符号,转化求解不等式的解集即可.(2)已知条件转化为即|2x+m|≤2-x,即-x-2≤m≤2-3x,即可求解实数m的取值范围.本题主要考查了解绝对值不等式,利用绝对值不等式的几何意义解决问题;考查推理论证能力、运算求解能力等;考查化归与转化思想、数形结合思想、函数与方程思想等;考查数学抽象、逻辑推理、直观想象、数学运算等.。

【水印已去除】2019年福建省三明市高考数学模拟试卷(理科)(5月份)

【水印已去除】2019年福建省三明市高考数学模拟试卷(理科)(5月份)

2019年福建省三明市高考数学模拟试卷(理科)(5月份)一、选择题:本大题共12小题,每小题5分共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知复数z满足(2+i)z=﹣i(i是虚数单位则z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知集合A={x|2x﹣1<4},B={x|x2﹣4x<0},则A∩B=()A.(0,3)B.(1,3)C.(0,4)D.(1,4)3.(5分)在△ABC中,点D在边AB上,且=2,设=,=,则=()A.B.C.D.4.(5分)已知实数x,y满足约束条件,则z=3x+2y的最小值为()A.3B.4C.5D.95.(5分)执行如图所示的程序框图,若输入的a,b的值分别为1,2,则输出的S是()A.70B.29C.12D.56.(5分)下列数值最接近的是()A.B.C.D.7.(5分)在直三棱柱ABC﹣A1B1C1中,∠BAC=90°以下能使A1C⊥BC1的是()A.AB=AC B.AA1=AC C.BB1=AB D.CC1=BC8.(5分)将函数的图象向右平移个单位长度后得到函数y=g(x)的图象.如图是y=g(x)的部分图象,其中A,B是其与x轴的两个交点,C是其上的点,|OA|=1,且△ABC是等腰直角三角形.则ω与φ的值分别是()A.B.C.D.9.(5分)斐波那契螺旋线,也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,画出来的螺旋曲线.如图,白色小圆内切于边长为1的正方形,黑色曲线就是斐波那契螺旋线,它是依次在以1,2,3,5为边长的正方形中画一个圆心角为90的扇形,将其圆弧连接起来得到的.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率是()A.B.C.D.10.(5分)已知直线与中心在原点的双曲线C交于A,B两点,F是C的右焦点,若=0则C的离心率为()A.B.C.2D.11.(5分)依照某发展中国家2018年的官方资料,将该国所有家庭按年收入从低到高的顺序平均分为五组,依次为第一组至第五组,各组家庭的年收入总和占该国全部家庭的年收入总和的百分比如图所示.以下关于该2018年家庭收入的判断,一定正确的是()A.至少有60%的家庭的年收入都低于全部家庭的平均年收入B.收入最低的那20%的家庭平均年收入为全部家庭平均年收入的3.6%C.收入最高的那30%的家庭年收入总和超过全部家庭年收入总和的58%D.收入最低的那50%的家庭年收入总和超过全部家庭年收入总和的20%12.(5分)已知函数f(x)的定义域为,其导函数为f'(x).若f'(x)=tan x •[f(x)+x],且f(0)=0,则下列结论正确的是()A.f(x)是增函数B.f(x)是减函数C.f(x)有极大值D.f(x)有极小值二、填空题:本大题共4小题,每小题5分,共20分13.(5分)已知函数,则f(f(1))=.14.(5分)(2x2+x﹣1)5的展开式中,x3的系数为.15.(5分)已知以F为焦点的抛物线y2=4x上的两点A,B满足=3,则AB的中点到y轴的距离为.16.(5分)已知△SAB是边长为2的等边三角形,∠ACB=45°,当三棱锥S﹣ABC体积最大时,其外接球的表面积为.三、解答题:共70分,解答应写出文字说明证明过程或演算步骤,第17题~第21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.(12分)已知数列{a n}的前n项和为S n,且a1=2,a n+1=S n+2.(1)求数列{a n}的前n项和S n;(2)设b n=log2(S3n+2),数列的前n项和为T n,求证.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABCD是边长为3的菱形.(1)求证:CD∥EF(2)若EF⊥DE,∠BAD=60°,∠DAE=30°,AE=2,CF=2,求二面角F﹣BC ﹣A的余弦值.19.(12分)某居民区有一个银行网点(以下简称“网点”),网点开设了若干个服务窗口,每个窗口可以办理的业务都相同,每工作日开始办理业务的时间是8点30分,8点30分之前为等待时段,假设每位储户在等待时段到网点等待办理业务的概率都相等,且每位储户是否在该时段到网点相互独立,根据历史数据,统计了各工作日在等待时段到网点等待办理业务的储户人数,得到如图所示的频率分布直方图:(1)估计每工作日等待时段到网点等待办理业务的储户人数的平均值;(2)假设网点共有1000名储户,将频率视作概率,若不考虑新增储户的情况,解决以下问题:①试求每位储户在等待时段到网点等待办理业务的概率;②储户都是按照进入网点的先后顺序,在等候人数最少的服务窗口排队办理业务.记“每工作日上午8点30分时网点每个服务窗口的排队人数(包括正在办理业务的储户)都不超过3为事件A,要使事件A的概率不小于0.75则网点至少需开设多少个服务窗口?参考数据:=0.3284;=0.1596;20.(12分)已知F(1,0),P是动点,以PF为直径的圆与圆O:x2+y2=4内切(1)求P的轨迹E的方程;(2)设A,B是圆O与x轴的交点,过点的直线与E交于M,N两点,直线AM交直线x=8于点T,求证:B,N,T三点共线.21.(12分)已知函数f(x)=e x(x﹣ae x)(a>0).(1)讨论f(x)极值点的个数;(2)若f(x)有两个极值点x1,x2,且(x1+1)(x2+1)+m(x1+x2+2)<0,求实数m 的取值范围.(二)选考题:本题满分10分,请考生在(22、(23)两题中任选一题作答如果多做,则按所做第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,直线l的方程为,圆C1的参数方程为,(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=4cosθ.