第一章距离空间与拓扑空间
近代数学基础I总结
+∞ +∞ +∞
● Fubini 定理(积分次序可交换条件) :
赋范空间 定义: X 是线性空间,如果存在 X 上面的函数 (1) x ≥ 0且 x = 0 ⇔ x = 0 (2) αx = α x (3) x + y ≤ x + y
• 满足 (正定性) (齐次行) (三角不等式)
则 • 为 X 上的一个范数。X 是以d ( x , y ) = x − y 为距离的赋范空间,记作 X , • 。 相关:
(加法交换律) (加法结合律)
拓扑空间 定义: ①定义 1: P ( X )是集合X的幂集,τ ⊂ P ( X ) 如果满足 (1)∅ , X ∊ τ
k
(2)∩A i ∊ τ , A i ∊ τ ( i = 1, 2,…, k )
i =1
+∞
(3)∪A i ∊ τ , A i ∊ τ ( i = 1, 2,…)
0 , 1 。注意L1 0 , 1 里面的函数不一定是连续函数。积分的时候需要用雷贝克积 分,而不能用黎曼积分。 ● { x | f ( x )≠ 0 }为f ( x ) 的支撑集。当f ( x ) 的支撑集有界时,{ x | f ( x )≠ 0} 为f ( x )的 紧 支集,记作supp { f ( x )}(因为如果支撑集本身是有界的,在加上闭包的限制。那么得 到的集合就是有界闭区间, 也就是紧的。所以叫做紧支集。 注意无限支撑函数没有紧支 集。 ) ● C 0 D 为 D 上所有紧支集上的连续函数空间。 ●
● 如果距离空间( X , d ) 中的每一个 Cauchy 列都收敛于X中的某一个点,则( X , d ) 是完 1 n ∞ ) } n =1是 Cauchy 列。列中的每个元素都是有理数,而其 n 收敛于 e。是一个无理数。所以此 Cauchy 列在( ℚ, d ) 中没有极限,由于ℚ不是完备 的。在( ℝ , d )有极限,由于ℝ是完备的。 ) ● 有覆盖的集合是紧集,或者称为紧的。由有限覆盖定理(Heine-Borel Theorem) :有 备距离空间。 (例如{( 1 + 界闭合子集都可由有限个开集所覆盖(表示为∀ [ a , b ], ∃ ∪( a i , bi )使[ a , b ] ⊂
矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.
点集拓扑学(第一章1.1)
1736年欧拉 解决七桥问题
哥尼斯堡 七桥问题 四色问题 Euler示性数
1976年9月四
Mö bius带
色问题得到解决
Department of Mathematics
哥尼斯堡七桥问题
哥尼斯堡是东普鲁士的首都,普莱格尔河横贯其中。 十八世纪在这条河上建有七座桥,将河中间的两个岛和河
岸联结起来。人们闲暇时经常在这上边散步
一天有人提出:能不能每座桥 都只走一遍,最后又回到原来的
位置。
这个问题看起来很简单, 有很有趣的问题吸引了大家. 很多人在尝试各种各样的走法,但谁也没有做到。看
来要得到一个明确理想的答案还不那么容易
Department of Mathematics
1736年,有人带着这个问题找到了当时的大数学家 欧拉,欧拉经过一番思考,很快就用一种独特的方法给出
了解答。
他把两座小岛和河的两岸分别看作四个点, 而把七座桥看 作这四个点之间的连线。那么这个问题就简化成,能不能用一 笔就把这个图形画出来。 经过进一步的分析,欧拉得出结论——不可能每座桥都走一 遍,最后回到原来的位置。并且给出了所有能够一笔画出来的 图形所应具有的条件。这是拓扑学的“先声”。
Department of Mathematics
和数学知识,能对实际问题进行分析、归纳、
提炼和解决,提高他们的数学素养。
Department of Mathematics
教学目标
掌握拓扑空间、度量空间和连续映射的定义、例子、
性质。掌握连通性,可数性,分离性,紧性等拓扑性质。 掌握几个重要的拓扑性质的可积性、可商性和遗传性。
教学要点
拓扑空间、度量空间和连续映射的定义、例子、性 质。连通性,可数性,分离性,紧性等拓扑性质。几个重
拓扑空间及其性质与应用
拓扑空间及其性质与应用拓扑空间是数学中一种较为抽象的概念,它研究的是集合内元素间的空间性质。
在拓扑学的研究中,我们并不关心元素的具体性质,而是关注它们之间的相对关系。
因此,在拓扑学中,我们可以用更为广泛的眼光来观察空间的形态和性质,从而研究许多实际问题。
