高考数学模拟试题(一)
高考数学模拟试题含答案详解
高考数学模拟试题含答案详解一、选择题1. 已知函数 $ f(x) = x^2 4x + 3 $,求 $ f(2) $ 的值。
答案:将 $ x = 2 $ 代入函数 $ f(x) $,得 $ f(2) = 2^2 4\times 2 + 3 = 1 $。
2. 已知等差数列 $\{a_n\}$ 的首项为 $a_1 = 3$,公差为 $d = 2$,求第 $n$ 项 $a_n$ 的表达式。
答案:等差数列的通项公式为 $a_n = a_1 + (n 1)d$,代入$a_1 = 3$ 和 $d = 2$,得 $a_n = 3 + (n 1) \times 2 = 2n + 1$。
3. 已知等比数列 $\{b_n\}$ 的首项为 $b_1 = 2$,公比为 $q = 3$,求第 $n$ 项 $b_n$ 的表达式。
答案:等比数列的通项公式为 $b_n = b_1 \times q^{n1}$,代入 $b_1 = 2$ 和 $q = 3$,得 $b_n = 2 \times 3^{n1}$。
4. 已知三角形的两边长分别为 $a = 5$ 和 $b = 8$,夹角为$60^\circ$,求第三边长 $c$。
答案:利用余弦定理 $c^2 = a^2 + b^2 2ab \cos C$,代入 $a = 5$,$b = 8$,$C = 60^\circ$,得 $c^2 = 5^2 + 8^2 2 \times5 \times 8 \times \cos 60^\circ = 49$,所以 $c = 7$。
5. 已知函数 $ g(x) = \frac{1}{x} $,求 $ g(x) $ 的定义域。
答案:由于 $x$ 不能为 $0$,所以 $g(x)$ 的定义域为 $x \neq 0$。
二、填空题1. 已知函数 $ h(x) = \sqrt{4 x^2} $,求 $ h(x) $ 的定义域。
答案:由于根号内的值不能为负,所以 $4 x^2 \geq 0$,解得$2 \leq x \leq 2$。
广东省2024届高三春季高考模拟卷(1)数学试题含解析
2024年第一次广东省普通高中学业水平合格性考试数学冲刺卷(一)答案解析一、选择题:本大题共12小题,每小题6分,共72分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2,0,1,2A =-,{}21B x x =-≤≤∣,则A B = ()A.{}2- B.{}1 C.{}2,0,1- D.{}0,1,2【答案】C 【解析】【分析】根据集合交集运算求解即可.【详解】解:因为{}2,0,1,2A =-,{}21B xx =-≤≤∣,所以A B = {}2,0,1-故选:C2.已知角α的终边过点()1,2P -,则tan α等于()A.2 B.2- C.12-D.12【答案】B 【解析】【分析】由正切函数的定义计算.【详解】由题意2tan 21α==--.故选:B .3.下列函数中是减函数且值域为R 的是()A.1()f x x= B.1()f x x x=-C.()ln f x x= D.3()f x x=-【答案】D 【解析】【分析】由幂函数及对数函数的图象与性质即可求解.【详解】解:对A :函数()f x 的值域为()(),00,-∞⋃+∞,故选项A 错误;对B :函数()f x 为(),0∞-和()0,∞+上的增函数,故选项B 错误;对C :函数()ln ,0()ln ln ,0x x f x x x x >⎧==⎨-<⎩,所以()f x 在()0,∞+上单调递增,在(),0∞-上单调递减,故选项C 错误;对D :由幂函数的性质知()f x 为减函数且值域为R ,故选项D 正确;故选:D.4.不等式22150x x -++≤的解集为()A .532x x ⎧⎫-≤≤⎨⎬⎩⎭B.52x x ⎧≤-⎨⎩或}3x ≥C.532x x ⎧⎫-≤≤⎨⎬⎩⎭D.{3x x ≤-或52x ⎫≥⎬⎭【答案】B 【解析】【分析】将式子变形再因式分解,即可求出不等式的解集;【详解】解:依题意可得22150x x --≥,故()()2530x x +-≥,解得52x ≤-或3x ≥,所以不等式的解集为52x x ⎧≤-⎨⎩或}3x ≥故选:B .5.化简:AB OC OB +-=()A.BAB.CAC.CBD.AC【答案】D 【解析】【分析】根据向量的线性运算法则,准确运算,即可求解.【详解】根据向量的线性运算法则,可得()AB OC OB AB OC OB AB BC AC +-=+-=+=.故选:D.6.方程()234xf x x =+-的零点所在的区间为()A.()1,0- B.10,2⎛⎫ ⎪⎝⎭C.1,12⎛⎫ ⎪⎝⎭D.41,3⎛⎫⎪⎝⎭【答案】C 【解析】【分析】分析函数()f x 的单调性,利用零点存在定理可得出结论.【详解】因为函数2x y =、34y x =-均为R 上的增函数,故函数()f x 在R 上也为增函数,因为()10f -<,()00f <,15022f ⎛⎫=<⎪⎝⎭,()110f =>,由零点存在定理可知,函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:C.7.已知扇形的半径为1,圆心角为60 ,则这个扇形的弧长为()A.π6B.π3C.2π3D.60【答案】B 【解析】【分析】根据扇形的弧长公式计算即可.【详解】易知π603=,由扇形弧长公式可得ππ133l =⨯=.故选:B8.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.必然事件【答案】B 【解析】【分析】根据题意,分析可得“甲分得红牌”与“乙分得红牌”不会同时发生,但除了这2个事件外,还有事件“丙分得红牌”,由对立事件与互斥事件的概念,可得答案.【详解】根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,则两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,则两者不是对立事件,则事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件;故选:B .【点睛】本题考查对立事件与互斥事件的概念,要注意对立一定互斥,但互斥不一定对立,属于基础题.9.要得到函数4y sinx =-(3π)的图象,只需要将函数4y sin x =的图象A.向左平移12π个单位B.向右平移12π个单位C.向左平移3π个单位D .向右平移3π个单位【答案】B 【解析】【详解】因为函数sin 4sin[4()]312y x x ππ⎛⎫=-=- ⎪⎝⎭,要得到函数43y sin x π⎛⎫=- ⎪⎝⎭的图象,只需要将函数4y sin x =的图象向右平移12π个单位.本题选择B 选项.点睛:三角函数图象进行平移变换时注意提取x 的系数,进行周期变换时,需要将x 的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同.10.已知两条直线l ,m 与两个平面α,β,下列命题正确的是()A.若//l α,l m ⊥,则m α⊥B.若//αβ,//m α,则//m βC.若//l α,//m α,则//l mD.若l α⊥,l //β,则αβ⊥【答案】D 【解析】【分析】A.利用线面的位置关系判断;B.利用线面的位置关系判断;C.利用直线与直线的位置关系判断;D.由l //β,过l 作平面γ,有m γβ= ,利用线面平行的性质定理得到得到//l m ,再利用面面垂直的判定定理判断.【详解】A.若//l α,l m ⊥,则//,m m αα⊂或,m α相交,故错误;B.若//αβ,//m α,则//m β或m β⊂,故错误;C.若//l α,//m α,则//l m ,l ,m 相交或异面,故错误;D.若l //β,过l 作平面γ,有m γβ= ,则//l m ,因为l α⊥,所以m α⊥,又m β⊂,则αβ⊥,故正确.故选:D11.已知函数()122,0,log ,0,x x f x x x ⎧≤⎪=⎨>⎪⎩则()()2f f -=()A.-2B.-1C.1D.2【答案】D 【解析】【分析】先根据分段函数求出()2f -,再根据分段函数,即可求出结果.【详解】因为()21224f --==,所以()()12112log 244f f f ⎛⎫-=== ⎪⎝⎭.故选:D.12.已知37log 2a =,1314b ⎛⎫= ⎪⎝⎭,135log c =,则a 、b 、c 的大小关系为()A.a b c >> B.a c b>> C.b a c>> D.c b a>>【答案】A 【解析】【分析】利用对数函数、指数函数的单调性结合中间值法可得出a 、b 、c 的大小关系.【详解】因为337log log 312a =>=,13110144b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,1133log 5log 10c =<=,因此,a b c >>.故选:A.二、填空题:本大题共6小题,每小题6分,共36分.13.已知i 是虚数单位,则复数4i1i-+的虚部为__________.【答案】2-【解析】【分析】先把复数化简为22i --,再根据虚部定义得出即可.【详解】()()()()224i 1i 4i 1i 4i4i 4i =22i 1i 1i 1i 1i 2------===--++--,则复数的虚部为2-.故答案为:2-.14.函数51x y a -=+且((0a >且1a ≠)的图象必经过定点______________.【答案】(5,2)【解析】【分析】由指数函数的性质分析定点【详解】令50x -=,得5x =,此时2y =故过定点(5,2)15.如果函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的最小正周期为2π,则ω的值为______________.【答案】4【解析】【分析】根据正弦型函数的周期计算公式2T πω=即可求解.【详解】2T πω=,∴2242Tππωπ===.故答案为:4.16.已知圆柱的底面直径与高都等于球的直径,若该球的表面积为48π,则圆柱的侧面积为_____.【答案】48π.【解析】【分析】先由球的表面积为48π求出球的半径,然后由圆柱的侧面积公式算出即可【详解】因为球的表面积24π48πS R ==所以R所以圆柱的底面直径与高都为所以圆柱的侧面积:2π⨯故答案为:48π【点睛】本题考查的是空间几何体表面积的算法,较简单.17.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.【答案】18【解析】【详解】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .18.已知()f x 是定义在R 上的偶函数,当x ≥0时,()22xf x =-,则不等式()2f x ≤的解集是_______;【答案】[]22-,【解析】【分析】判断函数当0x ≥时的单调性,利用函数奇偶性和单调性的关系将不等式进行转化求解即可.【详解】∵当x ≥0时,()22xf x =-,∴偶函数()f x 在[0,+∞)上单调递增,且()2=2f ,所以()2f x ≤,即()()2fx f ≤,∴2x ≤,解得22x -≤≤.故答案为:[]22-,.三、解答题:本大题共4小题,第19~21题各10分,第22题12分,共42分.解答需写出文字说明,证明过程和演算步骤.19.在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,已知46,5,cos 5a b A ===-(1)求角B 的大小;(2)求三角形ABC 的面积.【答案】(1)B=300(2)93122ABC S ∆-=【解析】【详解】分析:(1)由同角三角函数关系先求3sin 5A =,由正弦定理可求sinB 的值,从而可求B 的值;(2)先求得()()sin 30C sin A B sin A =+=+的值,代入三角函数面积公式即可得结果.详解:(1)由正弦定理又∴B 为锐角sinA=35,由正弦定理B=300(2)()()sin 30C sin A B sin A =+=+,∴19312bsin 22ABC S a C -==点睛:以三角形和为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.20.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用比例分配的分层随机抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)20,30,[)30,40,⋅⋅⋅,[]80,90,并整理得到如下频率分布直方图:(1)根据频率分布直方图估计分数的样本数据的70%分位数;(2)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中女生的人数.【答案】(1)77.5;(2)160(人).【解析】【分析】(1)根据分位数的概念,结合题给频率分布直方图计算得出结果即可;(2)根据频率分布直方图计算出样本中分数不小于70的人数,进而计算出样本中男生及女生的人数,最后求出总体中女生的人数.【详解】(1)由频率分布直方图可知,样本中分数不小于70的频率为()0.020.04100.6+⨯=,从而有:样本中分数小于70的频率为10.60.4-=,又由频率分布直方图可得:样本中分数小于80的频率为0.8,所以样本数据的70%分位数必定位于[)70,80之间.计算为:0.70.4701077.50.80.4-+⨯=-所以其分数的样本数据的70%分位数估计值为77.5.(2)由题知,样本中分数不小于70的学生人数为()0.020.041010060+⨯⨯=,从而有,样本中分数不小于70的男生人数为160302⨯=,进而得,样本中的男生人数为30260⨯=,女生人数为1006040-=,所以总体中女生人数为40400160100⨯=(人).21.某市出租车的票价按以下规则制定:起步公里为2.6公里,收费10元;若超过2.6公里的,每公里按2.4元收费.(1)设A 地到B 地的路程为4.1公里,若搭乘出租车从A 地到B 地,需要付费多少?(2)若某乘客搭乘出租车共付费16元,则该出租车共行驶了多少公里?【答案】(1)13.6元(2)5.1公里【解析】【分析】(1)设出租车行驶x 公里,根据题设写出付费额()f x 的分段函数形式,进而求从A 地到B 地需要的付费;(2)由题意出租车行驶公里数 2.6x >,结合解析式列方程求该出租车共行驶的公里数.【小问1详解】设出租车行驶x 公里,则付费额10,0 2.6()10 2.4( 2.6), 2.6x f x x x <≤⎧=⎨+->⎩,所以(4.1)10 2.4(4.1 2.6)13.6f =+⨯-=元.【小问2详解】由题意,出租车行驶公里数 2.6x >,令10 2.4( 2.6)16x +-=,则 5.1x =公里.22.如图,在三棱锥V-ABC 中,平面VAB ⊥平面ABC ,VAB 为等边三角形,AC BC ⊥,且AC=BC=,O,M分别为AB,VA 的中点.(1)求证:VB //平面MOC ;(2)求三棱锥V-ABC 的体积.【答案】(1)证明见解析;(2)33.【解析】【详解】试题分析:(1)要证明线面平行,就是要证线线平行,题中有中点,由中位线定理易得线线平行,注意得出线面平行结论时,必须把判定定理的条件写全;(2)要求三棱锥的体积,首先要确定高,本题中有面面垂直,由此易得VO 与底面ABC 垂直,因此VO 就是高,求出其长,及ABC 面积,可得体积.试题解析:(1)证明: 点O,M 分别为AB,VA 的中点//OM VB ∴又,OM MOC VB MOC ⊂⊄平面平面//VB MOC∴平面(2)解:连接VO ,则由题知VO ⊥平面AB C,∴VO 为三棱锥V-ABC 的高.又112ABC S VO === ,11.1333V ABC ABC V S VO -∴==⨯=考点:线面平行的判断,体积.。
高考数学模拟试题及答案
高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵C D=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。
高考数学(理科)模拟试题含答案(一)精编版
高考数学(理科)模拟试题含答案(一)精编版高考理科数学模拟试题精编(一)注意事项:1.作答选择题时,在答题卡上涂黑对应选项的答案信息点。
如需改动,先擦干净再涂其他答案。
不得在试卷上作答。
2.非选择题用黑色钢笔或签字笔作答,写在答题卡指定区域内。
如需改动,先划掉原答案再写新答案。
不得用铅笔或涂改液。
不按要求作答无效。
3.答题卡需整洁无误。
考试结束后,交回试卷和答题卡。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设全集Q={x|2x²-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A。
3B。
4C。
7D。
82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则z=()A。
iB。
-iC。
2iD。
-2i3.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A。
80B。
85C。
90D。
954.XXX每天上学都需要经过一个有交通信号灯的十字路口。
已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒。
如果XXX每天到路口的时间是随机的,则XXX上学时到十字路口需要等待的时间不少于20秒的概率是()A。
4/5B。
3/4C。
2/3D。
3/56.已知p:a=±1,q:函数f(x)=ln(x+a²+x²)为奇函数,则p 是q成立的()A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件7.(省略了一个选项) 327.(1+x²+4x)²的常数项为()A。
120B。
160C。
200D。
2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()A。
3.119B。
甘肃省秦安一中重点中学2024年高考模拟调研卷数学试题(一)
甘肃省秦安一中重点中学2024年高考模拟调研卷数学试题(一)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线C :22221(0,0)x y a b a b-=>>的焦点为1F ,2F ,且C 上点P 满足120PF PF ⋅=,13PF =,24PF =,则双曲线C 的离心率为A .2B C .52D .52.由曲线y =x 2与曲线y 2=x 所围成的平面图形的面积为( ) A .1B .13C .23D .433.若等差数列{}n a 的前n 项和为n S ,且130S =,3421a a +=,则7S 的值为( ). A .21B .63C .13D .844.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( ) A .235B .835C .635D .375.对两个变量进行回归分析,给出如下一组样本数据:()0.675,0.989-,()1.102,0.010-,()2.899,1.024,()9.101,2.978,下列函数模型中拟合较好的是( )A .3y x =B .3x y =C .()21y x =--D .3log y x =6.已知函数()cos 221f x x x =++,则下列判断错误的是( ) A .()f x 的最小正周期为π B .()f x 的值域为[1,3]-C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,04π⎛⎫-⎪⎝⎭对称 7.已知角a 的终边经过点()()4,30P m m m -≠,则2sin cos a a +的值是( ) A .1或1-B .25或25- C .1或25-D .1-或258.已知0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,cos2tan 1sin 2βαβ=-,则( )A .22παβ+=B .4παβ+=C .4αβ-=π D .22παβ+=9.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线OL 时,表示收入完全平等.劳伦茨曲线为折线OKL 时,表示收入完全不平等.记区域A 为不平等区域,a 表示其面积,S 为OKL △的面积,将Gini aS=称为基尼系数.对于下列说法:①Gini 越小,则国民分配越公平;②设劳伦茨曲线对应的函数为()y f x =,则对(0,1)x ∀∈,均有()1f x x >; ③若某国家某年的劳伦茨曲线近似为2([0,1])y x x =∈,则1Gini 4=; ④若某国家某年的劳伦茨曲线近似为3([0,1])y x x =∈,则1Gini 2=. 其中正确的是: A .①④B .②③C .①③④D .①②④ 10.已知实数x ,y 满足约束条件202201x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则目标函数21y z x -=+的最小值为A .23-B .54-C .43-D .12-11.己知函数sin ,2,2(),2223sin ,2,2(),222x x k k k z y x x k k k z ππππππππππ⎧⎛⎫⎡⎫+∈-+∈ ⎪⎪⎪⎢⎪⎝⎭⎣⎭=⎨⎛⎫⎡⎫⎪-+∈++∈ ⎪⎪⎢⎪⎝⎭⎣⎭⎩的图象与直线(2)(0)y m x m =+>恰有四个公共点()()()()11123344,,,,.,,,A x y B x y C x y D x y ,其中1234x x x x <<<,则()442tan x x +=( ) A .1-B .0C .1D .222+ 12.已知等差数列{}n a 的前n 项和为n S ,若1512,90a S ==,则等差数列{}n a 公差d =( ) A .2B .32C .3D .4二、填空题:本题共4小题,每小题5分,共20分。
