物理化学电子教案—第十一章
物理化学11章化学动力学基础一
![物理化学11章化学动力学基础一](https://img.taocdn.com/s3/m/95e031ebc850ad02de8041e7.png)
N2O4
1 2
O2
r k[N 2O5 ]
上一内容 下一内容 回主目录
返回
7/14/2020
一级反应的微分速率方程
反应:
A P
t 0 cA,0 a
0
t t cA a x x
r
dcA dt
k1cA
r
dx dt
k1(a
x)
上一内容 下一内容 回主目录
返回
7/14/2020
一级反应的积分速率方程
(2) 2A P r k2[A]2
上一内容 下一内容 回主目录
返回
7/14/2020
二级反应的微分速率方程
(1) A B P
t 0 a b 0
t t a-x b-x x
dx dt
k2 (a
x)(b
x)
当a b 时
dx dt
k2 (a
x)2
上一内容 下一内容 回主目录
(2) 2A P
t0 a
例如:
R P
速度
速率
d[R] 0 dt
d[P] 0 dt
d[R] d[P] 0 dt dt
上一内容 下一内容 回主目录
返回
7/14/2020
平均速率
rR
([R]2 [R]1) t2 t1
上一内容 下一内容 回主目录
rp
([P]2 [P]1) t2 t1
不能确切反映速率的变
化情况,只提供了一个平
上一内容 下一内容 回主目录
返回
7/14/2020
质量作用定律
对于基元反应,反应速率与反应物浓度的幂乘积 成正比。幂指数就是基元反应方程中各反应物的系数。 这就是质量作用定律,它只适用于基元反应。
冶金物理化学教案11
![冶金物理化学教案11](https://img.taocdn.com/s3/m/fb39bf78168884868762d627.png)
第三节△G —T 图一、自由焓变化与温度的关系自由焓变化是温度的函数,在不同温度下,其数值是不同的。
设某反应在某温度T 下初态物质(原始物)的自由焓为G 1,末态物质(产物)的自由焓为G 2、则自由焓变化为ΔG=G 2-G 1。
物质的自由焓(G 1和G 2)在一定的压力下随温度的变化为:11)(S T G P -=∂∂ 22)(S T G P -=∂∂S 为熵。
因此在恒压下,反应自由焓变化与温度的关系为:P P PP T G T G T G G T G )()()()(1212∂∂-∂∂=⎥⎦⎤⎢⎣⎡∂-∂=⎥⎦⎤⎢⎣⎡∂∆∂=一S 2+S 1=一ΔS 在温度T 下,因为△G =△H 一T △S 将此式代入上式,可得:T H G T G P ∆-∆=⎥⎦⎤⎢⎣⎡∂∆∂)( (3-15)上式称为吉布斯一亥姆霍茨(Gibbs-Helmholtz)公式,表示在恒压下ΔG 随温度的变化。
吉布斯-亥姆霍茨公式还可以变成另一形式,以便于积分。
将式(3-15)移项,得:H G T G T P ∆=∆+⎥⎦⎤⎢⎣⎡∂∆∂)(,两边用T 2除: 22)(T H TG T G T P∆=∆+⎥⎦⎤⎢⎣⎡∂∆∂ 利用微分公式(在微分公式2)(v dx dvudx du v dx vu d -=中,令v =T 、u =-ΔG 、x =T ),可把此式变为: 2)(T H T T G P∆=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∆-∂ (3-16) 这也是吉布斯一亥姆霍茨公式的一种形式。
对于自由能变化与温度的关系,也可以用同样的方法推出相应的公式:式(3-16)可以在恒压下积分,得到ΔG -T 的关系式。
通常计算的是标准自由焓变化,因此:I dT T H T G+∆=∆-⎰︒︒2 I 为积分常数。
当近似把︒∆H 当作常数时可得:︒∆G =︒∆H -IT (3-17)式中的积分常数I 可利用已知一个温度的︒∆G (例如︒∆298G )代入公式而求得,其它常数可由C P 与T 的关系式以及其中一个温度的热效应而求得。
《物理化学》电子教案上册
![《物理化学》电子教案上册](https://img.taocdn.com/s3/m/38e9e6340a1c59eef8c75fbfc77da26924c5964a.png)
《物理化学》电子教案上册第一章:引言1.1 课程介绍1.2 物理化学的基本概念1.3 物理化学的研究方法1.4 学习目标与要求第二章:气体2.1 气体的性质2.2 气体的压力与体积2.3 气体的温度与热量2.4 气体的化学反应第三章:溶液3.1 溶液的定义与组成3.2 溶液的浓度与稀释3.3 溶液的蒸馏与沸腾3.4 溶液的离子平衡第四章:固体4.1 固体的结构与性质4.2 固体的相变与相图4.3 固体的溶解与熔点4.4 固体的电导与磁性第五章:液体5.1 液体的性质与表面现象5.2 液体的蒸发与凝结5.3 液体的扩散与对流5.4 液体的相变与相图第六章:热力学第一定律6.1 能量守恒定律6.2 内能与热量6.3 功与热传递6.4 热力学第一定律的应用第七章:热力学第二定律7.1 熵与无序度7.2 可逆与不可逆过程7.3 热力学第二定律的表述7.4 热力学第二定律的应用第八章:化学平衡8.1 平衡常数与反应方向8.2 酸碱平衡与pH值8.3 沉淀平衡与溶解度积8.4 化学平衡的计算与应用第九章:动力学9.1 反应速率与速率常数9.2 零级、一级和二级反应9.3 反应机理与速率定律9.4 化学动力学的应用第十章:电化学10.1 电解质与离子传导10.2 电极与电极反应10.3 电池与电势10.4 电化学的应用重点和难点解析一、气体的化学反应补充和说明:气体之间的化学反应是物理化学中的重要内容,例如气体的合成、分解、置换等反应。
这些反应在工业生产、环境保护等领域具有重要的应用价值。
教案中应详细介绍气体化学反应的基本原理、反应类型及其应用实例,并通过实际案例分析,使学生能够深入理解和掌握这一部分内容。
二、溶液的离子平衡补充和说明:溶液中的离子平衡是物理化学中的关键概念,对于理解电解质溶液的性质和行为具有重要意义。
教案中应详细讲解离子平衡的基本原理、离子平衡常数的计算及其在实际应用中的作用,如酸碱平衡、溶解度积等。
物理学第五版电子教案1112双折射
![物理学第五版电子教案1112双折射](https://img.taocdn.com/s3/m/1060ccf4b1717fd5360cba1aa8114431b90d8ea5.png)
第五版
11-12 双折射
光通过双折射晶体
第十一章 光学
1
物理学
第五版
11-12 双折射
寻常光线 服从折射定律的光线
非常光线 不服从折射定律的光线
(一般情况,非常光不在入射面内)
第十一章 光学
2
物理学
第五版
11-12 双折射
实验证明: O 光和 e 光均为偏振光.