(1)求C1的极坐标方程;(2)设l与C1,C2异于原点的交点分别是M,N,求△C2MN的面积.[选修4-5:不等式选讲](10分)23.设函数f(x)=|x﹣2|+|x+1|.(1)求f(x)的最小值及取得最小值时x的取值范围(2)若集合{x|f(x)+ax﹣1>0}=R,求实数a的取值范围.2019年福建省三明市高考数学模拟试卷(理科)(5月份)参考答案与试题解析一、选择题:本大题共12小题,每小题5分共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.【分析】把已知等式变形,利用复数代数形式的乘除运算化简,求出z的坐标得答案.【解答】解:由(2+i)z=﹣i,得z=,∴z在复平面内对应的点的坐标为(),在第三象限.故选:C.【点评】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.【分析】集合A,B,由此能求出A∩B.【解答】解:∵集合A={x|2x﹣1<4}={x|x<3},B={x|x2﹣4x<0}={x|0<x<4},∴A∩B={x|0<x<3}=(0,3).故选:A.【点评】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.3.【分析】由D在边AB上,且=2,可得,然后将用和表示即可得解.【解答】解:∵,∴∴===,又=,=,∴.故选:A.【点评】本题考查了平面向量的线性运算的应用及平面向量基本定理,属基础题.4.【分析】首先画出可行域,关键目标函数的几何意义求最小值.【解答】解:由约束条件得到可行域如图:z=3x+2y变形为y=﹣x+z,当此直线经过图中A(0,2)时,在y轴的截距最小,z最小,所以z的最小值为3×0+2×2=4;故选:B.【点评】本题考查了简单线性规划问题;正确画出可行域,利用目标函数的几何意义求最值是常规方法.5.【分析】根据程序框图的功能,利用模拟运算法进行计算即可.【解答】解:若a=1,b=2,S=1+4=5,a=2,b=5,n=3,n<2否,S=2+10=12,a=5,b=12,n=2,n<2否,S=5+24=29,a=12,b=29,n=1,n<2是,输出S=29,故选:B.【点评】本题主要考查程序框图的识别和判断,利用模拟运算法是解决本题的关键.6.【分析】利用辅助角公式结合两角和差的三角公式进行化简即可.【解答】解:A.=2(cos14°+sin14°)=2sin74°=2cos16°B.cos24°+sin24°=2(cos24°+sin24°)=2sin84°=2cos6°C.cos64°+sin64°=2(cos64°+sin64°)=2sin124°=2cos34°D.cos74°+sin74°=2(cos74°+sin74°)=2sin134°=2sin46°>2sin45°=,则最接近的是cos74°+sin74°,故选:D.【点评】本题主要考查三角函数值的化简,利用两角和差的三角公式以及辅助角公式进行化简是解决本题的关键.7.【分析】利用线面垂直的性质可得AB⊥A1C,若AA1=AC,可得A1C⊥AC1,利用线面垂直的判定定理可证A1C⊥平面ABC1,根据线面垂直的性质可证A1C⊥BC1,即可得解.【解答】解:在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,即AB⊥AC,又AA1=AB,AA1∩AC=A,所以AB⊥平面AA1C,又A1C⊂平面AA1C,所以AB⊥A1C,若AA1=AC,则长方形AA1CC1为正方形,可得:A1C⊥AC1,又AB∩AC1=A,所以A1C⊥平面ABC1,又BC1⊂平面ABC1,所以A1C⊥BC1.故选:B.【点评】本题主要考查了线面垂直的性质,线面垂直的判定定理的应用,考查了空间想象能力和推理论证能力,属于中档题.8.【分析】由三角函数图象的性质及三角函数解析式的求法得:由△ABC是等腰直角三角形.所以AB=4,即=4,所以T=8,所以ω==,由中点坐标公式得线段AB的中点横坐标为=1,所以φ=,所以φ=2k,k∈Z又|φ|<,所以φ=,得解.【解答】解:将函数的图象向右平移个单位长度后得到函数y=g(x)的图象,即g(x)=2sin[ω(x﹣)+φ],由△ABC是等腰直角三角形.所以AB=4,又A(﹣1,0),所以B(3,0),即=4,所以T=8,所以ω==,由中点坐标公式得线段AB的中点横坐标为=1,所以φ=,所以φ=2k,k∈Z又|φ|<,所以φ=,故选:D.【点评】本题考查了三角函数图象的性质及三角函数解析式的求法,属中档题.9.【分析】由几何概型中的面积型得:矩形ABCD的长为8,宽为5,即面积S矩=8×5=40,阴影部分的面积S阴=(1﹣)++++=+1,则P(A)===,得解.【解答】解:由由已知可得:矩形ABCD的长为8,宽为5,即面积S矩=8×5=40,阴影部分的面积S阴=(1﹣)++++=+1,设在矩形ABCD内随机取一点,则此点取自阴影部分为事件A,则P(A)===,故选:D.【点评】本题考查了几何概型中的面积型,属中档题.10.【分析】设F(c,0),双曲线的方程为﹣=1(a,b>0),联立直线方程求得A 的坐标,由直角三角形的性质,化简整理可得a=b,再由离心率公式,计算可得所求值.【解答】解:设F(c,0),双曲线的方程为﹣=1(a,b>0),直线代入双曲线方程可得A(,),若=0,则AF⊥BF,即三角形ABF为直角三角形,可得|OF|=|AF|,即c=,又c=,化简可得a=b,即有e===.故选:A.【点评】本题考查双曲线的方程和性质,主要是离心率的求法,考查方程思想和运算能力,属于基础题.11.【分析】设出所有家族年收入总和、家庭数,得出所有家庭的平均收入,基于条件“按年收入从低到高的顺序”的情况,逐一分析各选项的正误,从而得出结果.