深圳市育才中学2024年高三高考数学试题系列模拟卷(1)
深圳市育才中学2024年高三高考数学试题系列模拟卷(1)注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A .3-B .2-C .1-D .12.若复数z 满足(1)34i z i +=+,则z 的虚部为( )A .5B .52C .52-D .-53.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .4.已知函数,其中04?,?04b c ≤≤≤≤,记函数满足条件:(2)12{(2)4f f ≤-≤为事件A ,则事件A发生的概率为 A .14B .58C .38D .125.已知向量(1,4)a =,(2,)b m =-,若||||a b a b +=-,则m =( )A .12-B .12C .-8D .86.设抛物线2:2(0)C y px p =>的焦点为F ,抛物线C 与圆22:(3)3C x y +-='交于M ,N 两点,若||6MN =,则MNF 的面积为( )A .28B .38C .328D .3247.已知变量x ,y 间存在线性相关关系,其数据如下表,回归直线方程为 2.10.5ˆ8y x =+,则表中数据m 的值为( )变量x 01 2 3 变量y m35.57A .0.9B .0.85C .0.75D .0.58.已知函数21,0()2ln(1),0x x x f x x x ⎧-+<⎪=⎨⎪+≥⎩,若函数()()g x f x kx =-有三个零点,则实数k 的取值范围是( ) A .112⎡⎤⎢⎥⎣⎦, B .112⎛⎫ ⎪⎝⎭, C .(0,1)D .12⎛⎫+∞ ⎪⎝⎭, 9.已知1111143579π≈-+-+-,如图是求π的近似值的一个程序框图,则图中空白框中应填入A .121i n =-- B .12i i =-+ C .(1)21ni n -=+D .(1)2ni i -=+10.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( ).A .收入最高值与收入最低值的比是3:1B .结余最高的月份是7月份C .1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元11.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .12.已知双曲线2222:1x y C a b-=(0a >,0b >),以点P (,0b )为圆心,a 为半径作圆P ,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若90MPN ∠=︒,则C 的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。
高三数学-2024年全国普通高中九省联考仿真模拟数学试题(一)(解析版)
2024年高考仿真模拟数试题(一)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ()A.4B.5C.6D.7【答案】C 【解析】【分析】根据百分位数的定义求解即可.【详解】这组数据为:1,1,,4,5,5,6,7a ,但a 大小不定,因为80.756⨯=,所以这组数据的75%分位数为从小到大的顺序的第6个数和第7个数的平均数,经检验,只有6a =符合.故选:C .2.已知椭圆E :()222210x y a b a b+=>>的长轴长是短轴长的3倍,则E 的离心率为()A.3B.223C.33D.233【答案】B 【解析】【分析】根据题意可得26a b =,再根据离心率公式即可得解.【详解】由题意,26a b =,所以13b a =,则离心率3c e a ====.故选:B .3.设等差数列{}n a 的前n 项和为n S ,若789101120a a a a a ++++=,则17S =()A.150B.120C.75D.68【答案】D 【解析】【分析】由等差数列的性质及求和公式计算即可得解.【详解】由等差数列的性质可知78910911205a a a a a a ++++==,所以94a =,()1171791717682a a S a +===,故选:D.4.已知空间中,l 、m 、n 是互不相同直线,α、β是不重合的平面,则下列命题为真命题的是()A.若//αβ,l ⊂α,n β⊂,则//l nB.若//l α,//l β,则//αβC.若//m β,//n β,m α⊂,n ⊂α,则//αβD.若l α⊥,//l β,则αβ⊥【答案】D 【解析】【分析】对A 、B 、C 选项,可通过找反例排除,对D 选项,可结合线面平行的性质及面面垂直的判定定理得到.【详解】对A 选项:若//αβ,l ⊂α,n β⊂,则l 可能与n 平行或异面,故A 错误;对B 选项:若//l α,//l β,则α与β可能平行或相交,故B 错误;对C 选项:若//m β,//n β,m α⊂,n ⊂α,可能//m n ,此时α与β可能平行或相交,故C 错误;对D 选项:若//l β,则必存在直线p β⊂,使//l p ,又l α⊥,则p α⊥,又p β⊂,则αβ⊥,故D 正确.故选:D.5.7个人站成两排,前排3人,后排4人,其中甲乙两人必须挨着,甲丙必须分开站,则一共有()种站排方式.A.672 B.864 C.936 D.1056【答案】D 【解析】【分析】分甲站在每一排的两端和甲不站在每一排的两端这两种情况解答即可.【详解】当甲站在每一排的两端时,有4种站法,此时乙的位置确定,剩下的人随便排,有554A 480=种站排方式;当甲不站在每一排的两端时,有3种站法,此时乙和甲相邻有两个位置可选,丙和甲不相邻有四个位置可选,剩下的人随便站,有1142443C C A 576=种站排方式;故总共有4805761056+=种站排方式.故选:D .6.在平面直角坐标系xOy 中,已知()1,0A ,()0,3B ,动点P 满足OP xOA yOB =+,且1x y +=,则下列说法正确的是()A.P 的轨迹为圆B.P 到原点最短距离为1C.P 点轨迹是一个菱形D.点P 的轨迹所围成的图形面积为4【答案】C 【解析】【分析】由题意得3x ab y =⎧⎪⎨=⎪⎩,结合1x y +=可知33a b +=,画出图形可知P 点轨迹是一个菱形,故C错误A 正确;由点到直线的距离即可验证B ;转换成ABC 面积的两倍来求即可.【详解】设P 点坐标为(),a b ,则由已知条件OP xOA yOB =+ 可得3a x b y =⎧⎨=⎩,整理得3x a b y =⎧⎪⎨=⎪⎩.又因为1x y +=,所以P 点坐标对应轨迹方程为33a b +=.0a ≥,且0b ≥时,方程为33a b +=;0a ≥,且0b <时,方程为33b a =-;a<0,且0b ≥时,方程为33b a =+;a<0,且0b <时,方程为33a b +=-.P 点对应的轨迹如图所示:3AB CD k k ==-,且AB BC CD DA ====P 点的轨迹为菱形.A 错误,C 正确;原点到AB :330a b +-=1.10=<B 错误;轨迹图形是平行四边形,面积为122362⨯⨯⨯=,D 错误.故选:C .7.已知函数()3sin 44sin 436f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,设()00,,()x x f x f x ∀∈∃∈≤R R ,则02tan 43x π⎛⎫-⎪⎝⎭等于()A.43-B.34-C.34D.43【答案】B 【解析】【分析】根据诱导公式得到()f x 最大值,即得到关于0x 的关系式,代入02tan 43x π⎛⎫-⎪⎝⎭利用诱导公式即可.【详解】()3sin 44sin 43sin(4)4sin(4)36323f x x x x x πππππ⎛⎫⎛⎫=++-=++-++ ⎪ ⎪⎝⎭⎝⎭,()3sin(4)4cos(433f x x x ππ∴=+++,4()5sin(4)(tan 33f x x πϕϕ∴=++=,max 5()f x =∴,()00,,()x x f x f x ∀∈∃∈≤R R ,0234(Z)2k k x πππϕ+=+∈+∴,0213tan 4tan(2)32tan 4x k πππϕϕ⎛⎫∴-=-+-=-=- ⎪⎝⎭.故选:B.8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为1F ,离心率为e ,直线(0)y kx k =≠分别与C 的左、右两支交于点M ,N .若1MF N 的面积为160MF N ∠=︒,则22e 3a +的最小值为()A.2B.3C.6D.7【答案】D 【解析】【分析】作出辅助线,121F NF MF N S S == 124NF NF ⋅=,利用双曲线定义和余弦定理求出21243b F N F N ⋅=,求出23b =,进而求出22223e 31317a a a +=++≥+=.【详解】连接22,NF MF ,有对称性可知:四边形12MF NF 为平行四边形,故2112,NF MF NF MF ==,12120FNF ∠=︒,121F NFMF N S S ==由面积公式得:121sin1202NF NF ⋅︒=124NF NF ⋅=,由双曲线定义可知:122F N F N a -=,在三角形12F NF 中,由余弦定理得:()222221212121212244cos12022F N F N F N F N cF N F N c F N F N F N F N-+⋅-+-︒==⋅⋅2121224122F N F N b F N F N ⋅-==-⋅,解得:21243b F N F N ⋅=,所以2443b =,解得:23b =,故22223e 31317a a a +=++≥+=,当且仅当2233a a=,即21a =时,等号成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()2sin sin 2f x x x=-,则下列结论正确的有()A.()f x 为奇函数B.()f x 是以π为周期的函数C.()f x 的图象关于直线π2x =对称 D.π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x的最大值为22-【答案】AD 【解析】【分析】对于A ,由正弦函数的奇偶性即可判断;对于B ,判断()()πf x f x +=是否成立即可;对于C ,判断ππ22f x f x ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭是否成立即可;对于D ,可得π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递增,由此即可得解.【详解】对于A ,()2sin sin 2f x x x =-的定义域为()π,2k x k ≠∈Z (关于原点对称),且()()()()22sin sin sin 2sin 2f x x x f x x x ⎛⎫-=--=--= ⎪-⎝⎭,对于B ,()()()()22πsin πsin sin 2sin 2πf x x x f x x x +=+-=--≠⎡⎤+⎣⎦,故B 错误;对于C ,ππ22sin cos 22sin 2πsin 22f x x x x x ⎛⎫⎛⎫+=+-=+⎪ ⎪⎡⎤⎛⎫⎝⎭⎝⎭+ ⎪⎢⎥⎝⎭⎣⎦,ππ22sin cos 22sin 2πsin 22f x x x x x ⎛⎫⎛⎫-=--=-⎪ ⎪⎡⎤⎛⎫⎝⎭⎝⎭- ⎪⎢⎥⎝⎭⎣⎦,但ππ22f x f x ⎛⎫⎛⎫+≠-⎪ ⎪⎝⎭⎝⎭,即()f x 的图象不关于直线π2x =对称,故C 错误;对于D ,π0,4x ⎛⎤∈ ⎥⎝⎦时,sin ,sin 2y x y x ==均单调递增,所以此时2sin 2y x=-也单调递增,所以π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递增,其最大值为π2242f ⎛⎫=- ⎪⎝⎭.故选:AD.10.已知复数1z ,2z ,则下列命题成立的有()A.若1212z z z z +=-,则120z z = B.11,Z nnz z n =∈C.若22120z z +=,则12=z z D.1212z z z z ⋅=⋅【答案】BCD 【解析】【分析】举例说明判断A ;利用复数的三角形式计算判断B ;利用复数的代数形式,结合模及共轭复数的意义计算判断CD.【详解】对于A ,当121i,1i =+=-z z 时,12122z z z z +==-,而1220z z =≠,A 错误;对于B ,令1(cos isin ),0,R z r r θθθ=+≥∈,则1(cos isin )n nz r n n θθ=+,于是1|||cos isin |nnnz r n n r θθ=+=,而1||z r =,即有1||nnz r =,因此11nnz z =成立,B 正确;设复数1i(,R)z a b a b =+∈,2i(,)z c d c d =+∈R ,对于C ,由22120z z +=,得2222()(22)i 0a b c d ab cd -+-++=,则22220220a b c d ab cd ⎧-+-=⎨+=⎩,2222120z z -=-=,因此12=z z ,C 正确;对于D ,21(i)(i)()()i z a b c d ac bd c z ad b ⋅=++=-++,则21()()i z ac bd a b z d c ⋅=--+,12(i)(i)()()i z z a b c d ac bd ad bc ⋅=--=--+,因此1212z z z z ⋅=⋅,D 正确.故选:BCD11.已知函数()f x 满足:①对任意,x y ∈R ,()()()()()2f x y f x f y f x f y +++=⋅+;②若x y ≠,则()()f x f y ≠.则()A.()0f 的值为2B.()()4f x f x +-≥C.若()13f =,则()39f = D.若()410f =,则()24f -=【答案】ABC 【解析】【分析】对于A ,令0x y ==,结合“若x y ≠,则()()f x f y ≠”即可判断;对于B ,由基本不等式相关推理结合()2040f =>即可判断;对于C ,令1y =得,()()()1332f x f x f x +++=+,由此即可判断;对于D ,令()1xf x =+,即可判断.【详解】对于A ,令0x y ==,得()()23002f f =+⎡⎤⎣⎦,解得()01f =或()02f =,若()01f =,令0y =,得()()212f x f x +=+,即()1f x ≡,但这与②若x y ≠,则()()f x f y ≠矛盾,所以只能()02f =,故A 正确;对于B ,令y x =-,结合()02f =得,()()()()()()22f x f x f x f x f x f x ⎛⎫+-+-=⋅-≤ ⎪⎝⎭,解得()()4f x f x +-≥或()()0f x f x +-≤,又()02f =,所以()2040f =>,所以只能()()4f x f x +-≥,故B 正确;对于C ,若()13f =,令1y =得,()()()1332f x f x f x +++=+,所以()()121f x f x +=-,所以()()2161521f f =-=-=,所以()()21101932f f =-=-=,故C 正确;对于D ,取()1xf x =+,则()()11232xyx yx yf x f y +⎡⎤⎡⎤+++=+++⎢⎥⎢⎥⎣⋅=⎣+⎦⎦()()()f x y f x f y +++=且()1xf x =+单调递增,满足()410f =,但()423f -=,故D 错误.故选:ABC.【点睛】关键点睛:判断D 选项的关键是构造()1xf x =+,由此即可证伪.三、填空题:本题共3小题,每小题5分,共15分.12.设集合{}2,0,1M =-,{}1N x x a =-<,若M N ⋂的真子集的个数是1,则正实数a 的取值范围为______.【答案】()()0,11,3 【解析】【分析】分{}0M N = 和{}2M N = 讨论即可.【详解】{}1N x x a =-<,则11x a -<-<,解得11a x a -+<<+,若M N ⋂的真子集的个数是1,则M N ⋂中只含有一个元素,因为a 为正实数,则11a +>,11a -+>-,若{}0M N = ,则10120a a a -+<⎧⎪+≤⎨⎪>⎩,解得01a <<,若{}2M N = ,则012120a a a ≤-+<⎧⎪+>⎨⎪>⎩,解得13a <<,综上所述,a 的取值范围为()()0,11,3 .故答案为:()()0,11,3 .13.已知正四棱台1111ABCD A B C D -的上、下底面边长分别为4、6,则正四棱台1111ABCD A B C D -的体积为______,外接球的半径为______.【答案】①.3②.【解析】【分析】利用棱台的体积公式计算即可得第一空,根据棱台与球的特征结合勾股定理计算即可得第二空.【详解】根据题意易知该棱台的上、下底面积分别为:2212416,636S S ====,所以正四棱台1111ABCD A B C D -的体积为()12176233V S S =++=;连接AC ,BD 交于点2O ,连接11A C ,11B D 交于点1O,如图所示:当外接球的球心O 在线段12O O 延长线上,设1OO h =,外接球半径为R,则(222O O h =-,因为12=O O ,上、下底面边长分别为4、6,则111112==D O B D 212DO BD ==,所以(22222112R D O h DO h h R =+=+-⇒==当外接球的球心O 在线段21O O 延长线上,显然不合题意;当球心O 在线段12O O 之间时,则)222O O h =,同上可得,h =故答案为:3.14.若sin 0αβγ+-=+-的最大值为______.【答案】【解析】≤=消去α、β求最大值即可,再应用三角函数的单调性即可得.【详解】由题意得:0sin 1αβγ≤+=≤,0α≥,0β≥,则()22αβαβαβαβ=+++++=+,当且仅当αβ=时等号成立,+≤=≤,则有0sin 10cos 1γγ≤≤⎧⎨≤≤⎩,则π2π2π2k k γ≤≤+,Z k ∈,有sin γ在π2π2π2k k ⎡⎤+⎢⎥⎣⎦,单调递增,cos γ在π2π2π2k k ⎡⎤+⎢⎥⎣⎦,上单调递减,π2π2π2k k ⎡⎤+⎢⎥⎣⎦,上单调递增,则当π2π2k γ=+时,即sin 1γ=、cos 0γ=时,,+-的最大值为..【点睛】本题关键在于如何将多变量求最值问题中的多变量消去,结合基本不等式与题目条件可将α、β消去,再结合三角函数的值域与单调性即可求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.函数()e 2xf x ax a =--.(1)讨论函数的极值;(2)当0a >时,求函数()f x 的零点个数.【答案】(1)答案见解析(2)答案见解析【解析】【分析】(1)求导后,分别在0a ≤和0a >的情况下得到()f x '正负,进而得到()f x 单调性,由极值定义可求得结果;(2)由(1)可知()f x 单调性,分别讨论极小值大于零、等于零和小于零的情况,结合零点存在定理可得结论.【小问1详解】由题意得:()e 2xf x a '=-;当20a ≤,即0a ≤时,()0f x ¢>恒成立,()f x \在R 上单调递增,无极值;当20a >,即0a >时,令()0f x '=,解得:ln 2x a =,∴当(),ln 2x a ∈-∞时,()0f x '<;当()ln 2,x a ∈+∞时,()0f x ¢>;()f x \在(),ln 2a -∞上单调递减,在()ln 2,a +∞上单调递增,()f x \的极小值为()ln 22ln 2f a a a a =-,无极大值;综上所述:当0a ≤时,()f x 无极值;当0a >时,()f x 极小值为2ln 2a a a -,无极大值.