发电厂锅炉给水控制系统
MEH、ETS、DEH系统介绍
ETS系统介绍
跳闸条件
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 手动停机 汽机超速 轴向位移大 MFT跳闸 轴承振动大 高压排汽温度高 高压缸压比低 发电机变压器组保护动作 背压高跳机 DEH跳闸请求 高压缸胀差大
ETS系统介绍
跳闸条件
■ 低压缸胀差大 ■ DEH失电跳机 ■ 推力瓦及支持轴瓦温度高 ■ 热井水位高跳汽机(空冷机组) ■ 凝结水箱水位高跳汽机(空冷机组) ■ EH油压低 ■ 润滑油压低 ■ 凝汽器真空低 注意的问题:一般设计院没有设计隔膜阀上腔油压(即保安油压)失去停机 条件,这样就可能造成就地打闸后,ETS没有动作,机组一挂闸可能主汽门 打开,发生事故。所以在现场要提醒设计院和业主,增加相关的动作条件。
DEH系统介绍
DEH系统介绍
DEH系统功能
汽轮机DEH调节系统可由运行人员通过操作员站的键盘和CRT在各操 作画面上控制汽轮机的冲转、升速、并网、带负荷,应至少具有以下功能。 ■ 汽轮机状态控制 运行人员通过DEH操作画面发出指令信号,对汽轮机冲转前的状态进 行操作和监视,控制复位电磁阀,进行遥控复置汽轮机,建立安全油,同 时检测汽轮机冲转前各重要参数。 ■ 启动升速 按运行人员选定的启动方式可以依次改变目标转速及升速率,还可以 选定预定的升速曲线,只需操作一次就可完成由盘车转速开始冲转,低速 暖机,快速通过临界转速区,中速暖机,3000rpm定速。
ETS系统介绍
ETS系统介绍
ETS动作设计原则
设计原则为:既防拒动又防误动。 1)、液压系统4个AST电磁阀采用“两个先或然后再与”的回路布置方 式,AST电磁阀#1和#3为一组,AST电磁阀#2和#4为一组,只有AST电 磁阀#1和#3中至少一个动作,同时AST电磁阀#2和#4中至少一个动作, 整个跳闸回路才会动作。这样,较好地达到了AST电磁阀既防拒动又防误动 的要求。
发电厂锅炉给水控制系统
摘要随着科技的发展,人们越来越离不开电。
大型火力发电厂地位显得尤其重要。
其机组由锅炉、汽轮机发电机组和辅助设备组成的庞大的设备群。
工艺流程复杂,设备众多,管道纵横交错,有上千个参数需要监视、操作和控制,这就需要有先进的自动化设备和控制系统使之正常运行,并且电能生产要求高度的安全可靠和经济性,尤其是大型骨干机组。
大型发电单元机组是一个以锅炉,高压和中、低压汽轮机和发电机为主体的整体。
锅炉作为电厂中的一个重要设备,起着重要的作用,根据生产流程又可以分为燃烧系统和汽水系统。
其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制。
本次课程设计主要研究发电厂给水控制系统,即锅炉汽包水位控制。
其要求是提供合格的蒸汽,使锅炉发汽量适应符合的需要。
为此,生产过程的各个主要工艺参数必须加以严格控制。
锅炉设备是一个复杂的控制对象,主要输入变量是负荷、锅炉给水、燃料量、减温水、送风和引风等。
主要输出变量是汽包水位、蒸汽压力、过热蒸汽温度、炉膛负压、过剩空气等。
发电厂锅炉给水控制系统1.概述大型火力发电机组由锅炉、汽轮机发电机组和辅助设备组成的庞大的设备群。
工艺流程复杂,设备众多,管道纵横交错,有上千个参数需要监视、操作和控制,这就需要有先进的自动化设备和控制系统使之正常运行,并且电能生产要求高度的安全可靠和经济性,尤其是大型骨干机组。
大型发电单元机组是一个以锅炉,高压和中、低压汽轮机和发电机为主体的整体。
锅炉作为电厂中的一个重要设备,起着重要的作用,根据生产流程又可以分为燃烧系统和汽水系统。
其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制。
本次课程设计主要研究发电厂给水控制系统,即锅炉汽包水位控制。
锅炉汽包水位是一种非线性、时变大、强耦合的多变量系统。
在锅炉运行中,水位是一个很重要的参数。
若水位过高,则会影响汽水分离的效果,使用气设备发生故障;而水位过低,则会破坏汽水循环,严重时导致锅炉爆炸。