1. 拓扑空间的定义及性质拓扑空间一般是指一个非空集合X及其上的某些特定子集的一个集合T,这些子集被称为X的开集合,满足以下条件:(1)X和∅(空集)都是开集合;(2)任何一组开集合的交集仍是开集合;(3)任何有限个开集合的并集仍是开集合。
拓扑空间在定义上的几何意义,是指我们可以在一个集合X中定义“开”概念,从而建立一个“空间”,并在此空间中研究“连续性”、“紧性”、“连通性”等性质,并对它们加以分类和研究。
在拓扑学中,一个集合的子集所构成的拓扑空间,有时被称为“子空间”。
我们可以利用子空间的方法,把一个大的拓扑空间划分为若干个小的拓扑空间,使得我们对它们的研究更加方便。
2. 拓扑空间的常见性质(1)Hausdorff性质:指的是任何两个不同点都可以被它们所在的开集合所分离的性质。
也就是说,对于任意的两个不同点x和y,我们可以找到x所在的一个开集合U和y所在的一个开集合V,使得U和V没有任何交集。
这个性质使得拓扑空间中的点与点之间的距离更明确,从而方便我们对拓扑空间中的连通性和路径的讨论。
(2)连通性:指的是在拓扑空间中,任何一对不同点都可以被某种形式的路径所连通,即这对点所在的集合是连通的。
连通性是拓扑空间中的一种重要性质,它使得我们对拓扑空间中的形态更为直观,同时也方便我们对拓扑空间的分类和归纳。
(3)紧性:指的是拓扑空间中的任何一个开覆盖都存在有限的子覆盖。
紧性是拓扑空间中的另一个重要性质,它在实际问题中有很广泛的应用。
例如,在微积分学中,一些重要的定理,如还原定理和傅里叶定理的证明,需要利用紧性的性质。
3. 拓扑空间的应用(1)生物学中:利用拓扑空间的方法,可以对DNA及其上的蛋白质结构进行拓扑学分析,从而研究生物体的启动子序列、调节基因、编码基因等结构间的关系。
第一章、拓扑学基础
第一章、拓扑学基础1.1拓扑空间概念拓扑空间是一个二元组(S, O),这里S是给定集合,O是由S的一些子集构成的集类,其元素称为开集,并满足如下开集公理:T1 ∅, S∈O(即,∅, S是开集);T2 若U1,U2∈O,则U1⋂U2∈O(即,O对有限交封闭);T3 开集的任意并集还是开集(即,O对任意并封闭)。
註记满足上述开集公理的O,也称为集合S上的拓扑,(S, O)为相应的拓扑空间,也记为S。
例子实数集合ℝ上的标准拓扑:开集定义为若干个开区间的并集。
不难验证:这里定义的开集满足开集公理。
只需说明:两个开区间的交集为空集或开区间。
例子离散拓扑与平凡拓扑对给定的集合S,定义下列两个拓扑:(S,O1): O1由S的所有子集构成,它是S上的拓扑(最大拓扑)。
(S,O2): O2={∅,S},它是S上的拓扑(最小拓扑)。
练习给出实数集合ℝ上三种不同的拓扑空间结构。
练习设S是一个集合,O由∅,S及S的某个固定子集A的所有子集构成。
验证O是S上的拓扑。
从而,(S,O)是一个拓扑空间。
概念设(S, O)是拓扑空间,称A⊂S是闭集,如果S\A是开集。
拓扑空间S的所有闭集构成集合,记为C。
命题拓扑空间S中的闭集满足闭集公理C1 ∅, S∈C;C2 若A1,A2∈C,则A1⋃A2∈C(即,C对有限并封闭);C3 闭集的任意交集还是闭集(即,C对任意交封闭)。
证明:利用下列等式可证。
S\(A1⋃A2)=(S\A1)⋂(S\A2),S\(B ii。
i)=(S\B i)註记开集公理与闭集公理是等价的:若S中的某些子集指定为闭集,并满足闭集公理。
则S是拓扑空间,其开集由闭集的余集所构成。
概念对拓扑空间S,点u∈S的开邻域是指包含u的开集U;子集A⊂S的开邻域是指包含A的开子集;一个点(或子集)的邻域是一个子集,它包含该点(或该子集)的一个开邻域。
例子对拓扑空间ℝ,U=(-1,1)是0的开邻域;W=[-1,1]是0的邻域。
拓扑学的拓扑空间
拓扑学的拓扑空间拓扑学是数学的一个重要分支,研究的对象是拓扑空间及其性质。
拓扑空间是集合论的一个应用领域,它是指任意一个集合及其上的拓扑结构。
本文将介绍拓扑空间的定义、性质以及与其他数学概念的关系。
一、拓扑空间的定义拓扑空间由两个部分组成:一个是集合,另一个是定义在这个集合上的拓扑结构。
集合可以是有限的,也可以是无限的。
拓扑结构则规定了集合中元素之间的接近方式或者邻近关系。
具体地说,拓扑结构包括了开集的概念和满足一定条件的子集之间的关系。
二、拓扑空间的性质1. 开集和闭集:在拓扑空间中,开集是指满足包含于自身内部的集合,闭集则是指包含它所有极限点的集合。
