高中数学会考基础知识汇总

合集下载

高中数学会考知识点总结

高中数学会考知识点总结

高中数学会考知识点总结
1. 数学基础知识
- 数字与运算:包括整数、有理数、无理数和实数等概念,以及四则运算和混合运算。

- 代数与函数:包括代数运算规律、函数的概念、函数的图像和性质等内容。

- 几何与形状:包括几何图形的分类、性质和计算等内容。

2. 数学推理与证明
- 数学推理:包括命题逻辑、谓词逻辑和命题的推理法则等内容。

- 数学证明:包括直接证明法、间接证明法和反证法等内容。

3. 高中数学应用
- 函数与方程:包括一次函数、二次函数、指数函数、对数函数和三角函数等内容。

- 数列与数学归纳法:包括等差数列、等比数列、递推数列和数学归纳法等内容。

- 空间与向量:包括坐标系、平面向量和空间几何等内容。

4. 统计与概率
- 统计学:包括数据的收集、整理、分析与解释等内容。

- 概率学:包括事件概率、条件概率和概率分布等内容。

5. 解决实际问题
- 实际问题的建模与解决:包括将实际问题转化为数学问题、运用数学方法解决问题等内容。

- 实际问题的解释与应用:包括解释数学解的含义和应用数学解于实际问题的场景等内容。

以上是高中数学会考的主要知识点总结,希望对你的学习有所帮助。

高中数学会考重点整理--非常详细总结

高中数学会考重点整理--非常详细总结

高中数学会考重点整理--非常详细总结1. 代数部分- 多项式多项式- 一元多项式的定义和性质- 多项式的加减乘除运算- 一元多项式的整除性质和余式定理- 多项式的因式定理和因式分解- 方程与不等式方程与不等式- 一元二次方程的解法及其性质- 二次函数与二次方程的关系- 一次不等式、二次不等式的解法及其性质- 绝对值方程与绝对值不等式的解法及其性质- 函数函数- 线性函数、反比例函数和一次函数的性质和图像- 二次函数、指数函数和幂函数的性质和图像- 对数函数和指数函数的互反性质- 数列数列- 等差数列和等比数列的性质及其应用- 通项公式、求和公式和首项公式的推导和使用2. 几何部分- 平面几何平面几何- 长度、角度、面积、体积的计算方法及其应用- 相似三角形的性质和判定条件- 三角形内角和、外角和、中线、高线的性质和计算方法- 圆内接四边形和圆内接三角形的性质和判定条件- 立体几何立体几何- 空间几何图形的投影、旋转和平移等变换- 空间几何体的面积和体积计算方法及其应用- 空间几何体的表面积和体积计算方法及其应用- 球的性质、公式和计算方法3. 统计与概率部分- 统计统计- 数据的收集、整理和描述方法- 数据的频数、频率、平均数和离散程度计算- 图表和统计图的制作和解读- 抽样调查和统计推断的基本方法- 概率概率- 基本概率定理和计算方法- 事件的相互排斥和独立性判定条件- 概率问题的计算步骤和策略- 条件概率和事件的互斥性计算方法以上是高中数学会考的重点整理,希望能够帮助你复习和准备考试。

祝你取得好成绩!。

高中数学会考重点知识点详细总结

高中数学会考重点知识点详细总结

高中数学会考重点知识点详细总结引言高中数学会考是对学生数学知识掌握程度的重要评估,涵盖了代数、几何、概率统计等多个领域。

本文档旨在总结高中数学会考的重点知识点,帮助学生系统复习,提高考试成绩。

第一部分:代数1.1 函数函数的定义与性质一次函数、二次函数、指数函数、对数函数、三角函数的图像与性质函数的单调性、奇偶性、周期性1.2 代数方程一元一次方程、一元二次方程的解法高次方程的解法无理方程、指数方程、对数方程的解法1.3 不等式不等式的基本性质一元一次不等式、一元二次不等式的解法线性规划的基本概念和简单应用1.4 数列等差数列、等比数列的定义和通项公式数列的求和公式数列极限的概念1.5 复数复数的概念和四则运算复数的几何意义复数与三角函数的关系第二部分:几何2.1 平面几何三角形、四边形的性质圆的性质解析几何:点的坐标、直线的方程、圆的方程2.2 立体几何棱柱、棱锥、球的性质空间几何体的表面积和体积计算2.3 解析几何的应用直线与直线、直线与圆、圆与圆的位置关系空间向量及其在立体几何中的应用第三部分:概率统计3.1 概率论基础随机事件的概率互斥事件、独立事件的概率条件概率3.2 统计学基础数据的收集、整理和图表表示描述性统计:均值、中位数、众数、方差、标准差概率分布:离散型随机变量、连续型随机变量3.3 统计推断抽样分布置信区间假设检验第四部分:微积分初步4.1 极限与连续性极限的概念函数的连续性4.2 导数与微分导数的定义和几何意义基本初等函数的导数公式复合函数、反函数的求导法则4.3 积分不定积分和定积分的概念牛顿-莱布尼茨公式定积分的几何意义和物理意义结语高中数学会考覆盖了数学的多个重要领域,本文档的总结旨在帮助学生系统地复习和掌握这些知识点。

通过对这些重点内容的深入理解和练习,学生可以提高解题能力,增强数学思维,为会考和未来的数学学习打下坚实的基础。

高中会考数学知识点总结完整

高中会考数学知识点总结完整

高中会考数学知识点总结完整

一、代数:
1、复数:虚数单位i,负数的平方根,实部、虚部,复数模及其计算,共轭复数,复数乘法法则及其计算;
2、一元二次方程:二次函数的定义,一元二次方程的解法,两个实
数根(根的种类、解的类型),有理数解,实数解,无理数解;
3、一元n次方程:一元n次方程的定义、解法,有理数解,实数解、无理数解;
4、二元一次方程组:定义、解法,化简,消元,解的类型,无解,
有唯一解,有多解;
5、分式:分式定义及其特点,分式的加减法,乘除法,乘方,混合
运算法则及计算,提取公因数;
6、根式:定义、特点,同底数的幂的加法、减法,乘法、乘方及计算,开根号,根式与分式的比较及混合运算;
7、二元二次方程组:定义,利用配方求解,利用消元求解,利用把
变量替换成另一个求解;
二、几何:
1、直线与圆:直线与圆的定义,直线的斜率及其计算,圆的标准方
程及其计算,圆的圆心角的大小及其计算;
2、直角三角形:定义、特点,两个直角三角形的重要性质,利用重要性质求三角形的面积,角的大小及其计算,弦长的计算;
3、三角形:定义,重要性质(勾股定理、余弦定理),三角。