同时高性能的锅炉产生的蒸汽流量很大,而汽包的体积相对来说较小,所以锅炉水位控制显得非常重要。
给水系统
给水系统发电厂的给水系统是指从除氧器给水箱经前置泵、给水泵、高压加热器到锅炉省煤器前的全部给水管道,还包括给水泵的再循环管道、各种用途的减温水管道以及管道附件等。
给水系统的主要作用是把除氧水升压后,通过高压加热器利用汽轮机抽汽加热供给锅炉,提高循环的热效率,同时提供高压旁路减温水、过热器减温水及再热器减温水等。
一、给水系统的形式1、低压给水系统由除氧器给水箱经下水管至给水泵进口的管道、阀门和附件组成,由于承受的给水压力较低,称为低压给水系统。
为减少流动阻力,防止给水泵汽蚀,一般采用管道短、管径大、阀门少、系统简单的管道系统。
低压供水管道常分为单母管分段制和切换母管制两种。
单母管分段制是下水管接在低压给水母管上,给水再由母管分配到给水泵中。
这种系统由于系统简单,布置方便,阀门少,压力损失小,故应用比较广泛。
切换母管制是一台除氧器与一台给水泵组成单元,单元之间用母管联络,备用给水泵接在切换母管上。
这种系统调度灵活、阻力小,但管道布置复杂,投资大,多用于给水泵出力与机炉容量匹配的情况。
2、高压给水系统由给水泵出口经高压加热器到锅炉省煤器前的管道、阀门和附件组成,由于承受的给水压力很高,称为高压给水系统。
高压给水管道系统有:集中母管制、切换母管制、扩大单元制和单元制四种形式。
前三种形式的给水管道系统,由于运行调度灵活、供水可靠,并能减少备用泵的台数,在我国超高参数以下机组中普遍采用,如图3-51所示。
它们的共同特点是:①在给水泵出口的高压给水管道上按水流方向装设一个止回阀和一个截止阀。
止回阀用于防止高压水倒流,截止阀用于切断高压给水与事故泵和备用泵的关系。
②为防止低负荷时给水泵汽蚀,在各给水泵的出口截止阀前接出至除氧器给水箱的再循环管,保证在低负荷工况下有足够的水量通过给水泵。
③高压加热器均设有给水自动旁路,当高压加热器故障解列时,可通过旁路向锅炉供水。
④在冷、热高压给水母管之间,设置直通的“冷供管”,作为高压加热器事故停用或锅炉启动时间向锅炉直接供水,机组正常运行时,处于热备用状态。
锅炉汽包水位控制系统(过程控制仪表课程设计)
过程控制仪表课程设计题目锅炉汽包水位控制系统指导教师高飞燕班级自动化071学号20074460107学生姓名丁滔滔2011年1月5号附录:仪表配接图 (20)锅炉汽包水位控制系统1.系统简介:控制系统一般由以下几部分组成图1 自动控制系统简易图锅炉水位系统如下图:图2 单冲量控制系统原理图及方框图其单位阶跃响应图如下:图3 蒸汽流量干扰下水位阶跃曲线通过电容式液位计将检测来的液位信号变送给成标准信号,再输送给控制器,调节器再通过执行机构和阀来控制进水量,从而达到自动控制锅炉水位。
2.锅炉控制系统:2.1锅炉:锅炉是火力发电厂中主要设备之一。
它的作用是使燃料在炉膛中燃烧放热,井将热量传给工质,以产生一定压力和温度的蒸汽,供汽轮发电机组发电。
电厂锅炉与其他行业所用锅炉相比,具有容量大、参数高、结构复杂、自动化程度高等特点。
2.2过热器和再热器:蒸汽过热器是锅炉的重要组成部分,它的作用是将饱和蒸汽加热成为具有一定温度的过热蒸汽,并要求在锅炉负荷或其他工况变动时,保证过热气温的波动处在允许范围内。
提高蒸汽初压和初温可提高电厂循环热效率,但蒸汽初温的进一步提高受到金属材料耐热性能的限制。
蒸汽初压的提高随可提高循环热效率,但过热蒸汽压力的进一步提高受到汽轮机排气湿度的限制,因此为了提高循环热效率及降低排气湿度,可采用再热器。
通常,再热蒸汽压力为过热蒸汽压力的20%左右,再热蒸汽温度与过热蒸汽温度相近。
过热器和再热器内流动的为高温蒸汽,其传热性能差,而且过热器和再热器又位于高烟温区,所以管壁温度较高。
如何使过热器和再热器管能长期安全工作是过热器和再热器设计和运行中的重要问题。
在过热器和再热器的设计及运行中,应注意下列问题:⑴运行中应保持汽温的稳定,汽温波动不应超过±(5~10)℃。
