圆柱和圆锥练习题

合集下载

圆柱圆锥练习题及答案

圆柱圆锥练习题及答案

圆柱圆锥练习题及答案### 圆柱圆锥练习题及答案#### 一、选择题1. 圆柱的底面半径为3厘米,高为5厘米,其体积是()立方厘米。

A. 141.3B. 94.2C. 235.5D. 47.12. 圆锥的底面半径为4厘米,高为9厘米,其体积是()立方厘米。

A. 50.24B. 100.48C. 150.72D. 200.963. 一个圆柱与一个圆锥等底等高,圆柱的体积是圆锥体积的()倍。

A. 1B. 2C. 3D. 4#### 二、填空题4. 圆柱的体积公式是V = πr²h,其中 r 代表________,h 代表________。

5. 圆锥的体积公式是V = ________πr²h,其中 1/3 是因为圆锥的体积是与它等底等高的圆柱体积的________。

#### 三、计算题6. 一个圆柱形水桶,底面直径为20厘米,高为30厘米,求水桶的体积。

7. 一个圆锥形沙堆,底面半径为6米,高为10米,求沙堆的体积。

8. 一个圆柱形容器内装满了水,容器的底面半径为8厘米,高为12厘米。

如果将容器内的水倒入一个底面半径为4厘米,高为18厘米的圆锥形容器中,问水能否完全倒入?#### 四、解答题9. 一个圆柱形的油桶,底面半径为0.5米,高为3米。

如果油桶里的油占油桶体积的75%,求油桶里油的体积。

10. 一个圆锥形的奖杯,底面半径为0.2米,高为0.5米。

如果奖杯的材质是铜,铜的密度为8.96克/立方厘米,求这个奖杯的质量。

#### 答案1. A. 141.3 立方厘米(V = π × 3² × 5 = 141.3)2. B. 100.48 立方厘米(V = 1/3 × π × 4² × 9 = 100.48)3. C. 3 倍(等底等高的圆柱体积是圆锥体积的3倍)4. 底面半径,高5. 1/3,三分之一6. 体积为3.14 × (20/2)² × 30 = 3.14 × 100 × 30 = 9420 立方厘米7. 体积为1/3 × 3.14 × 6² × 10 = 3.14 × 12 × 10 = 376.8 立方米8. 圆柱体积为3.14 × 8² × 12 = 2411.52 立方厘米,圆锥体积为1/3 × 3.14 × 4² × 18 = 301.44 立方厘米。

圆柱与圆锥练习题Word版

圆柱与圆锥练习题Word版

(一)、复习圆柱1、圆柱的特征:圆柱是立体图形,圆柱有( )底面,它们是完全相同的两个( ).两个底面之间的距离叫做( ),有( )条。

侧面是一个( ).打开是一个()形。

2、圆柱的侧面积和表面积圆柱的侧面积的字母公式是:。

圆柱的表面积用字母公式是:。

3、圆柱的体积圆柱体的体积计算的字母公式:。

(二)、复习圆锥1.圆锥的特征:圆锥是立体图形,有()顶点,底面是一个(),侧面是一个()。

从圆锥的顶点到底面圆心的距离,叫做( ),有()条。

2.圆锥的体积.计算圆锥体积的字母公式是:。

等底等高的圆锥与圆柱体的体积有什么关系?。

三、巩固提高(一)填空题1、一个圆锥体底面直径和高都是6厘米,它的体积是( )立方厘米。

2、把一个圆柱削成一个最大的圆锥,圆锥的体积是200立方分米,削去了()立方分米,原来圆柱的体积是()立方分米。

3、一个圆柱的底面周长是 12.56 厘米,高是 5 厘米,它的侧面积是()平方厘米。

4、一个圆柱的底面半径扩大 2 倍,高不变,它的体积扩大了()倍。

5.把4个同样大小的圆柱,熔铸成等底等高的圆锥,能熔铸( )个。

6、等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米,圆锥的体积是()立方米.7、等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆柱的体积是()立方分米,圆锥的体积是()立方分米.8、圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

9、一个棱长是4分米正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里正好装满,这个圆锥体的高是()分米。

(二)、选择题1、一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是()立方分米。

①12 ②36 ③4 ④82、一个圆锥的体积是12立方厘米,底面积是4平方厘米,高是()厘米。

①3 ②6 ③9 ④123、一个圆锥的体积是n立方厘米,和它等底等高的圆柱体的体积是()立方厘米。

圆柱圆锥练习题和答案

圆柱圆锥练习题和答案

圆柱圆锥练习题和答案一、选择题1. 圆柱的体积公式是()A. V = πr²hB. V = πr² + hC. V = πr² - hD. V = πrh2. 圆锥的体积公式是()A. V = 1/3πr²hB. V = 3πr²hC. V = πr²h/3D. V = πr²h3. 圆柱的表面积公式是()A. S = 2πrh + 2πr²B. S = πrh + πr²C. S = 2πrhD. S = πr²4. 圆锥的侧面展开图是()A. 圆形B. 长方形C. 扇形D. 三角形5. 圆柱和圆锥的底面都是()A. 圆形B. 长方形C. 扇形D. 三角形二、填空题6. 一个圆柱的底面半径为3厘米,高为5厘米,其体积是_________立方厘米。