【小问2详解】由(1)知:当0a >时,()f x 在(),ln 2a -∞上单调递减,在()ln 2,a +∞上单调递增;当02a <<时,()ln 22ln 20f a a a a =->,()0f x ∴>恒成立,()f x 无零点;当a =时,()ln 22ln 20f a a a a =-=,()f x 有唯一零点ln 2x a =;当2a >时,()ln 22ln 20f a a a a =-<,又()010f a =->,当x 趋近于正无穷大时,()f x 也趋近于正无穷大,()f x \在()0,ln 2a 和()ln 2,a +∞上各存在一个零点,即()f x 有两个零点;综上所述:当e 02a <<时,()f x 无零点;当2a =时,()f x 有且仅有一个零点;当e 2a >时,()f x 有两个不同的零点.16.已知n 把相同的椅子围成一个圆环;两个人分别从中随机选择一把椅子坐下.(1)当12n =时,设两个人座位之间空了X 把椅子(以相隔位子少的情况计数),求X 的分布列及数学期望;(2)若另有m 把相同的椅子也围成一个圆环,两个人从上述两个圆环中等可能选择一个,并从中选择一把椅子坐下,若两人选择相邻座位的概率为114,求整数(),3,3m n m n >>的所有可能取值.【答案】(1)分布列见解析,数学期望为2511(2)9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩【解析】【分析】(1)根据题意得到随机变量X 可以取0,1,2,3,4,5,并计算出相应的概率,列出分布列,利于期望公式计算即可;(2)利于概率求得两人选择相邻座位的概率,建立方程后依据条件可求得整数解即可.【小问1详解】由题意,得随机变量X 可以取0,1,2,3,4,5,其中()()21212220,1,2,3,4A 11P X i i ⨯====,()21212115A 11P X ⨯===,所以随机变量X 的分布列为:X012345P 211211************故()2222212501234511111111111111E X =⨯+⨯+⨯+⨯+⨯+⨯=.【小问2详解】记“两人选择n 把相同的椅子围成的圆环”为事件A ,“两人选择m 把相同的椅子围成的圆环”为事件B ,“两人选择相邻座位”为事件C .因为两个人从上述两个圆环中等可能选择一个,所以()()1111,2244P A P B =⨯==,()()()()()()()P C P AC P BC P A P C A P B P C B =+=+()()12121114141211n m n n m m n m ⨯⨯⎛⎫=⨯+⨯=+ ⎪----⎝⎭.因为()114P C =,所以111117n m +=--.化简,得4988n m =+-.因为*3,3,m n n >>∈N ,所以498m ∈-Z ,且4958m >--.所以81,7,49m -=,即9,15,57m =,此时9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩所以,m n 的所有可能取值为9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩17.如图,在多面体ABCDEF 中,底面ABCD 为平行四边形,//EF 平面AB CD -,EAB 为等边三角形,22,60BC CE AB EF ABC ===∠=︒.(1)求证:平面EAB ⊥平面ABCD ;(2)求平面ECD 与平面FCD 夹角的余弦值.【答案】(1)证明见解析(2)31010【解析】【分析】(1)根据面面垂直的判定定理证明即可;(2)建立空间直角坐标系,利用向量的方法即可求得平面平面ECD 与平面FCD 的夹角的余弦值.【小问1详解】不妨设1AB =,则2BC CE ==,在平行四边形ABCD 中,2BC = ,1AB =,60ABC ∠=︒,连接AC ,由余弦定理得22212211cos 603AC =+-⨯⨯⨯︒=,即3AC =,222AC AB BC += ,AC AB ∴⊥.又 222AC AE CE +=,AC AE ∴⊥,AB AE A = ,AC ⊥平面EAB ,又 AC ⊂平面ABCD .∴平面EAB ⊥平面ABCD .【小问2详解】取AB 中点G ,连接EG ,EA EB = ,EG AB ∴⊥,由(1)易知EG ⊥平面ABCD ,且32EG =.如图,以A 为原点,分别以射线,AB AC 所在直线为,x y 轴,竖直向上为z 轴,建立空间直角坐标系A xyz -,则1,0,22E ⎛⎫ ⎪ ⎪⎝⎭,0,,22F ⎛⎫ ⎪ ⎪⎝⎭,()C,()D -,()12,B -,(11,C -,()1,0,0CD =- ,330,,22FC ⎛⎫=- ⎪ ⎪⎝⎭,1322EC ⎛⎫=-- ⎪ ⎪⎝⎭ ,设平面FCD 的法向量为(),,n x y z = ,则00n CD n FC ⎧⋅=⎪⎨⋅=⎪⎩ ,得0022x y z -=⎧-=⎩,令1y =,得()0,1,1n = ,设平面ECD 的法向量为()111,,m x y z = ,则00m CD m EC ⎧⋅=⎪⎨⋅=⎪⎩ ,得1111013022x x z -=⎧⎪⎨-+-=⎪⎩,令11y =,得()0,1,2m =,310cos ,10m n m n m n ⋅===⋅ ,所以平面ECD 与平面FCD 夹角的余弦值31010.18.已知抛物线C :22y px =(05p <<)上一点M 的纵坐标为3,点M 到焦点距离为5.(1)求抛物线C 的方程;(2)过点()1,0作直线交C 于A ,B 两点,过点A ,B 分别作C 的切线1l 与2l ,1l 与2l 相交于点D ,过点A 作直线3l 垂直于1l ,过点B 作直线4l 垂直于2l ,3l 与4l 相交于点E ,1l 、2l 、3l 、4l 分别与x 轴交于点P 、Q 、R 、S .记DPQ V 、DAB 、ABE 、ERS △的面积分别为1S 、2S 、3S 、4S .若12344S S S S =,求直线AB 的方程.【答案】(1)22y x=(2)10x -=【解析】【分析】(1)结合抛物线定义即可.(2)设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m R ∈),与抛物线方程联立得12y y +,12y y .将每条直线表达出来,1S 、2S 、3S 、4S 表达出来,再由12344S S S S =得出m 即可.【小问1详解】设(),3M t ,由题意可得9252pt p t =⎧⎪⎨+=⎪⎩,即9522p p +=,解得1p =或9p =(舍去),所以抛物线C 的方程为22y x =.【小问2详解】如图,设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m R ∈),与抛物线方程22y x =联立可得222y my =+,即2220y my --=,2480m ∆=+>∴122y y m +=,122y y =-.∵22y x =,则y =∴'1y y==,∴过点A 作C 的切线1l 方程为()11111112y y x x y x y y =-+=+,令0y =,得212y x =-,即21,02y P ⎛⎫- ⎪⎝⎭.同理,过点B 作C 的切线2l 方程为2212y y x y =+,令0y =,得222y x =-,即22,02y Q ⎛⎫- ⎪⎝⎭.∴222122y y PQ =-.联立两直线方程11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得1212122y y x y y y m ⎧==-⎪⎪⎨+⎪==⎪⎩,即()1,D m -,则D 到直线AB l的距离2D AB d -==.又∵过点A 作直线3l 垂直于1l ,直线3l 的方程为311111112y y y x x y y y x y =-++=-++,令0y =,得2112y x =+,即211,02y R ⎛⎫+ ⎪⎝⎭.同理,直线4l 的方程为32222y y y x y =-++,令0y =,得2212y x =+,即221,02y S ⎛⎫+ ⎪⎝⎭.∴222122y y RS =-.联立两直线方程3111322222y y y x y y y y x y ⎧=-++⎪⎪⎨⎪=-++⎪⎩,解得()2212121212122y y y y x y y y y y ⎧++=+⎪⎪⎨+⎪=-⎪⎩,整理后可得2222x m y m⎧=+⎨=⎩,即()222,2E m m +,则E 到直线AB l的距离E AB d -==由上可得22211112222D y y S PQ y m =⋅=-,212d AB S AB d -=⋅=,312E AB S AB d -=⋅=,222141122222E y y S RS y m =⋅=-,∴12342242S S S S m =+=,得m =,∴直线AB的方程为1x =+即10x ±-=.19.已知有穷数列12:n A a a a ,,,(3)n ≥中的每一项都是不大于n 的正整数.对于满足1m n ≤≤的整数m ,令集合(){}12k A m k a m k n === ,,,,.记集合()A m 中元素的个数为()s m (约定空集的元素个数为0).(1)若:63253755A ,,,,,,,,求(5)A 及(5)s ;(2)若12111()()()n n s a s a s a +++= ,求证:12,,,n a a a 互不相同;(3)已知12,a a a b ==,若对任意的正整数()i j i j i j n ≠+≤,,都有()i i j A a +∈或()j i j A a +∈,求12n a a a +++ 的值.【答案】(1)(5){478}A =,,,(5)=3s .(2)证明见解析(3)答案见解析【解析】【分析】(1)观察数列,结合题意得到(5)A 及(5)s ;(2)先得到11()i s a ≤,故12111()()()n n s a s a s a +++≤ ,再由12111()()()n n s a s a s a +++= 得到()1i s a =,从而证明出结论;(3)由题意得i j i a a +=或i j j a a +=,令1j =,得到32a a =或31a a =,当a b =时得到12n a a a na +++= ,当a b ¹时,考虑3a a =或3a b =两种情况,求出答案.【小问1详解】因为4785a a a ===,所以{}(5)4,7,8A =,则(5)=3s ;【小问2详解】依题意()1,12i s a i n ≥=,,, ,则有11()i s a ≤,因此12111()()()n n s a s a s a +++≤ ,又因为12111()()()n n s a s a s a +++= ,所以()1i s a =所以12,,,n a a a 互不相同.【小问3详解】依题意12,.a a ab ==由()i i j A a +∈或()j i j A a +∈,知i j i a a +=或i j j a a +=.令1j =,可得1i i a a +=或11i a a +=,对于2,3,...1i n =-成立,故32a a =或31a a =.①当a b =时,34n a a a a ==== ,所以12n a a a na +++= .②当a b ¹时,3a a =或3a b =.当3a a =时,由43a a =或41a a =,有4a a =,同理56n a a a a ==== ,所以12(1)n a a a n a b +++=-+ .当3a b =时,此时有23a a b ==,令13i j ==,,可得4()A a ∈或4()A b ∈,即4a a =或4a b =.令14i j ==,,可得5()A a ∈或5()A b ∈.令23i j ==,,可得5()A b ∈.所以5a b =.若4a a =,则令14i j ==,,可得5a a =,与5a b =矛盾.所以有4a b =.不妨设23(5)k a a a b k ====≥ ,令1(2,3,,1)i t j k t t k ==+-=-, ,可得1()k A b +∈,因此1k a b +=.令1,i j k ==,则1k a a +=或1k a b +=.故1k a b +=.所以12(1)n a a a n b a +++=-+ .综上,a b =时,12n a a a na +++= .3a a b =≠时,12(1)n a a a n a b +++=-+ .3a b a =≠时,12(1)n a a a n b a +++=-+ .【点睛】数列新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.。
2024年上海市高考高三数学模拟试卷试题及答案详解
2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。
全国新高考一卷地区2024届普通高等学校招生模拟考试数学试题及答案
全国新高考一卷地区2024届普通高等学校招生模拟考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知i 为虚数单位,且复数2024i 6z =,则下列说法中正确的是( ). A .复数z 为实数 B .2024i i = C .复数z 为纯虚数D .6i z =−2.已知集合{}31,Z A x x k k ==+∈,则下列表示正确的是( ). A .2A −∈ B .2023A ∉ C .231k A +∉D .35A −∉3.已知正三棱台的高为1,上、下底面边长分别为上,则该球的表面积为( ) A .100πB .128πC .144πD .192π4.若a ,b 都是正数,且1ab =,则11822a b a b+++的最小值为( )A .4B .8C .D .5.神舟十五号飞行任务是中国载人航天工程2022年的第六次飞行任务,也是中国空间站建造阶段最后一次飞行任务,航天员乘组将在轨工作生活6个月.某校为了培养学生们的航天精神,特意举办了关于航天知识的知识竞赛,竞赛一共包含两轮.高三(9)班派出了u 和v 两位同学代表班级参加比赛,每轮竞赛u 和v 两位同学各答1题.已知u 同学每轮答对的概率是45,v 同学每轮答对的概率是34,每轮竞赛中u 和v 两位同学答对与否互不影响,每轮结果亦互不影响,则u 和v 两位同学至少答对3道题的概率为( ). A .39200B .129200C .12950D .39506.椭圆()2222:10x y E a b a b+=>>的左顶点为M ,点,A B 均在E 上,且点,A B 关于点y 轴对称,若直线,MA MB 均存在斜率,且斜率之积为18,记E 的离心率为e ,则2e =( ).A .18B 4C .78D .147.若直线π4x =是πsin()4y x ω=−(0)>ω的一条对称轴,且在区间π[0,]12上不单调,则ω的最小值为( )A .9B .7C .11D .38.设函数()f x 在R 上满足()()22f x f x −=+,()()77f x f x −=+,且在区间[]07,上只有()()130f f ==,则方程()0f x =在闭区间[]20232023−,上根的个数为( ). A .806 B .810 C .807 D .811二、多选题9.如图,在下列给出的正方体中,点M N ,为顶点,点O 为下底面的中心,点P 为正方体的棱所在的中点,则OP 与MN 不垂直的是( ).A .B .C .D .10.已知直线2:0l mx ny r +−=与圆222:C x y r +=,点(),P m n ,则下列命题中是假命题的是( ).A .若点P 在圆C 外,则直线l 与圆C 相离B .若点P 在圆C 内,则直线l 与圆C相交C .若点P 在圆C 上,则直线l 与圆C 相切D .若点P 在直线l 上,则直线l 与圆C 相切11.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究,设a ,b ,m (m >0)为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为a ≡b (mod m ).如9和21除以6所得的余数都是3,则记为9≡21(mod 6).若0122222222222222C C 2C 2C 2a =+⋅+⋅++⋅,a ≡b (mod 10),则b 的值可以是( ). A .2019 B .2023 C .2029 D .2033三、填空题12.已知向量a 与b 相互垂直,且3a =,2b =,则()()a b a b +⋅−= . 13.已知符号“lim ”代表极限的意思,现给出两个重要极限公式:①0sin lim1x xx→=;②1lim(1)e xx x →+=,则依据两个公式,类比求0sin cos lim x x xx→= ;1sin cos 0lim(1sin 2)x xx x →+= .14.已知函数()2e e e x x xg x x x =−−,若方程()g x k =有三个不同的实根,则实数k 的取值范围是 .四、解答题15.当今社会面临职业选择时,越来越多的青年人选择通过创业、创新的方式实现人生价值.小明是一名刚毕业的大学生,通过直播带货的方式售卖自己家乡的特产,下面是他近5个月的家乡特产收入y (单位:万元)情况,如表所示.(1)根据5月至9月的数据,求y 与t 之间的线性相关系数(精确到0.001),并判断相关性;(2)求出y 关于t 的回归直线方程(结果中b 保留两位小数),并预测10月收入能否突破1.5万元,请说明理由.附:相关系数公式:()()nniii it t y y t y nt yr−−−==∑∑.0.75r >,则线性相关程度很强,可用线性回归模型拟合)②一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线方程y bx a =+的斜率和截距的最小二乘估计公式分别为1221ni ii nii x y nx yb xnx==−=−∑∑,a y bx =−. 2.91≈. 16.已知数列{}n a 是公差为d 的等差数列,2n na b n−=. (1)证明:数列{}n b 也为等差数列;(2)若13a d ==,数列{}n c 是以数列{}n b 的公差为首项,2为公比的等比数列,数列{}n n b c 的前n 项和n T ,证明:1n T ≥.17.如图,在三棱柱111ABC A B C 中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥; 条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.18.已知1(2,0)F −,2(2,0)F ,点P 满足122PF PF −=,记点P 的轨迹为E .直线l 过点2F 且与轨迹E 交于P 、Q 两点.(1)无论直线l 绕点2F 怎样转动,在x 轴上总存在定点(,0)M m ,使MP MQ ⊥恒成立,求实数m 的值;(2)在(1)的条件下,求MPQ 面积的最小值.19.已知当π02x ⎛⎫∈ ⎪⎝⎭,时,2()πx f x =,()sin g x x =,()h x x =.(1)证明:()()()f x g x h x <<; (2)已知()()()0f x g x h x −−<,证明:()π()2πh x g x −>(π可近似于3.14).参考答案:1.A【分析】借助复数的运算法则计算即可得. 【详解】()()1012101220242i i 11==−=,故6z =,故A 正确,B 、C 、D 错误. 故选:A. 2.A【分析】令31k +分别为选项中不同值,求出k 的值进行判定. 【详解】当1k =−时,2x =−,所以2A −∈,故A 正确; 当674k =时,367412023x =⨯+=,所以2023A ∈,故B 错误; 当1k =或0k =时,23131k k +=+,所以231k A +∈,故C 错误; 当12k =−时,123135x =−⨯+=−,所以35A −∈,故D 错误. 故选:A 3.A【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以123432,260sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =2d =故121d d −=或121d d +=,1=1=,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .4.A【分析】将1ab =代入,利用基本不等式直接求解即可得出结论. 【详解】若a ,b 都是正数,且1ab =∴11888422222b a a b a b a b a b a b +++=++=+=+++≥, 当且仅当4a b +=时等号成立, 故选:A. 5.D【分析】分别求出答对4道题,答对3道题的概率,再求和事件的概率即可. 