高中数学会考复习资料基本概念和公式

高中数学会考复习资料基本概念和公式

高中数学会考基础知识汇总 第一章 集合与简易逻辑:一.集合1、 集合的有关概念和运算(1)集合的特性:确定性、互异性和无序性;(2)元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;2、子集定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B , 注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ3、真子集定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂;4、补集定义:},|{A x U x x A C U ∉∈=且;5、交集与并集 交集:}|{B x A x x B A ∈∈=且 ;并集:}|{B x A x x B A ∈∈=或6、集合中元素的个数的计算: 若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。

二.简易逻辑:1.复合命题: 三种形式:p 或q 、p 且q 、非p ; 判断复合命题真假:2.真值表:p 或q ,同假为假,否则为真;p 且q ,同真为真;非p ,真假相反。

3.四种命题及其关系:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若⌝p 则⌝q ; 逆否命题:若⌝q 则⌝p ; 互为逆否的两个命题是等价的。

原命题与它的逆否命题是等价命题。

4.充分条件与必要条件:若q p ⇒,则p 叫q 的充分条件; 若q p ⇐,则p 叫q 的必要条件; 若q p ⇔,则p 叫q 的充要条件;第二章 函数一. 函数1、映射:按照某种对应法则f ,集合A 中的任何一个元素,在B 中都有唯一确定的元素和它对应, 记作f :A →B ,若B b A a ∈∈,,且元素a 和元素b 对应,那么b 叫a 的象,a 叫b 的原象。

2、函数:(1)、定义:设A ,B 是非空数集,若按某种确定的对应关系f ,对于集合A 中的任意一个数x ,集合B 中都有唯一确定的数f (x )和它对应,就称f :A →B 为集合A 到集合B 的一个函数,记作y=f (x ), (2)、函数的三要素:定义域,值域,对应法则;3、求定义域的一般方法:①整式:全体实数R ;②分式:分母0≠,0次幂:底数0≠; ③偶次根式:被开方式0≥,例:225x y -=;④对数:真数0>,例:)11(log xy a -=4、求值域的一般方法:①图象观察法:||2.0x y =;②单调函数法: ]3,31[),13(log 2∈-=x x y ③二次函数配方法:)5,1[,42∈-=x x x y , 222++-=x x y④“一次”分式反函数法:12+=x xy ;⑥换元法:x x y 21-+= 5、求函数解析式f (x )的一般方法:①待定系数法:一次函数f (x ),且满足172)1(2)1(3+=--+x x f x f ,求f (x ) ②配凑法:,1)1(22xx xx f +=-求f (x );③换元法:x x x f 2)1(+=+,求f (x ) 6、函数的单调性:(1)定义:区间D 上任意两个值21,x x ,若21x x <时有)()(21x f x f <,称)(x f 为D 上增函数; 若21x x <时有)()(21x f x f >,称)(x f 为D 上减函数。