【解答】解:由各组家庭的年收入总和占该国全部家庭的年收入总和的百分比的条形图得:设所有家庭年收入总和为100,共有5n个家庭,则所有家庭的平均收入为=,在A中,第四组、第五组家庭的平均收入均超过,∴极有可能第四组、第五组全部的家庭的收入均超过全部家庭的年平均收入,虽然第三组家庭平均年收入为,由于年收放从低到高的顺序排列,故仍然有可能存在部分家庭年平均收入超过,这样家庭年收入超过的比率有可能超过40%,故A错误;在B中,收入最低的那20%的家庭平均年收入为,为全部家庭平均收入的:=18%,故B错误;在C中,收入最高的那30%的家庭数应为第四组一半家庭数和第五组家庭数的和,由于按年收入从低到高的顺序排列,故总收入大于14+44.6=58.6,收入最高的那30%的家庭年收入总和超过全部家庭年收入总和的58%,故C正确;在D中,收入最低的那50%的家庭数应该是第三组家庭数的一半第第一、二组家庭数的和,由于按年收入从低到高排列,∴总收入小于:3.6+8.9+7.45=19.95,收入最低的那50%的家庭年收入总和不会超过全部家庭年收入总和的20%,故D错误.故选:C.【点评】本题考查命题真假的判断,考查条形图及其性质等基础知识,考查学生阅读统计数表的能力运算求解能力,是基础题.12.【分析】f'(x)=tan x•[f(x)+x],x∈,化为:f'(x)cos x﹣f(x)sin x=x sin x,即[f(x)cos x]′=x sin x,可得:f(x)=,利用导数研究其单调性即可得出结论.【解答】解:f'(x)=tan x•[f(x)+x],x∈,化为:f'(x)cos x﹣f(x)sin x=x sin x,∴[f(x)cos x]′=x sin x,令f(x)cos x=sin x﹣x cos x+C,∵f(0)=0,∴C=0.∴f(x)cos x=sin x﹣x cos x,化为:f(x)=,又f'(x)=tan x•[f(x)+x]=tan x•[+x]=tan2x≥0,∴函数f(x)在x∈上单调递增,故选:A.【点评】本题考查了利用导数研究函数的单调性极值与最值、方程思想、构造法,考查了推理能力与计算能力,属于难题.二、填空题:本大题共4小题,每小题5分,共20分13.【分析】根据题意,由函数的解析式计算可得f(1)=2,进而可得f(f(1))=f(2)=22+2,计算即可得答案.【解答】解:根据题意,函数,则f(1)=log2(5﹣1)=log24=2,则f(f(1))=f(2)=22+2=6;故答案为:6.【点评】本题考查分段函数的求值,注意分段函数解析式的形式,属于基础题.14.【分析】先求得二项式展开式的通项公式,再根据通项公式,讨论r的值,即可求得x3项的系数.【解答】解:∵(2x2+x﹣1)5 =[(2x2+x)﹣1]5展开式的通项公式为T r+1=•(2x2+x)5﹣r•(﹣1)r,当r=0或1时,二项式(2x2+x)5﹣r展开式中无x3项;当r=2时,二项式(2x2+x)5﹣r展开式中x3的系数为1;当r=3时,二项式(2x2+x)5﹣r展开式中x3的系数为4;当r=4或5时,二项式(2x2+x)5﹣r,展开式中无x3项;∴所求展开式中x3项的系数为1×+4×(﹣)=﹣30.故答案为:﹣30.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.15.【分析】设直线AB斜率为k,联立方程组,根据根与系数的关系得出A,B两点横坐标的关系,结合=3求出A,B两点的横坐标,从而可得出AB的中点横坐标.【解答】解:设直线AB的斜率为k,则直线AB的方程为:y=k(x﹣1),联立方程组,消元得:k2x2﹣(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),则,x1x2=1.∵=3,∴x1+1=3(x2+1),解方程组可得x1=3,x2=,∴x1+x2=,∴AB的中点的横坐标为=.故答案为:.【点评】本题考查了抛物线的性质,中点坐标公式,属于中档题.16.【分析】作出图形,由平面CAB与平面SAB垂直且CA=CB时,三棱S﹣ABC的体积最大,并过两个三角形的外心作所在三角形面的垂线,两垂直交于点O,利用几何关系计算出球O的半径,然后利用球体表面积公式可得出答案.【解答】解:由题可知,平面CAB⊥平面SAB,且CA=CB时,三棱锥S﹣ABC体积达到最大,如右图所示,则有,点D,点E分别为△ASB,△ACB的外心,并过两个三角形的外心作所在三角形面的垂线,两垂直交于点O.∴点O是此三棱锥外接球的球心,AO即为球的半径.在△ACB中,AB=2,∠ACB=45°⇒∠AEB=90°,由正弦定理可知,,∴AE=EB=EC=,延长CE交AB于点F,延长SD交AB于点F,∴四边形EFDO是矩形,且OE⊥平面ACB,则有OE⊥AE,又∵OE=DF=,∴OA=.∴.故答案为:.【点评】本题主要考查空间位置关系的证明,考查空间几何体的体积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:共70分,解答应写出文字说明证明过程或演算步骤,第17题~第21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.【分析】(1)运用数列的递推式和等比数列的通项公式,可得所求;(2)求得b n=log2(S3n+2)=log223n+1=3n+1,==(﹣),由裂项相消求和和数列的单调性、不等式的性质,即可得证.【解答】解:(1)a1=2,a n+1=S n+2,可得a2=S1+2=4,n≥2时,a n=S n﹣1+2,又a n+1=S n+2,两式相减可得a n+1﹣a n=S n﹣S n﹣1=a n,即a n+1=2a n,可得a n=a1q n﹣1=2n;S n=a n+1﹣2=2n+1﹣2;(2)证明:b n=log2(S3n+2)=log223n+1=3n+1,==(﹣),前n项和为T n=(﹣+﹣+…+﹣)=(﹣),由于>0,可得T n<,(﹣)为递增数列,可得T n≥T1=,则.【点评】本题考查数列的通项公式的求法,注意运用数列的递推式,考查数列的裂项相消求和和数列的单调性,考查运算能力,属于中档题.18.【分析】(1)推导出CD∥AB,从而CD∥平面ABFE,由此能证明CD∥EF.(2)根据余弦定理和勾股定理得DE⊥AD,由EF⊥DE,AB∥CD,得DC⊥DE,从而DE⊥平面ABCD,设AB中点为G,连结DG,DB,则DG⊥AB,DG⊥CD,作FH⊥CD 于点H,则HF=DE=,以D为坐标原点,DG、DC、DE所在直线分别为x,y,z 轴,建立空间直角坐标系,利用向量法能求出二面角F﹣BC﹣A的余弦值.【解答】证明:(1)∵ABCD是菱形,∴CD∥AB,又∵CD⊄平面ABEF,AB⊂平面ABFE,∴CD∥平面ABFE,又∵CD⊂平面CDEF,平面CDEF∩平面ABFE=EF,∴CD∥EF.