7. 一个圆锥的底面半径为4厘米,高为9厘米,其体积是_________立方厘米。

8. 一个圆柱的底面周长为12.56厘米,高为4厘米,其表面积是_________平方厘米。

9. 一个圆锥的底面半径为2厘米,高为6厘米,其表面积是_________平方厘米。

三、计算题10. 一个圆柱形容器的底面直径为20厘米,高为30厘米,求其容积。

11. 一个圆锥形沙堆,底面半径为5米,高为3米,如果将沙堆铺在长10米,宽6米的长方形地面上,求铺成的沙堆高度。

四、解答题12. 一个圆柱形油桶,底面半径为0.8米,高为1.5米,求油桶的表面积和体积。

13. 一个圆锥形漏斗,底面半径为0.6米,高为0.9米,求漏斗的体积。

答案:1. A2. A3. A4. C5. A6. 141.37. 75.368. 150.729. 37.6810. 圆柱形容器的容积为3.14 × (20/2)² × 30 = 3000π 立方厘米。

11. 圆锥形沙堆的体积为1/3 × 3.14 × 5² × 3 = 78.5π 立方米。

人教版数学6年级下册 第3单元(圆柱和圆锥)课后作业练习题(含答案)

人教版数学6年级下册 第3单元(圆柱和圆锥)课后作业练习题(含答案)

人教版六年级下册第三单元圆柱和圆锥课后作业练习题一.选择题1.把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,它的体积是()立方分米。

A.50.24B.56.52C.16.75D.200.962.36个铁圆柱,可以熔铸成等底等高的圆锥体的个数是()A.12个B.18个C.36个D.108个3.两个圆柱的底面积相等,高之比是3:2,它们的体积之比是()A.3:2B.2:3C.9:44.一个圆柱与一个圆锥等底等高,已知圆柱的体积比圆锥的体积多9立方米,圆锥的体积是()立方米.A.4.5B.3C.95.用两张同样的长方形硬纸板围成两个不同的圆柱形纸筒,再分别装上两个底面,那么这两个圆柱形纸筒的()一定相等。

A.底面积B.侧面积C.表面积D.体积6.一个圆柱与一个圆锥体积相等,底面直径也相等,则圆锥的高是圆柱的高的()A.13B.23C.3倍D.6倍7.一个圆柱和一个圆锥的底面直径相等,圆柱的高是圆锥的3倍,圆锥的体积是5立方分米,圆柱的体积是()立方分米.A.5B.15C.458.一个圆柱的体积比与它等底等高的圆锥的体积大()A.3倍B.2倍C.1 3二.填空题9.底面积是212cm、高是9cm的圆锥的体积是3cm,和它等底等高的圆柱的体积是3cm.10.把6个形状完全相同的圆柱体铁块熔化后,可浇铸成与这种圆柱体等底等高的圆锥体铁块件。

11.一个圆柱的体积是3188.4cm,高是15cm,它的底面积是2cm.12.一个圆柱的底面周长是9.42分米,高3分米,它个圆柱的侧面积是平方分米,体积是立方分米。

13.把一根3米长的圆柱体木材截成三段圆柱体,表面积增加了12平方分米,这根木料的体积是立方分米。

14.一个圆柱和一个圆锥等底等高,它们的体积差是94.2立方厘米,这个圆柱的体积是立方厘米.又知圆锥的底面半径是3厘米,这个圆柱的侧面面积是平方厘米.15.做一节底面直径是10厘米,长为1米的圆柱形烟囱,至少需要一张平方厘米的铁皮。