开集和闭集是拓扑空间中的基本概念,它们具有很多重要的性质。
2. 连通性:拓扑空间中的一个重要性质是连通性。
连通性是指拓扑空间中不存在可以将其划分为非空、互不相交且一个集合开,另一个集合闭的两个子集。
连通性在拓扑学和几何学中有广泛的应用,它刻画了空间的固有性质。
3. 同胚和同伦:同胚是指两个拓扑空间之间的一个一一映射,而且这个映射和其逆映射都是连续的。
同胚将一个拓扑空间映射到另一个拓扑空间,保持了拓扑结构的性质。
同伦是拓扑学中的一个关键概念,它刻画了两个空间之间的变形关系。
三、拓扑空间与其他数学概念的关系1. 拓扑空间与度量空间:度量空间是由距离函数所构成的空间,它是拓扑空间的一种特殊情况。
拓扑空间可以通过引入度量而变成度量空间,而度量空间中也能定义拓扑。
2. 拓扑空间与集合论:拓扑空间是集合论的一个应用领域,它运用了集合的概念和理论。
在拓扑学中,集合的元素被看作是拓扑空间中的点,而集合的子集则对应于拓扑空间的开集和闭集。
3. 拓扑空间与几何学:几何学是研究空间形状和性质的学科,而拓扑学则研究了几何学中的一些基本概念和性质。
拓扑空间提供了一种抽象的框架来研究几何学中的问题,使得研究更加一般化和推广。
总结:拓扑学的拓扑空间是集合论的一个重要应用领域,它研究了集合和集合上拓扑结构之间的关系,具有许多有趣的性质。
拓扑空间、开集、闭集、闭包、聚点、邻域
第一章拓扑空间与拓扑不变量数学分析中的连续函数的定义与和值域都是欧氏空间(直线、平面或空间)或是其中的一部分。
本章将首先把连续函数的定义域和值域的主要特征抽象出来用以定义度量空间,将连续函数的主要特征抽象出来用以定义度量空间的连续映射。
然后将两者再度抽象,给出拓扑空间和拓扑空间之间的连续映射。
随后逐步提出拓扑空间的一些基本问题如邻域、开集、闭集、闭包、聚点、导集、内部、边界、序列、极限等。
进一步引入紧致性、连通性、可数性与分离性等重要的拓扑不变性§1.1拓扑空间、开集、闭集、聚点、闭包、邻域一、问题的引入数学分析里我们知道,在连续函数的定义中只涉及距离这个概念,定义域是一维欧氏空间,即实数空间,两点之间的距离d(x,y)=|x-y|,即两两实数之差的绝对值,定义域是n维欧氏空间,两点x=(x1 ,x2,…,x n),Y=(y1,y2,…,y n) 之间的距离。
无论是几维空间,它的距离都有下面的性质:1. d(x,y)≥0 , ∀x,y∈n R;2. d(x,y) = 0 ⇔x = y ;3. d(x,y) = d(y,x) ∀x,y∈n R;4. d(x,z) ≤d(x,y) + d(y,z) ,∀x,y,z∈n R;这些性质反映了距离的特征。
将n R推广为一般的集合,我们由距离可以抽象出度量以及度量空间的定义。
(一)度量空间1.定义定义1 设X是一个集合,ρ:X×X→R ,如果对于任何x,y,z∈X,有①(正定性)ρ(x,y)≥0 并且ρ(x,y) = 0 ⇔x = y ;②(对称性)ρ(x,y) = ρ(y,x) ;③(三角不等式)ρ(x,z) ≤ρ(x,y) + ρ (y,z)则称ρ是集合X中的一个度量。
如果ρ是集合X中的一个度量,则称偶对(X,ρ)是一个度量空间,或径称X 是一个度量空间。
而ρ(x,y )称为从点X 到点Y 的距离。
2. 度量空间举例例2.1.1 实数空间R对实数集合,定义ρ:R×R →R 如下:∀x,y ∈R ,令ρ(x,y )=|x-y| ,易知ρ是R 的一个度量。
泛函分析期末复习提要.doc
泛函分析期末复习提要一、距离空间与拓扑空间(一)教学内容1.距离空间的基本概念:定义与例子、收敛性、距离空间的连续映射与等距。
2.距离空间中的点集:开集与闭集、稠密子集,可分距离空间。
3.完备距离空间:Cauc/巧列,完备性、闭球套定理、纲,纲定理、距离空间完备化。
4.压缩映射原理:不动点,压缩映射原理、压缩原理的一些应用。
5.拓扑空间的基本概:拓扑空间的定义、拓扑基、拓扑空间中的连续映射, 同胚、分离公理。
6.紧性和距离空间的紧性:紧性的概念、紧空间的连续映射。
7.距离空间的紧性:列紧集,全有界集、Arzela定理。
重点掌握距离空间的基本概念、距离空间中的点集、完备距离空间、压缩映射原理、拓扑空间的基本概念、紧性和距离空间的紧性。
难点完备距离空间、压缩映射原理。
(-)教学基本要求1・理解距离空间、距离空间中的点集等基木概念。