解:(2)在△ADE中,根据余弦定理,DE2=DA2+AE2﹣2AD•AE•cos∠DAE,∵AD=3,AE=2,∠DAE=90°,∴DE⊥AD,∵EF⊥DE,AB∥CD,∴DC⊥DE,∵AD∩DC=D,∴DE⊥平面ABCD,设AB中点为G,连结DG,DB,∵ABCD是菱形,∠BAD=60°,∴△ABD是等边三角形,∴DG⊥AB,∴DG⊥CD,作FH⊥CD于点H,则HF=DE=,在Rt△FHC中,CH==1,∴DH=CD﹣CH=2,如图,以D为坐标原点,DG、DC、DE所在直线分别为x,y,z轴,建立空间直角坐标系,则B(,),C(0,3,0),F(0,2,),=(﹣,,0),=(0,﹣1,),设平面BCF的一个法向量=(x,y,z),则,取x=1,得=(1,),∵=(0,0,),∴可取平面ABCr一个法向量为=(0,0,1),∴cos<>==,由图知二面角F﹣BC﹣A的平面角是锐角,∴二面角F﹣BC﹣A的余弦值是.【点评】本题考查线线平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.【分析】(1)根据频率分布直方图,能估计每工作日等待时段到网点等待办理业务的储户人数的平均值.(2)①设在等待时段到网点等待办理业务的储户人数为X,每位储户到网点办理业务的概率为p,则X~B(1000,p),由此能求出每位储户在等待时段到网点办理业务的概率.②由X~B(1000,0.1),设网点共开设了m个服务窗口,则事件A即“每工作日等待时段到网点等待办理业务的储户人数不超过3m”,其概率为P(A)=,满足=0.4573<0.75,由此推导出根据要求,网点到少需开设4个服务窗口.【解答】解:(1)根据频率分布直方图,各组的频率依次为:0.04,0.24,0.48,0.16,0.08,∴所求的平均值为:0.04×2+0.24×6+0.48×10+0.16×14+0.08×18=10,∴估计每工作日等待时段到网点等待办理业务的储户人数的平均值为10.(2)①设在等待时段到网点等待办理业务的储户人数为X,每位储户到网点办理业务的概率为p,则X~B(1000,p),∴X的数学期望E(X)=1000p,将频率视作概率,根据(1)的结论,得1000p=10,解得p=0.01,∴每位储户在等待时段到网点办理业务的概率为0.01.②由①知,X~B(1000,0.1),则P(X=k)=,设网点共开设了m个服务窗口,则事件A即“每工作日等待时段到网点等待办理业务的储户人数不超过3m”,其概率为P(A)=,∴满足=0.1289+0.3284=0.4573<0.75,=0.4573+0.3352=0.7925>0.75,∴3m=12,解得m=4,∴根据要求,网点至少需开设4个服务窗口.【点评】本题考查平均数、概率的求法,考查频率分布直方图、二项分布的性质等基础知识,考查运算求解能力,是中档题.20.【分析】(1)设PF中点为G,由内切得|OG|,|PF|的关系,再利用中位线转化为|PF|与|PF′|(F′(﹣1,0))的和,由椭圆定义可得方程;(2)设M,N的坐标,并求得T的坐标,由直线MN的方程与椭圆方程联立得根与系数关系,然后向量共线的条件去证即可.【解答】解:(1)设PF中点为G,由内切可知,|OG|=2﹣,即|PF|+2|OG|=4,取F′(﹣1,0),连接P,F′,由中位线可知,|PF′|=2|OG|,∴|PF′|+|PF|=4,故P的轨迹E是以F′,F为焦点的椭圆,a=2,c=1,b=,其方程为:;(2)证明:设M(x1,y1),N(x2,y2),由题意知,A(﹣2,0),B(2,0),则,∵直线AM的方程为,∴T(8,),∴,由题意可设直线MN的方程为:x=my+,由得,,,∵﹣6y2====0,∴,∴B,N,T三点共线.【点评】此题考查了轨迹方程的求法,直线与椭圆的综合,三点共线的证明等,难度较大.21.【分析】(1)求导后根据f(x)的单调性确定极值点即可;()令x1+1=t1,x2+1=t2,将(x1+1)(x2+1)+m(x1+x2+2)<0,转化为t1t2+m(t1+t2)<0,进一步求出m的范围即可.【解答】解:(1)由f(x)=e x(x﹣ae x)(a>0).得f'(x)=e x(x+1﹣2ae x),令f'(x)=0,则2a=,令g(x)=,则g(﹣1)=0,且g'(x)=,由g'(x)=0得x=0,当x<0时,g'(x)>0,此时g(x)递增;当x>0时,g'(x)<0,此时g(x)递减,∴,g(x)min=g(0)=1,且当x≤﹣1时,g(x)≤0;当x>﹣1时,g(x)>0,∴当0<2a<1,即0<a<时,f(x)有两个极值点;当2a≥1,即时,f(x)没有极值点;(2)不妨设x1<x2,由(1)知,﹣1<x1<0<x2,且,∴,∴ln(x2+1)﹣ln(x1+1)=x1﹣x2,即ln(x2+1)﹣ln(x1+1)=(x2+1)﹣(x1+1),令x1+1=t1,x2+1=t2,则0<t1<t2,lnt1﹣lnt2=t1﹣t2,∵(x1+1)(x2+1)+m(x1+x2+2)<0,即t1t2+m(t1+t2)<0,∴设,则t>1,且,易得m<0,记h(t)=lnt+m(t﹣),则h(1)=0,且,令μ(x)=mt2+t+m,则△=1﹣4m2,①当时,△≤0,则μ(t)≤0,即h'(t)≤0,∴h(t)在(1,+)上单调递减,则当t>1时,h(t)<h(1)=0,∴时符合题意;②当时,△>0,μ(t)有两个不同的零点,,,且αβ=1,,不妨设,则,当时,μ(t)>0,则h'(x)>0,∴h(t)在(1,)上单调递增,故存在t0∈(1,β),使得h(t0)>h(1)=0,∴当时,不符合题意,综上,m的取值范围为:(﹣,].【点评】本题考查了利用导数研究函数的极值,考查了分类讨论思想和转化思想,属难题.(二)选考题:本题满分10分,请考生在(22、(23)两题中任选一题作答如果多做,则按所做第一题计分.[选修4-4:坐标系与参数方程]22.【分析】(1)化圆的参数方程为普通方程,结合x2+y2=ρ2,y=ρsinθ可得曲线C1的极坐标方程;(2)写出直线的极坐标方程,联立C1,C2的极坐标方程与直线的极坐标方程,求得|OM|,|ON|,再由三角形面积公式求解.【解答】解:(1)由,得x2+(y﹣1)2=1,即x2+y2﹣2y=0.∵x2+y2=ρ2,y=ρsinθ,∴曲线C1的极坐标方程为y=ρsinθ;(2)∵直线l的斜率为,即倾斜角为,∴其极坐标方程θ=(ρ∈R).设M(ρ1,θ1),N(ρ2,θ2).