⑵过热器和再热器要有可靠的调温手段,使运行工况在一定范围内变化时能维持额定的汽温。
⑶尽量防止和减少平行管子之间的偏差。
2.3省煤器和空气预热器:省煤器和空气预热器通常布置在锅炉对流烟道的尾部,进入这些受热面的烟气温度已较低,因此常把这两个受热面称为尾部受热面或低温受热面。
电站锅炉给水系统流程
电站锅炉给水系统流程
答案:
1. 自来水进入净水池:自来水经过净水池中过滤和除氧等处理之后,进入给水泵1中。
2. 给水泵1:给水泵1将处理过后的自来水输送到锅炉中。
3. 加热器:经过给水泵1的自来水进入加热器,通过加热器中加热器壳体内的热水加热,水温逐渐升高。
4. 给水泵2:加热后的水再次被泵入锅炉,间接加热使其温度达到饱和点。
5. 蒸汽分离器:水在金属网中通过喷嘴喷射,水雾在金属网上冷凝成液滴,进一步沉降后过流板再进水管,最后到达锅炉内蒸汽分离器里。
6. 给水泵3:分离器出来的净水再次被泵回锅炉,锅炉内的水得以循环,保持水质的稳定。
7. 给水泵4:给水泵4为高压给水泵,将循环中的水加压送入整个汽轮机系统中供能。
扩展:
电站锅炉包含炉膛、空气预热器、烟道、除尘器、风机、给水系统、汽轮机等组成部分。
其中,给水系统是电站锅炉中重要的组成部分。
给水系统主要起到为锅炉供给水分、水处理、供给锅炉中的高温高压水蒸气等作用。
电站锅炉给水系统是电站锅炉能够正常工作的重要组成部分。
给水系统中的各个部分都是为了保证锅炉内循环水的质量,确保锅炉正常运行,避免异常发生。
若给水系统运行不正常,循环水受到污染或出现一些紊流现象,则会影响锅炉的整体效能,导致电站发电能力下降,最终影响全国用电负荷。
电站锅炉给水系统的确保了锅炉的正常运行,从而保证了国家能源的供应,因此给水系统的运转十分重要。
对于电站工程师来说,加强电站技术管理,正常运转给水系统是关键之一。
火力发电厂汽包锅炉给水自动控制
科 技 圈向导
2 1 年第 1 期 01 4
火 力发 电厂汽包锅 炉给水 自动控制
(. 津大 港Biblioteka 发 电厂 1天 中国 天津许 明 明 祝 贺 强 z 3 0 7 ; . 拓 能 工 程 咨 询 公 司 山 东 0 2 2 2 山东
济南
20 1) 5 0 2
【 要】 摘 工业锅炉的汽 &, AA ̄4 e 的一个重要参数 , K -e ; - 维持汽 包水位是 保持 汽轮机和锅 炉安全运行的重要条件 . 炉汽 包水位过 高会 锅 造成汽 包出 口蒸汽 中水分过 多, 使过 热器受热 面结垢 而导致过热 器烧 坏 , 同时还会使 过热t,l  ̄ 急剧 变化 , " Ig J 直接影响机 组运行的 经济性和安全
11串级三 冲量给水控制 系统工作原理 . 如 图 41 . 所示 . 串级三冲量给水控 制系统 由主调 节器 P1控 制器 If 1和副 调节器 P2 控制器 2 串联构 成。主调节器接受水位 信号 Hf ) I( ) 为 主控 信号 ,其输 出去控制副调 节器 。副 调节器接受 主调节 器信号 I 外 . 接 受 给 水 量 信 号 I 蒸 汽 流 量 信 号 I。 副 调 节 器 的 作 用 主 要 是 还 和 。 通过 内回路进行蒸汽流量 D和给水 流量 w 的 比值调节 .并快速 消除 水侧和汽侧的扰动 主调节器主要是通过 副词节器对 水位进行校正 . 使水位保持在给定值 串级三冲量给水控制系统有 以下特点 :①两个 调节器任务不 同 , 参数整定相对独立 主调节器的任务是校正水位 . 副调节器 的任务 是 迅速消除给水和蒸汽流量扰动 . 保持给水和蒸 汽量平衡 给各整定 值 的整定带来很大的便利条件 。②在负荷变化时 . 可根 据对象在 内外 扰 动下虚假水位 的严重程度 来适 当调 整给水流量 和蒸汽流量 的作用 强 度. 更好 的消除虚假水位 的影响 . 改善 蒸汽负荷 扰动下水位 控制 的品 质 。 给 水 流 量 和 蒸 汽 流 量 的 作 用 强 度 之 间 是 相 互 独 立 的 . 也 使 整 定 这
300MW火电机组给水控制系统的设计.