2•了解完备距离空间的概念,掌握压缩映射原理的证明。
3.理解拓扑空间的基木概念及其运算性质。
二、赋范线性空间(一)教学内容1.赋范空间的基本概念:赋范空间的定义、赋范空间的基本性、凸集、赋范空间的例。
2.空间L p(p>\):Holder不等式与Minkowski不等式、空间r(E)(p>i).空间r(E)o3•赋范空间进一步的性质:赋范空间的子空间、赋范空间的完备化、赋范空间的商空间、赋范空间的乘积、赋范线性空间的基本概念、等价范数。
4.有穷维赋范空间。
重点赋范空间的定义、赋范空间的基本性、凸集、赋范空间的例、Holder 不等式与Minkowski不等式、空间(£)(/?> 1) >空间匕(E)、赋范空间的子空间、赋范空间的完备化、赋范空间的商空间、赋范空间的乘积、赋范线性空间的基本概念、等价范数。
难点Holder不等式与Minkowski不等式、赋范空间的完备化、空间r(E)(p>i).空间r(E)o(-)教学基本要求1•理解赋范空间的定义、赋范空间的基本性、凸集、赋范空间的子空间、赋范线性空间的基本概念、等价范数。
拓扑学中的拓扑空间
拓扑学是数学中研究空间性质和形状的学科,而拓扑空间则是拓扑学的基本概念之一。
拓扑空间是为了定义空间中点的邻域情况,以及点与点之间的关系而设立的一种数学结构。
它是在集合论的基础上引入了“邻域”的概念,使得我们可以研究空间中点的相互关系。
首先,我们需要明确什么是拓扑空间。
拓扑空间是一个集合X,以及集合X上的一个子集族T,满足以下三个条件:(1)空集∅和集合X都属于子集族T;(2)子集族T对于有限交和任意并运算封闭;(3)子集族T对于任意的有限并运算封闭。
子集族T中的元素被称为开集,而非空开集的补集则被称为闭集。
拓扑空间的基本性质在于它使用了邻域的概念。
对于一个点x∈X,其邻域N是指一个包含x的开集,且N中还包含其他的点。
换句话说,邻域是一个包含待研究点周围点集的一个范围。
邻域的概念为研究点与点之间的关系提供了基础。
例如,如果两个点在一个拓扑空间中的邻域中具有非空的交集,则这两个点在空间中是相邻的。
拓扑空间中还有一些重要的概念和性质。
其中之一是连通性。
一个拓扑空间是连通的,当且仅当它不能分解为两个非空不相交的开子集的并。
连通性刻画了空间中的“连续性”,即无法通过分割空间使得两个部分独立。
另一个重要的概念是紧致性。
一个拓扑空间是紧致的,当且仅当它的任意开覆盖都存在有限子覆盖。
紧致性可以视为拓扑空间的“有界性”,即无论如何划分空间,都能找到有限个开覆盖。
拓扑空间还有一些常见的例子。
最简单的例子是离散拓扑空间,即集合中的每个点都是一个开集。
该拓扑空间中任意两个点的邻域都不相交,因此在该空间中点与点之间是相互独立的。
另一个例子是度量空间,其中的拓扑是由一个度量给出的。
在度量空间中,邻域的定义由度量确定,即x的邻域是所有与x距离小于某个正数的点的集合。
度量空间是拓扑空间的一个重要子类。
总之,拓扑空间是拓扑学中的基本概念,它通过引入邻域的概念,使我们能够研究空间中点的相互关系。
拓扑空间具有一些重要的性质和概念,如连通性和紧致性。
第一章_距离空间
可见,同一空间可以定义不同的距离,从而形成不 同的距离空间。
例 2 设 Rn 是 n 维向量全体构成的空间,
x (x1, x2,L , xn ), y ( y1, y2,L , yn ) R n
n
定义 (x, y) (xi yi )2 i 1
证明:Rn 在 下为距离空间,即通常意义下的欧氏空间。
第1章 距离空间与拓扑空间
§1.1 定义和举例 §1.2 收敛概念 §1.3 稠密性与完备性 §1.4 可分性与列紧性 §1.5 连续映射
在数学分析中 研究对象——函数 基本工具——极限,是分析理论的基础 定义极限的基础——距离
在泛函分析中将上述内容推广 研究对象——算子、泛函 (空间到空间的映射) 首先引入度量工具——距离 然后在度量空间中——定义极限,建立相应的理
证明:设 n 时, (xn, x) 0,
Q (xn, xm ) (xn, x) (xm, x)
则 n,m 时, (xn, xm ) 0 。
例 1 在有理数空间 Q 中,点列 1, 1.4, 1.41, 1.414, 1.4142, … 2 Q
是 Q 中的 Cauchy 点列,但不是收敛点列;
2)举例 例 1 设 R1 是非空实数集合,x, y R1,
① 若定义 (x, y) x y ,