【详解】若u 和v 两位同学答对4道题,则其概率为224395425⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭;若u 和v 两位同学答对3道题,则其概率为22143134212255444550⎛⎫⎛⎫⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭;故u 和v 两位同学至少答对3道题的概率为92139255050+=. 故选:D. 6.C【分析】根据题意得到,,M A B 的坐标,进而利用两点距离公式与点在椭圆上得到关于,a b 的齐次方程,从而得解.【详解】由题可得(),0M a −,设()()0000,,,A x y B x y −.则20002200018AM BMy y y k k x a a x a x ⋅=⋅==+−−, 又222222000022222118x y y a x b a b b a a −+=⇒=⇒=, 则22222287a b c a b b ==−=,. 则222227788c b e a b ===. 故选:C 7.C【分析】根据给定条件求出ω的关系式,再求出函数πsin()4y x ω=−含0的单调区间即可判断作答.【详解】因直线π4x =是πsin (0)4y x ωω⎛⎫=−> ⎪⎝⎭的一条对称轴,则ππππ,Z 442k k ω−=+∈,即43,Z k k ω=+∈,由πππ242x ω−≤−≤,得π3π44x ωω−≤≤,则πsin()4y x ω=−在π3π[,]44ωω−上单调递增, 而πsin()4y x ω=−在区间π[0,]12上不单调,则3ππ412ω<,解得9ω>, 综上,ω的最小值为11. 故选:C 8.B【分析】先根据条件确定函数周期,然后确定一个周期内的根的个数,进而得到在闭区间[]20232023−,上根的个数. 【详解】因为()()22f x f x −=+,所以()()4f x f x −=+, 又()()77f x f x −=+,所以()()14f x f x −=+, 所以()()414f x f x +=+,即()()10f x f x =+, 所以函数()f x 的周期为10,在区间[]07,上只有()()130f f ==, 所以()0f x =在(]4,7上无解, 则()70f x −=在(]0,3上无解,又()()77f x f x −=+,所以()70f x +=在(]0,3上无解,,即()0f x =在(]7,10上无解, 即一个周期[]0,10内,方程的根只有1,3,闭区间[]20202020−,上含有404个周期,此时有4042808⨯=个根, 在区间(]20202023,内,()()()()202110,202330,f f f f ==== 对于区间[)2023,2020−−,根据周期等价于区间[)7,10,该区间上无解, 故方程()0f x =在闭区间[]20232023−,上根的个数为810. 故选:B. 9.CD【分析】建立适当空间直角坐标系,利用空间向量分析判断即可. 【详解】设正方体的棱长为2,对A :建立如图所示空间直角坐标系,则(2,2,2),(0,2,0),(0,0,1),(1,1,0)M N P O , 可得(2,0,2),(1,1,1)MN OP =−−=−−,则2020MN OP ⋅=+−=, 所以MN OP ⊥,即MN OP ⊥,故A 错误;对B :建立如图所示空间直角坐标系,则(0,0,2),(2,0,0),(2,0,1),(1,1,0)M N P O , 可得(2,0,2),(1,1,1)MN OP =−=−,则2020MN OP ⋅=+−=, 所以MN OP ⊥,即MN OP ⊥,故B 错误;对C :建立如图所示空间直角坐标系,则(0,2,0),(0,0,2),(2,1,2),(1,1,0)M N P O , 可得(0,2,2),(1,0,2)MN OP =−=,则0040MN OP ⋅=++≠, 所以MN 与OP 不垂直,即MN 与OP 不垂直,故C 正确;对D :建立如图所示空间直角坐标系,则(2,0,2),(0,2,2),(0,2,1),(1,1,0)M N P O , 可得(2,2,0),(1,1,1)MN OP =−=−,则2200MN OP ⋅=++≠, 所以MN 与OP 不垂直,即MN 与OP 不垂直,故D 正确.故选:CD. 10.AB【分析】根据直线和圆相切、相交、相离的等价条件进行求解即可. 【详解】对于A ,因为点(),P m n 在圆C 外,所以222m n r +>,则圆心()0,0C 到直线l 的距离为d r ==<,所以直线l 与圆C 相交,故命题A 是假命题;对于B ,因为点(),P m n 在圆C 内,所以222m n r +<,则圆心()0,0C 到直线l 的距离为d r ==>,所以直线l 与圆C 相离,故命题B 是假命题; 对于C ,因为点(),P m n 在圆C 上,所以222m n r +=,则圆心()0,0C 到直线l 的距离为d r ===,所以直线l 与圆C 相切,故命题C 是真命题;对于D ,因为点(),P m n 在直线l 上,所以2220m n r +=−,即222m n r +=,则圆心()0,0C 到直线l 的距离为d r ===,所以直线l 与圆C 相切,故命题D 是真命题; 故选:AB. 11.AC【分析】先利用二项式定理化简得223a =;再利用二项式定理将()11221139101==−展开可得到a 除以10所得的余数是9,进而可求解.【详解】因为()22012222222222222222C C 2C 2C 2123a =+⋅+⋅++⋅=+=()()112211011110101101019101111111111111139101C 10C 10C 10C 10C 10C 10C 19==−=⨯−⨯++⨯−=⨯−⨯++−+所以a 除以10所得的余数是9. 又因为a ≡b (mod 10) 所以b 除以10所得的余数是9.而2019201109=⨯+,2023202103=⨯+,2029202109=⨯+,2033203103=⨯+ 故选:AC. 12.5【分析】根据向量的数量积运算法则即可求解.【详解】()()2222325a b a b a a b b a b +⋅−=⋅−⋅=−=−=,故答案为:5 13. 1 2e【分析】根据题意,结合极限的运算法则,准确计算,即可求解.【详解】由极限的定义知:①0sin lim1x xx→=;②10lim(1)e x x x →+=, 因为sin cos sin 22x x x x x =,sin 2t x =,可得sin 2sin 2x tx t=, 则00sin cos sin limlim 1x t x x tx t→→==;又因为12sin cos sin 2(1sin 2)(1sin 2)x x x x x +=+,令sin 2t x =,可得22sin 2(1sin 2)(1)x t x t +=+, 所以12122sin cos 0lim(1sin 2)lim(1)lim (1e [)]x xt t x t t x t t →→→+=+=+=.故答案为:1;2e . 14.()20,5e−【分析】通过求导得出函数的单调性和极值,即可得出有三个实根时实数k 的取值范围. 【详解】由题意,在()2e e e x x x g x x x =−−中,()()2e 2x g x x x '=+−,当()0g x '=时,解得2x =−或1,当()0g x '<即2<<1x −时,()g x 单调递减, 当()0g x '>即<2x −,1x >时,()g x 单调递增,∵()()()2222222e 2e e 5e g −−−−−=−−−−=,()1111e e e e g =−−=−,当()()22,1e 0xx g x x x −=−−,方程()g x k =有三个不同的实根, ∴()02k g <<−即205e k −<<, 故答案为:()20,5e−.【点睛】易错点点点睛:本题考查函数求导,两函数的交点问题,在研究函数的图象时很容易忽略()()22,1e 0xx g x x x −=−−这个条件.15.(1)0.962r ≈−,y 与t 具有很强的线性相关关系(2)0.28 3.12y t =−+,10月收入从预测看不能突破1.5万元,理由见解析【分析】(1)直接套公式求出y 与t 之间的线性相关系数,即可判断; (2)套公式求出系数b 、a ,即可得到回归方程,并求出10月份的收入. 【详解】(1)(1)由5月至9月的数据可知1234535t ++++==,3 2.4 2.22 1.82.285y ++++==,51132 2.43 2.2425 1.831.4i i i t y ==⨯+⨯+⨯+⨯+⨯=∑,()5214101410i i t t=−=++++=∑,()522222210.720.120.080.280.480.848ii y y =−=++++=∑,所以所求线性相关系数为550.962i it y t yr −===≈−∑.因为相关系数的绝对值0.9620.9620.75r =−=>, 所以认为y 与t 具有很强的线性相关关系.(2)由题得522222211234555i i t ==++++=∑,51522215 3.1453 2.28 2.80.285553105i ii i i t y t yb t t==−−⨯⨯−====−−⨯−∑∑,所以()2.280.283 3.12a y bt =−=−−⨯=, 所以y 关于t 的回归直线方程为0.28 3.12y t =−+. 当6t =时,0.286 3.12 1.44y =−⨯+=,因为144 15<..,所以10月收入从预测看不能突破1.5万元. 16.(1)证明见解析; (2)证明见解析.【分析】(1)通过计算1n n b b +−为定值可证明等差数列;(2)先求出数列的通项公式,然后利用错位相减法求n T ,根据n T 的结构即可证明不等式.【详解】(1)∵2n na b n−=, ∴2n n b a n =−,∴()()1112122n n n n n n b b a n a n a a +++⎡⎤−=−+−−=−−⎣⎦, 又∵数列{}n a 是公差为d 的等差数列, ∴1n n a a d +−=, ∴12n n b b d +−=−,∴数列{}n b 是以2d −为公差的等差数列; (2)∵13a d ==,∴112321b a =−=−=,2321d −=−=, ∴数列{}n b 是以1为首项,1为公差的等差数列. ∴1(1)1n b n n =+−⨯=,∴数列{}n c 是以1为首项,2为公比的等比数列,∴11122n n n c −−=⨯=,∴1·2n n n b c n −=, ∴1121112222n n T n −−−=⨯+⨯++⨯①,∴2n T =()21112122n n n n −−⨯+++⨯⨯−②,∴②−①得,11222n n n T n n −=−−−−⨯+⨯()11222n n n n −=−+++⨯+⨯12212n n n −=−+⋅−122n n n =−+⋅()121n n =−+,∵1n ≥且n 为正整数, ∴10n −≥,20n >,∴()1211nn T n =−+≥(当1n =时取等).17.(1)见解析 (2)见解析【分析】(1)取AB 的中点为K ,连接,MK NK ,可证平面//MKN 平面11BCC B ,从而可证//MN 平面11BCC B .(2)选①②均可证明1BB ⊥平面ABC ,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值.【详解】(1)取AB 的中点为K ,连接,MK NK , 由三棱柱111ABC A B C 可得四边形11ABB A 为平行四边形, 而11,B M MA BK KA ==,则1//MK BB ,而MK ⊄平面11BCC B ,1BB ⊂平面11BCC B ,故//MK 平面11BCC B , 而,CN NA BK KA ==,则//NK BC ,同理可得//NK 平面11BCC B , 而,,NKMK K NK MK =⊂平面MKN ,故平面//MKN 平面11BCC B ,而MN ⊂平面MKN ,故//MN 平面11BCC B , (2)因为侧面11BCC B 为正方形,故1CB BB ⊥, 而CB ⊂平面11BCC B ,平面11CBB C ⊥平面11ABB A , 平面11CBB C ⋂平面111ABB A BB =,故CB ⊥平面11ABB A , 因为//NK BC ,故NK ⊥平面11ABB A , 因为AB ⊂平面11ABB A ,故NK AB ⊥, 若选①,则AB MN ⊥,而NK AB ⊥,NKMN N =,故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB MK ⊥,所以1AB BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM ===, 设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =−,则()2,2,1n =−−,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯. 若选②,因为//NK BC ,故NK ⊥平面11ABB A ,而KM ⊂平面11ABB A , 故NK KM ⊥,而11,1B M BK NK ===,故1B M NK =, 而12B B MK ==,MB MN =,故1BB M MKN ≅, 所以190BB M MKN ∠=∠=︒,故111A B BB ⊥, 而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M , 故()()()0,2,0,1,1,0,0,1,2BA BN BM ===, 设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎪⎨⋅=⎪⎩,从而020x y y z +=⎧⎨+=⎩,取1z =−,则()2,2,1n =−−,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n BA θ===⨯.18.(1)1m =−(2)9【分析】(1)由双曲线定义即可得点P 的轨迹方程,设出直线l 方程,联立双曲线方程可得与x 有关韦达定理,借助向量垂直数量积为0可计算出M 点坐标;(2)借助弦长公式与点到直线的距离公式可表示出面积,再借助换元法计算即可得解. 【详解】(1)由12122PF PF F F −=<知,点P 的轨迹E 是以1F 、2F 为焦点的双曲线的右支,设轨迹E 的方程为22221(1)x y x a b−=≥,0a >,0b >,2c =,22a =,23b ∴=,故轨迹E 的方程为221(1)3y x x −=≥,当直线l 的斜率存在时,设直线方程为(2)y k x =−,()11,P x y ,()22,Q x y ,与双曲线方程联立2213(2)y x y k x ⎧−=⎪⎨⎪=−⎩,可得()222234430k x k x k −−++=, 有()()24222122212230Δ16434304034303k k k k k x x k k x x k ⎧−≠⎪=−−+>⎪⎪⎪⎨+=>⎪−⎪+⎪⋅=>⎪−⎩,解得23k >, ()()()12121MP MQ x m x m y y x m ⋅=−−+=−.()()()221222x m k x x −+−−()()()22221212124k x x k m x x m k =+−++++()()()222222214342433k k k kmmk k k +++=−++−−2223(45)3m k m k −+=+− ()()222245313m m k m k −−+−=−MP MQ ⊥,0MP MQ ∴⋅=,故得()()22231450m k m m −+−−=对任意的23k >恒成立,2210,450,m m m ⎧−=∴⎨−−=⎩解得1m =−,∴当1m =−时,MP MQ ⊥.当直线l 的斜率不存在时,可得(2,3)P ,则(2,3)Q −, 此时有()()3312121−⋅=−−−−−,即此时结论也成立,综上,当1m =−时,MP MQ ⊥;(2)由(1)知(1,0)M −,当直线l的斜率存在时,()2122613k PQ x k +=−=−,点M 到直线PQ 的距离为d,则d =1||2MPQSPQ d ∴===令23(0)k t t−=>,则MPQS=10t>,9MPQS ∴=>, 当直线l 的斜率不存在时,13692MPQS =⨯⨯=, 综上可知,MPQS的最小值为9.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.19.(1)证明见解析; (2)证明见解析.【分析】(1)令π()()()sin ,02F x h x g x x x x ⎛⎫=−=−∈ ⎪⎝⎭,,求导得到函数单调性,得到sin x x >,要证()()f x g x <,只需证2sin πx x <,构造πsin 2()x G x x =−,π(0)2x ∈,,二次求导得到单调性,得到π()02G x G ⎛⎫= ⎪⎝⎭>,证明出()(),(0)π2f x g x x ∈<,,证明出不等式;(2)变形得到0ππ(2)sin x x −−<,两边同时除以(2)s πin 0x −<得到:πsin 2πx x −>,证明出不等式.【详解】(1)令π()()()sin ,02F x h x g x x x x ⎛⎫=−=−∈ ⎪⎝⎭,,∴()1cos 0F x x =−>'在π02x ⎛⎫∈ ⎪⎝⎭,上恒成立,∴()F x 在π02x ⎛⎫∈ ⎪⎝⎭,上单调递增,∴()(0)0F x F =>, ∴sin x x >,∴π()(),(0)2g x h x x ∈<,,要证()()f x g x <,只需证2sin πxx <, ∵π02x ⎛⎫∈ ⎪⎝⎭,,∴只需证2sin πxx<,令πsin 2()x G x x =−,π(0)2x ∈,,∴2cos sin ()x x x G x x −'=,∴22cos tan cos cos ()(tan )x x x x xG x x x x x−'==−,令()tan M x x x =−,π(0)2x ∈,,∴2221cos 1()1cos cos x M x x x −'=−=, 又∵当π(0)2x ∈,时,20cos 1x <<,∴当π(0)2x ∈,时,()0M x '<,∴()M x 在(0)π2,上单调递减,∴()(0)0M x M =<,∴当π(0)2x ∈,时,()0G x '<,∴()G x 在(0)π2,上单调递减∴π()02G x G ⎛⎫= ⎪⎝⎭>,∴2sin πx x <, ∴()(),(0)π2f xg x x ∈<,,∴综上所述,当π(0)2x ∈,时,()()()f x g x h x <<,证毕.(2)∵当π(0)2x ∈,时,()()()0f x g x h x −−<,∴2sin 0πxx x −−<, ∴2sin 0πππx x x−−<,∴0ππ2)i π(s n x x−−<,①将①式两边同时乘以π得到:0ππ(2)sin x x −−<,② ∵20π−<,但当π(0)2x ∈,时,sin 0x >,∴(2)s πin 0x −<,将②式两边同时除以(2)s πin 0x −<得到:(2)sin 0(2)n ππsi πx xx−−>−,∴0πsin 2πx x −>−, ∴πsin 2πx x −>, ∴当π(0)2x ∈,时,()π()2πh x g x −>,证毕. 【点睛】方法点睛:证明不等式或比较两函数大小,需构造函数,并根据导函数得到函数单调性,结合特殊点函数值得到结论.。
2024年普通高等学校招生全国统一考试数学模拟试题(一)(新高考九省联考题型)(1)