AB
o
e D
C
oe
第十一章 光学
ve
vo
e 光波阵面
第十一章 光学
5
物理学
第五版
方解石晶体
光轴 在方解石这 类晶体中存在一个 特殊的方向,当光 线沿这一方向传播 时不发生双折射现 象.
11-12 双折射
102 A 光轴
102 102
78
78
78
B 光轴
第十一章 光学
6
物理学
第五版
11-12 双折射
主截面 当光在一晶体表面入射时, 此表面的法线与光轴所成的平面.
光轴
109 71
光轴
109
71
e光
o光
第十一章 光学
7
物理学
第五版
选择进入下一节:
本章目录
11-9 衍射光栅 11-10 光的偏振性 马吕斯定律 11-11 反射光和折射光的偏振 11-12 双折射 偏振棱镜 *11-13 液晶显示 *11-14 几何光学
第十一章 光学
8
3
物理学
第五版
11-12 双折射
产生双折射的原因
寻常光线 在晶 体中各方向上传播 速度相同.
c no vo 常量
《物理化学》电子教案上册
![《物理化学》电子教案上册](https://img.taocdn.com/s3/m/d4b25d8832d4b14e852458fb770bf78a65293ac5.png)
《物理化学》电子教案上册第一章:引言1.1 课程介绍物理化学的定义和研究对象物理化学在科学和工程中的应用1.2 物理化学的发展简史物理化学的起源和发展过程重要的物理化学家和他们的贡献1.3 学习方法物理化学的学习要求和难点学习物理化学的方法和技巧第二章:物质的量及其计量2.1 物质的量的概念物质的量的定义和单位物质的量的性质和特点2.2 摩尔的概念摩尔的定义和符号摩尔质量的概念和计算方法2.3 物质的量的计算物质的量的基本计算公式物质的量的有关计算示例第三章:热力学第一定律3.1 热力学基本概念系统的定义和分类状态参量的概念和意义3.2 内能的概念和计算内能的定义和性质理想气体的内能计算公式3.3 热量和功的传递热量和功的定义和区别热量和功的传递方式及其计算第四章:热力学第二定律4.1 熵的概念熵的定义和性质熵增加的意义和实例4.2 热力学第二定律的表述克劳修斯表述和开尔文-普朗克表述熵增原理的应用和意义4.3 熵变和自由能的计算熵变的定义和计算公式自由能的定义和计算公式第五章:化学平衡5.1 平衡态的概念平衡态的定义和平衡态的特征平衡态的判断方法5.2 平衡常数的概念和计算平衡常数的定义和表示方法平衡常数的计算方法和应用5.3 化学平衡的移动勒夏特列原理的定义和内容化学平衡移动的实例和解释第六章:动力学基础6.1 反应速率的概念反应速率的定义和表示方法反应速率的影响因素6.2 反应速率定律零级、一级、二级反应速率定律的表达式反应速率定律的实验测定和应用6.3 化学动力学的计算反应速率常数的概念和计算方法反应速率与反应机理的关系第七章:电化学7.1 电化学基本概念电化学的定义和基本原理电解质和电极的定义及分类7.2 原电池和电解池原电池的构成和工作原理电解池的构成和工作原理7.3 电化学系列的计算电化学系列的概念和应用电极电势的计算和测定方法第八章:光学原理8.1 光的传播和折射光的传播方式和速度折射定律的表述和应用8.2 光的干涉和衍射干涉现象的产生和条件衍射现象的产生和条件8.3 光谱学的基本概念光谱的定义和分类光谱分析的方法和应用第九章:现代物理化学方法9.1 核磁共振(NMR)NMR的原理和应用NMR谱的解析和意义9.2 质谱法(MS)质谱法的原理和应用质谱图的解析和意义9.3 X射线衍射法X射线衍射法的原理和应用X射线晶体学的概念和基本原理第十章:物理化学实验10.1 实验基本操作实验安全常识和实验操作规范实验数据的记录和处理方法10.2 经典实验分析滴定法、比重法、熔点法等实验方法实验结果的分析和讨论实验报告的结构和内容要求重点解析1. 物质的量的概念及其性质和特点,摩尔的概念及其定义和符号,物质的量的计算方法和示例。
物理化学电子教案共31页
![物理化学电子教案共31页](https://img.taocdn.com/s3/m/60052e21f524ccbff12184a1.png)
上一内容 下一内容 回主目录
返回
2020/4/14
物理化学电子教案——第二章
不可能把热从低温 物体传到高温物体, 而不引起其它变化
上一内容 下一内容 回主目录
返回
2020/4/14
第二章 热力学第二定律
2.1 自发变化的共同特征 2.2 热力学第二定律 2.3 卡诺循环与卡诺定理 2.4 熵的概念 2.5 克劳修斯不等式与熵增加原理 2.6 熵变的计算
上一内容 下一内容 回主目录
返回
2020/4/14
物理化学电子教案—第七章
电解
电能
电池
化学能
上一内容 下一内容 回主目录
返回
2020/4/14
第七章电解质溶液
主要内容
电化学的基本概念和法拉第定 律离子的电迁移和迁移数
电导 强电解质溶液理论简介
上一内容 下一内容 回主目录
返回
2020/4/14
物理化学电子教案—第八章
上一内容 下一内容 回主目录
返回
2020/4/14
物理化学电子教案—第四章
气态溶液 固态溶液 液态溶液
正规溶液
非电解质溶液