验证知三条距离公理成立,则 R1 按定义 为距
离空间,即通常意义下的距离空间,常称欧氏空间。
②
若定义 1(x,
y)
x y 1 x y
,验证知三条距离公理
成立,所以,R1 按定义 1也是距离空间
③ 若定义 2(x, y) x y2 , 验证不满足第三条公理,所以 R1 按定义 2 不是
(即 n 时, (xn, x) 0)
基础拓扑学笔记
0
可以定义 wi 为全集
i 1
( A B x | x A, x B
yA B yA yB
0
z wi 不存在,所以定义全集合理)
i1
在这样的定义下,条件 1 可以省去,其可由 2、3 导出
对 X ,t , X 是拓扑,称为平凡拓扑
例: X , s 2X ( X 的所有子集),称为离散拓扑
设C 2X 是拓扑空间 X 的子集族,称C 是 X 的一个 覆盖,若 C X ,若C 的每个成员都是开(闭)集,
CC
称C 为开(闭)覆盖
定理 1.2:粘接定理
n
f : X Y , X Ai , Ai 闭, f |Ai 连续,则 f 连
i 1
续
证明:只要证明 Y 的每个闭集的原像是闭集
设 B 是 Y 的闭集,则
n
n
f 1 B
f 1 B Ai
f 1 Ai
B
i 1
i 1
2.3 同胚映射 定义 1.8:X ,Y 同胚是指存在 f : X Y 满足:1) f
连续 2)一一对应 3)逆映射 f 1 也连续
在同胚映射下,开集映为开集,闭集映为闭集
例:a,b,c, d 的线性映射
例: 0,1,0, 同胚( ln x )
的闭包 A A A x | x邻域W,W A
命题 1.4:若拓扑空间 X 的子集 A 与 B 互为余集,则
A 与 B 互为余集 命题: A 是闭集
证明: y A 存在邻域U y A ,即Uy X A
X A X A
1.3 拓扑空间中的几个基本概念
推论: A X X A , B X X B
证明: A B A A B A
证明距离空间是个正规的拓扑空间
从简单到复杂,深入浅出地介绍什么是拓扑空间和正规拓扑空间,以及如何证明距离空间是正规的拓扑空间。
证明距离空间是个正规的拓扑空间1. 什么是拓扑空间?拓扑空间是一种数学结构,它描述了空间中点与点之间相邻关系的性质。
在拓扑空间中,我们不关心具体的距离或者度量,而是着眼于空间中点的相对位置关系。
简单来说,拓扑空间是对空间的一种抽象描述,它关注的是空间的连通性、邻域性等性质。
2. 什么是正规的拓扑空间?正规的拓扑空间是指具有一些特定性质的拓扑空间。
具体来说,一个拓扑空间被称为正规的,如果对于任意两个不相交的闭集(闭集的定义:闭集是指包含自身的所有极限点的集合),存在着相互分离的开集(开集的定义:对于任意一点x,存在着一个包含x的开集)将它们分开。
这个性质在拓扑学中具有重要意义,能够确保空间中的点与闭集之间存在着比较分明的关系。
3. 距离空间是正规拓扑空间证明距离空间是正规的拓扑空间,首先需要了解什么是距离空间。
距离空间是一种特殊的拓扑空间,它具有一个距离函数,能够度量空间中任意两点之间的距离。
在距离空间中,我们可以定义开球、闭球等概念,这些都是基于距离函数而来的。
距离空间中的拓扑结构由距离函数所确定,这使得距离空间具有一些特殊的性质。
3.1 证明距离空间的开球是开集在距离空间中,我们可以定义开球为以某点为中心、某个正数为半径的球形集合。
我们知道开球是开集,因为对于任意一点x属于开球,存在着以x为中心的开球能够完全包含在原开球内部。
这个性质是距离空间的重要性质之一,也是保证距离空间是正规的拓扑空间的重要基础。
3.2 证明距离空间的闭集是闭集同样地,距离空间中的闭集也满足闭集的定义。
闭集的特点是包含自身的所有极限点,而在距离空间中,我们可以借助距离函数的性质证明闭集的闭集性质。
这个性质能够保证距离空间的连通性和完备性,也是正规性的体现之一。
4. 结语距离空间作为一种特殊的拓扑空间,具有许多有趣的性质。
通过对距离空间的特性进行分析和研究,我们可以得出它是正规的拓扑空间的结论。
第一章、拓扑学基础
第一章、拓扑学基础1.1拓扑空间概念拓扑空间是一个二元组(S, O),这里S是给定集合,O是由S的一些子集构成的集类,其元素称为开集,并满足如下开集公理:T1 ∅, S∈O(即,∅, S是开集);T2 若U1,U2∈O,则U1⋂U2∈O(即,O对有限交封闭);T3 开集的任意并集还是开集(即,O对任意并封闭)。
註记满足上述开集公理的O,也称为集合S上的拓扑,(S, O)为相应的拓扑空间,也记为S。