一、单选题二、多选题1. 的值为( )A.B.C.D.2. 已知i 是虚数单位,若复数z 满足,则( )A .1B.C .2D.3. 命题“,”的否定是( )A.,B .,C .,D .,4. 设,,,则( )A.B.C.D.5. 已知函数,设,,,则( )A.B.C.D.6. 在三棱锥中,,,,,则该三棱锥的外接球的表面积为( )A.B.C.D.7. 已知向量,, 且,那么的值为( )A.B.C.D.8.已知,则的最小值为( )A .4B .6C.D.9. 为了调查学生对两会相关知识的了解情况,某高校开展了两会知识问答活动,现从全校参与该活动的学生中随机抽取320名学生,他们得分(满分100分)的频率分布直方图如图所示,则下列说法正确的是()A .若全校参与该活动的学生共2000人,则得分在内的人数约为650B .全校参与知识问答活动的学生的平均分约为65分C.该校学生得分的分位数约为77.7(结果精确的到0.1)D .若此次知识问答的得分,则10. 已知F 是抛物线的焦点.设,是抛物线C 上一个动点.P 在C 的准线l 上的射影为M ,M 关于点P 的对称点为N ,曲线C 在P 处的切线与准线l 交于点T ,直线NF 交准线l 于点Q ,则( )A.B .是等腰三角形C .PT平分D .的最小值为22024年普通高等学校招生全国统一考试数学模拟试题(一)(新高考九省联考题型)(1)2024年普通高等学校招生全国统一考试数学模拟试题(一)(新高考九省联考题型)(1)三、填空题四、解答题11. 已知函数f (x )=|sin x |﹣|sin(﹣x )|(π=3.14159……),则下列说法中正确的是( )A .π是f (x )的周期B .f (x )的值域为[﹣,]C .f (x )在(,5π)内单调递减D .f (x )在[﹣2021,2021]中的零点个数不超过2574个12. 下列选项中,与“”互为充要条件的是( )A.B.C.D.13.双曲线(,)上一点关于渐近线的对称点恰为右焦点,则该双曲线的离心率为__________.14.已知等差数列和等比数列满足,,则数列在________时取到最小值.15. 已知函数为R上的奇函数,且当时,,则____.16.已知在各项均为正数的等差数列中,,且,,构成等比数列的前三项.(1)求数列,的通项公式;(2)设数列___________,求数列的前项和.请在①;②;③这三个条件中选择一个,补充在上面的横线上,并完成解答.17.已知椭圆与双曲线有两个相同的顶点,且的焦点到其渐近线的距离恰好为的短半轴的长度.(1)求椭圆的标准方程;(2)过点作不垂直于坐标轴的直线与交于,两点,在轴上是否存在点,使得平分若存在,求点的坐标;若不存在,请说明理由.18. 如图,三棱柱中,侧棱垂直底面,,,点是棱的中点.(1)证明:平面平面;(2)求三棱锥的体积.19. 某校为了解学生在新冠病毒疫情期间学生自制力,学校随机抽取80位学生,请他们家长(每位学生请一位家长)对学生打分,满分为10分.如表是家长所打分数的频数统计.分数5678910频数482024168(1)求家长所打分数的平均值;(2)若分数不小于8分为“自制力强”,否则为“自制力一般”,在抽取的80位学生中,男同学共42人,其中打分为“自制力强”的男同学为18人,是否有的把握认为“自制力强”与性别有关?(3)在评分为10分的学生中有7名女同学,小雯同学也在其中,学校团委随机抽选这七名女同学中的两名同学座谈,则小雯同学被选中的概率是多少?附:.0.100.050.010.0052.7063.841 6.6357.87920.在平面直角坐标系中,①已知点,直线,动点P满足到点Q的距离与到直线的距离之比为.②已知点是圆上一个动点,线段HG的垂直平分线交GE于P.③点分别在轴,y轴上运动,且,动点P满足.(1)在①,②,③这三个条件中任选一个,求动点P的轨迹C的方程;(注:如果选择多个条件分别解答,按第一个解答计分)(2)设圆上任意一点A处的切线交轨迹C于M,N两点,试判断以MN为直径的圆是否过定点?若过定点,求出该定点坐标.若不过定点,请说明理由.21. 已知数列为公差大于0的等差数列,,且,,成等比数列.(1)求数列的通项公式;(2)设,数列的前n项和为,若,求m的值.。
2023届山东省高考模拟练习(一)数学试题
2023高考模拟练习(一)数学一、单选题:本题共8小题 每小题5分 共40分。
在每小题给出的四个选项中 只有一项是符合题目要求的.1.设全集{}2,1,0,1,2U =-- 集合()lg 22A x y x x ⎧=∈=-⎨+⎩N 则U A =( )A .{}2,1,2--B .{}2,2-C .∅D .{}2,1,0,2--2.已知复数231i z =- 且2z a bz =+ 其中a b 为实数 则a b -=( )A .12-B .12 C .32D .2 3.已知向量a b 满足323a b a b ==-= 则a a b ⋅-=( )A .8B .9C .14D .234.“角谷猜想”首先流传于美国 不久便传到欧洲 后来一位名叫角谷静夫的日本人又把它带到亚洲 因而人们就顺势把它叫作“角谷猜想”.“角谷猜想”是指一个正整数 如果是奇数就乘以3再加1 如果是偶数就除以2 这样经过若干次运算 最终回到1.对任意正整数0a .记按照述规则实施第n 次运算的结果为()n a n ∈N 若51a = 且()1,2,3,4i a i =均不为1 则0a =( )A .5或16B .5或32C .3或8D .7或325.已知函数()f x 的部分图象如图所示 则()f x 的解析式可能为( )A .()()cos π1f x x x =+B .()()1cos πf x x x =-C .()()1sin πf x x x =-D .()3221f x x x x =-+-6.已知正四棱锥(底面为正方形 且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P -ABCD 的底面正方形边长为2 其内切球O 的表面积为π3动点Q 在正方形ABCD 内运动 且满足OQ OP = 则动点Q 形成轨迹的周长为( ) A .2π11B .3π11C .4π11 D .5π117.2022年7月24日14时22分 搭载我国首个科学实验舱问天实验舱的长征五号B 遥三运载火箭成功发射 令世界瞩目.为弘扬航天精神 M 大学举办了“逐梦星辰大海——航天杯”知识竞赛 竞赛分为初赛和复赛 初赛通过后进入复赛 复赛通过后颁发相应荣誉证书和奖品.为鼓励学生积极参加 学校后勤部给予一定的奖励:只参加了初赛的学生奖励50元的奖品 参加了复赛的学生再奖励100元的奖品.现有A B C 三名学生报名参加了这次竞赛 已知A 通过初赛、复赛的概率分别为12 13;B 通过初赛、复赛的概率分别为23 12C 通过初赛和复赛的概率与B 完全相同.记这三人获得后勤部的奖品总额为X 元 则X 的数学期望为( ) A .300元B .10003元 C .350元 D .20003元 8.过椭圆C :22143x y +=上的点()11,A x y ()22,B x y 分别作C 的切线 若两切线的交点恰好在直线l :4x =上 则12y y ⋅的最小值为( )A .32-B .94-C .-9D .94二、选择题:本题共4小题 每小题5分 共20分.在每小题给出的四个选项中 有多项符合题目要求.全部选对的得5分 部分选对的得2分 有选错的得0分.9.在新冠疫情防控常态化的背景下 为提高疫情防控意识 某学校举办了一次疫情防控知识竞赛(满分100分) 并规定成绩不低于90分为优秀.现该校从高一、高二两个年级分别随参赛学生分数高一 7478 84 89 89 93 95 97 99 100 高二 7778 84 87 88 91 94 94 95 96 A .高一年级所抽取参赛学生成绩的中位数为91分 B .高二年级所抽取参赛学生成绩的众数为94分 C .两个年级所抽取参赛学生的优秀率相同 D .两个年级所抽取参赛学生的平均成绩相同10.已知抛物线C :()220y px p =>的焦点为()4,0F 点A B 在C 上 且弦AB 的中点到直线2x =-的距离为5 则( ) A .16p = B .线段AB 的长为定值 C .A B 两点到C 的准线的距离之和为14 D .AF BF ⋅的最大值为4911.如图 在直四棱柱1111ABCD A B C D -中 底面ABCD 为菱形 且1DE A C ⊥ 垂足为E 则( )A .1AA BD ⊥B .1AA ∥平面BDEC .平面BDE ⊥平面1A CDD .BE ⊥平面1A CD12.已知函数()4f x +是定义在R 上的奇函数 函数()2g x +是定义在R 上的偶函数 且满足()()()21g x x f x =-- ()()3426g g =+= 则( ) A .()f x 的图象关于点()1,0对称B .()f x 是周期为3的周期函数C .()10f =D .()202618i f i ==∑三、填空题:本题共4小题 每小题5分 共20分.13.中国共产党第二十次全国代表大会在北京召开期间 将含甲、乙在内的8名工作人员平均分配到A B 两个省代表厅从事服务工作 则甲、乙两人不分在同一省代表厅的概率为______.14.已知圆22x y a +=与圆22420x y x y b ++++=交于M N 两点 若855MN =则实数a b 的一对值可以为a =______ b =______.(写出满足条件的一组即可)15.已知函数2(1),0(),(1),0x xx e x f x x x e ⎧+<⎪=⎨+≥⎪⎩若关于x 的方程()()20f x a f x -=⎡⎤⎣⎦有3个不相等的实数根 则实数a 的取值范围是_______________16.已知双曲线222:1(0)4y x C b b -=>的上顶点、下焦点分别为M F 以M 为圆心 b 为半径的圆与C 的一条渐近线交于A B 两点 若60AMB ∠=︒ AB 的中点为Q (Q 在第一象限) 点P 在双曲线的下支上 则当||||PF PQ +取得最小值时 直线PQ 的斜率为__________. 四、解答题:本题共6小题 共70分。
2024年全国普通高中九省联考仿真模拟数学试题(一)
2024年高考仿真模拟数试题(一) 试卷+答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ( )3.设等差数列{}n a 的前n 项和为n S ,若789101120a a a a a ++++=,则17S =( ) A .150B .120C .75D .68A .672B .864C .936D .1056说法正确的是( )( )二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.10.已知复数1z ,2z ,则下列命题成立的有( )11.已知函数()f x 满足:①对任意,x y ∈R ,()()()()()2f x y f x f y f x f y +++=⋅+;②若x y ≠,则A .()0f 的值为2B .()()4f x f x +−≥C .若()13f =,则()39f =D .若()410f =,则()24f −=三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.2024年高考仿真模拟数试题(一)带答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ( ) A .4 B .5C .6D .7A .150B .120C .75D .68此时α与β可能平行或相交,故C 错误;对D 选项:若//l β,则必存在直线p β⊂,使//l p , 又l α⊥,则p α⊥,又p β⊂,则αβ⊥,故D 正确.故选D.5.有7个人站成两排,前排3人,后排4人,其中甲乙两人必须挨着,甲丙必须分开站,则一共有( )种站排方式. A .672 B .864 C .936 D .1056A .P 的轨迹为圆B .P 到原点最短距离为1C .P 点轨迹是一个菱形D .点P 的轨迹所围成的图形面积为4二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.A .()0f 的值为2B .()()4f x f x +−≥C .若()13f =,则()39f =D .若()410f =,则()24f −=答案 ABC解析 对于A ,令0x y ==,得()()23002f f =+ ,解得()01f =或()02f =,若()01f =,令0y =,得()()212f x f x +=+,即()1f x ≡,三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)不妨设23(5)ka a ab k ====≥ , 令1(2,3,,1)i t j k t t k ==+−=−, ,可得1()k A b +∈,因此1k a b +=. ……………14分 令1,i j k ==,则1k a a +=或1k a b +=.故1k a b +=. 所以12(1)n a a a n b a +++=−+ .……………16分综上,a b =时,12n a a a na +++=. 3a a b =≠时,12(1)n a a a n a b +++=−+ .3a b a =≠时,12(1)n a a a n b a +++=−+ . ……………17分。
高考数学模拟试题及答案 (二十套)
【解析】
【分析】
以点 为坐标原点, 、 、 所在直线分别为 、 、 轴建立空间直角坐标系 ,利用空间向量法可判断A选项的正误;证明出 平面 ,分别取棱 、 、 、 、 、 的中点 、 、 、 、 、 ,比较 和六边形 的周长和面积的大小,可判断B选项的正误;利用空间向量法找出平面 与棱 、 的交点 、 ,判断四边形 的形状可判断C选项的正误;将矩形 与矩形 延展为一个平面,利用 、 、 三点共线得知 最短,利用平行线分线段成比例定理求得 ,可判断D选项的正误.
9.Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的2019年1月至2019年11月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论正确的是()
,则 , ,所以B正确.
对于选项C、D, ,
令 ,即 ,所以 ,则令 ,
,令 ,得
由函数 的图像性质可知:
时, , 单调递减.
时, , 单调递增.
所以 时, 取得极小值,
即当 时 取得极小值,
又 ,即
又因为在 上 单调递减,所以
所以 时, 取得极小值,
即当 时 取得极大值,
又 ,即
所以
当 时,
所以当 ,即 时,f(x)在(-π,+∞)上无零点,所以C不正确.
A.月跑步里程最小值出现在2月
B.月跑步里程逐月增加
C.月跑步里程的中位数为5月份对应的里程数
D. 1月至5月的月跑步里程相对于6月至11月波动性更小
2023-2024学年河北高考考前冲刺数学模拟试题(一模)含解析
2023-2024学年河北高考考前冲刺数学模拟试题(一模)一、单选题1.设集合U =R ,集合{|24}A x x =-<<,集合{}2|7100B x x x =-+<,则U A B =I ð()A .{|22}x x -<<B .{|22}x x -<≤C .{|25}x x <<D .{|25}x x <≤【正确答案】B【分析】化简集合B ,根据集合的补集和交集的运算性质求U A B ð即可.【详解】不等式27100x x -+<的解集为{|25}x x <<,所以{|25}B x x =<<,故{|2U B x x =≤ð或5}x ³,又{|24}A x x =-<<,所以{|22}U A B x x =-<≤ ð,故选:B .2.已知复数z 满足12i 1z=-,则z 的共轭复数z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【正确答案】D【分析】根据复数运算即可求得复数z ,再得共轭复数z ,根据复数的几何意义即可得答案.【详解】111i 2i 2z -==- ,11i 2z ∴=+,11i 2z ∴=-,故z 在复平面内对应的点11,2⎛⎫- ⎪⎝⎭位于第四象限.故选:D .3.若函数()af x x x=+()R a ∈在点(2,(2))f 处的切线为直线1:2l y x b =+,若直线l 与圆222:(0)C x y r r +=>相切,则r 的值为()A B C D .3【正确答案】A【分析】结合导数的几何意义列方程求a ,由切点坐标与切线的关系求b ,根据直线与圆的位置关系列方程求r .【详解】函数()af x x x =+的导函数2()1a f x x'=-,因为函数()f x 在点(2,(2))f 处的切线为直线1:2l y x b =+,所以1(2)142a f '=-=,解得2a =,2()f x x x∴=+,故(2)3f =,切点(2,3)在直线l 上,1322b ∴=⨯+,解得2b =,直线1:22l y x =+与圆222:(0)C x y r r +=>相切,∴圆心(0,0)到直线lr =,故选:A .4.已知向量(2,6)a = ,(1,)b λ=- .若//a b r r,则λ=()A .3B .3-C .13D .13-【正确答案】B【分析】根据向量平行的坐标表示,列式即可求得答案.【详解】因为向量(2,6)a = ,(1,)b λ=- ,//a b r r,所以26λ=-,解得3λ=-,故选:B .5.已知数列{}n a 的首项11a =,0n a >,前n 项和n S 满足2211120n n n n n n S S S S S S ----+--=,则数列{}n a 的前n 项和n S 为()A .(1)2n n +B .12n -C .221n -D .21n -【正确答案】A【分析】由题可得22n n n S a a =+,进而可得2211n n n n a a a a ++-=+,然后可得11n n a a +-=,利用等差数列的定义及求和公式即得.【详解】由2211120n n n n n n S S S S S S ----+--=得2211122n n n n n n n S S S S S S S ---=-++-,即()()2112n n n n n S S S S S --=-+-,所以22n n n S a a =+,所以21112n n n S a a +++=+,两式作差,得()221112n n n n n a a a a a +++=+-+,即2211n n n n a a a a ++-=+,所以()()1110n n n n a a a a ++--+=,所以11n n a a +-=或10n n a a ++=,又0n a >,故11n n a a +-=,所以数列{}n a 是以1为首项,1为公差的等差数列,所以数列{}n a 的前n 项和(1)(1)22n n n n n S n -+=+=.故选:A.6.如图,在正四棱台1111ABCD A B C D -中,棱1AA ,1BB ,的夹角为3π,2AB =,则棱1AA ,1CC 的夹角为()A .3πB .4πC .23πD .2π【正确答案】D【分析】由棱台的定义可知,分别延长1AA ,1BB ,1CC ,1DD 交于点P ,连接AC ,从而可得2PA PC ==,从而可求出答案.【详解】由棱台的定义可知,分别延长1AA ,1BB ,1CC ,1DD 交于点P ,连接AC ,如图,在正四棱台1111ABCD A B C D -中,棱1AA ,1BB 的夹角为3π,2AB =,所以△PAB 是边长为2的等边三角形,所以2PA PC ==.又在正方形ABCD 中,2AB =,则AC =所以222AC PA PC =+,所以PA PC ⊥,所以棱1AA ,1CC 的夹角为2π,7.已知定点(3,0)B ,点A 在圆22(1)4x y ++=上运动,则线段AB 的中点M 的轨迹方程是()A .22(1)1x y ++=B .22(2)4x y -+=C .22(1)1x y -+=D .22(2)4x y ++=【正确答案】C【分析】设(,)M x y 再表达出A 的坐标代入圆方程22(1)4x y ++=化简即可.【详解】设(,)M x y ,则(),A A A x y 满足3,(,)22A A x y x y +⎛⎫= ⎪⎝⎭.故232A Ax x y y =-⎧⎨=⎩.故23(2),A x y -.又点A 在圆22(1)4x y ++=上.故2222(231)(2)4(1)1x y x y -++=⇒-+=.故选:C本题主要考查了轨迹方程的求法,属于基础题型.8.设甲乘汽车、动车前往某目的地的概率分别为0.40.6、,汽车和动车正点到达目的地的概率分别为0.70.9、,则甲正点到达目的地的概率为()A .0.78B .0.8C .0.82D .0.84【正确答案】C【分析】设事件A 表示甲正点到达目的地,事件B 表示甲乘火车到达目的地,事件C 表示甲乘汽车到达目的地,由全概率公式求解即可.【详解】设事件A 表示甲正点到达目的地,事件B 表示甲乘动车到达目的地,事件C 表示甲乘汽车到达目的地,由题意知()0.6,()0.4,(|)0.9,(|)0.7P B P C P A B P A C ====.由全概率公式得()()(|)()(|)0.60.90.40.7P A P B P A B P C P A C =+=⨯+⨯0.280.540.82=+=。
辽宁省部分高中2023届高三下学期普通高考模拟考试(一)数学试题
f
x
f
y
f
xy
1
xy
,且
f
1 2
1
.当
x 0,1 时, f x 0 ,则( )
A. f 0 0
B. f x 是偶函数
C. f x 为增函数
D.当
xn
0 ,且
xn1
2 xn2
xn
1
,
x1
1 2
时,
f
xn
2n1
三、填空题 13.为了比较甲、乙、丙、丁四组数据的线性相关性的强弱,小明分别计算了甲、乙、
设点 D 为 AC 的中点,连接 BD , BC .则
|
AD |
T
1,|
BD
|
2
| OA |
2a sin(0
π )
3a .
2
3
因为 VABC 是等腰直角三角形,
所以 | AD || BD | ,
所以 a 3 3
故选:C.
7.D
【分析】设 A(x0 , y0 ) , B x1, y1 ,则 D x1, y1 ,将点 A, B 的坐标代入椭圆方程作差得到
为
1 4
,求点
B
到平面
AB1E
的距离.