(完整版)圆柱和圆锥20道专项练习题.doc

(完整版)圆柱和圆锥20道专项练习题.doc

圆柱和圆锥 20 道专项练习题1、一个圆柱形油桶,从里面量的底面半径是20 厘米,高是 3 分米。

这个油桶的容积是多少?2、一个圆柱,侧面展开后是一个边长9.42 分米的正方形。

这个圆柱的底面直径是多少分米?3、一个圆柱铁皮油桶内装有半捅汽油,现在倒出汽油的后,还剩12 升汽油。

如果这个油桶的内底面积是10 平方分米,油桶的高是多少分米?4、一只圆柱形玻璃杯,内底面直径是8 厘米,内装药水的深度是16 厘米,恰好占整杯容量的。

这只玻璃杯最多能盛药水多少毫升?5、有两个底面半径相等的圆柱,高的比是 2 : 5。

第二个圆柱的体积是175 立方厘米,第二个圆柱的体积比第一个圆柱多多少立方厘米?6、一个圆柱和一个圆锥等底等高,体积相差 6.28 立方分米。

圆柱和圆锥的体积各是多少?7、东风化工厂有一个圆柱形油罐,从里面量的底面半径是 4 米,高是20 米。

油罐内已注入占容积的石油。

如果每立方分米石油重700 千克,这些石油重多少千克?8、一个无盖的圆柱形铁皮水桶,底面直径是30 厘米,高是 50 厘米。

做这样一个水桶,至少需用铁皮多少平方厘米?最多能盛水多少升?(得数保留整数)9、一个圆锥形沙堆,高是 1.8 米,底面半径是 5 米,每立方米沙重 1.7 吨。

这堆沙约重多少吨?(得数保留整数)10 、一个圆锥与一个圆柱的底面积相等。

已知圆锥与圆柱的体积的比是1: 6,圆锥的高是 4.8 厘米,圆柱的高是多少厘米?11 、把一个体积是282.6 立方厘米的铁块熔铸成一个底面半径是 6 厘米的圆锥形机器零件,求圆锥零件的高?12 、在一个直径是20 厘米的圆柱形容器里,放入一个底面半径 3 里米的圆锥形铁块,全部浸没在水中,这是水面上升0.3 厘米。

圆锥形铁块的高是多少厘米?13 、把一个底面半径是 6 厘米,高是10 厘米的圆锥形容器灌满水,然后把水倒入一个底面半径是 5 厘米的圆柱形容器里,求圆柱形容器内水面的高度?14 、做一种没有盖的圆柱形铁皮水桶,每个高 3 分米,底面直径 2 分米,做 50 个这样的水桶需多少平方米铁皮?15 、学校走廊上有10 根圆柱形柱子,每根柱子底面半径是 4 分米,高是 2.5 分米,要油漆这些柱子,每平方米用油漆0.3 千克,共需要油漆多少千克?16 、一个底面周长是 43.96 厘米,高为8 厘米的圆柱,沿着高切成两个同样大小的圆柱体,表面积增加了多少?17 、一个圆柱体木块,底面直径和高都是10 厘米,若把它加工成一个最大的圆锥,这个圆锥的体积是多少立方厘米?18 、用铁皮制成一个高是 5 分米,底面周长是12.56 分米的圆柱形水桶(没有盖),至少需要多少平方分米铁皮?若水桶里盛满水,共有多少升水?19 、一根圆柱形钢材,截下 1 米。

【精品】圆柱与圆锥练习题(培优)

【精品】圆柱与圆锥练习题(培优)

【精品】圆柱与圆锥练习题(培优)一、圆柱与圆锥1.一个圆锥沙堆,底面半径是2米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨? 【答案】解: ×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。

【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。

2.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。

大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。

【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.3.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。

【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.4.我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直柱体。

六年级下册数学圆柱圆锥练习题(含答案)

六年级下册数学圆柱圆锥练习题(含答案)

六年级下册数学圆柱圆锥练习题(含答案)一、1. 一个圆柱的底面直径为8厘米,高为10厘米,求其体积和表面积。

解:圆柱的体积公式为V = πr^2h,表面积公式为S = 2πr(r+h)。

其中r为底面半径,h为高度。

先求出底面半径r = 8/2 = 4厘米。

体积V = π(4^2)×10 = 160π≈ 502.65 cm^3表面积S = 2π×4(4+10) = 2π×4×14 ≈ 351.86 cm^22. 一个圆锥的底面半径为6厘米,高为8厘米,求其体积和表面积。

解:圆锥的体积公式为V = 1/3πr^2h,表面积公式为S = πr(r+√(r^2+h^2))。

先求出底面半径r = 6厘米。

体积V = 1/3π(6^2)×8 = 96π≈ 301.59 cm^3表面积S = π×6(6+√(6^2+8^2)) ≈ 150.80 cm^2二、3. 一个圆柱的底面直径是12.6厘米,高是16厘米,求其体积和表面积。

解:首先计算底面半径r = 12.6/2 = 6.3厘米。

体积V = π(6.3^2)×16 = 633.6π≈ 1991.05 cm^3表面积S = 2π×6.3(6.3+16) ≈ 570.97 cm^24. 一个圆锥的底面直径是9.8厘米,高是12厘米,求其体积和表面积。