高中数学会考知识要点总结

高中数学会考知识要点总结

高中数学会考知识要点总结引言高中数学会考是检验学生对高中数学知识掌握程度的重要考试,它涵盖了代数、几何、概率统计等多个数学分支。

本文档旨在提供一个全面的复习指南,帮助学生系统地复习和掌握高中数学的知识点。

第一部分:代数1.1 函数函数的定义:映射关系,定义域与值域。

函数的性质:单调性、奇偶性、周期性、有界性。

基本初等函数:一次函数、二次函数、指数函数、对数函数、三角函数。

1.2 代数方程一元一次方程:解法及其几何意义。

一元二次方程:解法(配方法、公式法、因式分解法)、判别式、韦达定理。

不等式:一元一次不等式、一元二次不等式的解法,线性规划。

1.3 数列与级数数列的基本概念:通项公式、求和公式。

等差数列:通项公式、求和公式。

等比数列:通项公式、求和公式。

1.4 复数复数的概念:复平面、模、辐角。

复数的运算:四则运算、共轭复数、复数的极坐标形式。

第二部分:几何2.1 平面几何三角形:内角和定理、三角不等式、余弦定理。

四边形:平行四边形、矩形、正方形、梯形的性质。

圆的性质:圆心角定理、弦切角定理、圆周角定理。

2.2 立体几何棱柱与棱锥:体积与表面积公式。

圆柱与圆锥:体积与表面积公式。

球:体积与表面积公式。

2.3 解析几何坐标系:直角坐标系、极坐标系。

直线方程:点斜式、斜截式、一般式。

圆的方程:标准方程、一般方程。

第三部分:概率与统计3.1 概率论基础随机事件:概率的定义、加法公式。

条件概率:定义、乘法公式。

独立事件:概率计算。

3.2 统计学基础数据的收集与整理:频数分布表、直方图、箱线图。

描述性统计:均值、中位数、众数、方差、标准差。

3.3 统计推断抽样分布:样本均值的抽样分布。

置信区间:估计总体均值。

假设检验:基本概念、t检验、卡方检验。

第四部分:微积分初步4.1 极限数列的极限:定义、性质。

函数的极限:定义、性质、无穷小的比较。

4.2 导数导数的定义:几何意义、物理意义。

基本导数公式:幂函数、三角函数、指数函数、对数函数。

高中数学会考知识点

高中数学会考知识点

高中数学会考知识点高中数学会考是对学生高中阶段数学学习的一次重要检验。

为了帮助同学们更好地应对会考,下面将对高中数学会考的重要知识点进行梳理。

一、集合与函数集合是数学中一个基础的概念,包括集合的表示方法(列举法、描述法等)、集合的运算(交集、并集、补集)。

函数则是高中数学的重点内容。

要理解函数的概念,包括定义域、值域和对应关系。

常见的函数类型有一次函数、二次函数、反比例函数等。

对于二次函数,要掌握其图像和性质,如对称轴、顶点坐标、开口方向等。

函数的单调性和奇偶性也是重要的考点,能够通过函数的解析式或者图像判断其单调性和奇偶性。

二、数列数列包括等差数列和等比数列。

等差数列要掌握其通项公式、前n 项和公式,以及等差中项的性质。

通过这些公式和性质可以解决数列中的求值、求和等问题。

等比数列同样要掌握通项公式、前 n 项和公式,以及等比中项的性质。

在解题过程中,要注意公比是否为 1 的情况。

三、三角函数三角函数包括正弦函数、余弦函数、正切函数等。

要牢记它们的定义、周期性、值域、单调性等性质。

三角函数的诱导公式是解题的重要工具,能够将不同角度的三角函数值进行转化。

解三角形部分,要掌握正弦定理和余弦定理,能够运用它们解决三角形中的边长、角度等问题。

四、平面向量平面向量的概念包括向量的定义、表示方法(有向线段、坐标表示)。

向量的运算包括加法、减法、数乘和数量积。

要掌握这些运算的法则和性质,能够进行向量的运算和求解相关问题。

五、不等式不等式的性质是解不等式的基础,要熟练掌握。

一元二次不等式的解法是重点,通过求解二次函数的零点,结合函数图像得出不等式的解集。

线性规划问题则是考查如何在约束条件下,求目标函数的最值。

六、立体几何立体几何主要包括空间几何体的结构特征、表面积和体积的计算。

直线与平面、平面与平面的位置关系是重要考点,要能够进行判定和证明。

空间向量在立体几何中的应用,可以通过建立空间直角坐标系,利用向量的方法解决线线角、线面角、面面角等问题。

数学高中会考知识点总结

数学高中会考知识点总结

数学高中会考知识点总结数学高中会考的主要知识点总结如下:
1. 代数与函数:
- 一元一次方程与不等式
- 二元一次方程组与不等式组
- 多项式与因式分解
- 分式与分式方程
- 幂次函数与指数函数
- 对数函数与指数方程
- 二次函数及其图像性质
2. 几何与立体几何:
- 直线与角的性质
- 三角形与其性质
- 平面与立体图形的性质
- 相似与全等三角形
- 三角函数与应用
- 平面向量与坐标平面几何
3. 概率与统计:
- 事件与概率
- 排列组合与二项式定理
- 随机变量及其数学期望
- 样本调查与统计分析
4. 解析几何与导数:
- 直线与圆面的方程
- 参数方程与直线的位置关系- 函数的极限与连续性
- 导数与函数的变化率
- 函数的求导法则与应用
5. 数列与级数:
- 等差数列与等比数列
- 数列的概念与运算
- 数列极限与数列极限的性质- 无穷级数与收敛性。

高中数学会考知识点总结_(超级经典)

高中数学会考知识点总结_(超级经典)

数学学业水平复习知识点第一章 集合与简易逻辑1、 集合(1)、定义:某些指定的对象集在一起叫集合;集合中的每个对象叫集合的元素。

集合中的元素具有确定性、互异性和无序性;表示一个集合要用{ }。

(2)、集合的表示法:列举法()、描述法()、图示法();(3)、集合的分类:有限集、无限集和空集(记作φ,φ是任何集合的子集,是任何非空集合的真子集); (4)、元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;(5)、常用数集:自然数集:N ;正整数集:N ;整数集:Z ;整数:Z ;有理数集:Q ;实数集:R 。

2、子集(1)、定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B , 注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ(2)、性质:①、A A A ⊆⊆φ,;②、若C B B A ⊆⊆,,则C A ⊆;③、若A B B A ⊆⊆,则A =B ; 3、真子集(1)、定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂; (2)、性质:①、A A ⊆≠φφ,;②、若C B B A ⊆⊆,,则C A ⊆4、补集①、定义:记作:},|{A x U x x A C U ∉∈=且;②、性质:A A C C U A C A A C A U U U U ===)(,, φ; 5、交集与并集(1)、交集:}|{B x A x x B A ∈∈=且性质:①、φφ== A A A A , ②、若B B A = ,则A B ⊆ (2)、并集:}|{B x A x x B A ∈∈=或性质:①、A A A A A ==φ , ②、若B B A = ,则B A ⊆ABBA6、一元二次不等式的解法:(二次函数、二次方程、二次不等式三者之间的关系)不等式解集的边界值是相应方程的解含参数的不等式ax 2+b x +c>0恒成立问题⇔含参不等式ax 2+b x +c>0的解集是R ; 其解答分a =0(验证bx +c>0是否恒成立)、a ≠0(a<0且△<0)两种情况。

高三数学会考知识点归纳总结

高三数学会考知识点归纳总结

高三数学会考知识点归纳总结高三数学会考是学生们备战高考的重要一环,其中数学部分是很多学生感到困难的科目之一。

为了帮助同学们更好地复习数学知识,下面将对高三数学会考的知识点进行归纳总结。

一、函数与方程1. 函数的定义与性质- 定义:函数是一种特殊的关系,对于每个自变量的取值,函数都能唯一地确定一个因变量的取值。

- 性质:奇偶性、单调性、最大最小值等。

2. 二次函数- 定义:二次函数是一种形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数。

- 性质:顶点坐标、对称轴、开口方向、判别式等。

3. 指数与对数函数- 定义:指数函数是以底数为常数的指数幂为自变量的函数,对数函数是指数函数的反函数。

- 性质:指数函数的特性、对数函数的特性、换底公式等。

4. 四则运算与复合函数- 四则运算:函数的加法、减法、乘法、除法运算法则。

- 复合函数:由两个函数嵌套构成的函数。

二、数列与数列的极限1. 数列的概念与性质- 定义:数列是按照一定规律排列的数的集合。

- 性质:公差、通项公式、求和公式等。

2. 数列的收敛性与极限- 定义:数列的极限是数列趋向于的某个数。

- 性质:数列的有界性、单调性、夹逼定理等。

3. 等差数列与等比数列- 等差数列:每一个项与它的前一项之差都相等的数列。

- 等比数列:每一个项与它的前一项之比都相等的数列。

4. 递归与通项公式- 递归:通过前一项推导出后一项的公式。

- 通项公式:通过项数或项的位置推导出该项的公式。

三、平面向量与立体几何1. 平面向量的基本概念与运算- 基本概念:向量的定义、向量的模、向量的方向、零向量等。

- 运算法则:向量的加法、减法、数量乘法、数量除法等。

2. 平面向量的数量积与叉积- 数量积:向量的数量积是一个数,等于两个向量的模的乘积与它们的夹角的余弦的乘积。

- 叉积:向量的叉积是一个向量,垂直于原来的两个向量。

3. 空间几何与立体几何的基本概念- 点、直线、平面、直角坐标系等。

数学会考知识点汇总情况

数学会考知识点汇总情况

高中数学会考基础知识汇总 第一章 集合与简易逻辑:一.集合1、 集合的有关概念和运算(1)集合的特性:确定性、互异性和无序性;(2)元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;2、子集定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B , 注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ3、真子集定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂;4、补集定义:},|{A x U x x A C U ∉∈=且;5、交集与并集 交集:}|{B x A x x B A ∈∈=且 ;并集:}|{B x A x x B A ∈∈=或6、集合中元素的个数的计算: 若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。

二.简易逻辑:1.复合命题: 三种形式:p 或q 、p 且q 、非p ; 判断复合命题真假:2.真值表:p 或q ,同假为假,否则为真;p 且q ,同真为真;非p ,真假相反。