目录1选题背景 (2)1.1引言 (2)1.2设计目的及要求 (2)2方案论证 (3)2.1方案一 (3)2.2方案二 (4)3过程论述 (5)3.1总体设计 (5)3.2详细设计 (6)3.2.1信号的测量部分 (6)3.2.2单冲量控制方式 (10)3.2.3串级三冲量控制方式 (11)3.3信号监测 (12)3.3.1给水旁路调节阀控制强制切到手动 (12)3.3.2电动给水泵强制切到手动 (13)3.3.3汽动给水泵强制切到手动 (13)3.4工作方式 (13)3.5切换与跟踪 (13)3.5.1切换 (13)3.5.2跟踪 (14)3.6控制器选型 (14)4结论 (14)5课程设计心得体会 (15)6参考文献 (15)1选题背景:1.1引言火电厂在我国电力工业中占有主要地位,大型火力发电机组具有效率高,投资省,自动化水平高等优点,在国内外发展很快,如今随着科技的进步,大型火力发电厂地位显得尤为重要。
但由于其内部设备组成很多,工艺流程的复杂,管道纵横交错,有上千个参数需要监视、操作和控制,这就需要有先进的自动化设备和控制系统使之正常运行,并且电能生产要求高度的安全可靠和经济性。
大型发电单元机组是一个以锅炉,高压和中、低压汽轮机和发电机为主体的整体。
锅炉作为电厂中的一个重要设备,起着重要的作用,根据生产流程又可以分为燃烧系统和汽水系统。
其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制。
给水全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。
1.2设计目的及要求本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300 MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持汽包水位在规定的范围内。
DCS系统在热电厂锅炉控制中的运用
电子技术与软件工程Electronic Technology & Software Engineering自动化控制Automatic ControlD C S系统在热电厂锅炉控制中的运用陈日利(晋能控股电力集团阳高热电有限公司山西省大同市037000 )摘要:本文通过分析热电厂锅炉运行过程中的控制方案,研究了热电厂锅炉控制系统的组成,探讨了 D C S系统在热电厂锅炉应用中 遇到的常见故障以及解决方案,对于热电厂机组的稳定运行具有一定的参考价值。
关键词:D C S系统;M C S系统;控制1引言D C S系统作为一种新型的微机控制系统,其在热电厂机组的运 行中,主要是借助于计算机等来实现控制的,与传统的控制方式相 比,这种控制方式的效率更高,且控制的功能更多,不仅可以实现 集中控制,还可以实现分散控制,提升了供热系统运行的多方面需 求。
D C S系统在热电厂锅炉控制中的应用极为普遍,提升了锅炉系 统的自动化水平。
2 D C S系统的一般运行过程热电厂锅炉在运行过程中产生的模拟信号会被数据采集器收集 并传送到D C S系统中。
通过D C S系统,产生的数据会被传输给转 移输入装置中,转移输入装置可以将接收到的信号进行分析和处理 然后将处理结果传输给过程控制器。
过程控制器会对信息进行辨别,然后给各个模块下达相应的指令,从而确保控制过程的精确性和稳 定性。
现场操作者通过对过程控制器转化的调节信号进行分析,然 后对控制系统和控制打印功能进行远程控制。
热电厂的工作过程是 连续不断的,在D C S系统实际工作过程中避免不了出现问题,为 了充分发挥D C S系统的优越性,需要分析和探究该系统在实际生 产过程中可能出现的一些故障。
3锅炉控制方案分析锅炉控制方案:较常出现的控制方案有燃烧自动控制和锅炉给 水自动控制两种。
燃烧自动控制主要分为:煤量控制,风量控制,炉膛负压控制。
其中,煤量控制的主要原理是利用了煤量预判与锅 炉的出口蒸汽压力调节,结合过热度修正的方式进行,锅炉的出口 蒸汽压力偏差作为主要调节变量,通过P I D运算,实现煤量自动控 制;风量控制工作的原理是,使用煤量预判风量。