解:先计算底面半径r = 9.8/2 = 4.9厘米。

体积V = 1/3π(4.9^2)×12 ≈ 237.67 cm^3表面积S = π×4.9(4.9+√(4.9^2+12^2)) ≈ 145.55 cm^2三、5. 一个圆柱的底面半径是5厘米,高是18厘米,求其体积和表面积。

解:底面半径r = 5厘米。

体积V = π(5^2)×18 = 450π≈ 1413.72 cm^3表面积S = 2π×5(5+18) ≈ 376.99 cm^26. 一个圆锥的底面半径是7厘米,高是10厘米,求其体积和表面积。

圆柱圆锥练习题以及答案

圆柱圆锥练习题以及答案

圆柱圆锥练习题以及答案圆柱圆锥练习题以及答案圆柱和圆锥是几何学中常见的几何体,它们具有广泛的应用。

在学习几何学时,我们经常会遇到与圆柱和圆锥相关的练习题。

下面,我将给大家提供一些圆柱和圆锥的练习题以及相应的答案,希望能帮助大家更好地理解和掌握这些概念。

练习题一:计算圆柱的体积已知一个圆柱的底面半径为5cm,高度为10cm,求其体积。

解答:圆柱的体积公式为V = πr²h,其中r为底面半径,h为高度。

将已知数据代入公式,可得V = 3.14 × 5² × 10 = 785 cm³。

因此,该圆柱的体积为785立方厘米。

练习题二:计算圆锥的体积已知一个圆锥的底面半径为8cm,高度为12cm,求其体积。

解答:圆锥的体积公式为V = (1/3)πr²h,其中r为底面半径,h为高度。

将已知数据代入公式,可得V = (1/3) × 3.14 × 8² × 12 = 803.84 cm³。

因此,该圆锥的体积为803.84立方厘米。

练习题三:计算圆柱的表面积已知一个圆柱的底面半径为6cm,高度为15cm,求其表面积。

解答:圆柱的表面积由底面积和侧面积组成。

底面积为πr²,侧面积为2πrh。

将已知数据代入公式,底面积为3.14 × 6² = 113.04平方厘米,侧面积为2 ×3.14 × 6 × 15 = 565.2平方厘米。

因此,该圆柱的表面积为113.04 + 565.2 = 678.24平方厘米。

练习题四:计算圆锥的表面积已知一个圆锥的底面半径为10cm,高度为16cm,求其表面积。

解答:圆锥的表面积由底面积、侧面积和底面到顶点的距离构成。

底面积为πr²,侧面积为πrl,其中l为底面到顶点的距离。

根据勾股定理,l = √(r² + h²)。

圆锥与圆柱的性质与运算综合练习题

圆锥与圆柱的性质与运算综合练习题

圆锥与圆柱的性质与运算综合练习题【题一】圆锥性质与运算已知一圆锥的高度为10cm,底面半径为4cm。

求:1. 圆锥的体积和表面积各是多少?解析:圆锥的体积公式为V = 1/3 * π * r² * h,其中r为底面半径,h为高度。

圆锥的表面积公式为S = π * r * (r + l),其中r为底面半径,l为斜高。

解答:圆锥的体积为V = 1/3 * π * 4² * 10 = 167.552 cm³圆锥的表面积为S = π * 4 * (4 + 6) = 150.796 cm²2. 若将该圆锥与同高的另一圆锥相加,其底面半径为7cm,求合体的体积和表面积各是多少?解析:合体的体积等于两个圆锥体积之和,表面积等于两个圆锥表面积之和。

解答:合体的体积为V = 1/3 * π * (4² * 10 + 7² * 10) = 591.978 cm³合体的表面积为S = π * (4 * (4 + 6) + 7 * (7 + 10)) = 461.684 cm²【题二】圆柱性质与运算已知一圆柱的高度为12cm,底面半径为5cm。

求:1. 圆柱的体积和表面积各是多少?解析:圆柱的体积公式为V = π * r² * h,其中r为底面半径,h为高度。

圆柱的表面积公式为S = 2 * π * r * (r + h),其中r为底面半径,h为高度。

解答:圆柱的体积为V = π * 5² * 12 = 942.48 cm³圆柱的表面积为S = 2 * π * 5 * (5 + 12) = 469.76 cm²2. 若将该圆柱与同高的另一圆柱相加,其底面半径为8cm,求合体的体积和表面积各是多少?解析:合体的体积等于两个圆柱体积之和,表面积等于两个圆柱表面积之和。

解答:合体的体积为V = π * (5² * 12 + 8² * 12) = 3485.76 cm³合体的表面积为S = 2 * π * (5 * (5 + 12) + 8 * (8 + 12)) = 970.08 cm²综上所述,根据给定的题目,我们可以得到圆锥和圆柱的性质与运算的综合练习题的解答。