3.四种命题及其关系:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若⌝p 则⌝q ; 逆否命题:若⌝q 则⌝p ; 互为逆否的两个命题是等价的。

原命题与它的逆否命题是等价命题。

4.充分条件与必要条件:若q p ⇒,则p 叫q 的充分条件; 若q p ⇐,则p 叫q 的必要条件; 若q p ⇔,则p 叫q 的充要条件;第二章 函数一. 函数1、映射:按照某种对应法则f ,集合A 中的任何一个元素,在B 中都有唯一确定的元素和它对应, 记作f :A →B ,若B b A a ∈∈,,且元素a 和元素b 对应,那么b 叫a 的象,a 叫b 的原象。

2、函数:(1)、定义:设A ,B 是非空数集,若按某种确定的对应关系f ,对于集合A 中的任意一个数x ,集合B 中都有唯一确定的数f (x )和它对应,就称f :A →B 为集合A 到集合B 的一个函数,记作y=f (x ), (2)、函数的三要素:定义域,值域,对应法则;3、求定义域的一般方法:①整式:全体实数R ;②分式:分母0≠,0次幂:底数0≠;③偶次根式:被开方式0≥,例:225x y -=;④对数:真数0>,例:)11(log xy a -=4、求值域的一般方法:①图象观察法:||2.0x y =;②单调函数法: ]3,31[),13(log 2∈-=x x y ③二次函数配方法:)5,1[,42∈-=x x x y , 222++-=x x y④“一次”分式反函数法:12+=x xy ;⑥换元法:x x y 21-+= 5、求函数解析式f (x )的一般方法:①待定系数法:一次函数f (x ),且满足172)1(2)1(3+=--+x x f x f ,求f (x ) ②配凑法:,1)1(22x x xx f +=-求f (x );③换元法:x x x f 2)1(+=+,求f (x ) 6、函数的单调性:(1)定义:区间D 上任意两个值21,x x ,若21x x <时有)()(21x f x f <,称)(x f 为D 上增函数; 若21x x <时有)()(21x f x f >,称)(x f 为D 上减函数。

高中会考数学知识点

高中会考数学知识点

高中会考数学知识点高中会考是对高中生学业水平的一次重要检测,数学作为其中的重要科目,涵盖了众多知识点。

以下为大家梳理一下高中会考数学的主要知识点。

一、集合与简易逻辑集合是数学中一个基本的概念。

集合中的元素具有确定性、互异性和无序性。

常见的集合表示方法有列举法、描述法和图示法。

集合之间的关系包括子集、真子集、相等。

集合的运算有交集、并集和补集。

简易逻辑方面,要理解命题的概念,能够判断命题的真假。

充分条件、必要条件和充要条件的判断也是重要考点。

二、函数函数是高中数学的核心内容之一。

首先要掌握函数的定义,包括定义域、值域和对应法则。

常见的函数类型有一次函数、二次函数、反比例函数、指数函数、对数函数和幂函数。

一次函数的图像是一条直线,其表达式为 y = kx + b (k、b 为常数,k ≠ 0)。

二次函数的表达式为 y = ax²+ bx + c (a ≠ 0),其图像是一条抛物线,对称轴为 x = b / 2a ,顶点坐标为(b / 2a ,(4ac b²) /4a )。