上一内容 下一内容 回主目录
返回
2020/4/14
第四章 溶液
4.1 4.2 4.3
4.4
4.5 4.6 4.7 4.8 4.9 4.10 4.11
引言 溶液组成的表示法 偏摩尔量与化学势
上一内容 下一内容 回主目录
返回
2020/4/14
物理化学电子教案—第六章
上一内容 下一内容 回主目录
返回
2020/4/14
第六章 化学平衡
6.1 化学平衡的条件和反应的亲和势 6.2 化学反应的平衡常数和等温方程式 6.3 平衡常数与化学方程式的关系 6.4 复相化学平衡 6.5 平衡常数的测定和平衡转化率的计算 6.6 标准生成吉布斯自由能 6.7 用配分函数计算 rG m 和平衡常数 6.8 温度、压力及惰性气体对化学平衡的影响 6.9 同时平衡 6.10 反应的耦合 6.11 近似计算
《物理化学教案》word版
![《物理化学教案》word版](https://img.taocdn.com/s3/m/53ef12be6394dd88d0d233d4b14e852458fb39c0.png)
《物理化学教案》word版教案:物理化学一、教学内容本节课我们学习的是物理化学中的第一章节,主要内容有:温度、压力、体积、物质的量、质量守恒定律等。
通过本节课的学习,让学生了解和掌握物理化学的基本概念和基本原理。
二、教学目标1. 了解温度的概念和计量单位,理解温度与热量之间的关系。
2. 掌握压力的概念和计量单位,了解压力的作用效果。
3. 理解体积的概念,掌握体积的计量单位。
4. 掌握物质的量的概念和计量单位,了解物质的量的计算方法。
5. 理解质量守恒定律的含义和应用。
三、教学难点与重点1. 教学难点:温度、压力、体积、物质的量等概念的理解和应用。
2. 教学重点:温度与热量之间的关系,压力的作用效果,物质的量的计算方法,质量守恒定律的应用。
四、教具与学具准备1. 教具:黑板、粉笔、温度计、压力计、体积计、物质。
2. 学具:笔记本、笔、计算器。
五、教学过程1. 实践情景引入:让学生观察和描述周围环境中温度的变化,如季节变化、气候变化等。
2. 概念讲解:讲解温度的概念和计量单位,通过示例让学生理解温度与热量之间的关系。
3. 实例演示:通过压力计、体积计等教具的演示,让学生了解压力的概念和作用效果。
4. 计算练习:让学生根据给定的物质的质量、体积等信息,计算物质的量。
5. 定律讲解:讲解质量守恒定律的含义和应用,通过示例让学生理解质量守恒定律的重要性。
6. 随堂练习:布置一些有关温度、压力、体积、物质的量、质量守恒定律的练习题,让学生进行练习。
六、板书设计1. 温度:定义、计量单位、与热量之间的关系。
2. 压力:定义、计量单位、作用效果。
3. 体积:定义、计量单位。
4. 物质的量:定义、计量单位、计算方法。
5. 质量守恒定律:含义、应用。
七、作业设计1. 题目:计算物质的量已知某种物质的质量为50克,密度为1.0克/立方厘米,求该物质的体积。
答案:该物质的体积为50立方厘米。
2. 题目:应用质量守恒定律某化学反应的反应物质量为20克,物质量为30克,求反应中参与反应的物质的量。
2024版傅献彩物理化学电子教案课件
![2024版傅献彩物理化学电子教案课件](https://img.taocdn.com/s3/m/ce96936a2e60ddccda38376baf1ffc4fff47e240.png)
01绪论Chapter物理化学概述物理化学的定义01物理化学的研究范围02物理化学在化学科学中的地位03物理化学的研究对象与任务研究对象研究任务实验方法通过实验手段观测和记录物质的物理现象和化学变化,获取实验数据。
理论方法运用数学、物理学等理论工具对实验数据进行处理和分析,揭示物质的基本规律。
计算方法利用计算机模拟和计算等方法,对物质的性质、结构和变化规律进行预测和研究。
物理化学的研究方法030201物理化学的学习方法与要求学习方法学习要求02热力学基础Chapter热力学基本概念与术语热力学系统状态与状态函数过程与途径热力学平衡态热力学第一定律能量守恒定律能量不能创造也不能消灭,只能从一种形式转化为另一种形式。
热力学能系统内能的变化等于传入系统的热量与外界对系统做功之和。
焓定义为系统的热力学能与体积的乘积,用于描述等压过程中的能量变化。
热力学第二定律热力学第二定律表述热力学温标熵增原理热力学函数与基本方程热力学函数热力学基本方程麦克斯韦关系式热力学在化学中的应用化学反应的热效应化学平衡相平衡03化学动力学基础Chapter化学反应速率的概念与表示方法化学反应速率表示方法摩尔浓度变化率、质量浓度变化率、气体分压变化率等化学反应速率理论简介碰撞理论过渡态理论01020304浓度越高,反应速率越快。
反应物浓度温度越高,反应速率越快。
温度催化剂可以降低反应的活化能,从而加快反应速率。
催化剂对于有气体参与的反应,压力的变化会影响反应速率。
压力影响化学反应速率的因素复杂反应动力学简介平行反应竞争反应连续反应根据反应条件(如温度、压力、浓度等)预测反应的速率。
预测反应速率通过调整反应条件(如温度、压力、催化剂等)来优化反应速率和选择性。