圆柱圆锥练习题以及答案

圆柱圆锥练习题以及答案

圆柱圆锥练习题以及答案一、选择题1. 一个圆柱的底面半径为3厘米,高为5厘米,其体积为:A. 141.3立方厘米B. 282.6立方厘米C. 94.2立方厘米D. 47.1立方厘米2. 一个圆锥的底面半径为4厘米,高为9厘米,其体积为:A. 75.36立方厘米B. 100.48立方厘米C. 50.24立方厘米D. 37.68立方厘米3. 圆柱的侧面积公式是:A. 2πr²B. πr²C. 2πrhD. πrh4. 圆锥的侧面积公式是:A. πr²B. πrlC. πr²+πrlD. 2πrh二、填空题1. 一个圆柱的底面直径为6厘米,高为10厘米,其侧面积为______平方厘米。

2. 一个圆锥的底面半径为5厘米,高为12厘米,其体积为______立方厘米。

三、解答题1. 一个圆柱形水桶的底面直径为40厘米,高为60厘米,求这个水桶的容积。

2. 一个圆锥形沙堆,底面半径为3米,高为4米,如果每立方米沙重1.5吨,求这堆沙的重量。

四、计算题1. 一个圆柱形油桶,底面直径为50厘米,高为80厘米,求油桶的表面积。

2. 一个圆锥形粮仓,底面直径为20米,高为15米,如果每立方米粮食重750千克,求粮仓的容积以及能装多少千克的粮食。

答案:一、选择题1. B2. B3. C4. C二、填空题1. 376.82. 188.4三、解答题1. 水桶的容积为:V=πr²h=π×(20)²×60=37680立方厘米。

2. 圆锥形沙堆的体积为:V=1/3πr²h=1/3×π×(3)²×4=12.56立方米。

沙堆的重量为:12.56×1.5=18.84吨。

四、计算题1. 油桶的表面积为:A=2πr(h+r)=2π×25(80+25)=4712.5平方厘米。

2. 圆锥形粮仓的体积为:V=1/3πr²h=1/3×π×(10)²×15=1570立方米。

【数学】圆柱与圆锥练习题培优_

【数学】圆柱与圆锥练习题培优_

【数学】圆柱与圆锥练习题(培优)_一、圆柱与圆锥1.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。

大棚内的空间有多大?【答案】解:3.14X (2“)2x15+2=23.55 (立方米)答:大棚内的空间有23.55立方米。

【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积+2=大棚内的空间大小,据此列式解答.2.一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm。

把瓶口塞紧后使其瓶口向下倒立,这时酒深25cm。

求酒瓶的容积。

【答案】解:3.14x (10+2) 2x[15+(30-25)]=1570(cm3)答:酒瓶的容积是1570 cm3。

【解析】【分析】酒瓶的容积相当于高15厘米的圆柱形酒的体积,和高是(30-25)厘米的圆柱形空气的体积,把这两部分体积相加就是酒瓶的容积。

3.如下图,爷爷的水杯中部有一圈装饰,是悦悦怕烫伤爷爷的手特意贴上的。

这条装饰圈宽5cm,装饰圈的面积是多少cm2【答案】解:3.14x6x5 = 94.2 (cm2)答:装饰圈的面积是94.2cm2。

【解析】【分析】解:装饰圈的面积就是高5cm的圆柱的侧面积,用底面周长乘5即可求出装饰圈的面积。

4.一个圆柱形铁皮水桶(无盖),高10dm,底面直径是6dm,做这个水桶大约要用多少铁皮?【答案】解:3.14x6x10+3.14x (6“) 2= 18.84x10+3.14x9= 188.4+28.26= 216.66 (平方分米)答:做这个水桶大约要用铁皮216.66平方分米。

【解析】【分析】水桶无盖,因此用底面积加上侧面积就是需要铁皮的面积,根据圆面积公式计算底面积,用底面周长乘高求出侧面积。

5.一个圆锥体钢制零件,底面半径是3cm,高是2m,这个零件的体积是多少立方厘米?1【答案】解:x3.14x32x2= 3.14x6= 18.84 (立方厘米)答:这个零件的体积是18.84立方厘米。