由,得,即|OM|=ρ1;由,,即|ON|=ρ2.由C2的极坐标方程得C2(2,0).∴..∵,∴△C2MN的面积为.【点评】本题考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查曲线的极坐标的应用,是中档题.[选修4-5:不等式选讲](10分)23.【分析】(1)写出分段函数解析式,分段求解函数值域,可得函数最小值,并进一步得到取得最小值时x的取值范围;(2)由{x|f(x)+ax﹣1>0}=R,得∀x∈R,f(x)>﹣ax+1.令g(x)=﹣ax+1,其图象为过点P(0,1),斜率为﹣a的一条直线,作出图象,分别求出P A,PB所在直线斜率,数形结合得答案.【解答】解:(1)函数f(x)=|x﹣2|+|x+1|化为f(x)=.当x<﹣1时,f(x)=﹣2x=1>3;当x>2时,f(x)=2x﹣1>3.∴f(x)的最小值为3.且f(x)取最小值时x的范围是[﹣1,2];(2)∵{x|f(x)+ax﹣1>0}=R,∴∀x∈R,f(x)>﹣ax+1.令g(x)=﹣ax+1,其图象为过点P(0,1),斜率为﹣a的一条直线.如图:A(2,3),B(﹣1,3),则直线P A的斜率,直线PB的斜率.∵f(x)>g(x),∴﹣2<﹣a<1,即﹣1<a<2.∴a的取值范围为(﹣1,2).【点评】本题考查函数的最值及其几何意义,考查数学转化思想方法与数形结合的解题思想方法,是中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018高考数学模拟试卷(1)数学I一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.已知集合{02},{11}A x x B x x =<<=-<<,则A B U = ▲ .2. 设复数1a +=-i z i(i 是虚数单位,a ∈R ).若z 的虚部为3,则a 的值为 ▲ .3.一组数据5,4,6,5,3,7的方差等于 ▲ .4.右图是一个算法的伪代码,输出结果是 ▲ .5.某校有B A ,两个学生食堂,若甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则此三人不在同一食堂用餐的概率为 ▲ .6. 长方体1111ABCD A BC D -中,111,2,3AB AA AC ===,则它的体积等于 ▲ .7.若双曲线2213x y a -=的焦距等于4,则它的两准线之间的距离等于 ▲ .S ←0 a ←1 For I From 1 to 3 a ←2×a S ←S +aEnd ForPrint S(第4题)8. 若函数()22xxaf x =+是偶函数,则实数a 等于 ▲ .9. 已知函数f (x )=2sin(ωx +φ)(ω>0).若f (π3)=0,f (π2)=2,则实数ω的最小值为 ▲ .10. 如图,在梯形ABCD 中,,2,234,//CD AD AB CD AB ====,,如果 ⋅-=⋅则,3= ▲ .11.椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是 ▲ .12.若数列12{}(21)(21)nn n +--的前k 项的和不小于20172018,则k 的最小值为 ▲ .13. 已知24παπ<<,24πβπ<<,且22sin sin sin()cos cos αβαβαβ=+,则tan()αβ+的最大值为 ▲ .14. 设,0a b >,关于x 的不等式3232x xx xa N Mb ⋅-<<⋅+在区间(0,1)上恒成立,其中M , N 是与x 无关的实数,且M N >,M N -的最小值为1. 则ab的最小值为___▲___.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证 明过程或演算步骤.15.如图,在ABC ∆中,已知7,45AC B =∠=o,D 是边AB 上的一点,3,120AD ADC =∠=o . 求:(1)CD 的长;(2)ABC ∆的面积.ADCB16.如图,在四棱锥S-ABCD 中,底面ABCD 是平行四边形,E ,F 分别是AB ,SC 的中点. (1)求证:EF ∥平面SAD ; (2)若SA=AD ,平面SAD ⊥平面SCD ,求证:EF ⊥AB .17.如图,有一椭圆形花坛,O 是其中心,AB 是椭圆的长轴,C 是短轴的一个端点. 现欲铺设灌溉管道,拟在AB 上选两点E ,F ,使OE =OF ,沿CE 、CF 、FA 铺设管道,设θ=∠CFO ,若OA =20m ,OC =10m , (1)求管道长度u 关于角θ的函数; (2)求管道长度u 的最大值.18.在平面直角坐标系xOy 中,已知圆222:C x y r +=和直线:l x a =(其中r 和a 均为常数,且0r a <<),M 为l 上一动点,1A ,2A 为圆C 与x 轴的两个交点,直线1MA ,2MA 与圆C 的另一个交点分别为,P Q .(1)若2r =,M 点的坐标为(4,2),求直线PQ 方程; (2)求证:直线PQ 过定点,并求定点的坐标.A DC SF19.设R k ∈,函数2()ln 1f x x x kx =+--,求: (1)1=k 时,不等式()1f x >-的解集; (2)函数()x f 的单调递增区间; (3)函数()x f 在定义域内的零点个数.20.设数列{}n a ,{}n b 分别是各项为实数的无穷等差数列和无穷等比数列. (1)已知06,12321=+-=b b b b ,求数列{}n b 的前n 项的和n S ;(2)已知数列{}n a 的公差为d (0)d ≠,且11122(1)22n n n a b a b a b n +++⋅⋅⋅+=-+,求数列{}n a ,{}n b 的通项公式(用含n ,d 的式子表达); (3)求所有满足:11n n n na b b a ++=+对一切的*N n ∈成立的数列{}n a ,{}n b .数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲(本小题满分10分)如图,在△ABC 中,90BAC ∠=,延长BA 到D ,使得AD =12AB ,E ,F 分别为BC ,AC 的中点,求证:DF =BE .B .