指数函数的表达式为 y = a^x (a > 0 且a ≠ 1),当 a > 1 时,函数单调递增;当 0 < a < 1 时,函数单调递减。

对数函数是指数函数的反函数,表达式为 y =logₐ x (a > 0 且a ≠ 1)。

函数的性质包括单调性、奇偶性、周期性。

函数的单调性可以通过导数来判断,奇偶性则根据函数的对称性来确定。

三、数列数列是按照一定顺序排列的一列数。

等差数列和等比数列是常见的两种数列类型。

等差数列的通项公式为 aₙ = a₁+(n 1)d ,前 n 项和公式为 Sₙ = n(a₁+ aₙ) / 2 = na₁+ n(n 1)d / 2 。

等比数列的通项公式为 aₙ = a₁q^(n 1) ,前 n 项和公式为 Sₙ =a₁(1 qⁿ) /(1 q) (q ≠ 1)。

四、三角函数三角函数包括正弦函数、余弦函数、正切函数等。

高中会考数学知识点总结

高中会考数学知识点总结

高中会考数学知识点总结一、代数1、代数运算代数运算包括加法、减法、乘法、除法,以及相应的运算规则。

高中阶段代数运算的难点在于复杂的多项式运算,例如多项式的加减、乘除和因式分解等。

2、方程与不等式高中数学主要学习一元一次方程、一元二次方程、一元一次不等式、一元二次不等式以及二元一次方程组等。

学生需要掌握将复杂方程或不等式化简,以及求解方程和不等式的方法。

3、函数函数是高中数学中的一个重要知识点,包括一元函数、二元函数、复合函数、反函数等内容。

学生需要学会绘制函数图像、求函数的极值、零点、不等式解等。

4、数列与级数数列与级数是高中数学中的另一个重要知识点,包括等差数列、等比数列、级数求和及收敛性等内容。

学生需要掌握数列的通项公式、通项求和公式等。

5、排列与组合排列与组合是高中数学中的概率知识,包括排列、组合、二项式定理、多项式定理等内容。

学生需要学习如何计算排列组合问题及其应用。

二、几何1、平面几何平面几何主要包括平面图形的性质、相似、全等、直角三角形、圆的性质等内容。

学生需要掌握平面图形的面积、周长计算,以及几何证明等方法。

2、立体几何立体几何主要包括立体图形的性质、体积、表面积计算,以及空间几何关系等内容。

学生需要学会计算立体图形的体积、表面积,以及解决空间几何问题。

3、向量向量是高中数学中的一个重要概念,包括向量的定义、线性运算、数量积、向量积等内容。

学生需要学会计算向量的模、夹角、投影以及向量与几何问题的应用。

4、解析几何解析几何是将几何问题转化为代数问题进行求解的方法,主要包括平面坐标、距离公式、斜率公式、方程解析等内容。

学生需要学会应用解析几何解决几何问题。

5、空间几何空间几何主要包括三维空间的向量表示,点、直线、平面的性质及其应用,以及多面体的体积、表面积计算等内容。

学生需要掌握解决空间几何问题的方法。

三、概率与统计1、概率概率是高中数学中的一个重要知识点,包括随机事件、事件的概率、事件的互斥、独立性等内容。

高中数学会考知识点总结

高中数学会考知识点总结

高中数学会考知识点总结一、集合与常用逻辑用语及算法初步集合中的元素具有确定性、互异性和无序性;常用数集:自然数集N 、正整数集*N 或+N 、整数集Z 、有理数集Q 、实数集R ; 子集、真子集、补集 交集、并集逻辑联结词:或)(∨、且)(∧、非)(⌝; 复合命题三种形式:p 或q ;p 且q ;非p ; 判断复合命题的真假:p 或q :同假为假,否则为真;p 且q :同真为真;非p :与p 真假相反;四种命题:原命题:若p 则q ;逆命题:若q 则p ;否命题:若p ⌝则q ⌝;逆否命题:若q ⌝则p ⌝; 原命题与逆否命题互为逆否命题;逆命题与否命题互为逆否命题; 互为逆否的两个命题是等价的;反证法步骤:假设结论不成立→推出矛盾→否定假设; 充分条件与必要条件:若q p ⇒,则p 叫做q 的充分条件; 若p q ⇒,则p 叫做q 的必要条件; 若q p ⇔,则p 叫做q 的充要条件;三种基本逻辑结构:顺序结构、条件结构、循环结构;二、基本初等函数映射、函数函数的定义域、值域、区间闭区间、开区间、半开半闭区间 求函数的定义域:分式的分母不等于0;偶次根式的被开方数大于等于0;对数的真数大于0,底数大于0且不等于1;零次幂的底数不等于0;三角函数中的正切函数x y tan =,2ππ+≠k x )(Z k ∈;已知函数)(x f 定义域为D ,求函数)]([x g f 的定义域,只需D x g ∈)(;已知函数)]([x g f 的定义域为D ,求函数)(x f 定义域,只需要求)(x g 的值域D ∈;5年高考3年模拟5p ,例2函数的单调性、单调区间、函数的最大值与最小值 函数的奇偶性偶函数的图像关于y 轴对称,奇函数的图像关于原点对称; 指数、分数指数幂有理指数幂的运算性质Q s r b a ∈>>,,,00:sr sraa a +=⋅;rs s r a a =)(;rr r b a ab =)(;对数:如果N a x=)10(≠>a a ,,数x 就叫做以a 为底N 的对数,记为x N a =log ,其中a 叫做底数,N 叫做真数N aNa =log ;积、商、幂、方根的对数M ,N 是正数:N M MN a a a log log )(log +=;N M NMa a alog log log -=;M n M a n a log log =; 常用对数:以10为底的对数叫做常用对数,N 10log 通常写成N lg ;自然对数:以e 为底的对数叫做常用对数,N e log 通常写成N ln ; 指数函数、对数函数的定义、图像和性质20p 幂函数的定义、图像和性质21p函数的零点:使0)(=x f 的实数x 叫做函数)(x f y =的零点;方程0)(=x f 有实根⇔函数)(x f y =的图像与x 轴有交点⇔函数)(x f y =有零点;函数有零点的判定:如果函数)(x f y =在区间][b a ,上的图像是连续不断的一条曲线,并且0)()(<⋅b f a f ,那么函数)(x f y =在区间)(b a ,内有零点,即存在)(b a c ,∈,使得0)(=c f ;这个c 也就是方程0)(=x f 的根;三、三角函数与三角恒等变换正角、负角和零角;与角α终边相同的角的表示;象限的角弧度制:rad )180(1π=;'185730.57)180(1=≈=πrad ;圆弧长公式:r l ||α=α为圆弧所对的圆心角的弧度数;任意角的三角函数:r y =αsin ,r x =αcos ,xy=αtan ; 三角函数的定义域、值域 三角函数值在每个象限的符号:αsin )(--++,,,;αcos )(+--+,,,;αtan )(-+-+,,,; 同角三角函数的基本关系式:1cos sin 22=+αα;αααtan cos sin =; 三角函数的诱导公式记忆规律:奇变偶不变,符号看象限 三角函数的图像和性质33~32p最小正周期:)sin(ϕω+=x A y 、)cos(ϕω+=x A y函数)sin(ϕω+=x A y 的图像:振幅变换、周期变换、平移变换 两角和与差的正弦、余弦、正切:βαβαβαsin cos cos sin )sin(±=±; βαβαβαsin sin cos cos )cos( =±; βαβαβαtan tan 1tan tan )tan( ±=±;二倍角的正弦、余弦、正切:αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;ααα2tan 1tan 22tan -=;化特殊式子:x b x a cos sin +为一个角的三角函数形式,例如:)6sin(2sin 3cos π+=+x x x ;斜三角形的解法: 正弦定理:CcB b A a sin sin sin ==; 余弦定理:A bc c b a cos 2222⋅-+=,B ac c a b cos 2222⋅-+=,C ab b a c cos 2222⋅-+=;三角形的面积公式:B ac A bc C ab S ABC sin 21sin 21sin 21===∆;四、不等式不等式的基本性质43p比较两个数或式的大小,一般步骤是:作差——变形——与0比较大小;或者作商——变形——与1比较大小; 解一元二次不等式的一般步骤43p 二元一次不等式组与平面区域44p 基本不等式:若R b a ∈,,则ab b a 222≥+; 若a ,b 为正数,则2ba ab +≤,当且仅当b a =时取等号; 利用算术平均数与几何平均数定理求函数的最大值和最小值五、数列n a 与n S 的关系:⎩⎨⎧>=-=-)1()1(11n n S S S a n nn等差数列的通项公式:d n a a n )1(1-+=;等差中项:a ,A ,b 组成等差数列, A 叫做a 与b 的等差中项;A b a 2=+; 等差数列的前n 项和公式:d n n na a a n S n n 2)1(2)(11-+=+=; 等差数列的常用性质:d m n a a m n )(-+=;若q p n m +=+,则q p n m a a a a +=+;等比数列的通项公式:11-=n n q a a ;等比中项:a ,G ,b 成等比数列, G 叫做a 与b 的等比中项;2G ab =;等比数列的前n 项和公式:)1()1(11)1(111=≠⎪⎩⎪⎨⎧--=--=q q na qqa a q q a S n n n 等比数列的常用性质:mn m n q a a -=;若q p n m +=+,则q p n m a a a a ⋅=⋅;六、导数及其应用导数的几何意义:函数)(x f y =在0x x =处的导数)('0x f 