六年级下册数学《圆柱与圆锥》专项练习题50道及答案【全国通用】

六年级下册数学《圆柱与圆锥》专项练习题50道及答案【全国通用】

六年级下册数学《圆柱与圆锥》专项练习题50道一.选择题(共10题,共20分)1.计算圆锥的体积采用()公式。

A.V=ShB.V=ShC.V=3Sh2.如果圆柱的侧面展开后是一个正方形,那么这个圆柱的()一定和高相等。

A.直径B.半径C.底面周长3.一个圆柱体水桶的容积()圆锥体积。

A.相等B.大于C.小于D.无法确定4.一个圆锥的体积是48立方厘米,底面积是16平方厘米,高是()。

A.9B.3C.65.求圆柱形罐头盒的用料就是求圆柱()。

A.体积B.容积C.表面积6.一个圆柱和一个圆锥的底面积之比是1:3,高的比是2:3,体积比是()。

A.1:3B.2:3C.2:9D.4:97.一根圆柱形木料底面半径是0.2米,长是3米。

将它截成6段,如下图所示,这些木料的表面积比原木料增加了()平方米。

A.1.5072B.1.256C.12.56D.0.75368.一个底面直径是8cm,高是6cm的容器,小明将这个容器装满水,再把一个底面积是3.14平方厘米、高3cm的圆锥体铁块浸入容器的水中.会溢出()立方厘米的水。

A.301.44B.9.42C.3.14D.6.289.一个圆柱形容器内注有水,它的底面半径是r厘米,把一个圆锥形铜锤浸在水中,水面上升h厘米,这个圆锥形铜锤的体积是()。

10.一个圆柱体纸盒,侧面展开是正方形。

这个纸盒的底面半径是5厘米,它的高是()厘米。

A.10B.15.7C.31.4D.78.5二.判断题(共10题,共20分)1.把一根圆柱形木头,削成一个最大的圆锥体,削去部分的体积是圆锥体积的2倍。

()2.圆柱的体积比与它等底等高的圆锥大2倍。

()3.如果一个圆柱体与一个长方体的底面积和高都相等,那么它们的体积也一定相等。

()4.等高的圆柱和圆锥的底面半径之比是3∶1,则圆柱和圆锥体积之比为9∶1。

()5.两个圆锥的底和高各不相等,则两个圆锥的体积也一定不相等。

()6.一个底面半径为2.5cm,高为5cm的圆柱,它的表面积是117.75 cm2。

圆柱圆锥练习题和答案

圆柱圆锥练习题和答案

圆柱圆锥练习题和答案圆柱和圆锥是几何学中常见的立体图形,它们在数学问题中经常出现。

以下是一些关于圆柱和圆锥的练习题以及相应的答案。

练习题1:一个圆柱的底面半径为3厘米,高为10厘米。

求这个圆柱的体积。

答案1:圆柱的体积公式是V = πr²h,其中 r 是底面半径,h 是高。

将给定的值代入公式,我们得到V = π * (3cm)² * 10cm = 90πcm³。

练习题2:一个圆锥的底面半径为4厘米,高为12厘米。

求这个圆锥的体积。

答案2:圆锥的体积公式是 V = (1/3)πr²h。

将给定的值代入公式,我们得到V = (1/3) * π * (4cm)² * 12cm= 64π cm³。

练习题3:如果一个圆柱的体积是100π cm³,底面半径是5厘米,求这个圆柱的高。

答案3:根据圆柱体积公式V = πr²h,我们可以解出高h = V / (πr²)。

将给定的值代入公式,我们得到h = 100π cm³ / (π * (5cm)²)= 4 cm。

练习题4:一个圆锥的体积是150π cm³,底面半径是5厘米,求这个圆锥的高。

答案4:根据圆锥体积公式V = (1/3)πr²h,我们可以解出高 h = (3V) / (πr²)。

将给定的值代入公式,我们得到h = (3 * 150π cm³) / (π *(5cm)²) = 18 cm。

练习题5:一个圆柱和一个圆锥等底等高,已知圆柱的体积是120π cm³,求圆锥的体积。

答案5:由于圆柱和圆锥等底等高,圆锥的体积是圆柱体积的1/3。

所以,圆锥的体积是120π cm³ / 3 = 40π cm³。

练习题6:一个圆柱和一个圆锥的底面半径和高都相等,如果圆柱的体积是圆锥体积的2倍,求圆柱的高。

圆柱圆锥练习题及答案

圆柱圆锥练习题及答案

圆柱圆锥练习题及答案一、选择题1. 下列图形中,可以看作是圆柱的是:A. 棱台B. 球体C. 圆锥D. 圆筒答案:D. 圆筒2. 已知圆锥的底面半径为3cm,高度为4cm,求圆锥的体积(取π=3.14)。

A. 18.84cm³B. 37.68cm³C. 25.12cm³D. 75.36cm³答案:B. 37.68cm³(计算公式:体积V = (1/3)πr²h = (1/3) × 3.14 × 3² × 4 = 37.68cm³)3. 在一个圆锥中,底面圆的周长为12cm,高度为5cm,求圆锥的侧面积(取π=3.14)。

A. 52.2cm²B. 57.68cm²C. 62.8cm²D. 63.4cm²答案:C. 62.8cm²(计算公式:侧面积S = πrl = 3.14 × 3 × 5 =47.1cm²)二、填空题1. 已知圆柱的底面半径为4cm,高度为12cm,求圆柱的体积(取π=3.14)。