选修4—2:矩阵与变换 (本小题满分10分)已知曲线1C :221x y +=,对它先作矩阵1002A ⎡⎤=⎢⎥⎣⎦对应的变换,再作矩阵010m B ⎡⎤=⎢⎥⎣⎦对应的变换(其中0≠m ),得到曲线2C :2214x y +=,求实数m 的值.C .选修4—4:坐标系与参数方程(第21—A 题)BECFD A(本小题满分10分)已知圆C的参数方程为12cos 2sin x y θθ=+⎧⎪⎨=⎪⎩,,(θ为参数),直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩, , (t 为参数,0 ααπ<<π≠2,且),若圆C 被直线l,求α的值.D .选修4—5:不等式选讲 (本小题满分10分)对任给的实数a 0a ≠()和b ,不等式()12a b a b a x x ++-⋅-+-≥恒成立,求实数x 的取值范围.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在直三棱柱ABC -A 1B 1C 1中,A A 1=AB =AC =1,AB ⊥AC ,M ,N 分别是棱CC 1,BC 的 中点,点P 在直线A 1B 1上.(1)求直线PN 与平面ABC 所成的角最大时,线段1A P 的长度;(2)是否存在这样的点P ,使平面PMN 与平面ABC 所成的二面角为6π. 如果存在,试确定点P 的位置;如果不存在,请说明理由. 23.(本小题满分10分)设函数()sin cos n n f θθθ=+,其中n 为常数,n ∈*N , (1)当(0,)2πθ∈时, ()f θ是否存在极值?如果存在,是极大值还是极小值?(2)若sin cos a θθ+=,其中常数a为区间[内的有理数. 求证:对任意的正整数n ,()f θ为有理数.A 1C 1B 1MNBAP(第22题)2018高考数学模拟试卷(1)数学Ⅰ答案一、填空题答案:1. {12}x x -<<2. 5 3.53 4. 14 5. 43 6.4 7. 1 8. 1 9. 3 10.2311. 111(,)(,1)322⋃.解:422111232c a c e e c a>-⎧⇒<<≠⎨≠⎩且,故离心率范围为111(,)(,1)322⋃.12. 10解:因为对任意的正整数n ,都有1212)12)(12(211--=--++n n n n n 1-1, 所以⎭⎬⎫⎩⎨⎧--+)12)(12(21n n n 的前k 项和为 1)1)(2(221)1)(2(221)1)(2(221322211--++--+--+k kk12112112112112112113221---++---+---=+k k 12111--=+k使2018201712111≥--+k ,即2018121≥-+k ,解得10≥k ,因此k 的最小值为10.13. -4解:因为24ππ<<βα,,所以βαβαsin sin cos cos ,,,均不为0. 由βαβαβαcos cos )sin(sin sin 22+=,得βαβαβαβαsin cos cos sin tan tan sin sin +=,于是αββαtan 1tan 1tan tan +=,即βαβαβαtan tan tan tan tan tan +=, 也就是βαβα22tan tan tan tan =+,其中βαtan tan ,均大于1. 由βαβαβαtan tan 2tan tan tan tan22⋅≥+=⋅,所以34tan tan ≥βα.令()341tan tan 1-,--∞∈=βαt ,βαβαβαβαβαtan tan 1tan tan tan tan 1tan tan )tan(22-=-+=+21-+=tt 4-≤,当且仅当1-=t 时取等号.14.4+解:32()32xxx xa f xb ⋅-=⋅+,则23()6ln2()0(32)x x x a b f x b +'=>⋅+恒成立,所以()f x 在(0,1)上单调递增, 132(0),(1)132a a f f b b --==++,∴()f x 在(0, 1)上的值域为132(,)132a ab b --++,M x f N <<)( 在(0,1)上恒成立,故m i n 321()1321(32)(1)a a ab M N b b b b --+-=-==++++,所以2342a b b =++,所以2344a b b b=++≥.所以min ()4ab=+二、解答题答案15.解:(1)在ACD ∆中,由余弦定理得2222cos AC AD CD AD CD ADC =+-⋅∠,2227323cos120CD CD =+-⨯⋅o ,解得5CD =.(2)在BCD ∆中,由正弦定理得sin sin BD CD BCD B =∠,5sin 75sin 45BD =o o,解得BD = 所以BDC BD CD ADC CD AD S S S BCD ACD ABC ∠⋅+∠⋅=+=∆∆∆sin 21sin 211135sin12056022=⨯⨯+⨯oo =16. 解(1)取SD 的中点G ,连AG ,FG .在SCD ∆中,因为F ,G 分别是SC ,SD 的中点, 所以FG ∥CD ,12FG CD =. 因为四边形ABCD 是平行四边形,E 是AB 的中点, 所以1122AE AB CD ==,AE ∥CD . 所以FG ∥AE ,FG=AE ,所以四边形AEFG 是平行四边形,所以EF∥AG .因为AG ⊂平面SAD ,EF ⊄平面SAD ,所以EF ∥平面SAD . (2)由(1)及SA=AD 得,AG SD ⊥.因为平面SAD ⊥平面SCD ,平面SAD ⋂平面SCD =SD ,AG ⊂平面SAD , 所以AG ⊥平面SCD ,又因为SCD CD 面⊂,所以AG ⊥CD . 因为EF ∥AG ,所以EF ⊥CD , 又因为CD AB //,所以EF ⊥AB .17. 解:(1)因为θsin 01=CF ,θtan 10=OF ,θtan 10-20=AF , 所以θθθθsin cos 102020tan 1002sin 02-+=-+=++=AF CF CE u , 其中,552cos 0<<θ. (2)由 θθsin cos 102020-+=u ,得θθ2'sin cos 0201-=u ,令21cos 0'==θ,u , 当 21cos 0<<θ时,0'>u ,函数)(θu 为增函数;当552cos 21<<θ时,0'<u ,函数)(θu 为减函数. 所以,当21cos =θ,即3πθ=时,310203sin21102020max +=⨯-+=πu (m )所以,管道长度u 的最大值为)(31020+m.ADCSFG18. 