优化反应条件通过分析反应速率与各种因素的关系,可以推断出反应的机理和过渡态的性质。
研究反应机理化学反应速率理论的应用04电化学基础Chapter电化学基本概念与术语电化学电极电解质电离电导率将化学能转变为电能的装置。
物化11-14化学势
![物化11-14化学势](https://img.taocdn.com/s3/m/7b6591e3b8f67c1cfad6b89f.png)
* mB
1mol V
* mC
1.偏摩尔量的定义 在多组分系统中,每个热力学函数的变量就 不止两个,还与组成系统各物的物质的量有关。 设系统中有 1, 2,3,, k 个组分 系统中任一容量性质X(代表V,U,H,S, A,G等)除了与温度、压力有关外,还与各组 分的数量有关,即
在等温、等压的条件下:
X dX dnB n B B T , P , nc ( c B )
k
偏摩尔量XB的定义为:
X XB n B
def
T , P ,nC ( C B )
2.集合公式
X X B dnB
B 1
T , P ,nC ( C B )
集合公式:
X X B dnB
B 1
K
二、化 学 势 化学势的定义
多组分系统的热力学基本公式应表示为:
dU TdS pdV μB (α)dnB (α)
α B
dH TdS Vdp μB (α)dnB (α)
如果转移是在平衡条件下进行,则
dG 0
所以
又
dnB dnB
因为
所以
组分B在α,β两相中,达平衡的条件是该组 分在两相中的化学势相等。
如果组分B在α,β两相中的转移是自发的, 则
自发变化的方向是组分B从化学势高的β相 转移到化学势较低的α相。
化学势与压力的关系
G [ ( )T , p ,nc ]T ,nB ,nc p nB
K
常见的偏摩尔量定义式有:
1.偏摩尔量的含义是:在等温、等压条件下, 在大量的定组成系统中,加入单位物质的量的 B物质所引起广度性质X的变化值。或在等温、 等压、保持B物质以外的所有组分的物质的量不 变的有限系统中,改变 所引起广度性质X 的变化值。
物理化学电子教案(2024)
![物理化学电子教案(2024)](https://img.taocdn.com/s3/m/a87693f2fc0a79563c1ec5da50e2524de518d0af.png)
压力
对于有气体参与的 反应,压力越大, 反应速率越快。
碰撞理论与活化能概念
碰撞理论
01
分子间发生有效碰撞才能发生化学反应,有效碰撞需满足能量
和方向两个条件。
活化能概念
02
活化分子具有的最低能量与反应物分子的平均能量之差,是化
学反应发生的能量障碍。
活化能与反应速率的关系
03
活化能越低,反应速率越快。
热力学第一定律及应用
热力学第一定律的表述
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转 换过程中,能量的总值保持不变。
热力学第一定律的应用
用于计算系统在等温、等压、等容等过程中的热量交换和功的转换,以及热机、制冷机等 设备的效率。
热力学第一定律与能量守恒定律的关系
热力学第一定律是能量守恒定律在热力学系统中的具体应用。
物理化学电子教案
目 录
• 课程介绍与教学目标 • 热力学基础 • 化学动力学基础 • 电化学原理及应用 • 表面现象与胶体化学简介 • 物质结构与性质关系探讨 • 总结回顾与拓展延伸
01
课程介绍与教学目标
物理化学定义及研究内容
物理化学定义
物理化学是研究物质的物理现象和化 学变化之间关系的科学,探讨物质的 结构、性质、能量转化以及化学反应 的速率和机理等问题。
呈现无序状态。
非晶体的特点
非晶体具有各向同性、无固定熔点 、无规则外形等特点。
非晶体的应用
非晶体材料在电子、光学、磁学等 领域具有广泛的应用前景。
物质性质预测方法
基于物质结构的预测
基于量子化学的预测
通过分析物质的晶体结构或分子结构,可 以预测其物理和化学性质,如熔点、硬度 、导电性等。
物理化学实验电子教案
![物理化学实验电子教案](https://img.taocdn.com/s3/m/d0a8906ea22d7375a417866fb84ae45c3b35c2b0.png)
一、教案基本信息物理化学实验电子教案课时安排:根据课程安排决定教学目标:1. 让学生掌握物理化学实验的基本原理和实验方法。
2. 培养学生的实验技能和观察能力,提高学生的实验操作水平。
3. 培养学生的科学思维和创新意识,提升学生的综合分析和解决问题的能力。
教学内容:1. 物理化学实验的基本原理和实验方法。
2. 常见物理化学实验的操作步骤和注意事项。
3. 物理化学实验数据的处理和实验结果的分析。
教学资源:1. 实验室设备:如显微镜、天平、滴定管等。
2. 实验试剂和材料。
3. 实验教材和相关参考资料。
教学方法:1. 讲解法:教师讲解实验原理、实验方法和实验操作步骤。
2. 演示法:教师演示实验操作,学生跟随操作。
3. 实践法:学生独立完成实验,教师进行指导和评价。
二、第一章:实验基本原理与方法教学目标:1. 让学生了解物理化学实验的基本原理。