答案:V = πr²h = 3.14 × 4² × 12 = 602.88cm³2. 在一个圆锥中,底面圆的半径为6cm,高度为8cm,求圆锥的侧面积(取π=3.14)。

答案:S = πrl = 3.14 × 6 × 10 = 188.4cm²3. 在一个圆柱中,底面圆的半径为5cm,高度为7cm,求圆柱的表面积(取π=3.14)。

答案:S = 2πrh + 2πr² = 2 × 3.14 × 5 × 7 + 2 × 3.14 × 5² = 219.8cm²三、解答题1. 一个圆柱的底面圆的周长为20cm,高度为8cm,求圆柱的体积和表面积(取π=3.14)。

初二数学圆柱和圆锥练习题

初二数学圆柱和圆锥练习题

初二数学圆柱和圆锥练习题1. 圆柱体积计算题目1:半径为3cm,高度为8cm的圆柱体的体积是多少?解析:圆柱体的体积公式为V = πr^2h,其中π取近似值3.14。

解题步骤:1) 将圆柱体的半径和高度代入公式中:V = 3.14 * 3^2 * 8。

2) 计算得到的结果为V = 226.08,所以该圆柱体的体积为226.08cm³。

答案:该圆柱体的体积为226.08cm³。

题目2:半径为5cm,高度为10cm的圆柱体的体积是多少?解析:同样使用圆柱体的体积公式V = πr^2h。

解题步骤:1) 将圆柱体的半径和高度代入公式中:V = 3.14 * 5^2 * 10。

2) 计算得到的结果为V = 785,所以该圆柱体的体积为785cm³。

答案:该圆柱体的体积为785cm³。

2. 圆锥体积计算题目1:半径为4cm,高度为6cm的圆锥的体积是多少?解析:圆锥的体积公式为V = 1/3 * πr^2h,其中π取近似值3.14。

解题步骤:1) 将圆锥的半径和高度代入公式中:V = 1/3 * 3.14 * 4^2 * 6。

2) 计算得到的结果为V = 100.48,所以该圆锥的体积为100.48cm³。

答案:该圆锥的体积为100.48cm³。

题目2:半径为6cm,高度为8cm的圆锥的体积是多少?解析:同样使用圆锥的体积公式V = 1/3 * πr^2h。

解题步骤:1) 将圆锥的半径和高度代入公式中:V = 1/3 * 3.14 * 6^2 * 8。

2) 计算得到的结果为V = 301.44,所以该圆锥的体积为301.44cm³。

答案:该圆锥的体积为301.44cm³。

通过以上练习题,我们可以巩固对圆柱和圆锥体积计算公式的理解和运用。

请同学们多加练习,熟练掌握这些知识点,提高解题能力。

圆柱和圆锥的练习题

圆柱和圆锥的练习题

圆柱和圆锥的练习题一、选择题1. 圆柱的底面是一个圆,其侧面展开后是一个()。

A. 长方形B. 正方形C. 椭圆形D. 圆2. 圆柱的体积是底面积乘以()。

A. 高B. 半径C. 直径D. 周长3. 圆锥的底面是一个圆,侧面是一个()。

A. 棱锥B. 棱柱C. 扇形D. 圆柱4. 圆锥的体积是底面积乘以高再乘以()。

A. 1/2B. 1/3C. 1/4D. 1/6二、填空题1. 圆柱的底面半径为r,高为h,则圆柱的体积为______。

2. 圆锥的底面半径为r,高为h,则圆锥的体积为______。

3. 圆柱的底面积为S,高为h,则圆柱的体积为______。

4. 圆锥的底面积为S,高为h,则圆锥的体积为______。

三、计算题1. 已知圆柱的底面半径为5cm,高为10cm,求圆柱的体积。

2. 已知圆锥的底面半径为3cm,高为6cm,求圆锥的体积。

3. 圆柱的底面积为50cm²,高为15cm,求圆柱的体积。

4. 圆锥的底面积为30cm²,高为10cm,求圆锥的体积。

四、应用题1. 一个圆柱形水桶,底面直径为40cm,高为60cm,求水桶的容积。

2. 一个圆锥形沙堆,底面半径为4m,高为3m,求沙堆的体积。

3. 制作一个圆柱形铁皮桶,底面半径为20cm,高为50cm,至少需要多少平方厘米的铁皮?4. 一个圆锥形冰淇淋,底面半径为5cm,高为8cm,求冰淇淋的体积。

五、拓展题1. 圆柱和圆锥的底面积相等,高也相等,比较它们的体积大小。

2. 一个圆柱和一个圆锥,它们的体积相等,底面积也相等,比较它们的高。