的几何意义,就是曲线)(x f y =在点))((0x f x ,处的切线的斜率,即)('0x f k =;导函数基本初等函数的导数公式:0)'(=c ;1)')((-=n n nx x ;x x cos )'(sin =;x x sin )'(cos =; a a a x x ln )'(=;x x e e =)'(;a x x a ln 1)'(log =;xx 1)'(ln =; 导数的运算法则61p复合函数的求导法则:))((x g f y =,则x u u y y '''⋅=;用导数判断函数的单调性:在某个区间)(b a ,内,如果0)('>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)('<x f ,那么函数)(x f y =在这个区间内单调递减; 求函数)(x f y =的极值的方法61p求函数)(x f y =在][b a ,上的最大值与最小值的步骤61p七、数系扩充、推理与证明12-=idi c bi a +=+R d c b a ∈,,,的充要条件是:c a =且d b =;复数的分类:)(R b a di c bi a ∈+=+,:0=b 时,为实数;0≠b 时,为虚数0=a 且0≠b 时,为纯虚数;0≠a 且0≠b 时,为非纯虚数共轭复数:bi a bi a z -=+=)(R b a ∈, 复平面、实轴、虚轴复数集C 和复平面内所有的点所成的集合是一一对应关系; 复数集C 和复平面内的向量所成的集合也是一一对应关系; 复数的模:22||||b a bi a z +=+=复数的代数形式的四则运算69p 复数加减法运算的几何意义69p三段论:大前提:M 是P ;小前提:S 是M ;结论:S 是P ; 综合法、分析法 反证法70p数学归纳法的步骤70p八、平面向量向量、向量的模||a相等向量和共线向量平行向量也叫做共线向量向量加法的三角形法则、向量加法的平行四边形法则78p 向量减法的几何意义79p 向量的数乘运算向量共线的条件:向量a 与非零向量b 共线,当且仅当唯一一个实数λ,使得a b λ=; 向量的夹角平面向量的坐标运算:设)(11y x a ,=,)(22y x b ,=,则)(2121y y x x b a ++=+,,)(2121y y x x b a --=-,; 平面向量共线的坐标表示:设)(11y x a ,=,)(22y x b ,=,0≠b ,则a ,b 共线a ∥b 的充要条件是01221=-y x y x ; 平面向量的数量积:θcos ||||b a b a =⋅;向量垂直的条件:设)(11y x a ,=,)(22y x b ,=,则向量a ,b 垂直当且仅当02121=+y y x x ;九、立体几何棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台; 圆台:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台; 棱台与圆台统称为台体; 投影、三视图斜二测画法的步骤87p ; 几何体的表面积和体积公式88p ;点A 在平面α内,记作α∈A ;点A 不在平面α内,记作α∉A ;公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内; 公理2:经过不在同一直线上的三点,有且只有一个平面; 典型结论1:经过一条直线和直线外一点有且只有一个平面; 典型结论2:经过两条相交直线有且只有一个平面; 典型结论3:经过两条平行直线有且只有一个平面;公理3:如果两个平面有一个公共点,那么它们还有公共点,且所有这些公共点的集合是一条过这个公共点的直线;空间两直线的位置关系:相交、平行、异面; 公理4:平行于同一条直线的两条直线互相平行;等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等; 异面直线所成的角取值范围]20(π,异面直线垂直直线与平面的位置关系:直线在平面内、直线和平面相交、直线和平面平行; 平面和平面的位置关系:平行、相交; 直线和平面平行的判定定理:平面外的一条直线和此平面内的一条直线平行,则该直线和此平面平行; 平面和平面平行的判定定理:一个平面内的两条相交直线分别平行于另一个平面,则这两个平面互相平行; 直线和平面平行的性质定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行; 平面和平面平行的性质定理:如果两个平面同时和第三个平面相交,那么它们的交线平行;直线与平面垂直:如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直,其中直线叫做平面的垂线,平面叫做直线的垂面,交点叫做垂足; 直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直; 直线和平面所成的角取值范围]20[π,二面角二面角的平面角:过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线OA ,OB ,则AOB ∠叫做二面角βα--l 的平面角;取值范围)0[π,,二面角的平面角为直角时,称为直二面角平面与平面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直; 平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直; 空间两点的距离公式:空间两点)(1111z y x P ,,,)(2222z y x P ,,,则22122122121)()()(||z z y y x x P P -+-+-=;十、直线和圆的方程倾斜角倾斜角α的取值范围是1800<≤α斜率:αtan =k ;过)(111y x P ,,)(222y x P ,的直线的斜率1212x x y y k --=)(12x x ≠;两直线平行或垂直的判定101p 直线的几种形式:点斜式:)(00x x k y y -=- 斜截式:b kx y += 两点式:121121x x x x y y y y --=--截距式:1=+bya x 一般式:0=++C By Ax直线的交点坐标:联立直线方程进行求解; 两点间的距离:已知平面上两点)(111y x P ,,)(222y x P ,,则22122121)()(||y y x x P P -+-=;点到直线的距离:点)(00y x P ,到直线0=++C By Ax 的距离2200||BA C By Ax d +++=;两平行直线的距离:已知两条平行直线1l 和2l 的一般式方程011=++C By Ax l :,022=++C By Ax l :,则1l 与2l 的距离2221||BA C C d +-=;平面上两点连线的中点坐标公式:平面上两点)(111y x P ,,)(222y x P ,,线段21P P 的中点为)22(2121y y x x P ++,; 圆的标准方程:222)()(r b y a x =-+-,圆心为)(b a ,,半径为r )0(>r ; 圆的一般方程:022=++++F Ey Dx y x )04(22>-+F E D ,圆心为)22(ED --,,半径为2422FE D r -+=;圆的直径式方程:0))(())((2121=--+--y y y y x x x x 圆的直径的端点是)(11y x A ,,)(22y x B ,;点与圆的位置关系:根据点到圆心的距离与半径r 的大小关系进行判断; 直线与圆的位置关系:根据圆心到直线的距离与半径r 的大小关系进行判断; 圆与圆的位置关系:根据圆心距与半径1r 和2r 的大小关系进行判断5种情况;十一、圆锥曲线椭圆:平面内与两个定点1F ,2F 的距离的和等于常数a 2)2||2(21c F F a =>的点的轨迹叫做椭圆; 若M 为椭圆上任意一点,则有a MF MF 2||||21=+; 椭圆的标准方程:12222=+b y a x )0(>>b a 焦点在x 轴上,或12222=+bx a y )0(>>b a 焦点在y 轴上; 离心率:ace =,10<<e ;双曲线:平面上与两个定点1F ,2F 的距离的差的绝对值等于非零常数a 2)2||2(21c F F a =<的动点的轨迹是双曲线;若P 为双曲线上任意一点,则有a PF PF 2||||21=-; 双曲线的标准方程:12222=-b y a x )00(>>b a ,焦点在x 轴上,或12222=-bx a y )00(>>b a ,焦点在y 轴上; 离心率:a ce =,1>e ;渐近线:x a by ±=叫做双曲线12222=-by a x 的渐近线;与12222=-b y a x )00(>>b a ,有共同渐近线的双曲线方程为k by a x =-2222)0(≠k 等轴双曲线:实轴和虚轴等长的双曲线叫做等轴双曲线;抛物线:平面内与一定点F 和一条定直线l 的距离相等的动点的轨迹叫做抛物线; 抛物线的标准方程:px y 22=焦点坐标)02(,p,准线方程:2p x -=;py x 22=焦点坐标)20(p ,,准线方程:2py -=;如果直线与抛物线的交点为)(11y x A ,,)(22y x B ,, 则弦长||11||1)()(||212212221221y y kx x k y y x x AB -+=-+=-+-=, 21221214)(||x x x x x x -+=-,21221214)(||y y y y y y -+=-;十二、计数原理、概论统计系统抽样、分层抽样 频率分布直方图 茎叶图 中位数、众数 均值、方差。