2. 让学生熟悉物理化学实验的基本方法。
教学内容:1. 物理化学实验的基本原理:如测量原理、数据处理原理等。
2. 物理化学实验的基本方法:如实验设计方法、实验操作方法等。
教学活动:1. 讲解实验基本原理和方法。
2. 学生跟随教师进行实验操作演示。
教学评价:1. 学生能理解并掌握实验基本原理和方法。
2. 学生能正确进行实验操作。
三、第二章:常见物理化学实验操作教学目标:1. 让学生掌握常见物理化学实验的操作步骤。
2. 培养学生遵守实验操作规范的意识。
教学内容:1. 常见物理化学实验的操作步骤:如溶液配制、滴定操作等。
2. 实验操作注意事项:如实验安全、实验材料的选择等。
教学活动:1. 讲解实验操作步骤和注意事项。
2. 学生跟随教师进行实验操作演示。
教学评价:1. 学生能正确完成实验操作。
2. 学生能遵守实验操作规范,注意实验安全。
四、第三章:实验数据处理与分析教学目标:1. 让学生了解物理化学实验数据的处理方法。
2. 培养学生分析和解决问题的能力。
教学内容:1. 实验数据的处理方法:如误差分析、数据拟合等。
《物理化学教案》
![《物理化学教案》](https://img.taocdn.com/s3/m/b98ef576492fb4daa58da0116c175f0e7dd11978.png)
《物理化学教案》word版第一章:引言1.1 教案目标让学生了解物理化学的定义和研究范围。
使学生了解物理化学在实际生活和科学研究中的应用。
1.2 教学内容物理化学的定义和研究范围。
物理化学的实际应用举例。
1.3 教学方法采用讲授法,讲解物理化学的定义和研究范围。
采用案例分析法,分析物理化学在实际生活中的应用。
1.4 教学步骤引入新课,讲解物理化学的定义和研究范围。
分析物理化学在实际生活中的应用,如气象、材料、能源等领域的应用。
1.5 作业与评估让学生写一篇关于物理化学在实际生活中的应用的小论文。
对学生的论文进行评估,了解学生对物理化学应用的理解程度。
第二章:热力学第一定律2.1 教案目标让学生理解热力学第一定律的定义和表达式。
使学生能够运用热力学第一定律解决实际问题。
2.2 教学内容热力学第一定律的定义和表达式。
热力学第一定律的实际应用。
2.3 教学方法采用讲授法,讲解热力学第一定律的定义和表达式。
采用例题解析法,分析热力学第一定律的实际应用。
2.4 教学步骤引入新课,讲解热力学第一定律的定义和表达式。
通过例题解析,让学生掌握热力学第一定律的应用方法。
2.5 作业与评估让学生解决一些实际问题,运用热力学第一定律进行计算。
对学生的作业进行评估,了解学生对热力学第一定律的理解程度。
第三章:理想气体状态方程3.1 教案目标让学生理解理想气体状态方程的定义和表达式。
使学生能够运用理想气体状态方程解决实际问题。
3.2 教学内容理想气体状态方程的定义和表达式。
理想气体状态方程的实际应用。
3.3 教学方法采用讲授法,讲解理想气体状态方程的定义和表达式。
采用例题解析法,分析理想气体状态方程的实际应用。
3.4 教学步骤引入新课,讲解理想气体状态方程的定义和表达式。
通过例题解析,让学生掌握理想气体状态方程的应用方法。
3.5 作业与评估让学生解决一些实际问题,运用理想气体状态方程进行计算。
对学生的作业进行评估,了解学生对理想气体状态方程的理解程度。
物理化学》电子教案上册
![物理化学》电子教案上册](https://img.taocdn.com/s3/m/0f428abfb9f67c1cfad6195f312b3169a551ea50.png)
《物理化学》电子教案上册第一章:引言1.1 课程介绍了解物理化学的课程背景、意义和目的。
理解物理化学的基本概念和研究方法。
1.2 物理化学的发展历程回顾物理化学的发展历程,了解其重要里程碑和成就。
介绍著名物理化学家和他们对物理化学的贡献。
1.3 学习目标和要求明确学习目标,包括知识、技能和态度。
提出学习要求,包括课堂参与、作业和考核。
第二章:物质的量与状态2.1 物质的量引入物质的量的概念,解释摩尔和阿伏伽德罗常数。
学习物质的量的计算和转换,包括摩尔质量、物质的量浓度等。
2.2 状态介绍理想气体状态方程,理解压力、体积和温度之间的关系。
学习物质的相变,包括固态、液态和气态的性质和变化。
2.3 物质的量与状态的计算练习计算物质的量与状态之间的关系,包括理想气体状态方程的运用。
分析实际问题,应用物质的量与状态的计算方法。
第三章:热力学第一定律3.1 能量守恒定律复习能量守恒定律的基本原理,理解能量的转化和守恒。
学习能量的单位和国际制,了解能量的量纲和换算关系。
3.2 内能和热量引入内能的概念,理解内能的定义和计算方法。
学习热量的传递方式,包括传导、对流和辐射。
3.3 热力学第一定律阐述热力学第一定律的内容,理解能量守恒与热力学第一定律的关系。
应用热力学第一定律解决实际问题,进行能量的计算和分析。
第四章:热力学第二定律4.1 熵的概念引入熵的概念,解释熵的定义和物理意义。
学习熵的计算方法和熵变的表达式。