21.已知双曲线 C :
x2 a2
y2 b2
1,a
0,b
0 的一条渐近线方程是 x 2 y
0 ,坐标原点
试卷第 4 页,共 5 页
到直线 AB 的距离为 2 5 ,其中 Aa, 0 , B 0, b . 5
(1)求双曲线 C 的标准方程;
(2)过点 D 2,1 直线 l 与双曲线 C 交于 M,N 两个不同的点,过 M 作 x 轴的垂线分别交
高考数学模拟试题含答案
高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵CD=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.精品文档. M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。
2024年普通高等学校招生全国统一考试模拟试题一(新课标全国Ⅰ卷)数学试题
绝密★启用前2024年普通高等学校招生全国统一考试模拟试题一(新课标全国Ⅰ卷)数 学试卷类型:A 本试卷共4页,22小题,满分150分.考试用时120分钟. 注意事项:1.答题前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效. 4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{22}Ax x =−≤≤∣,{(3)0}B x x x =−<∣,则()R A B = ( ) A .{2xx ≤∣或3}x ≥ B .{20}xx −≤≤∣ C .{23}xx ≤≤∣ D .{2xx ≤−∣或3}x ≥3.已知函数()2,056,0x x x f x x x +≥= +< ,若()6f a =,则=a ( )5.已知函数()f x 是定义在R 上的奇函数,且()()31f x f x −=+,则()6f =( )A .B .C .D .7.已知()f x 是定义域为R 的单调递增的函数,n ∀∈N ,()f n ∈N ,且(())3f f n n =,则(28)f =( ) A .54B .55C .56D .578.在三棱锥−P ABC 中,PA ⊥平面90ABC AB AC BAC =∠= ,,,且6AB PA +=,当三棱锥−P ABC 的体积取最大值时,该三棱锥外接球的体积是( ) A .27πB .36πC .54πD .72π二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.10.甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱,分别以12,A A 和3A 表示由甲箱取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表11.已知定义在R 上的函数()y f x =满足(2)()f x f x +=−,且函数(1)=−y f x 为奇函数,则( ) A .函数()y f x =是周期函数 B .函数()y f x =为R 上的偶函数C .函数()y f x =为R 上的单调函数D .函数()y f x =的图像关于点(21,0)(Z)k k +∈对称12.如图,已知直线12l l //,点A 是1l ,2l 之间的一个定点,点A 到1l ,2l 的距离分别为1,2.点B 是直线2l 上一个动点,过点A 作AC AB ⊥,交直线1l 于点C ,0GA GB GC ++=,则( )三、填空题:本题共4小题,每小题5分,共20分.13.若a ,0b >,且223a b ab +=+,则ab 的最大值为 . 14.设随机变量X 服从正态分布()22,N σ,若()10.2P X ≤=,则()3P X <= . 15.函数tan cot y x x =−的最小正周期为 . 16.若函数()()33e 2023R xf x ax a =−+∈有且仅有一个极值点,则a 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.为1DD 的中点.(1)求证:直线1BD ∥平面PAC ; (2)求证:1BD AC ⊥;(3)求二面角1B AC P −−的余弦值.2024年普通高等学校招生全国统一考试模拟试题一(新课标全国Ⅰ卷)参考答案。
2024年普通高等学校招生全国统一考试数学模拟试题(一)(新高考九省联考题型)(高频考点版)
一、单选题二、多选题1. 已知复数z 1=,z 2=,则z 1z 2的代数形式是( )A.B.C.-iD.+i2. 下列函数是偶函数的是( )A.B.C.D.3. 若复数,则( )A .8B .64C .10D .1004. 某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.则下列说法:①;②若抽取100人,则平均用时13.75小时;③若从每周使用时间在,,三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为3.其中正确的序号是()A .①②B .①③C .②③D .①②③5.若函数在区间内有且仅有一个极值点,则的取值范围( )A.B.C.D.6.函数 与这两个函数在区间上都是减函数的一个充分不必要条件是实数的范围是( )A.B.C.D.7. 如图,甲船从出发以每小时25海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船出发时,乙船位于甲船的北偏西方向的处,此时两船相距海里.当甲船航行12分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距5海里,下面正确的是()A .乙船的行驶速度与甲船相同B .乙船的行驶速度是海里/小时C .甲乙两船相遇时,甲行驶了小时D .甲乙两船不可能相遇8. 在正方体中,,点M 在正方体内部及表面上运动,下列说法正确的是( )2024年普通高等学校招生全国统一考试数学模拟试题(一)(新高考九省联考题型)(高频考点版)2024年普通高等学校招生全国统一考试数学模拟试题(一)(新高考九省联考题型)(高频考点版)三、填空题四、解答题A .若M为棱的中点,则直线平面B .若M 在线段上运动,则的最小值为C .当M与重合时,以M 为球心,为半径的球与侧面的交线长为D .若M 在线段上运动,则M 到直线的最短距离为9. 已知(,),则的最小值为______.10. 已知x >0,y >0,z >0,x -y +2z =0,则的最大值为________.11. 已知函数则______.12. 已知角,的顶点为坐标原点,始边与轴的非负半轴重合,角的终边与单位圆交于点,角的终边与角的终边关于轴对称,则______.13.设函数的最小正周期为,且(1)求和的值;(2)给定坐标系中作出函数在上的图像,并结合图像写出函数的单调递减区间(直接写出结果即可,不需要叙述过程);(3)若,求的取值范围.14.已知双曲线的左、右焦点分别为,,为双曲线上位于轴上方一点,线段与圆相切于该线段的中点,且的面积为6.(1)求双曲线的方程;(2)若,过点的直线与双曲线交于,两点,且,求直线的方程.15. 已知复平面内点、对应的复数分别是,,其中,设对应的复数为.(Ⅰ)求复数;(Ⅱ)若复数对应的点在直线上,求的值.16. 已知函数.(1)若函数的一个极值点是,求函数的单调区间(2)当时,证明:.。
1. 《2024年高考数学模拟试题及答案》
1. 《2024年高考数学模拟试题及答案》一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1、已知集合 A ={x |-2 < x < 3},B ={x | x² 5x + 4 <0},则A ∩ B =()A {x | 1 < x < 3}B {x |-2 < x < 1}C {x | 1 < x < 4}D {x |-2 < x < 4}2、复数 z =(1 + i)(2 i)在复平面内对应的点位于()A 第一象限B 第二象限C 第三象限D 第四象限3、已知向量 a =(1, 2),b =(m, -1),若 a ⊥ b,则 m =()A -2B 2C -1/2D 1/24、某中学高一年级有学生 1000 人,高二年级有学生 800 人,高三年级有学生 600 人,现采用分层抽样的方法从该校抽取一个容量为 n的样本,若从高二年级抽取了 80 人,则 n 的值为()A 200B 240C 280D 3205、函数 f(x) = log₂(x² 4x + 3)的单调递增区间是()A (∞, 1)B (∞, 2)C (2, +∞)D (3, +∞)6、若直线 l₁:ax + 2y + 6 = 0 与直线 l₂:x +(a 1)y + a² 1= 0 平行,则 a =()A -1B 2C -1 或 2D 17、已知等差数列{aₙ}的前 n 项和为 Sₙ,若 a₁= 2,S₃= S₅,则公差 d =()A -2B 0C 2D 48、已知圆 C:(x 1)²+(y 2)²= 4 与直线 l:x y + 1 = 0 相交于 A,B 两点,则弦长|AB| =()A 2√2B 2√3C 4D 69、一个几何体的三视图如图所示,则该几何体的体积为()(正视图和侧视图是等腰三角形,底边为 4,高为 4;俯视图是边长为 4 的正方形)A 32B 64C 128/3D 256/310、设函数 f(x) =sin(ωx +φ)(ω > 0,|φ| <π/2)的最小正周期为π,且f(π/8) =√2/2,则()A f(x)在(0, π/2)上单调递减B f(x)在(π/8, 3π/8)上单调递增C f(x)在(0, π/2)上单调递增D f(x)在(π/8, 3π/8)上单调递减11、已知函数 f(x) = x³ 3x,若过点 M(2, t)可作曲线 y = f(x)的三条切线,则实数 t 的取值范围是()A (-6, -2)B (-4, -2)C (-6, 2)D (0, 2)12、已知双曲线 C:x²/a² y²/b²= 1(a > 0,b > 0)的左、右焦点分别为 F₁,F₂,过 F₂作双曲线 C 的一条渐近线的垂线,垂足为 H,若|F₂H| = 2a,则双曲线 C 的离心率为()A √5B 2C √3D √2二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13、已知函数 f(x) = 2sin(2x +π/6),则 f(x)的最小正周期为_____14、若 x,y 满足约束条件 x +y ≥ 1,x y ≥ -1,2x y ≤ 2,则 z= x + 2y 的最大值为_____15、已知抛物线 y²= 2px(p > 0)的焦点为 F,点 A(4, 2)在抛物线上,且|AF| = 5,则 p =_____16、已知数列{aₙ}满足 a₁= 1,aₙ₊₁= 2aₙ + 1,则 a₅=_____三、解答题(本大题共 6 小题,共 70 分)17、(10 分)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a = 3,b = 5,c = 7、(1)求角 C 的大小;(2)求△ABC 的面积18、(12 分)已知数列{aₙ}是等差数列,a₁= 1,a₃+ a₅=14、(1)求数列{aₙ}的通项公式;(2)设数列{bₙ}满足 bₙ = aₙ × 2ⁿ,求数列{bₙ}的前 n 项和 Sₙ19、(12 分)如图,在四棱锥 P ABCD 中,底面 ABCD 是平行四边形,PA ⊥底面 ABCD,PA = AB = 2,AD = 4,∠BAD = 60°(1)证明:BD ⊥平面 PAC;(2)求二面角 P BD A 的余弦值20、(12 分)某工厂生产甲、乙两种产品,已知生产每吨甲产品要用 A 原料 3 吨,B 原料 2 吨;生产每吨乙产品要用 A 原料 1 吨,B原料 3 吨。
2023-2024学年河北省部分学校高三下学期高考演练数学模拟试题(一模)含解析
2023-2024学年河北省部分学校高三下学期高考演练数学模拟试题(一模)一、单选题1.已知集合{}220|A x x x =-<,集合{}210|2x B x -=-≤,则A B ⋃=()A .{}|02x x <<B .{}2|0x x <≤C .{}|2x x <D .{}2|x x ≤【正确答案】D【分析】根据一元二次不等式以及指数不等式化简集合,A B ,由集合的并运算即可求解.【详解】由于22021022202x x x x ---≤⇒≤⇒-≤⇒≤所以{}|02A x x =<<,{}|2B x x =≤,所以{}|2A B x x ⋃=≤.故选:D.2.已知复数1z ,2z ,“21z z >”是“211z z >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】D【分析】根据充分条件和必要条件的定义求解.【详解】若21z z >,可得复数1z ,2z 都为实数,当120z z <<时,211z z <,充分性不成立;反之,若211z z >取复数11i z =+,222i z =+,满足2121z z =>,但此时复数1z ,2z 均为虚数,不能比较大小,必要性不成立,所以“21z z >”是“211z z >”的既不充分也不必要条件;故选:D.3.若函数923log ,14()1,123x x f x x x x ⎧->⎪⎪=⎨⎪≤⎪++⎩,则523f f ⎡⎤=⎪⎢⎥⎢⎣⎛ ⎝⎦⎭⎥⎫()A .517B .175C .417D .174【正确答案】C【分析】根据自变量的取值,即可代入到分段函数中,计算即可.【详解】由于5231>,所以5522935313log 34442f ⎛⎫=-=-= ⎪⎝⎭,故5211431217134f f f ⎡⎤⎛⎫==⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+⎪⎭+⎛⎫ ⎝=,故选C.4.2021年5月22日上午10点40分,祝融号火星车安全驶离着陆平台,到达火星表面,开始巡视探测.为了帮助同学们深入了解祝融号的相关知识,某学校进行了一次航天知识讲座,讲座结束之后,学校进行了一次相关知识测试(满分100分),学生得分都在[]50,100内,其频率分布直方图如下,若各组分数用该组的中间值代替,估计这些学生得分的平均数为()A .70.2B .72.6C .75.4D .82.2【正确答案】C【分析】根据题意,由频率之和为1,可得m 的值,然后结合平均数的计算公式,代入计算,即可得到结果.【详解】由条件可得()0.0040.0540.0120.010101m ++++⨯=,则0.020m =,故得分的平均数为.()0.004550.020650.054750.012850.010951075.4⨯+⨯+⨯+⨯+⨯⨯=故选:C5.中国国家大剧院的外观被设计成了半椭球面的形状.如图,若以椭球的中心为原点建立空间直角坐标系,半椭球面的方程为2222221x y z a b c++=(0,z ≥,,,0a b c >,且a ,b ,c 不全相等).若该建筑的室内地面是面积为2(0)m m π>的圆,给出下列结论:①a b =;②c m =;③2ac m =;④若ac m >,则1c >,其中正确命题的个数为()A .1B .2C .3D .4【正确答案】B【分析】根据已知得a b m ==,结合题设判断各项正误即可.【详解】在2222221x y z a b c ++=中,令0z =可得该建筑室内地面对应的曲线方程为22221x y a b+=,由室内地面是面积为2πm (0)m >的圆,故a b =,①对;且22ππa m =,则a b m ==,又,,a b c 不全相等,故c m ≠,②错;若2ac m =,则2mc m =,可得c m =,与,,a b c 不全相等矛盾,③错;若ac m >,则0mc m >>,故1c >,④对.故选:B.6.已知α是第三象限角,3cos 2sin 2αα+=,则tan α=()A .24B 33C 3D .22【正确答案】A【分析】根据α是第三象限角,3cos 2sin 2αα+=,利用二倍角公式整理得26sin sin 10αα--=,求得sin α,再利用基本关系求解.【详解】∵α是第三象限角,3cos 2sin 2αα+=,∴()2312sin sin 2αα-+=,∴26sin sin 10αα--=,解得1sin 3α=-或1sin 2α=(舍去),∴22cos 1sin 3αα=--=-,∴2tan 4α=,故选:A.7.直线:40l ax by +-=与圆22:4O x y +=相切,则22(3)(4)a b -+-的最大值为()A .16B .25C .49D .81【正确答案】C【分析】利用圆与直线的位置关系得出,a b 的方程,根据方程分析利用22(3)(4)a b -+-表示的几何意义求解即可.【详解】由直线l 与圆O 相切可得:圆心()0,0O 到直线l 的距离等于圆的半径,2=,故224a b +=,即点(,)a b 在圆O 上,22(3)(4)a b -+-的几何意义为圆上的点(,)a b 与点(3,4)之间距离的平方,由224a b +=圆心为()0,0,因为22344+>,所以点(3,4)在圆224a b +=外,所以点(,)a b 到点(3,4)的距离的最大值为圆心到(3,4)的距离与圆半径之和,即27d r +=,所以22(3)(4)a b -+-的最大值为2749=.故选:C.8.为了提高同学们对数学的学习兴趣,某高中数学老师把《周髀算经》、《九章算术》、《孙子算经》、《海岛算经》这4本数学著作推荐给学生进行课外阅读,若该班A ,B ,C 三名同学有2名同学阅读其中的2本,另外一名同学阅读其中的1本,若4本图书都有同学阅读(不同的同学可以阅读相同的图书),则这三名同学选取图书的不同情况有()A .144种B .162种C .216种D .288种【正确答案】A【分析】利用排列组合公式进行合理分类讨论即可.【详解】分两种情况:第一种情况,先从4本里选其中2本,作为一组,有24C 种,第二组从第一组所选书籍中选1本,再从另外2本中选取1本作为一组,剩余一本作为一组,再分给3名同学,共有211342231C C C A 2方法;第二种情况:从4本里任选2本作为一组,剩余的两本作为一组,有224222C C A 种分法,分给3名同学中的2名同学,有23A 种分法,剩余1名同学,从这4本中任选一本阅读,有14C 种分法,共有2221423422C C A C A ⋅种方法.故这三名同学选取图书的不同情况有222113214242233422C C 1C C C A A C 1442A +⋅=种.故选:A.二、多选题9.已知函数()sin cos (0)f x x x ωωω=+>的最小正周期为π2,若12()()2f x f x =-,则()A .()f x 关于直线1x x =对称B .()f x 关于点2(,0)x 对称C .12x x +的最大值为π2D .12x x +的最小值为π8【正确答案】AD【分析】根据辅助角公式化简()f x ,利用周期的公式求解4ω=,进而根据12()()2f x f x =-可判断12,x x x x ==为()f x 的对称轴,即可判断AB,利用对称中心可求解DC.【详解】由π()sin cos cos )4f x x x x ω=+=+的最小正周期为π2可得2ππ2ω=,即4ω=,故π())4f x x =+,由12()()2f x f x =-可得1()f x ,2()f x 分别为()f x 的最大值和最小值,故()f x 关于直线1x x =对称,不关于点2(,0)x 对称,故A 正确,B 错误;由()π4πZ 4x k k +=∈可得()1πZ 416x kx k =-∈,故()f x 的对称中心()1ππ,0Z 416k k ⎛⎫-∈ ⎪⎝⎭,则121π1π2ππ,Z 41628x x n n n +=-=-∈,当0n =时,12x x +取得最小值π8,没有最大值,故C 错误,D 正确.故选:AD10.已知双曲线2222:1(0,0)x y C a b a b-=>>的虚轴长为2,过C 上点P 的直线l 与C 的渐近线分别交于点A ,B ,且点P 为AB 的中点,则下列正确的是()A .若(,)P m n 且直线l 的斜率存在,直线l 的方程为21mynx a -=B .若(2,1)P ,直线l 的斜率为1C.若离心率e =2OAB S=△D .若直线l 的斜率不存在,2AB =【正确答案】BCD【分析】根据点差法可得直线的斜率,进而可判断A ,利用A 选项的求解可判断B ,利用离心率可得渐近线方程,进而联立直线AB 与渐近线方程得交点坐标,利用三角形面积公式以及双曲线方程可判断C ,根据顶点和渐近线方程可求解D.【详解】由题意1b =,双曲线222:1x C y a-=.对于A ,若(,)P m n ,则2221m n a-=,即2222m a n a -=.设11(,)A x y ,22(,)B x y ,则221120x y a -=,222220x y a -=,利用点差法可得121222212122()2ABy y x x m m k x x a y y a n a n-+===-+=,所以直线l 的方程为y n -=2()mx m a n-,即2222a ny a n mx m -=-,所以22222mx a ny m a n a -=-=,即21mxny a -=,故A 错误;对于B ,若(2,1)P ,可得222211a -=,则a =l 的斜率为22121m a n ==⨯,即B 正确;对于C,若离心率222,2c e c a b a==+,可得2a =.