例子实数集合ℝ上的标准拓扑:开集定义为若干个开区间的并集。
不难验证:这里定义的开集满足开集公理。
只需说明:两个开区间的交集为空集或开区间。
例子离散拓扑与平凡拓扑对给定的集合S,定义下列两个拓扑:(S,O1): O1由S的所有子集构成,它是S上的拓扑(最大拓扑)。
(S,O2): O2={∅,S},它是S上的拓扑(最小拓扑)。
练习给出实数集合ℝ上三种不同的拓扑空间结构。
练习设S是一个集合,O由∅,S及S的某个固定子集A的所有子集构成。
验证O是S上的拓扑。
从而,(S,O)是一个拓扑空间。
概念设(S, O)是拓扑空间,称A⊂S是闭集,如果S\A是开集。
拓扑空间S的所有闭集构成集合,记为C。
命题拓扑空间S中的闭集满足闭集公理C1 ∅, S∈C;C2 若A1,A2∈C,则A1⋃A2∈C(即,C对有限并封闭);C3 闭集的任意交集还是闭集(即,C对任意交封闭)。
证明:利用下列等式可证。
S\(A1⋃A2)=(S\A1)⋂(S\A2),S\(B ii。
i)=(S\B i)註记开集公理与闭集公理是等价的:若S中的某些子集指定为闭集,并满足闭集公理。
则S是拓扑空间,其开集由闭集的余集所构成。
概念对拓扑空间S,点u∈S的开邻域是指包含u的开集U;子集A⊂S的开邻域是指包含A的开子集;一个点(或子集)的邻域是一个子集,它包含该点(或该子集)的一个开邻域。
例子对拓扑空间ℝ,U=(-1,1)是0的开邻域;W=[-1,1]是0的邻域。
第一章拓扑空间与连续映射 ppt课件
第二节 连续映射与同胚映射
• 2.1连续映射的定义
• 2.2连续映射的性质 下列映射一定连续:
• 2.3同胚映射
下面求f 的逆映射,为此令
第三节 乘积空间与拓扑基
• 在第一节中,我们曾提出过如下问题: • 问题3 设11(,X τ) 和22(,X τ) 都是拓扑空间,
则如何给出1 XX×2 上的拓扑结构τ?(乘 积拓扑) • 3.1 乘积空间
• 1. 投射:
注:τ是满足这两个投射都连续的最小拓扑。 (思考为什么要这样?)
• 2. 生成的子集族:设Γ是X的一个子集族, 规定新的子集族
类似地,可以给出有限个拓扑空间的 乘积空间。 任意多个集合的笛卡尔积
无限个拓扑空间的乘积空间定义比较麻 烦,一般有两种:
第一章 拓扑空间与连续映射
第一节 拓扑空间
数学分析中连续概念的刻画
1.1 拓扑空间的定义
例子
Ex.5 (欧氏拓扑)设R是全体实数 的集合,
拓扑的比较
• 问题1(如何构造具体的拓扑)
• (1)若X有一个元素,则X上一共有几个拓 扑?(1个)
• (2)若X有两个元素,则X上一共有几个拓 扑?(4个)
• 3.2 乘积空间的性质
• 3.3 拓扑基
想法:度量空间中的开集是若干个互不相交 的球形邻域的并。度量拓扑由球形邻域生成; 乘积拓扑由一个特定的子集族生成。拓扑基 就是从上述方法中抽象出来的。
• Pro1. Γ 是集合X 的拓扑基的充分必要条件 是:
• 补充知识:拓扑空间的子基 (可参考熊金 城《点集拓扑讲义》)
• (3)若X有三个元素,则X上一共有几个拓 扑?(29个)
• (4)若X有n()个元素,则4n≥X上一共 有几个拓扑?(思考题)
泛函分析1H
• 如:关于点的收敛性就与自控控制系统的输入输 出稳定性、控制算法的收敛性等密切相关。
• 下面我们介绍的这个结论,不仅在数学上,在其 它的学科也能看到广泛的应用。
定理证明:随便给定一点x 0,压缩算子T 逐次作用,得到了一个 Cauchy列,由空间X的完备性,极限点x *存在且唯一,不动点就
备的、可分的 • 不可分距离空间,例如有界序列空间 l
(利用[0,1]中点是不可数多个)
• C[a,b]按L^1距离就不是完备的,它的完备化空间是 L^1(存在连续函数序列,L^1收敛到不连续的可积函数
) 有理数点构成的距离空间也不完备
距离空间的完备化
• 我们知道有理直线Q是不完备的,但可以扩 展为完备的实直线R。
分析迭代算法的收敛性的理论依据,是数学和工程计算中最经
常使用的方法之一。
2.迭代序列中x0可以任意取,可以对近似不动点给予误差估计
(x*,
xn
)
an 1 a
(Tx0
,
x0
)
动态控制系统状态轨线的存在性和唯一性
• 控制论中,确定性动态控制系统可以用如下常微分方程来 描述
x(t0) x$, x '(t) F(t, x(t),u(t)),t T [t0,t f ].