解:(1)当2r =,(4,2)M 时,则1(2,0)A -,2(2,0)A ,直线1MA 的方程:320x y -+=,解224320x y x y ⎧+=⎨-+=⎩得86(,)55P .直线2MA 的方程:20x y --=,解22420x y x y ⎧+=⎨--=⎩得(0,2)Q -.所以PQ 方程为220x y --=.(2)由题设得1(,0)A r -,2(,0)A r ,设(,)M a t ,直线1MA 的方程是()ty x r a r =++,与圆C 的交点11(,)P x y , 直线2MA 的方程是()ty x r a r=--,与圆C 的交点22(,)Q x y , 则点11(,)P x y ,22(,)Q x y 在曲线[()()][()()]0a r y t x r a r y t x r +-+---=上, 化简得2222222()2()()0a r y ty ax r t x r ---+-=, ①又11(,)P x y ,22(,)Q x y 在圆C 上,圆C :2220x y r +-=, ② ①-2t ×②得22222222222()2()()()0a r y ty ax r t x r t x y r ---+--+-=, 化简得2222()2()0a r y t ax r t y ----=.所以直线PQ 方程为2222()2()0a r y t ax r t y ----=.令0y =得2r x a=,所以直线PQ 过定点2(,0)r a .19.解(1)k =1时,不等式()1f x >-即2ln 0x x x +->,设2()l n g x x x x =+-,因为2121()210x x g x x x x -+'=+-=>在定义域(0,)+∞上恒成立,所以g (x )在(0,)+∞上单调递增,又(1)0g =,所以()1f x >-的解集为(1,)+∞.(2)2121()2(0)x kx f x x k x x x-+'=+-=>,由()0f x '≥得2210x kx -+≥……(*). (ⅰ)当280k ∆=-≤,即k -≤≤(*)在R 上恒成立,所以()f x 的单调递增区间为(0,)+∞.(ⅱ)当k >时,280k ∆=->,此时方程2210x k x-+=的相异实根分别为12x x ==12120,2102k x x x x ⎧+=>⎪⎪⎨⎪=>⎪⎩,所以120x x <<, 所以()0f x '≥的解集为)+∞U ,故函数f (x )的单调递增区间为(0,[)44k k ++∞和.(ⅲ)当k <-,0,21,020212121<<∴⎩⎨⎧<=+>=x x kx x x x ()f x 的单调递增区间为(0,)+∞.综上所述,当k >()f x的单调递增区间为(0,[)44k k -+∞和;当k ≤()f x 的单调递增区间为(0,)+∞. (3)据(2)知①当k ≤()f x 在定义域(0,)+∞上单调递增,令210,0x kx x ⎧-->⎨>⎩得x >,取max{m =,则当x >m 时,2()10f x x kx >-->.设01x <<,21max{1,}x kx k λ--<--=,所以()ln f x x λ<+,当0x e λ-<<时,()0f x <,取min{1,}n e λ-=,则当(0,)x n ∈时,()0f x <,又函数()f x 在定义域(0,)+∞上连续不间断,所以函数()f x 在定义域内有且仅有一个零点.②当22>k 时,()f x 在12(0,)(,)x x +∞和上递增,在12(,)x x 上递减, 其中012,0122211=+-=+-kx x kx x则2221111111()ln 1ln (21)1f x x x kx x x x =+--=+-+-211ln 2x x =--. 下面先证明ln (0)x x x <>:设x x x h -=ln )(),由1()xh x x-'=>0得01x <<,所以h (x )在(0,1)上递增,在(1,)+∞上递减,01)1()(max <-==h x h ,所以()0h x <)0(>x ,即 ln (0)x x x <>.因此,047)21(2)(212111<---=--<x x x x f ,又因为)(x f 在12(,)x x 上递减,所以21()()0f x f x <<,所以()f x 在区间2(0,)x 不存在零点.由①知,当x m >时,()0f x >,()f x 的图象连续不间断,所以()f x 在区间2(,)x +∞上有且仅有一个零点.综上所述,函数()f x 在定义域内有且仅有一个零点.20.解(1)设{}n b 的公比为q ,则有063=+-q q ,即2(2)(23)0q q q +-+=,所以2q =-,从而1(2)3nn S --=.(2)由11122(1)22n n n a b a b a b n +++⋅⋅⋅+=-+得112211(2)22n n n a b a b a b n --++⋅⋅⋅+=-+,两式两边分别相减得2(2n n n a b n n =⋅≥.由条件112a b =,所以*2(N )n n n a b n n =⋅∈,因此111(1)2(2)n n n a b n n ---=-⋅≥,两式两边分别相除得12(2)1n n a nq n a n -⋅=≥-,其中q 是数列{}n b 的公比.所以122(1)(3)2n n a n q n a n ---⋅=≥-,上面两式两边分别相除得2221(2)(3)(1)n n n a a n n n a n ---=≥-.所以312234a a a =,即1121(2)3()4a d a a d +=+,解得113a d a d ==-或,若d a 31-=,则04=a ,有024444==⋅b a 矛盾,所以1a d =满足条件,所以2,n n n a dn b d==.(3)设数列{}n a 的公差为d ,{}n b 的公比为q , 当q =1时,112n n b b b ++=,所以112n na b a +=,所以数列{}n a 是等比数列,又数列{}n a 是等差数列,从而数列{}n a 是各项不为0的常数列,因此112b =,经验证,110,2n n a a b =≠=满足条件.