高中数学会考复习必背知识点

高中数学会考复习必背知识点

高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n 2个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.2、包含关系 A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C AB R ⇔=第二章 函数 对数:①、负数和零没有对数;②、1的对数等于0:01log =a ;③、底的对数等于1:1log =a a ;④、积的对数:N M MN a a a log log )(log +=,商的对数:N M NMa a alog log log -=幂的对数:M n M a n a log log =,b mn b a na m log log =。

第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数; (2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;) (3)、前n 项和:2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数) (4)、等差中项: A 是a 与b 的等差中项:2ba A +=或b a A +=2,三个数成等差常设:a-d ,a ,a+d 3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。

(2)、通项公式:11-=n n q a a (其中:首项是1a ,公比是q )(3)、前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S nn n(4)、等比中项: G 是a 与b 的等比中项:Gb a G =,即ab G =2(或ab G ±=,等比中项有两个)第四章 三角函数1、弧度制:(1)、π=180弧度,1弧度'1857)180(≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义: yrx r y x x y r x r y ======ααααααcsc sec cot tan cos sin 3、 特殊角的三角函数值4、同角三角函数基本关系式:1cos sin 22=+αα ααcos tan =1cot tan =αα 5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正 公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=- )(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=- 7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质)α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=ααα α2T : ααα2tan 1tan 22tan -=212cos 2122cos 1cos 2+=+=ααα 9、三角函数:10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆ (2)、正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示: (3)、余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c Bac c a b Abc c b a +-+=-+=⋅-+=⋅-+=求角: abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+=第五章、平面向量 1、坐标运算:(1)、设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x AB -+-=;向量a 的模|a |:a a a ⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a ,→→=⋅00a ,0)(=-+a a (4)、向量()()2211,,,y x b y x a ==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x (2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a ,02121=+⇔⊥→→y y x x b a(3)、P 分有向线段21P P 的:设P (x ,y ) ,P 1(x 1,y 1) ,P 2(x 2,y 2) ,且21PP P P λ= ,则定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x , 中点坐标公式⎪⎪⎩⎪⎪⎨⎧==y x第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b a ab +≤) (2)、a >0,b >0;ab b a 2≥+或2)2(b a ab +≤2、解指数、对数不等式的方法:同底法,同时对数的真数大于0;第七章:直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率B A k -=,y 轴截距为BC- 3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ; 垂直: 21211l l k k ⊥⇔-=⋅ 2121210l l B B A A ⊥⇒=+;(2)、夹角范围:]2,0(π夹角公式:12121tan k k k k +-=α 21k k 、都存在,0121≠+k k(3)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)4、圆的方程:(1)、圆的标准方程 222)()(r b y a x =-+-,圆心为),(b a C ,半径为r(2)圆的一般方程022=++++F Ey Dx y x (配方:44)2()2(2222F E D E y D x -+=+++) 0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第八章:直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 2、两点的球面距离求法:球心角的弧度数乘以球半径,即R l ⋅=α;第九章 排列 组合 二项式定理1、排列:(1)、排列数公式: mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).0!=1(2)、全排列:n 个不同元素全部取出的一个排列;!n A nn =)!1(123)2)(1(-⋅=⋅⋅⋅⋅--=n n n n n ; 2、组合:(1)、组合数公式: mn C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤);10=n C ;(2)、组合数的两个性质:m n C =m n n C - ;m n C +1-m n C =mn C 1+;3、二项式定理 :(1)二项展开式的通项公式(第r +1项):rr n r n r b a C T -+=1)210(n r ,,,= (2)各二项式系数和:C n 0+C n 1+C n 2+ C n 3+ C n 4+…+C n r +…+C n n =2n(表示含n 个元素的集合的所有子集的个数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学会考基础知识汇总集合与简易逻辑一.集合1、 集合的有关概念和运算(1)集合的特性:确定性、互异性和无序性;(2)元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;2、子集定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B , 注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ3、真子集定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂;4、补集定义:},|{A x U x x A C U ∉∈=且;5、交集与并集 交集:}|{B x A x x B A ∈∈=且 ;并集:}|{B x A x x B A ∈∈=或6、集合中元素的个数的计算: 若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。

二.简易逻辑:1.复合命题: 三种形式:p 或q 、p 且q 、非p ; 判断复合命题真假:2.真值表:p 或q ,同假为假,否则为真;p 且q ,同真为真;非p ,真假相反。

3.四种命题及其关系:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若⌝p 则⌝q ; 逆否命题:若⌝q 则⌝p ; 互为逆否的两个命题是等价的。

原命题与它的逆否命题是等价命题。

4.充分条件与必要条件: 若q p ⇒,则p 叫q 的充分条件; 若q p ⇐,则p 叫q 的必要条件; 若q p ⇔,则p 叫q 的充要条件;函数一. 函数1、映射:按照某种对应法则f ,集合A 中的任何一个元素,在B 中都有唯一确定的元素和它对应, 记作f :A →B ,若B b A a ∈∈,,且元素a 和元素b 对应,那么b 叫a 的象,a 叫b 的原象。

2、函数:(1)、定义:设A ,B 是非空数集,若按某种确定的对应关系f ,对于集合A 中的任意一个数x ,集合B 中都有唯一确定的数f (x )和它对应,就称f :A →B 为集合A 到集合B 的一个函数,记作y=f (x ), (2)、函数的三要素:定义域,值域,对应法则; 3、求定义域的一般方法:(1)已知解析式①整式:全体实数R ;②分式:分母0≠,0次幂:底数0≠; ③偶次根式:被开方式0≥,例:225x y -=;④对数:真数0>,例:)11(log xy a -=(2)抽象函数求定义域:已知y=f(x)定义域D ,求y=f[g(x)]的定义域;已知y=f[g(x)]的定义域C ,求y=f(x)定义域.括号内范围一致,定义域始终是关于自变量x 的范围。