4.2 热力学第二定律的表述阐述热力学第二定律的不同表述,包括熵增原理和克劳修斯定律。
理解热力学第二定律的本质和意义。
4.3 热力学第二定律的应用学习热力学第二定律在实际问题中的应用,包括热机和制冷机的效率计算。
分析热力学第二定律对自然界和工程实践的影响。
第五章:溶液的性质5.1 溶液的定义和组成引入溶液的概念,理解溶液的组成和特点。
学习溶质和溶剂的分类及它们之间的相互作用。
5.2 溶液的浓度和渗透压介绍溶液的浓度表示方法,包括摩尔浓度和质量浓度。
大学物理学电子教案课件
![大学物理学电子教案课件](https://img.taocdn.com/s3/m/c438d78cb9f67c1cfad6195f312b3169a551ea69.png)
大学物理学电子教案课件第一章:引言1.1 课程介绍理解大学物理学的地位和作用掌握物理学的基本概念和原理培养科学思维和科学方法1.2 物理学的发展历程回顾物理学的历史发展了解著名物理学家的贡献激发学生对物理学的兴趣和热情1.3 物理学的应用领域介绍物理学在各个领域的应用强调物理学对技术和社会的影响引发学生对物理学实际意义的思考第二章:力学2.1 牛顿运动定律掌握牛顿三定律的内容和适用范围理解力和运动的关系求解简单的力学问题2.2 动量和能量学习动量和能量的概念及其守恒定律运用动量和能量原理解决实际问题探讨守恒定律在实际中的应用2.3 刚体运动和转动学习刚体的运动和转动的基本概念掌握转动动能和转动惯量的计算求解刚体运动的动力学问题第三章:热学3.1 温度和热量理解温度的概念及其计量单位学习热量传递的方式和规律探讨热量在实际中的应用3.2 热力学定律掌握热力学第一定律和第二定律理解能量守恒和熵增加原理探讨热力学定律在实际中的应用3.3 热传导和热膨胀学习热传导的机制和定律掌握热膨胀的基本概念和应用求解热传导和热膨胀的实际问题第四章:电磁学4.1 库仑定律和电场掌握库仑定律和电场的基本概念学习电场的计算和电场线求解静电场的实际问题4.2 磁场和电流学习磁场的基本概念和磁场线掌握安培定律和法拉第电磁感应定律求解电磁场的实际问题4.3 电磁波学习电磁波的产生和传播理解电磁波的能量和动量探讨电磁波在通信和能源传输中的应用第五章:光学5.1 光的传播和反射学习光的传播和反射的基本原理掌握反射定律和反射图像的特点求解光学反射的实际问题5.2 光的折射和透镜学习光的折射原理和透镜的基本概念掌握透镜的成像规律和焦距的计算求解光学折射的实际问题5.3 光的波动性和光谱学习光的波动性和干涉现象掌握光谱的产生和应用探讨光的波动性在科学研究中的应用第六章:量子力学基础6.1 量子现象理解黑体辐射和普朗克量子理论学习光电效应和康普顿效应掌握波粒二象性和不确定性原理6.2 量子力学的基本概念了解量子态和量子叠加学习量子纠缠和量子隧穿掌握薛定谔方程和海森堡不确定性原理6.3 量子力学的应用探讨量子力学在原子、分子和固体物理学中的应用学习量子计算和量子通信的基本原理了解量子力学在现代科技中的应用第七章:原子物理学7.1 原子结构学习原子的电子排布和能级掌握泡利不相容原理和洪特规则了解原子的光谱和能级跃迁7.2 原子核物理学了解原子核的结构和组成学习核力和核反应掌握核素的性质和放射性衰变7.3 激光和光谱学学习激光的原理和应用掌握光谱学的原理和技术探讨激光和光谱学在科学研究和工业应用中的重要性第八章:分子和固体物理学8.1 分子结构和性质学习分子的轨道理论和VSEPR模型掌握分子的键合理论和分子间作用力探讨分子的物理化学性质8.2 固体物理学基础了解固体的分类和晶体结构学习晶格的振动和电子能带理论掌握固体材料的性质和应用8.3 半导体和纳米材料学习半导体的基本原理和特性掌握半导体器件的工作原理探讨纳米材料的特性和应用第九章:热力学9.1 热力学势学习自由能和吉布斯自由能掌握化学势和相变探讨热力学势在材料科学和化学工程中的应用9.2 热力学循环和热机学习热力学循环的基本原理掌握卡诺循环和热机的效率探讨热机在能源转换和热力学工程中的应用9.3 热传递和热控制学习热传递的基本方式和机制掌握热传导、对流和辐射的计算探讨热控制技术和热管理在工程和科学研究中的应用第十章:现代物理学进展10.1 相对论理解狭义相对论和广义相对论的基本原理学习时空的弯曲和引力波探讨相对论在粒子物理学和宇宙学中的应用10.2 粒子物理学了解粒子物理学的基本概念和标准模型学习强相互作用、弱相互作用和电磁相互作用探讨粒子物理学在探测新粒子和探索宇宙起源中的应用10.3 宇宙学和天体物理学学习宇宙的起源和演化掌握宇宙大爆炸理论和暗物质、暗能量的概念探讨天体物理学在探索宇宙结构和星系形成中的应用第十一章:生物物理学11.1 生物物理学的概述理解生物物理学的定义和研究范围掌握生物物理学的基本研究方法探讨生物物理学在科学研究和医学应用中的重要性11.2 生物分子的物理性质学习生物分子的结构和功能掌握生物分子的相互作用和动力学探讨生物分子在生物系统和疾病中的作用11.3 生物膜和细胞物理了解生物膜的结构和功能学习细胞物理的基本原理探讨生物膜和细胞物理在细胞信号传导和疾病中的作用第十二章:环境物理学12.1 