当1q ≠时,由11n n n n a b b a ++=+得1111(1)n dn a b q q dn a d-+=++-……(*) ①当d>0时,则1d a n d ->时,10n n a a +>>,所以111dn a dn a d +>+-此时令112dn a dn a d+<+-得12d a n d ->,因为112d a d a d d -->所以,当12d a n d ->时,1112dn a dn a d+<<+-.由(*)知,10,0b q >>.(ⅰ)当q >1时,令11(1)2n b q q -+>得121log (1)qn b q >++,取11122max{,1log }(1)q d a M d b q -=++,则当1n M >时,(*)不成立. (ⅱ)当0<q <1时,令11(1)1n b q q -+<得111log (1)qn b q >++,取12121max{,1log }(1)q d a M d b q -=++,则当2n M >时,(*)不成立. 因此,没有满足条件的数列{}n a ,{}n b .②同理可证:当d <0时,也没有满足条件的数列{}n a ,{}n b .综上所述,所有满足条件的数列{}n a ,{}n b 的通项公式为110,2n n a a b =≠=(*N n ∈).数学Ⅱ(附加题)答案21.【选做题】答案A .选修4—1:几何证明选讲 解:取AB 中点G ,连结GF ,12AD AB =,AD AG ∴=,又90BAC ∠=, 即AC 为DG 的垂直平分线, ∴ DF = FG ………………① ,又E 、F 分别为BC 、AC 中点, 1//2EF AB BG EF BG ==∴ 四边形BEFG 为平行四边形, ∴ FG = BE …………② 由①②得BE =DF .B .选修4—2:矩阵与变换 解:010********m m BA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,设P ()00,x y 是曲线1C 上的任一点,它在矩阵BA 变换作用下变成点(),P x y ''',则000020210x my x m y x y '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦,则002x my y x '=⎧⎨'=⎩,即0012x y y x m'=⎧⎪⎨'=⎪⎩, 又点P 在曲线1C 上,则22214x y m ''+=,'p 在曲线2C 上,则14''22=+x y , 故21m =,所以,1m =±.C .选修4—4:坐标系与参数方程 解:圆的直角坐标方程为()(2214x y -+=,直线的直角坐标方程为()1y k x =-()tan k α=,因为圆C 被直线l∴k =,即tan α=, 又0πα≤<,∴α=π3或2π3.D .选修4—5:不等式选讲解:由题知,aba b a x x ++-≤-+-21恒成立,故|1||2|x x -+-不大于aba b a ++-的最小值 ,∵||||2|||≥|a b a b a b a b a -++++-=,当且仅当()()0≥a b a b +-时取等号, ∴aba b a ++-的最小值等于2.∴x 的范围即为不等式|x -1|+|x -2|≤2的解,解不等式得1522≤≤x .【必做题】答案22. 解:如图,以A 为原点建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1), M (0,1,12),N (12,12,0)设10),1,0,(<<=λλp .则)0,0,(1λ=A ,)1,0,(11λ=+=A ; PN )1,21,21(--=λ,(1)∵()0,0,1=m 是平面ABC 的一个法向量.=><=∴|,cos |sin PN m θ45)21(1141)21(|100|22+-=++--+λλ∴当12λ=时,θ取得最大值,此时sin θ=tan 2θ=即:当1λ=时, θ取得最大值,此时tan 2θ=. 故P A 1的长度为21.(2)=NM )21,21,21(-,由(1)PN)1,21,21(--=λ,设(),,x y z =n 是平面PMN 的一个法向量. 则111022211()022x y z x y z λ⎧-++=⎪⎨⎪-+-=⎩得123223y x z x λλ+⎧=⎪⎨-⎪=⎩令x =3,得y =1+2λ,z =2-2λ, ∴()3,12,22λλ=+-n ,∴|cos ,|<>==m n 4210130λλ++=(*) ∵△=100-4⨯4⨯13=-108<0,∴方程(*)无解∴不存在点P 使得平面PMN 与平面ABC 所成的二面角为30º. 23. 解:(1)当(0,)2πθ∈时,设22()sin cos (sin cos )0n n f n θθθθθ--'=->,等价于0cos sin 22>---θθn n .(ⅰ)n =1时,令,>0)('f θ得110sin cos θθ->,解得04πθ<<,所以()f θ在(0,)4π上单调递增,在(,)42ππ上单调递减,所以()f θ存在极大值,无极小值.(ⅱ)n =2时,()f θ=1,()f θ既无极大值,也无极小值. (ⅲ)3n ≥时,令,>0)('f θ得sin cos θθ>,所以42ππθ<<,所以()f θ在(0,)4π上单调递减,在(,)42ππ上单调递增,所以()f θ存在极小值,无极大值. (3)由22sin cos sin cos 1a θθθθ+=⎧⎪⎨+=⎪⎩得:21sin cos 2a θθ-= , 所以sin θ,cos θ是方程22102a x ax --+=的两根, x =∴()((2nnnnna a f θ++=+=⎝⎭⎝⎭,当k n 2=为偶数时,()()()()()()()()]222222[(2]222222[(2222222244222224244222222kn n n n n kn nn nnnna a C a C a a C a C a a-++-+-+=-++-+-+=--+-+----当12+=k n 为奇数时,()()()()()()()()]2222222[(22222222(222222122442222214244222222kn n n n n n n knn nn nn n nnna C a C a C a C a C a C a a -++-+-+=-++-+-+=--+-+------∵a为[内的有理数,m n C ,2n为正整数,∴()f θ为有理数.。

相关文档
最新文档