有限集,空集,无穷集合;数集的常用符号 NQZRC。 • 注:对于给定的集合A,一元素a是否属于A是确 定的。
2.集合的运算
• 集合的交 、并、 差(A-B)、取余(A是B 的子集,B-A)。
• 集合的运算性质:有限交(并)满足结合 律,交换律和分配律;任意交(并)满足 对偶原理
数学中的拓扑学与空间结构知识点
数学中的拓扑学与空间结构知识点数学的拓扑学是研究空间与连续映射之间关系的一个重要分支。
它研究的是空间的性质,而不关注具体的度量和距离。
拓扑学通过引入拓扑结构,研究了空间中的开集、闭集、连通性、紧性、连续映射等概念。
本文将介绍拓扑学与空间结构的一些基本知识点。
一、拓扑空间拓扑空间是拓扑学的基础概念,是一种通过集合和集合之间的关系来描述空间的数学结构。
一个拓扑空间由两部分组成:一个非空集合X和定义在X上的一组称为拓扑结构的子集。
拓扑结构由开集满足一定条件所构成。
二、开集与闭集在拓扑空间中,开集和闭集是两个重要的概念。
开集是指一个集合的每个点都内含于该集合内,而闭集则是指其补集是开集。
开集和闭集的概念相互补充,且它们具有一些基本的性质,如交和并的封闭性等。
三、连通性连通性是拓扑学中描述空间连通程度的一个概念。
一个空间是连通的,当且仅当不存在将其分割为非空开集A和B的分离集。
连通性可以用来描述空间的整体性质以及空间是否“断裂”。
四、紧性紧性是拓扑学中的一个重要概念,它描述的是空间中点的有限覆盖性质。
一个拓扑空间称为紧的,当且仅当它的任意开覆盖都存在有限子覆盖。
紧性是一种关于空间紧凑性质的推广,具有许多重要的性质和应用。
五、同胚与拓扑不变量同胚是拓扑学中研究空间间的一种等价关系,它描述的是两个拓扑空间之间的一一对应关系。
如果两个拓扑空间之间存在一个连续和双射的映射,并且该映射的逆映射也连续,则它们是同胚的。
同胚关系可以保持拓扑空间的一些重要性质,如连通性、紧性等。
总结:数学中的拓扑学与空间结构是一门重要的数学学科,它研究的是空间中的性质,并通过引入拓扑结构来描述和分析空间的特征。
本文简要介绍了拓扑空间、开集与闭集、连通性、紧性、同胚与拓扑不变量等知识点。
拓扑学在数学以及与其相关的诸多领域中有着广泛的应用,对于理解和分析空间的特性具有重要的意义。
通过学习拓扑学,我们可以深入理解数学中的空间结构,为解决实际问题提供有力的工具和方法。
拓扑空间定义
拓扑空间定义1. 引言拓扑学是数学的一个分支,研究空间中的连续性和邻近性质。
拓扑空间是拓扑学的基本概念之一,它是一种抽象的数学结构,用来描述集合中元素之间的关系。
在本文中,我们将介绍拓扑空间的定义及其相关概念。
首先,我们将介绍集合、拓扑结构和拓扑空间的基本概念。
然后,我们将讨论一些常见的拓扑空间及其性质。
最后,我们将探讨一些与拓扑空间相关的重要定理和应用。
2. 集合在讨论拓扑空间之前,我们首先需要了解集合的概念。
集合是指由确定元素组成的整体。
在数学中,我们通常用大写字母表示集合,用小写字母表示集合中的元素。
例如,假设有一个集合A={1, 2, 3},其中1、2和3都是A的元素。
我们可以使用A∈B表示A是B的子集。
3. 拓扑结构在讨论拓扑空间之前,我们还需要了解拓扑结构的概念。
拓扑结构是指对集合中的元素之间的关系进行描述的一种数学结构。
一个拓扑结构通常包含以下三个基本要素:•开集:一个开集是指一个集合,它包含了该集合中每个点的某个邻域。
•闭集:一个闭集是指一个集合,它包含了该集合中所有极限点。
•邻域:邻域是指包含给定点的开集。
通过定义开集和邻域,我们可以描述元素之间的邻近性质和连续性。
4. 拓扑空间定义现在我们可以给出拓扑空间的定义了。
拓扑空间是指一个非空集合X及其上的拓扑结构T组成的一对(X, T)。
具体来说,拓扑空间需要满足以下三个条件:1.空集和整个X都是开集。
2.任意多个开集的交集仍然是开集。
3.有限多个开集的并集仍然是开集。
通过这些条件,我们可以描述元素之间的连续性和邻近性质。
同时,我们还可以定义闭集、极限点等重要概念。
5. 常见拓扑空间在实际应用中,有许多常见的拓扑空间。
下面我们将介绍一些常见的拓扑空间及其性质。
•实数空间:实数空间是指由所有实数构成的集合。
在实数空间上,常用的拓扑结构是由开区间组成的集合。
•离散拓扑空间:离散拓扑空间是指任意集合上的一种特殊拓扑结构,其中每个点都是一个开集。
点集拓扑讲义-104页
例 3. 设 X 为任一集合, Tα α ∈ ∧ 为 X 上的一族拓扑, 令 T = Tα,
α∈∧
则 T 也为 X 上的一个拓扑.