环境物理学的概述理解环境物理学的定义和研究范围掌握环境物理学的基本研究方法探讨环境物理学在环境保护和可持续发展的应用中的重要性12.2 大气物理学和气象学学习大气的组成和结构掌握大气现象和气象学的基本原理探讨大气物理学和气象学在天气预报和气候变化研究中的应用12.3 地球物理学和地震学了解地球的内部结构和物理性质学习地震的产生和传播探讨地球物理学和地震学在地震预测和地质勘探中的应用第十三章:物理实验和测量技术13.1 物理实验的基本方法和技巧掌握物理实验的设计和数据处理方法学习物理实验中常用的测量技术和仪器探讨物理实验在科学研究和工程应用中的重要性13.2 现代物理测量技术了解现代物理测量技术的发展趋势学习激光测量、光纤测量和电子测量等技术探讨现代物理测量技术在精密工程和科学研究中的应用掌握口头报告的准备和表达技巧探讨物理实验报告和口头报告在学术交流和职业发展中的应用第十四章:物理学在工程和技术中的应用14.1 物理学在电子技术和信息技术中的应用了解电子器件和半导体材料的基本原理学习光电子学和光通信技术的应用探讨物理学在电子技术和信息技术发展中的作用14.2 物理学在能源和环保技术中的应用掌握能源转换和节能技术的原理学习清洁能源和环境监测技术的应用探讨物理学在能源和环保技术发展中的作用14.3 物理学在材料科学和纳米技术中的应用了解材料科学的基本原理和制备方法学习纳米材料的特性和应用探讨物理学在材料科学和纳米技术发展中的作用第十五章:物理学教育和研究的前沿问题15.1 物理学教育的现状和挑战分析当前物理学教育的问题和挑战探讨改进物理学教育的方法和策略思考如何培养具有创新能力和批判性思维的物理学人才15.2 物理学研究的趋势和挑战了解当前物理学研究的热点和前沿问题探讨物理学在交叉学科和多领域中的应用思考如何应对物理学研究中的挑战和机遇15.3 物理学教育和研究的国际合作和交流学习国际合作和交流的重要性掌握国际合作和交流的技巧和策略探讨如何加强物理学教育和研究领域的国际合作和交流重点和难点解析重点:1. 物理学的基本原理和概念,如牛顿运动定律、热力学定律、电磁学、光学等。
物理化学11章 化学动力学基础(一)
![物理化学11章 化学动力学基础(一)](https://img.taocdn.com/s3/m/6790ac9bb4daa58da1114a6d.png)
反应进度(extent of reaction)
设反应为: R P
t 0 nR (0) nP (0)
t t nR (t) np (t)
nR (t) nR (0) np (t) nP (0)
d dnB B
转化速率(rate of conversion)
反应机理(reaction mechanism)
反应机理又称为反应历程。在总反应中,连续 或同时发生的所有基元反应称为反应机理,在有些 情况下,反应机理还要给出所经历的每一步的立体 化学结构图。
同一反应在不同的条件下,可有不同的反应机 理。了解反应机理可以掌握反应的内在规律,从而 更好的驾驭反应。
(1) 蜕变常数,(2) 半衰期,(3) 分解掉90%所需时间
解:
(1)
k1
1 t
ln
a
a
x
1 14d
ln
100 100 6.85
0.00507d-1
(2) t1/2 ln 2 / k1 136.7d (3) t 1 ln 1 1 ln 1 454.2d
k1 1 y k1 1 0.9
反应级数是由实验测定的。
例如:
r k0
r k[A]
零级反应
一级反应
r k[A][B] 二级,对A和B各为一级
r k[A]2[B] 三级,对A为二级,对B为一级
r k[A][B]2
负一级反应
r k[A][B]1/2
1.5级反应
r k[A][B]/(1[B]1/2 ) 无简单级数
反应分子数
§11.1 化学动力学的任务和目的
化学热力学的研究对象和局限性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/11/21
11.1 碰撞理论
速率理论的共同点
反应截面
两个分子的一次碰撞过程 反应阈能
有效碰撞直径和碰撞截面 碰撞理论计算速率系数
A与B分子互碰频率 两个A分子的互碰频率 硬球碰撞模型
的公式 反应阈能与实验活化能的
关系
碰撞参数
概率因子
有效碰撞分数
碰撞理论的优缺点
相对速度为:
ur [uA2 uB2 ]1/ 2
uA
( 8RT
M A
)1/ 2
uB
8RT (
M B
)1/ 2
Z AB
d
2 AB
NA V
NB V
(8RT )1/ 2
或
Z AB
dA2B
L2
(
8 RT
)1/ 2 [A][B]
式中 M A M B
MA MB
NA [A]L V
NB [B]L V
上一内容 下一内容 回主目录
物理化学电子教案—第十一章
上一内容 下一内容 回主目录
2020/11/21
第十一章 化学动力学基础(二)
11.1 碰撞理论 11.2 过渡态理论 11.3 单分子反应理论 11.4 分子反应动态学简介 11.5 在溶液中进行的反应 11.6 快速反应的测试 11.7 光化学反应 11.8 催化反应动力学
撞直径,数值上等
于A分子和B分子的 半径之和。
虚线圆的面积称为碰