4、求值域的一般方法:①图象观察法:||2.0x y =;②单调函数法: ]3,31[),13(log 2∈-=x x y ③二次函数配方法:)5,1[,42∈-=x x x y , 222++-=x x y④“一次”分式反函数法:12+=x xy ;⑥换元法:x x y 21-+=⑦构造解析式法 5、求函数解析式f (x )的一般方法:①待定系数法:一次函数f (x ),且满足172)1(2)1(3+=--+x x f x f ,求f (x ) ②配凑法:,1)1(22x x xx f +=-求f (x );③换元法:x x x f 2)1(+=+,求f (x ) 6、函数的单调性:(1)定义:区间D 上任意两个值21,x x ,若21x x <时有)()(21x f x f <,称)(x f 为D 上增函数; 若21x x <时有)()(21x f x f >,称)(x f 为D 上减函数。

(一致为增,不同为减) (2)区间D 叫函数)(x f 的单调区间,单调区间⊆定义域; (3)复合函数)]([x h f y =的单调性:即同增异减;7.奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。

f(x) -f(-x)=0⇔ f(x) =f(-x) ⇔f(x)为偶函数; f(x)+f(-x)=0⇔ f(x) =-f(-x) ⇔f(x)为奇函数。

8.周期性:定义:若函数f(x)对定义域内的任意x 满足:f(x+T)=f(x),则T 为函数f(x)的周期。

9.函数图像变换:(1)平移变换 y=f(x)→y=f(x+a),y=f(x)+b;(2)法则:加左减右,加上减下 (3)注意:(ⅰ)有系数,要先提取系数。

如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。

(ⅱ)会结合向量的平移,理解按照向量a (m,n)平移的意义。

10.反函数: (1)定义:函数)(x f y =的反函数为)(1x f y -=;函数)(x f y =和)(1x f y -=互为反函数;(2)反函数的性质:函数)(x f y =的定义域、值域分别是其反函数)(1x f y -=的值域、定义域; 函数)(x f y =的图象和它的反函数)(1x fy -=的图象关于直线x y =对称;点(a ,b )关于直线xy =的对称点为(b ,a ); 二、指对运算:1. 指数及其运算性质:当n 为奇数时,a a n n =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n n2.分数指数幂:正分数指数幂:n mnm a a =;负分数指数幂:nm nm aa1=-3.对数及其运算性质:(1)定义:如果)1,0(≠>=a a N a b,以10为底叫常用对数,记为lgN ,以e=2.7182828…为底叫自然对数,记为lnN(2)性质:①负数和零没有对数,②1的对数等于0:01log =a ,③底的对数等于1:1log =a a ,④积的对数:N M MN a a a log log )(log +=, 商的对数:N M NMa a a log log log -=,幂的对数:M n M a na log log =, 方根的对数:M nM a n a log 1log =,数列一.数列:(1)前n 项和:n n a a a a S ++++= 321; (2)前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n n n二.等差数列 :1.定义:d a a n n =-+1。

2.通项公式:d n a a n )1(1-+= (关于n 的一次函数),3.前n 项和:(1).2)(1n n a a n S += (2). d n n na S n 2)1(1-+=(即S n = An 2+Bn ) 4.等差中项: 2ba A +=或b a A +=2 5.等差数列的主要性质:(1)等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+。

()d m n a a mn-+=也就是: =+=+=+--23121n n na a a a a a ,如图所示:nn a a n a a n n a a a a a a ++---112,,,,,,12321(2)若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,则k S ,k k S S -2,k k S S 23-成等差数列。

如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++三.等比数列:1.定义:)0(1≠=+q q a a nn ;2.通项公式:11-=n n q a a (其中:首项是1a ,公比是q )3.前n 项和]:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S nn n (推导方法:乘公比,错位相减)说明:①)1(1)1(1≠--=q q q a S n n ; ○2)1(11≠--=q qq a a S n n ; ○3当1=q 时为常数列,1na S n =。

4.等比中项:Gb a G =,即ab G =2(或ab G ±=,等比中项有两个)5.等比数列的主要性质:(1)等比数列{}n a ,若v u m n +=+,则vu m n a a a a ⋅=⋅aa qmn mn-=也就是: =⋅=⋅=⋅--23121n n na a a a a a 。

如图所示:nn a a n a a n n a a a a a a ⋅⋅---112,,,,,,12321(2)若数列{}n a 是等比数列,n S 是前n 项的和,*N k ∈,则k S ,k k S S -2,k k S S 23-成等比数列。

如下图所示:k kk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++四.求数列的前n 项和的常用方法:分析通项,寻求解法1.公式法:等差等比数列 ;2.分组求和法:如a n =2n+3n3.裂项相消法:如a n =1(1)n n +;4.错位相减法:“差比之积”的数列:如a n =(2n-1)2n三角函数1、角:与α终边相同的角的集合为{Z k k ∈⋅+=,360|αββ}2、弧度制:(1)定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制。

(2)度数与弧度数的换算:π=180弧度,1弧度180()π=(3)弧长公式:r l ||α= (α是角的弧度数) 扇形面积:2||2121r lr S α===3、三角函数 定义:(如图) rxxyr y ===αααcos tan sin 4、同角三角函数基本关系式(1)平方关系: (2)商数关系:1cos sin 22=+αα αααcos sin tan =5、诱导公式(理解记忆方法:奇变偶不变,符号看象限)公式一: ααααααtan )360tan(cos )360cos(sin )360sin(=︒⋅+=︒⋅+=︒⋅+k k k 公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ ααπααπ-sin )2cos(cos )2sin(=-=- ααπααπsin )2cos(cos )2sin(-=+=+ ααπααπsin )23cos(cos )23sin(-=--=- ααπααπsin )23cos(cos )23sin(=+-=+6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a )(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-7、辅助角公式:sin cos cos cos sin )sin()a x b x x x x φφφ+=⋅+⋅=+(其中ϕ称为辅助角,ϕ的终边过点),(b a ,ab =ϕtan )8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=αααα2T : ααα2tan 1tan 22tan -= 212cos 2122cos 1cos 2+=+=ααα 9、三角函数的图象性质(1)函数的周期性: ①定义:对于函数f (x ),若存在一个非零常数T ,当x 取定义域内的每一个值时,都有:f (x +T )= f (x ),那么函数f (x )叫周期函数,非零常数T 叫这个函数的周期;②如果函数f (x )的所有周期中存在一个最小的正数,这个最小的正数叫f (x )的最小正周期。

相关文档
最新文档