例 4. 设 (X, T ) 为一个拓扑空间, A 为 X 的一个子集, 令
TA = E ∩ A E ∈ T ,
4
第一章 点集拓扑基础
例 5. 令 X = 1, 2, 3, 4, 5 , S = {1}, {2, 3}, {2, 5}, {4, 5} , 则
B1 = {1}, {2}, {5}, {2, 3}, {2, 5}, {4, 5} ,
B2 = {1}, {2}, {5}, {1, 2}, {1, 5}, {2, 3}, {2, 5}, {4, 5}, {1, 2, 3}, {1, 2, 5},
d(P, Q) = (x2 − x1)2 + (y2 − y1)2. 平面上以 P 为中心, r(r > 0) 为半径的开球记为 B(P ; r), 即
B(P ; r) = M (x, y) ∈ R2 d(P, M ) = (x − x1)2 + (y − y1)2 < r .
设 E 为 平 面 上 的 一 个 非 空 子 集, P0(x0, y0) 为 平 面 上 的 一 个 点, 若 存 在 某 个 δ > 0, 使 得 B(P0; δ) ⊆ E, 则 称 P0 为 集 合 E 的 一 个内点. 由 定 义 知, 若 P0 为 E 的内点, 则 p0 必须属于集合 E. 但另一方面, 集合 E 中的点并 不一定都是 E 的内点, 如: 利用有理数及无理数在实数中的稠密性可知, 集 合 E = {M (x, y) x, y ∈ Q} 甚至没有一个内点. 当然也有另一种极端的情形, 即集合 E 中的每个点都是 E 的内点, 我们称这样的集合为开集. 按这样的定义,
证明距离空间是个正规的拓扑空间
证明距离空间是个正规的拓扑空间证明距离空间是个正规的拓扑空间一、引言在数学中,拓扑空间是研究点集的性质与关系的一种数学结构。
而距离空间是拓扑空间的一个重要特例,其中定义了距离函数来度量点之间的距离。
在本文中,我们将探讨距离空间是一个正规的拓扑空间的证明。
二、正规性的定义让我们定义什么是正规空间。
一个拓扑空间是正规的,如果对于任意的不相交的闭集A和B,存在开集U和V,其中A包含于U,B包含于V,且U和V互不相交。
三、距离空间的定义距离空间是一个拓扑空间,其中定义了一个距离函数d:X×X->R,其中X是一个非空集合,R为实数集。
距离函数d满足以下条件:1. d(x,y) >= 0,对于所有x,y∈X,且d(x,y) = 0当且仅当x=y;2. d(x,y) = d(y,x) 对于所有x,y∈X;3. d(x,y) + d(y,z) >= d(x,z) 对于所有x,y,z∈X。
四、证明距离空间是正规的拓扑空间为了证明距离空间是正规的拓扑空间,我们需要证明对于任意的不相交的闭集A和B,存在开集U和V,其中A包含于U,B包含于V,且U和V互不相交。
证明:设A和B是距离空间X的两个不相交的闭集。
1. 对任意的a∈A和b∈B,由于A和B是闭集,所以它们的补集分别为开集X-A和X-B。
根据距离空间的定义,对于任意的点a∈A和b∈B,存在正数ε1和ε2,使得B(a, ε1)∩B(b, ε2) = ∅,其中B(a, ε)表示以点a为中心,长度为ε的开球。
2. 对于任意的a∈A,根据距离空间的定义,存在正数δ1,使得B(a, δ1)∩B = ∅,其中B表示开球。
同样地,对于任意的b∈B,存在正数δ2,使得B = B(b, δ2)∩B。
3. 我们令U = ⋃(a∈A)B(a, δ1)和V = ⋃(b∈B)B(b, δ2),即U为以A 中点为中心、半径为δ1的所有开球的并集,V为以B中点为中心、半径为δ2的所有开球的并集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、补充最大模原理:在区域内不恒为常数的解析函数的模的最大值只能在 边界达到。
① d ( x, y) ≥ 0 ,且 d ( x, y) = 0 当且仅当 max | x − y |= max | x − y |= 0 当且仅当
|t|≤1
|t| =1
x = y。
② d ( x, y) = d ( y, x) 显然。
∀A ⊆ X , ∃��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������