则双曲线22:14x C y -=,其渐近线方程为2xy =±,设11(,)2x A x ,22(,2xB x -,直线()()121112:22x x x AB y x x x x +=-+-,令121220,x xy x x x ==+,则121221122212221OAB x x x x x x S x x +=+=△,由A 知AB 方程为14mxny -=,联立方程142mxny x y ⎧-=⎪⎪⎨⎪=⎪⎩可得142x m n =-,同理可得242x m n =+,所以1211442222OAB S x x m n m n ==⨯-+△2288244m n ===-,故C 正确;对于D ,若直线l 的斜率不存在,则直线l 过双曲线的顶点,所以(,0)P a ±,双曲线的渐近线方程为1y x a=±,当x a =±时,代入渐近线方程易得A ,B 两点的纵坐标为1±,所以2AB =,故D 正确;故选:BCD.11.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,点P ,Q ,M 分别为11A D ,11C D ,BC 的中点,下列结论正确的有()A .//AC 平面PQMB .该四棱柱有外接球,则四边形ABCD 为正方形C .BC 与平面PQM 不可能垂直D .BD QM⊥【正确答案】ABC【分析】根据线线平行即可判断A ,利用外接圆的对角互补,则可判断B ,利用反证法,结合线面垂直的性质定理可判断C,D.【详解】对A ,连接11AC ,由点P ,Q ,分别为11A D ,11C D 可得11//ACPQ ,11111////.AA BB CC AA BB CC == ,所以四边形11A ACC 为平行四边形,则11//AC AC ,故//AC PQ ,AC ⊄平面PQM ,PQ ⊂平面PQM ,则//AC 平面PQM ,即A 正确;对B ,若四棱柱有外接球,则四边形ABCD 有外接圆,则ABCD 对角互补,则ABCD 为正方形,即B 正确;对C ,若BC ⊥平面PQM ,PQ ⊂平面PQM ,则BC PQ ⊥,由//PQ AC 可得BC AC ⊥,与条件矛盾,故BC 与平面PQM 不可能垂直,即C 正确;对D ,取CD 的中点N ,连接MN ,QN ,则//MN BD ,1//QN CC ,1CC ⊥ 平面ABCD ,QN ∴⊥平面ABCD ,MN ⊂ 平面ABCD ,QN MN ∴⊥,90QNM ∴∠=︒,则90QMN ∠<︒,故BD 与QM 不垂直,即D 错误.故选:ABC.12.设()f x 是定义在R 上的偶函数,其图象关于直线2x =对称,当[0,2]x ∈时,2()f x x =,若方程()4log (5)(0,1)a f x x a a >=+≠在[]4,6-上恰有5个实数解,则()A .()f x 的周期为4B .()f x 在[]8,10上单调递减C .()f x 的值域为[]0,2D .711a <<【正确答案】AD【分析】由对称性与奇偶性得到函数的周期性,即可判断A 、B ,结合所给函数解析式求出函数的值域,即可判断C ,画出函数()y f x =与4log (5)(1)a y x a =+>的图象,数形结合,即可判断D.【详解】由()f x 的图象关于2x =对称可得(4)()f x f x +=-,再由()f x 为偶函数可得()()f x f x -=,故()(4)f x f x =+,即()f x 的周期为4,即A 正确;当[0,2]x ∈时,由2()f x x =,可得()f x 在[0,2]上单调递增,故()f x 在[]8,10上单调递增,即B 错误;又(0)0f =,(2)4f =,故()f x 的值域为[]0,4,即C 错误;在同一坐标系下画出函数()y f x =与4log (5)(1)a y x a =+>的图象如图所示.由图可知,要使()y f x =与()4log (5)b g x x =+在[]4,6-上恰有5个不同交点,只需()()24641g g a ⎧<⎪>⎨⎪>⎩,即log 71log 1111a a a <⎧⎪<⎨⎪>⎩,解得711a <<,即a 的取值范围为()7,11,故D 正确.故选:AD三、填空题13.已知O 为ABC 的外心,若2OA =,且75BAC ∠=︒,则OB OC ⋅=__________.【正确答案】23-【分析】由平面向量数量积公式进行求解.【详解】由圆的性质可得2150BOC BAC ∠=∠=︒,2OA OB OC ===,故cos 22cos15023OB OC OB OC BAC ⋅=⋅∠=⨯⨯︒= 故23-14.若函数4()ln 42mxf x x-=-的图象关于原点对称,则实数m 的值为__________.【正确答案】2-【分析】根据奇函数的性质根据()()f x f x -=-,即可求解.【详解】依题意,()()f x f x -=-,即44ln ln 4242mx mxx x-+=-+,所以442424mx x x mx +-=+-,解得2m =±,当2m =时,42()ln42xf x x-=-,定义域{}2x x ≠不关于原点对称,故舍去,当2m =-时,42()ln 42xf x x+=-,定义域为{}22x x -<<,符合要求,故2m =-,故2-15.函数33()sincos sin cos 2222x x x xf x =-的最小值为__________.【正确答案】14-/0.25-【分析】根据二倍角公式化简()1sin 24f x x =-,即可求解最值.【详解】因为33()sin cos sin cos 2222x x x x f x =-22sin cos sin cos 2222x x x x ⎛⎫=-= ⎪⎝⎭1sin cos 2x x -1sin 24x =-,所以当π22π,Z 2x k k =+∈时,sin 21x =,此时()f x 的最小值为14-.故14-四、双空题16.如图,在三棱锥A BCD -中,AB CD ⊥,AD BC ⊥,且3BD AC =,点E ,F 分别为AD ,BC 的中点,则异面直线AC 与BD 所成角的大小为__________,AC 与EF 所成角的余弦值为__________.【正确答案】90︒10【分析】根据异面直线夹角的定义作辅助线,构造三角形.【详解】取AB 的中点G ,连接EG ,FG ,则//FG AC ,//EG BD ,故EFG ∠或其补角为异面直线AC 与EF 所成的角,过A 作AO ⊥平面BCD 于点O ,连接BO ,CO ,DO ,则AO CD ⊥,又AB CD ⊥,且AB AO A = ,故CD ⊥平面AOB ,故BO CD ⊥,同理可得DO BC ⊥,即O 为BCD △的垂心,故BD CO ⊥,又AO BD ⊥,AO CO O = ,AO ⊂平面AOC ,CO ⊂平面AOC ,故BD ⊥平面AOC ,故AC BD ⊥,即AC 与BD 所成角为90︒;所以90EGF ∠=︒,由3BD AC =可得3EG FG =,故cos FG EFG EF ∠==即异面直线AC 与EF故①90︒,②10.五、解答题17.已知n S 是公差不为0的等差数列{}n a 的前n 项和,2a 是1a ,4a 的等比中项,1278S =.(1)求数列{}n a 的通项公式;(2)已知1213n a n n b a --=⋅,求数列{}n b 的前n 项和n T .【正确答案】(1)n a n=(2)(1)31nn T n =-⨯+【分析】(1)根据题意列式求解1,a d ,即可得结果;(2)由(1)可得:1(21)3n n b n -=-⨯,利用错位相减法求和.【详解】(1)设数列{}n a 的公差为d ,因为2a 是1a ,4a 的等比中项,则2214a a a =,即2111()(3)a d a a d +=+,且0d ≠,整理得1d a =①,又因为121121211782dS a =+⨯⨯=,整理得163339a d +=②由①②解得,11a =,1d =,所以()11n a n n =+-=.(2)由(1)知,()11213213n n n n b a n ---=⨯=-⨯,则021133353(21)3n n T n -=⨯+⨯+⨯+⋅⋅⋅+-⨯,可得12313133353(23)3(21)3n nn T n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得0123121323232323(21)3n nn T n --=⨯+⨯+⨯+⨯+⋅⋅⋅+⨯--⨯16(13)1(21)313n n n --=+--⨯-(22)32n n =-⨯-,所以(1)31nn T n =-⨯+.18.为了了解大家对养宠物的看法,某单位对本单位450名员工(其中女职工有150人)进行了调查,发现女职工中支持养宠物的职工占13,若从男职工与女职工中各随机选取一名,至少有1名职工支持养宠物的概率为12.(1)求该单位男职工支持养宠物的人数,并填写下列22⨯列联表;支持养宠物不支持养宠物合计男职工女职工合计450(2)依据小概率值0.05α=的独立性检验,能否认为该单位职工是否支持养宠物与性别有关?附:()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++.α0.100.050.0100.001x α2.7063.8416.63510.828【正确答案】(1)表格见解析(2)不能认为该单位职工是否支持养宠物与性别有关【分析】(1)运用对立事件列方程求出男职工支持养宠物的概率p ,再求出男职工中支持养宠物的人数;(2)根据卡方公式求解.【详解】(1)从男职工中随机选取1人,设支持养宠物的概率为p ,则2人中至少有一名支持养宠物是都不支持养宠物的对立事件,∴111(1)(1)32p ---=,解得14p =,则男职工中支持养宠物的人数为1300745⨯=,22⨯列联表如下:支持养宠物不支持养宠物合计男职工75225300女职工50100150合计125325450(2)零假设为:0H :性别与态度无关联;由于22450(7510022550) 3.462 3.841125325300150χ<⨯-⨯=≈⨯⨯⨯,∴不能认为该单位职工是否支持养宠物与性别有关;综上,男职工中支持养宠物的人数为75;不能认为该单位职工是否支持养宠物与性别有关.19.在ABC 中,4AB =,AC =点D 为BC 的中点,连接AD 并延长到点E ,使3AE DE =.(1)若1DE =,求BAC ∠的余弦值;(2)若π4ABC ∠=,求线段BE 的长.【正确答案】(1)4-2【分析】(1)设BD DC x ==,由cos cos 0ADB ADC ∠+∠=结合余弦定理求解即可求出x =ABC 中,由余弦定理即可求出答案.(2)在ABC 中,由余弦定理求出BC =ABD △中,由余弦定理求出AD =,连接BE ,在ABE 中,由余弦定理即可求出线段BE 的长.【详解】(1)因为1DE =,3AE DE =,所以2AD =,因为πADB ADC ∠+∠=,所以cos cos 0ADB ADC ∠+∠=,设BD DC x ==,则222222022BD AD AB CD AD AC BD AD CD AD+-+-+=⋅⋅,即224164802222x x x x +-+-+=⋅⋅⋅⋅,解得x =2BC BD ==在ABC 中,由余弦定理知,222cos2AB AC BC BAC AB AC +-∠==-⋅(2)在ABC 中,由余弦定理知,2222cos AC AB BC AB BC ABC =+-⋅⋅∠,所以2816242BC BC =+-⋅⋅⋅,化简得280BC -+=,解得BC =因为D 是BC 的中点,所以12BD BC ==在ABD △中,由余弦定理知,2222cos AD AB BD AB BD ABC =+-⋅⋅∠16224102=+-⨯=,所以AD =,因为3AE DE =,所以32AE AD ==在ABD △中,由余弦定理知,222cos2AB AD BD BAE AB AD +-∠=⋅连接BE ,在ABE 中,由余弦定理知,2222cos BE AB AE AB AE BAE =+-⋅⋅∠=351624222⎛⎫+-⨯⨯= ⎪ ⎪⎝⎭,所以BE =20.如图,在三棱锥-P ABC 中,平面PAC ⊥平面ABC ,若PAC △为等边三角形,ABC 为等腰直角三角形,且AC BC =,点E 为AC 的中点,点D 在线段AB 上,且4AB AD =.(1)证明:AB ⊥平面PDE ;(2)求平面PDE 与平面PBC 所成锐二面角的余弦值.【正确答案】(1)证明见解析4【分析】(1)作出辅助线,得到DE AB ⊥,由三线合一得到PE AC ⊥,从而得到线面垂直,面面垂直,从而证明出结论;(2)建立空间直角坐标线,利用空间向量求解二面角的余弦值.【详解】(1)如图,取AB 的中点G ,由AC BC =可得CG AB ⊥,由4AB AD =可得D 为AG 的中点,由E 为AC 的中点可得DE 为ACG 的中位线,∴DE CG ∥,∴DE AB ⊥,∵E 为AC 的中点,PA PC =,∴PE AC ⊥,∵平面PAC ⊥平面ABC ,且平面PAC 平面ABC AC =,PE 在面PAC 内,∴PE ⊥平面ABC ,而AB ⊂平面ABC ,∴PE AB ⊥,又PE DE E = ,且PE DE ⊂,平面PDE ,∴AB ⊥平面PDE .(2)以C 为原点,CA 、CB 为x 、y 轴,过C 垂直于面ABC 的直线为z 轴,设4PA =.则(4,0,0)A ,(0,4,0)B ,(0,0,0)C,P ,则(2,0,PA =- ,()4,4,0AB =-,∴1(1,1,4PD PA AD PA AB =+=+=-,(2,4,PB =--,(2,0,PC =--,设平面PBC 的一个法向量为(,,)n x y z =,由24020n PB x y z n PC x ⎧⋅=-+-=⎪⎨⋅=--=⎪⎩,解得0y =,令x =1z =-,故1)n =-,由(1)可知(4,4,0)AB =-为平面PDE 的一个法向量,∴cos,4ABAB nA nBn=⋅=-⋅,又平面PDE与平面PBC21.已知抛物线2:2(0)C x py p=>的焦点为F,直线:(1)2(0)l y k x k=>--与C交于A,B 两点,当3k=时,28AF BF+=.(1)求抛物线C的方程;(2)若直线:(1)2m y k x=---与抛物线C交于M,N两点,证明:由直线AM,直线BN及y 轴围成的三角形为等腰三角形.【正确答案】(1)24x y=(2)证明见解析【分析】(1)根据直线抛物线方程的联立以及抛物线的定义即可求解;(2)根据直线与抛物线方程的联立以及坐标关系即可求解.【详解】(1)当3k=时,直线:3(1)235l y x x=--=-,与22x py=联立消去y,整理可得26100x px p-+=,由0∆>得236400p p->,即109p>.设11(,)A x y,22(,)B x y,可得126x x p+=,所以()12123101810y y x x p +=+-=-,由题意可得0,2p F ⎛⎫ ⎪⎝⎭,准线方程为2py =-,根据抛物线的定义可得12p AF y =+,22p BF y =+,所以121810191028AF BF y y p p p p +=++=-+=-=,解得2p =,满足0∆>,所以抛物线C 的方程为24x y =.(2)直线():12(0)l y k x k =-->与24x y =联立可得24480x kx k -++=,由0∆>得21616320k k -->,即2k >或1k <-(舍)设11(,)A x y ,22(,)B x y ,则124x x k +=;直线:(1)2m y k x =---与24x y =联立消去y ,整理可得24480x kx k +-+=,由0∆>得21616320k k +->,即1k >或2k <-(舍),故2k >,设33(,)M x y ,44(,)N x y ,则344x x k +=-;因为2231313131314()4AMy y x x x xk x x x x --+===--,同理424BN x x k +=,所以123404AMBN x x x xk k ++++==,所以由直线AM ,直线BN 及y 轴围成的三角形为等腰三角形.22.已知函数()()2ln 2R f x ax x x x a =--∈.(1)若4a =,求()f x '的极值;(2)若函数()2y f x x =+有两个零点1x ,2x ,且21x ex >,求证.12ln ln 3a x x +>【正确答案】(1)极大值为4ln 22-,无极小值(2)证明见解析【分析】(1)对()f x 求导,判断()f x '的单调性,即可求出()f x '的极值;(2)根据极值点的概念整理原不等式可得12211221ln ln ln ln x x x x x x x x +-=+-即112122111ln()ln 1x x xx x x x x +=-,构建新函数1()ln (e)1t t t t t ϕ+=>-,求导,利用导数证明()2t ϕ>即可.【详解】(1)2()ln 2f x ax x x x =--的定义域为(0,)+∞,当4a =时,()4ln 22f x x x '=-+,设()4ln 22g x x x =-+,则442()2xg x x x-'=-=,由()0g x =可得2x =,当02x <<时,()0g x '>,当2x >时,()0g x '<,∴()f x '在(0,2)上单调递增,在(2,)+∞上单调递减,∴()f x '的极大值为(2)4ln 22f '=-,无极小值;(2)由()20f x x +=可得2 ln 0ax x x -=,即1ln xa x=.设ln ()(0)xh x x x=>,则21ln ()x h x x -'=.由()0h x '=可得e x =,当(0,e)x ∈时,()0h x '>,函数()h x 单调递增,当(e,)x ∈+∞时,()0h x '<,函数()h x 单调递减.∴()h x 有极大值1(e)eh =,当01x <<时,()0h x <,当1x >时,()0h x >.要使()2y f x x =+有两个零点1x ,2x ,需有110ea <<,即e a >.∵1212ln ln 1x x a x x ==,由比例的性质可得12211221ln ln ln ln x x x x x x x x +-=+-,即()21211221ln ln x x x x x x x x =+-,故121212122211111ln()ln ln 1x x x x x x x x x x x x x x ++==--,设21x t x =,由21e 0x x >>可得t e >,设函数1()ln (e)1t t t t t ϕ+=>-,则212ln ()(1)t t t t t ϕ--'=-,设1()2ln s t t t t =--,则22211()110s t t t t ⎛⎫'=-+=-> ⎪⎝⎭,∴()s t 在(e,)+∞上单调递增,故1()(e)e 20es t s >=-->,故()0t ϕ'>,∴()t ϕ在(e,)+∞上单调递增,故e 12()(e)12e 1e 1t ϕϕ+>==+>--,∴212e x x >,故312e ax x >,故312ln()ln e ax x >,即12ln ln 3a x x +>.关键点点睛:本题(2)的关键点在于由题意得出1212ln ln 1x x a x x ==,建立关系112122111ln()ln 1x x xx x x x x +=-,再结合题意化简整理,再利用导数证明不等式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年江苏高考数学模拟试题(一)数学Ⅰ 必做题部分一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 1.已知集合{}0,1A =,集合{}1,0,B x =-, 且A B ⊆,则实数x 的值为 . 1.答案:1,解析:根据子集的定义知x 的值为1.2.已知复数(1)(1)i bi +⋅+为纯虚数,则实数b 的值为 .2.答案:1,解析:(1)(1)(1)(1)i bi b b i +⋅+=-++ ,(1)(1)i bi +⋅+是纯虚数,10b ∴-=,且10b +≠ ,1b ∴=.3.一个算法的流程图如下图所示,则输出s 的结果为 .3.答案:11,解析:第一次循环后,3Y =,第二次循环后,5Y =,第三次循环后,7Y =,⋅⋅⋅,所以输出11Y =.4.如图表示甲、乙两名篮球运动员每场得分情况的茎叶图,则甲、乙得分的中位数分别是,a b ,则a b += .4.答案:57.5,解析:由茎叶图知甲的中位数为32a =,乙的中位数为25.5a =,.57.5a b ∴+=. 5.一口袋中放有质地、大小完全相同的6个球,编号分别为1,2,3,4,5,6,甲先摸出一个球,记下编号,放回后乙再摸一个球,甲、乙两人所摸球的编号不同的概率是 .5.答案:56,解析:设“编号不相同”为事件B ,则“编号相同”为其对立事件B ,事件B 包含的基本事件为(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),61()366P B ==, 所以 15()1()166P B P B =-=-=,编号不同的概率为56. 6.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且tan 21tan A cB b+=,则角A 的大小为 . 6.答案:π3,解析:tan 2sin cos 2sin 11tan sin cos sin A c A B C B b B A B +=⇒+=,即sin cos sin cos 2sin sin cos sin B A A B C B A B +=, ∴sin()2sin sin cos sin A B C B A B +=, ∴1cos 2A =.