火力发电厂锅炉专业知识培训(汽水系统)
3
#1、2炉屏式再热器出口蒸汽 压力保护
4
#1、2炉低温再热器入口蒸汽 压力保护
5
#1、2炉汽包压力保护
2019年10月22日星期二
任一侧降至 2.68MPa 2.7MPa
两侧均升至 2.85MPa
升至2.92MPa 降至2.77MPa
2.9MPa 升至3.20MPa 降至3.04MPa
14.9MPa 升至15.69MPa 降至14.9MPa 升至16.16MPa
2019年10月22日星期二
150MWCFB锅炉汽水系统
2019年10月22日星期二
锅炉汽水系统
锅炉汽水系统回路包括尾部省煤 器、汽包、水冷系统、汽冷式旋风分 离器进口烟道、汽冷式旋风分离器、 尾部竖井包墙过热器、低温过热器、 屏式过热器、高温过热器及连接管道、 低温再热器、屏式再热器及连接管道。
2019年10月22日星期二
给水系统----省煤器再循环
2019年10月22日星期二
锅炉水循环系统
锅炉蒸发设备的组成: 汽包、下降管、水冷壁及联箱等
锅炉蒸发设备的作用: 吸收燃料燃烧放出的热量,将水加热成
饱和蒸汽
2019年10月22日星期二
锅炉水循环系统
给水引入汽包水空间, 并通过集中下降管和下水 连接管进入水冷壁和水冷 分隔墙进口集箱 。锅水 在向上流经炉膛水冷壁、 水冷分隔墙的过程中被加 热成为汽水混合物,经各 自的上部出口集箱通过汽 水引出管引入汽包进行汽 水分离。
延时1秒关向空排汽门
信号报警
延时1秒开向空排汽门
A/B侧安全阀动作 A/B侧安全阀回座
信号报警 安全阀动作(A/B侧)
A/B侧安全阀回座 信号报警
安全阀动作(B侧) B侧安全阀回座
发电厂锅炉和汽轮机组的协调控制系统分析
672023.08.DQGY发电厂锅炉和汽轮机组的协调控制系统分析王 川(国能天津大港电厂)摘要:目前,我国的电力资源仍以火力发电为主,同时,核电、风电、太阳能等新能源发电也正在逐步发展。
火电机组的调节控制对象多为锅炉和汽轮机两个部分。
作为能源压舱石,火电厂在能源安全方面仍有举足轻重的作用。
由于电厂的总装机容量在不断增加,国内电力集团旗下电厂机组容量也在不断增加,这就使得电力市场呈现出更加复杂的局面。
这一形势下,如何实现电力企业,特别是火电机组锅炉和汽轮机协调运行的控制,就成为值得研究的问题。
这一问题的解决,将会给发电厂带来巨大的经济效益和社会效益。
同时,对我国实现节能减排的目标也有着重要意义。
从目前国内外火力发电机组协调控制系统应用的发展趋势来看,已经取得良好的效果。
尤其是随着我国能源结构的不断调整和优化以及电厂运行调节手段的不断创新和优化,火电厂锅炉和汽轮机协调控制系统已经成为我国火电厂发展过程中十分重要的一部分。
本文对该系统进行较为全面的介绍和分析。
关键词:锅炉;汽轮机;协调控制系统0 引言协调控制系统是我国发电厂目前运用最为广泛的一种技术,其对我国的电力发展产生着深远的影响。
由于火电机组中的锅炉和汽轮机组均存在着独特性,所以在实际运行中,两者都必须谨慎操作,如此才能实现资源的高度利用。
本文对协调控制系统下火电机组中锅炉和汽轮机组展开合理分析。
1 系统特点该系统的设计与以往的系统有着一定的不同,其主要特点:①在对锅炉和汽轮机进行控制时,该系统将锅炉主蒸汽压力作为控制器的一部分。
在控制过程中,通过对锅炉主蒸汽压力和汽轮机压力之间进行有效联系,使得二者能够协同工作,进而实现锅炉主蒸汽压力的调节控制。
②在对系统进行设计时,主要是通过控制锅炉主蒸汽压力和汽轮机主蒸汽压力之间的比例关系,从而使两者能够进行协调。
③在对锅炉和汽轮机协调控制时,需要对二者之间的协调关系进行有效联系。
为了实现这一目的,就需要分别对二者进行独立调节。
发电厂给水系统讲解讲义
主要内容有:
给水系统简介 给水系统主要设备 运行中注意事项 给水系统联锁保护
事故分析
发电厂给水系统讲解
一.给水系统简介
• 给水系统是指哪一部分?