3. 一个圆柱和一个圆锥,它们的体积相等,高也相等,比较它们的底面积。

4. 讨论圆柱和圆锥在生活中的应用实例。

六、判断题1. 圆柱的侧面展开后一定是一个长方形。

()2. 圆锥的侧面展开后是一个扇形。

()3. 圆柱的体积总是大于相同底面积和高的圆锥体积。

()4. 圆柱和圆锥的底面半径和高都相等时,它们的体积也相等。

(完整版)圆柱圆锥应用题练习

(完整版)圆柱圆锥应用题练习

六年级下册圆柱和圆锥练习题1、压路机前轮直径 10 分米,宽 3.5 米,前轮转一周,能够压路多少平方米?如果均匀每分行进70 米,这台压路机每时压路多少平方米?2、一根 9 米长的圆柱形木材锯成相等的 3 段, 表面积增添了 16 平方厘米,每一小段的木材的体积是多少立方厘米?3、圆柱与圆锥等底等高,圆柱体积比圆锥体积大48 立方分米,圆柱与圆锥体积各是多少?4、一个圆锥形的沙堆,底面周长是314m,高是,每立方米沙重 2.5 吨,如果用一辆载重 6 吨的汽车来运,几次能够运完5、一个酒瓶里面深 30 厘米 , 底面直径是 2 厘米 , 瓶里有酒深 10 厘米 , 把酒瓶塞紧后倒置 ( 瓶口向下 ), 这时酒深 20 厘米 , 你能算出酒瓶的容积是多少毫升来吗 ?6、给一个底面半径是 2 分米,高是 2 分米的圆柱形油桶涂漆,需涂多少平方分米?7、做一个底面周长是25.12 分米 , 高是 20 厘米的圆柱形无盖水箱,用铁皮多少平方分米?(保存整数)8、将一个圆锥形部件淹没在底面直径是2分米的圆柱形玻璃缸里,这时水面上涨 5 厘米。

这个圆锥形部件的体积是多少立方厘米?9、一个圆柱形铁皮水箱装满了水,把水倒出 60%此后还剩下 24 升,水箱的底面积是 10 平方分米。

这个水箱高多少分米?10.一个圆柱形的粮囤,从里面量得底面周长是 9.42 米,高 2 米,每立方米稻谷约重 545 千克,这个粮囤约装稻谷多少千克?(得数保存整千克数)11.一个圆柱的体积是 150.72 立方厘米,底面周长是 12.56 厘米,它的高是多少厘米?12.把一根长 4 米的圆柱形钢材截成两段,表面积比本来增添 15.7 平方厘米.这根钢材的体积是多少立方厘米?13、一个蓄水池是圆柱形的,底面为31.4 平方分米,高是2. 8 分米,这个水池最多能容多少升水?14、把一根长 1.5 米的圆柱形钢材截成三段后,表面积比本来增添9.6 平方分米,这根钢材本来的体积是多少?15、一个圆柱形量桶,底面半径是 5 厘米,把一块铁块从这个量桶里拿出后,水面降落 3 厘米,这块铁块的体积是多少?二、填空1.一个圆柱和一个圆锥等底等高,它们的体积相差 5 立方厘米,那么圆柱体积是 ()立方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆柱和圆锥》练习题
班级______姓名______
一、选一选。

(将正确答案的序号填在括号里)
1. 下面物体中,()的形状是圆柱。

A、B、C、D、
2. 一个圆锥的体积是36dm3,它的底面积是18dm2,它的高是()dm。

A、B、2 C、6 D、18
3. 下面()图形是圆柱的展开图。

(单位:cm)
4. 下面()杯中的饮料最多。

5. 一个圆锥有()条高,一个圆柱有()条高。

A、一
B、二
C、三
D、无数条
6. 如图:这个杯子( )装下3000ml牛奶。

A、能
B、不能
C、无法判断
二、判断对错。

()1. 圆柱的体积一般比它的表面积大。

()2. 底面积相等的两个圆锥,体积也相等。

()3. 圆柱的体积等于和它等底等高的圆锥体积的3倍。

()4.“做圆柱形通风管需要多少铁皮”是求这个圆柱的侧面积。

()5. 把圆锥的侧面展开,得到的是一个长方形。

三、想一想,连一连。

四、求下面图形的体积。

(单位:厘米)
五、解决问题。

1. ⑴制作这个薯片筒的侧面标签,需要多大面积的纸?
⑵这个薯片筒的体积是多少?
2. 一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米,池深1.2米。

镶瓷砖的面积是多少平方米?
3. 如图,先将甲容器注满水,再将水倒入乙容器,这时乙容器中的水有多高?(单位:厘米)。

相关文档
最新文档