∵0πA <<,∴π3A =. 7.已知质点P 在半径为10cm 的圆上按逆时针方向做匀速圆周运动,角速度是1rad/s ,设(10,0)A 为起始点,记点P 在y 轴上的射影为M ,则10π秒I←1 WhileI <6 Y ←2I+1 I←I+2 EndWhile PrintYxy AM P时点M 的速度是 cm/s .7.答案:10,解析:运动t s 后,(10cos ,10sin ),P t t 则M 的位移()10sin S t t =,10cos v S t '∴==,则10π秒时点M 的速度是10cm/s .瞬时变化率就是导数是解题的关键. 8.如图,设椭圆22221(0)x y a b a b +=>>长轴为AB ,短轴为CD ,E 是椭圆弧BD 上的一点,AE 交CD 于K ,CE 交AB 于L ,则22EK EL AK CL ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的值为 . 8.答案:1,解析:利用投影将斜距离之比转化为水平的距离或竖直的距离之比,将线段之比转化为坐标的绝对值之比,体现坐标法解决问题的思想.如图所示,设点00(,)E x y ,过点E 分别向x 、y 轴引垂线,垂足分别为N 、M ,由△MKE ∽△OKA ,故0x EK ME AK AO a ==,同理0y EL CL b=,则22220022x y EK EL AK CL a b ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,又点00(,)E x y 在椭圆上,故有2200221x y a b +=,即221EK EL AK CL ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭. 9.各项均为正数的等比数列{}n a 满足1764,8a a a ==,若函数231012310()f x a x a x a x a x =++++的导数为()f x ',则1()2f '的值为 .9.答案:554,解析: 由等比数列的性质知24174a a a ==,又因为各项均为正数,所以42a =.因为68a =,所以112,4q a ==,所以32-=n n a ,又91210()210f x a a x a x '=+++,其通项公式为1n n na x -,将21=x 代入得114n n na x n -=,所以1155()(1210)244f '=+++=.10.已知ABC ∆的三边,,a b c 满足1349c b a ≤≤≤≤≤≤,则ABC ∆的面积S 最大值为 .10.答案:6,解析: 11sin 34sin 90622S bc A =≤⨯⨯⋅=,当2224,3,b c a b c ===+时,等号取得,即当5,4,3a b c ===时,ABC ∆的面积S 的最大值为6.11.用[]x 表示不超过x 的最大整数.已知()[]f x x x =+的定义域为[1,1)-,则函数()f x 的值域为 .11.答案:[2,1)[0,1)--,解析:根据[]x 的定义分类讨论.当[1,0)x ∈-时,1y x =-,21y -≤<-;当[0,1)x ∈时,y x =,01y ≤<;所以函数()f x 的值域为[2,1)[0,1)--. 12.已知点G 、H 分别为ABC ∆的重心(三条中线的交点)、垂心(三条高所在直线的交点),若4,6AC AB ==,则HG BC ⋅的值为 . 12.答案:203-,解析:1()()()3HG BC AG AH BC AG BC AC AB AC AB ⋅=-⋅=⋅=+⋅- 22120()33AC AB =-=-.另解:注意到题中的ABC ∆形状不确定,因此可取特殊情形90ACB ∠=,则点H 即为点A ,由此可迅速得到答案.13.设,x y 是正实数,且1x y +=,则2221x y x y +++的最小值是 . 13.答案:14,解析:设2x s +=,1y t +=,则4s t +=. 所以2221x y x y +++=22(2)(1)41(4)(2)s t s t s t s t --+=-++-+41()()6s t s t=+++-. 41()2s t =+-.因为41141149()()(5)444t s s t s t s t s t +=++=++≥,等号当且仅当4,4t s s t s t =+=取得,84,33s t ==,即当且仅当21,33x y ==时,2221x y x y +++的取得最小值14.B11D 114.在棱长为1的正方体1111ABCD A B C D -中,若点P 是棱上一点,则满足12PA PC +=的点P 的个数为 .14.解析:方法1:利用椭圆的定义.一方面点P 在以1,A C 为焦点,长轴长为2的椭圆上;另一方面,P 可能在AB ,AD ,1AA ,11C B ,11C D ,1C C 上,或者在111111,,,,,BB DD CD A B BC A D 上.因为1122BA BC +=+>,故点B 在以,A C 为焦点,长轴长为2的椭圆外,所以椭圆必与线段AB 相交,同理在AD ,1AA ,11C B ,11C D ,1C C 上各有一点满足条件. 又若点P 在1BB 上,则2211112PA PC BP B P +=+++>.故1BB 上不存在满足条件的点P ,同理11111,,,,DD CD A B BC A D 上不存在满足条件的点P . 故满足题设条件的点P 的个数为6.方法2:若P 在AB 上,设AP x =,有221(1)(2)2,PA PC x x +=+-+=解得12x =. 故AB 上有一点P (AB 的中点)满足条件.同理在AD ,1AA ,11C B ,11C D ,1C C 上各有一点满足条件. 又若点P 在1BB 上,则2211112PA PC BP B P +=+++>.故1BB 上不存在满足条件的点P ,同理11111,,,,DD CD A B BC A D 上不存在满足条件的点P . 故满足题设条件的点P 的个数为6. 二、解答题:(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)如图2,点P 在ABC ∆内,23AB CP BC ===, ,πP B ∠+∠=,记B α∠=.(1)试用α表示AP 的长;(2)求四边形ABCP 的面积的最大值,并求出此时α的值.15.解:(1)△ABC 与△APC 中,由余弦定理得,22223223cos AC α=+-⨯⨯, ①()222222cos AC AP AP α=+-⋅⋅π-,②由①②得()24cos 12cos 90 0 AP AP ααα++-=∈π,,,解得34cos AP α=-; (2)()()1123sin 2sin 0 22ABC APC S S S AP ααα∆∆=-=⨯⨯-⨯⨯π-∈π,, 由(1)得4sin cos S αα=⋅2sin2 α=,()0 α∈π,,所以当4απ=时,max 2S =.16.(本小题满分14分)已知PA ⊥菱形ABCD 所在平面,点E 、F 分别为线段BC 、PA 的中点. (1)求证:BD PC ⊥; (2)求证:BF ∥平面PDE .16.证明:(1)PA ⊥平面ABCD ,BD ⊂平面ABCD ,PA BD ∴⊥,又ABCD 是菱形,AC BD ∴⊥,又,PA AC ⊂平面PAC ,PAAC A =,BD ∴⊥平面PAC ,又PC ⊂平面PAC , ∴BD PC ⊥.(2)取线段PD 的中点G ,连结,EG FG , 则FG ∥AD ,且12FG AD =,又BE ∥AD ,且12BE AD =, FG ∴∥BE ,FG BE =,∴四边形BEGF 是平行四边形,BF ∴∥EG ,又BF ⊄平面PDE ,EG ⊂平面PDE ,BF ∴∥平面PDE .17.(本小题满分14分)某商场分别投入x万元,经销甲、乙两种商品,可分别获得利润1y、2y万元,利润曲线分别为1C:1=xy m a b⋅+,2C:2=y cx,其中,,,m a b c都为常数.如图所示:(1)分别求函数1y、2y的解析式;高考资源网(2)若该商场一共投资12万元经销甲、乙两种商品,求该商场所获利润的最小值.(可能要用的数ln20.7≈)17.解(1)由函数1=xy m a b⋅+过点525(0,0),(2,),(4,)1616可得245162516m bm a bm a b⎧⎪+=⎪⎪⋅+=⎨⎪⎪⋅+=⎪⎩,可得2548548abm⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩,15524848xy∴=⋅-由函数2=y cx过点7(3,)4可得712c=,27=12y x∴(2)设该商场经销甲商品投入x万元,乙商品投入12x-万元,该商场所获利润为y万元则12557573312(12)2484812481248x xy y y x x=+=⋅-+-=⋅-+57577772ln22248124810129612x x xy'=⋅-=⋅⋅-=⋅-令0y '=可得3x =,(11分)y '在(0,3)单调递增,∴当(0,3),0,x y '∈<y 在(0,3)单调递减,当(3,)0,x y '∈+∞>,y 在(3,)+∞单调递增,当3x =时,利润y 有最小值28748. 答:该商场所获利润的最小值28748. 18.(本小题满分16分)已知圆221:(1)1C x y ++=和圆222:(4)4C x y -+=.(1)过圆心1C 作倾斜角为θ的直线l 交圆2C 于,A B 两点,且A 为1C B 的中点,求sin θ; (2)过点(,1)P m 引圆2C 的两条割线1l 和2l ,直线1l 和2l 被圆2C 截得的弦的中点分别为,M N .试问过点2,,,P M N C 的圆是否过定点(异于点2C )?若过定点,求出该定点;若不过定点,说明理由;(3)过圆2C 上任一点00(,)Q x y 作圆1C 的两条切线,设两切线分别与y 轴交于点S 和T ,求线段ST 长度的取值范围.18.解:(1)设直线l 的方程为(1)y k x =+,则圆心2C 到直线l的距离d =设AB 的中点为R,则11123AR AB C R ==== 则2118d =,所以在12Rt C RC ∆中,212sin 520C R d C C θ===. (2)依题意,过点2,,,P M N C 的圆即为以2PC 为直径的圆,所以(4)()(1)(0)0x x m y y --+--=,即22(4)40x m x m y y -+++-= 整理成关于实数m 的等式22(4)40x m x x y y -+-+-=恒成立则224040x x x y y -=⎧⎨-+-=⎩,所以40x y =⎧⎨=⎩或41x y =⎧⎨=⎩即存在定点(4,1).(3)设过00(,)Q x y 的直线与圆1C 切线,则1d ==,即2200()1k kx y k +-=+,整理成关于k 的方程222000000(2)(22)10x x k y x y k y +-++-=, (☆) 判别式22222000000000(22)4(1)(2)448y x y y x x x y x ∆=+--+=++,所以00k =直线00()y y k x x -=-与y 轴的交点为00(0,)y kx -,不妨设010(0,)S y k x -,020(0,)T y k x -,则210||ST k k x =-. 而12,k k 是(☆)方程的两根,则2100||ST k k x =-=,又2200(4)4x y -+=,所以000ST ===.(t t =∈,则251616t ST t t t==++, 考察关于t的函数16()([2,f t t t t=+∈,函数()f t 在区间[]2.4是单调递减,在区间4,⎡⎣上单调递增,所以max (())10f t =,min (())8f t =.所以4ST ∈⎦.19.(本小题满分16分)数列{}n a 满足,2,021==a a ,,3,2,1,2sin 4)2cos 1(222 =++=+n n a n a n n ππ (1)求3456,,,a a a a ; (2)设1321k k S a a a -=+++,k k a a a T 242+++= ,分别求,k k S T 关于k 的表达式;(3)设22kk kS W T =+,求使1>k W 的所有k 的值,并说明理由. 19.解:(1)∵2,021==a a ,∴42sin 4)2cos1(2123=++=ππa a ,422sin 4)22cos 1(2224=++=ππa a ,225333(1cos )4sin 822a a ππ=++=, 226444(1cos )4sin 822a a ππ=++=.(2)当)(12*N k k n ∈-=时,4212sin 4)212cos 1(12212212+=-+-+=--+k k k a k a k a ππ, ∴{}12-k a 是以0为首项,4为公差的等差数列,则)1(412-=-k a k , 当)(2*N k k n ∈=时,k k k a ka k a 222222222sin 4)22cos 1(=++=+ππ, ∴{}k a 2是以2为首项,2为公比的等比数列,则kk a 22=,∴{}n a 的通项公式为⎪⎩⎪⎨⎧∈=∈-=-=)(2,2)(12),1(2*2*N k k n N k k n n a n n .)1(2)1(4401231-=-+++=+++=-k k k a a a S k k , 2222212242-=+++=+++=+k k k k a a a T ,(3)112)1(2)1(422-+-=-=+=k k k k k k k k k T S W , 于是1615,45,23,23,1,0654321======W W W W W W . 下面证明:当6≥k 时,1<k W . 事实上,当6≥k 时,-+=-+k k k k k W W 2)1(102)3(2)1(1<-=--kk k k k k ,即k k W W <+1, 又16<W ,∴当6≥k 时,1<k W . 故满足1>k W 的k 的值为5,4,3.20.(本题满分16分)已知函数||)(3a x ax x f -+=(R a ∈).(1)是否存在实数a ,使得函数)(x f 在]0,(-∞上单调递减,在),0[+∞上单调递增?请说明理由;(2)若10<<a ,求函数)(x f 在]1,1[-上的最大值;(3)求证:对任意的实数a ,存在0x ,恒有0)(0≠x f ,并求出符合该特征的0x 的取值范围.20.解:(1)当0≠a 时,)()()(33a x a x ax ax ax ax x f ≥<⎩⎨⎧-++-=,令a x ax x g +-=3)((a x <),a x ax x h -+=3)((a x >),13)(2-='ax x g ,13)(2+='ax x h ,无论0>a 还是0<a 均不符合要求;(2)若10<<a ,)()()(33a x a x ax ax a x ax x f ≥<⎩⎨⎧-++-=,当a x <时,13)(2-='ax x f ,ax ax x f 31013)(2±=⇒=-=',当a x >时,13)(2+='ax x f ,①当310≤<a ,131≥a ,此时)(x f 在],1[a -上单调减,在]1,[a 上单调 增,则在]1,1[-上1)1()1()(max ==-=f f x f ;②当33131≤<a ,此时a a ≥31,此时)(x f 在]31,1[a--上单调增, 在],31[a a-上单调减,在]1,[a 上单调增, 由于)1()1()31(f f af =->-, 则在]1,1[-上aa a f x f 3132)31()(max +=-=; ③当1313<<a ,此时a a <31,则此时)(x f 在]31,1[a --上单调增, 在]31,31[a a -上单调减,在],31[a a-上单调增,在]1,[a 上单调增, 则在]1,1[-上a a a f x f 3132)31()(max +=-=; 综合①②③有 当310≤<a 时,1)(max =x f ; 当131<<a 时,a a a a a x f 9323132)(max +=+=. (3) ①当0=a 时,||)(x x f =,方程0||)(==x x f 只有0根;②当0>a 时,方程0||)(3=-+=a x ax x f 没有0根和正根,P当0>a ,0<x 时,a x ax x f +-=3)(, 由方程0)(3=+-=a x ax x f 得13+=x xa , 则0101033<+⇒⎪⎩⎪⎨⎧>+=<x x x a x ,得1-<x ; ③当0<a 时,方程0||)(3=-+=a x ax x f 没有0根和负根, 当0<a ,0>x 时,a x ax x f -+=3)(, 由方程0)(3=-+=a x ax x f 得13--=x xa , 则0101033>-⇒⎪⎩⎪⎨⎧<--=>x x x a x ,得1>x ; 综上可知,对任意的实数a ,存在]1,0()0,1[0 -∈x ,恒有0)(0≠x f .数学附加题21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答题....纸指定区域内......作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,PA 切⊙O 于点A ,D 为PA 的中点,过点D 引 割线交⊙O 于B 、C 两点.求证: DPB DCP ∠=∠. A .证明:因为PA 与圆相切于A , 所以2DA DB DC =⋅, 因为D 为PA 中点,所以DP =DA ,所以DP 2=DB ·DC ,即PD DB DC PD= .因为BDP PDC ∠=∠, 所以BDP ∆∽PDC ∆, 所以DPB DCP ∠=∠. B .选修4—2:矩阵与变换已知1 0 4 31 2 4 1-⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦B , 求矩阵B . B .解:设 , a b c d ⎡⎤=⎢⎥⎣⎦B 则1 01 22 2a b a c b d ⎡⎤⎡⎤=⎢⎥⎢⎥++⎣⎦⎣⎦B , 故4,4,3,3,4 3.24,4, 4 221, 2.a ab b ac c bd d =-=-⎧⎧⎪⎪==-⎡⎤⎪⎪=⎨⎨⎢⎥+==-⎣⎦⎪⎪⎪⎪+=-=-⎩⎩解得故B C .选修4—4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为2222cos 3sin 3+=ρθρθ,直线l的参数方程为,1x y t ⎧=⎪⎨=+⎪⎩(t 为参数,t ∈R ).试在曲线C上求一点M ,使它到直线l 的距离最大.C .解:曲线C 的普通方程是2213x y +=.直线l的普通方程是0x +=.设点M的直角坐标是,sin )θθ,则点M 到直线l 的距离是d ==因为)4+πθ当πsin()14θ+=-,即ππ2π(42k k θ+=-∈Z ),即3π2π(4k k θ=-∈Z )时,d 取得最大值.==θθ. 综上,点M的极坐标为7π)6或点M的直角坐标为(时,该点到直线l 的距离最大.D .选修4—5:不等式选讲 设函数()f x =.(1)当5a =-时,求函数()f x 的定义域;(2)若函数()f x 的定义域为R ,试求a 的取值范围. D .解:(1)由题设知:1250x x ++--≥, 如图,在同一坐标系中作出函数12y x x =++- 和5y =的图象(如图所示),知定义域为(][),23,-∞-+∞.(2)由题设知,当x R ∈时,恒有120x x a ++-+≥,即12x x a ++-≥- 由(1)123x x ++-≥,∴ 3,aa -≤∴.【必做题】第22题、第23题,每题10分,共计20分.请在答题纸指定区域内..........作答.解答应写出文字说明、证明过程或演算步骤.22.求证:对于任意的正整数n ,(2ns N *∈. 22.解:由二项式定理可知, 0121122(22222nnnn n n nnnnC C C C --=++++,设(2n x=而若有(2n +=,a b N *∈,则(2n =,a b N *∈, ∵(2(21n n⋅-=+⋅-=, ∴令,a s s N *=∈,则必有1b s =-. ∴(2n +s N *∈. 注:本题也可用数学归纳法证明,证明正确的也给相应的分数.23.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,点A 在抛物线C 上,设以F 为圆心,FA 为半径的圆F 交准线l 于,M N 两点.(1)若90MFN ∠=︒,且AMN ∆的面积为24,求p 的值;(2)若,,A F M 三点共线于直线m ,设直线m 与抛物线C 的另一个交点为B ,记A 和B 两点间的距离为()f p ,求()f p 关于p 的表达式.23.解:(1)由对称性可知,MFN ∆为等腰直角三角形,则斜边2MN p =, 且点A 到准线l的距离d FA FM ===.11222AMN S MN d p ∆=⋅=⋅=2p =. (2) 由对称性可设2000(,)(0)2y A y y p >,,02p F ⎛⎫⎪⎝⎭. 由点A ,M 关于点F 对称,得200,2y M p y p ⎛⎫-- ⎪⎝⎭,所以2022y p p p -=-,解得0y =,即32p A ⎛⎫⎪⎝⎭. 直线m的方程为2p y x ⎫=-⎪⎭,与抛物线方程联列222y pxp y x ⎧=⎪⎨⎫=-⎪⎪⎭⎩得2203y py p --=,解得1y =,23y p =-.所以,63p B p ⎛⎫-⎪ ⎪⎝⎭.这样8()3f p AB p ===.。