d AB
A
B
撞截面(collision
cross section)。数
值上等于
d
2 AB
。
分子间的碰撞和有效直径
上一内容 下一内容 回主目录
2020/11/21
A与B分子互碰频率
将A和B分子看作硬球,根据气体分子运动论, 它们以一定角度相碰。 互碰频率为:
由于所采用模型的局限性,使计算值与实验 值不能完全吻合,还必须引入一些校正因子,使 理论的应用受到一定的限制。
上一内容 下一内容 回主目录
2020/11/21
两个分子的一次碰撞过程
两个分子在相互的作用力下,先是互相接 近,接近到一定距离,分子间的斥力随着距离 的减小而很快增大,分子就改变原来的方向而 相互远离,完成了一次碰撞过程。
2A p
k
2 2
dA2A
L( 8RT
MA
)1/ 2exp(
Ec ) RT
(3)
上一内容 下一内容 回主目录
2020/11/21
反应阈能与实验活化能的关系
碰撞理论计算速率系数的公式: 实验活化能的定义:
两个分子在空间整体运动的动能 ug 对化学反
应没有贡献,而相对动能可以衡量两个分子相互趋 近时能量的大小,有可能发生化学反应。
上一内容 下一内容 回主目录
2020/11/21
碰撞参数(impact parameter)
碰撞参数用来描述粒子碰撞激烈的程度,通常 用字母b表示。
在硬球碰撞示意图上,A
和B两个球的连心线 dAB 等于
上一内容 下一内容 回主目录
2020/11/21
速率理论的共同点
与热力学的经典理论相比,动力学理论发展 较迟。先后形成的碰撞理论、过渡态理论都是20 世纪后建立起来的,尚有明显不足之处。
理论的共同点是:首先选定一个微观模型, 用气体分子运动论(碰撞理论)或量子力学(过 渡态理论)的方法,并经过统计平均,导出宏观 动力学中速率系数的计算公式。
粒子在质心 体系中的碰撞轨 线可用示意图表 示为:
上一内容 下一内容 回主目录
2020/11/21
两个分子的一次碰撞过程
上一内容 下一内容 回主目录
2020/11/21
有效碰撞直径和碰撞截面
运动着的A分子和B分子,两者质心的投影落在
直径为 dAB 的圆截面之内,都有可能发生碰撞。
dAB 称为有效碰
2020/11/21
两个A分子的互碰频率
当体系中只有一种A分子,两个A分子互碰的
相对速度为:ur
(2
8RT
M A
)1/
2
每次碰撞需要两个A分子,为防止重复计算,
在碰撞频率中除以2,所以两个A分子互碰频率为:
ZAA
2 2
d
2 AA
(
NA V
)2
8RT (
MA
)1/
2
2
d
2 AA
(
NA V
)2
( RT
反应截面
r
的定义式为:
r
br2
式中br是碰撞参数临界值,只有
d
2 AB
(1
c r
)
碰撞参数小于br的碰撞才是有效的。
c 为反应阈能,从图上可以
r
看出,反应截面是相对平动能的
函数,相对平动能至少大于阈能,
才有反应的可能性,相对平动能
越大,反应截面也越大。
c
r
上一内容 下一内容 回主目录
2020/11/21
两个球的半径之和,它与相对
速度 u之r 间的夹角为 。 u 的平通行过线A球,质两心平,行画线平间行的于距离r
就是碰撞参数b 。数值上:b dAB sin bmax dAB
b值越小,碰撞越激烈。b 0 迎头碰撞,最激烈.
上一内容 下一内容 回主目录
2020/11/21
碰撞参数(impact parameter)
MA
)1/
2
2
d
2 AA
L2
RT (
MA
)1/
2[A]2
上一内容 下一内容 回主目录
ห้องสมุดไป่ตู้
2020/11/21
硬球碰撞模型
和总的m设B动A,折和能合B为为质没量E有为结12构,运m的动Au硬速A2 球度分12分子m别B,为uB质2uA量和分别uB为,mA
和分E将子总相的对g 动运能动r表的示动12为能(m质A心r,整m体B运)u动g2的动12能ugr2
反应阈能(threshold energy of reaction)
反应阈能又称为反应临界能。两个分子相撞, 相对动能在连心线上的分量必须大于一个临界值 Ec,这种碰撞才有可能引发化学反应,这临界值Ec 称为反应阈能。
Ec值与温度无关,实验尚无法测定,而是从实 验活化能Ea计算。
Ec
Ea
1 2
RT
上一内容 下一内容 回主目录
2020/11/21
有效碰撞分数
分子互碰并不是每次都发生反应,只 有相对平动能在连心线上的分量大于阈能 的碰撞才是有效的,所以绝大部分的碰撞 是无效的。
要在碰撞频率项上乘以有效碰撞分数q。
q exp( Ec ) RT
上一内容 下一内容 回主目录
2020/11/21
反应截面(cross section of reaction)
上一内容 下一内容 回主目录
2020/11/21
碰撞理论计算速率系数的公式
A B P
有
r
d[A] dt
k[A][B]
则:
k
d
2 AB
L(
8kBT
)1/ 2
exp(
c
kBT
)
(1)
k
d
2 AB
L(
8RT
)1/ 2
exp(
Ec RT
)
(2)
(1)(2)式完全等效,(1)式以分子计,(2)式以1mol计算。