主给水系统是指除氧器与锅炉省煤器之间的设备、管道及附件 等
• 给水系统的主要作用
主要作用是在机组各种负荷下,对主给水进行除氧、升压和 加热,为锅炉省煤器提供数量和质量都满足要求的给水。
发电厂给水系统讲解
二.给水系统设备简介
给泵组
给水泵相连的管路
➢ 给水泵均设有独立的再循环管路,由给水泵的出口逆止阀前引 出并接入除氧器。
➢ 给水泵体上设有中间抽头,从三台泵的中间抽头各引出一根支 管,每根支管上装一个逆止阀和一个隔离阀。
➢ 给水泵出口设有逆止门和电动门。逆止门前后均设有疏水,在 给水泵和前置泵的入口滤网上都有放水门 。
给水系统设备简介给水泵的配置是配有两台50容量的汽动给水泵一台30容量的电动给水泵考虑到厂用电压等级为6000380v故电泵采用定速泵且仅考虑启动而丌做备用出口压头无法满足事故备用的要求每台给水泵前均配有一台前置泵前置泵的作用是提高给水泵入口的给水压头满足其必需的净正吸如水头防止给水泵发生汽蚀
发电厂给水系统讲解
➢ 本机组给泵组无专门暖管系统,但为减少或消除处于备用状态 的给水泵内部温度与除氧器水温之间温差,防止备泵经受热冲 击,可利用给泵出口逆止门前放水门控制泵体上下温差,对于 无备用功能的电泵,因为无出口逆止门前放水门,可通过中间 抽头疏水门来实现。
发电厂给水系统讲解
二.给水系统设备简介
给泵组
给泵密封水
二.给水系统设备简介
除氧器
除氧器的作用
除氧器可以将给水中的所有的不凝结气体除去,并及时排出。 并且除氧器作为汽水系统中唯一的混合式加热器,能方便地汇 集各种汽、水流,因此除氧器还可以起到加热给水和回收工质 的作用。
第二章+锅炉自动控制系统
串级三冲量给水控制系统图
燃烧率阶跃扰动下的水位响应曲线
在燃烧率Q阶跃变化时,水位的响应曲线如图2-8所示。水位变化的动态特 性用下列传递函数表示:
GHQ ( s)
——为迟延时间(s)。
H (s) K [ ]e s Q( s ) (1 Ts)2 s
上式与蒸汽流量的扰动影响下的传递函数相类似,但增加了一个纯迟延环节。
(4) 根据运行中汽包“虚假水位”现象的 情况。设定蒸汽流量信号强度系数 D 。如“虚假水位”现象严重,可适当加强蒸 汽流量信号,例如可使蒸汽流量信号强度为 给水流量信号强度的1~3倍。但若因此需要 减小给水流量信号强度,则需要重新修正主、 副调节器的整定参数。 (5) 进行机组负荷扰动试验,要求同单级三 冲量系统。
1) 串级三冲量给水控制系统的组成为: (1) 给水流量W、给水流量变送器 rw 和给水流量反馈装置 aw 、副调节器PI2、 执行机构 K Z 、调节阀 K 组成的内回路(或称副回路)。
(2) 由水位控制对象 W01 s 、水位变送器 rH 、主调节器PI1和内回路组成 的外回路(或称主回路)。 (3) 由蒸汽流量信号D及蒸汽流量测量装置 rD 、蒸汽流量前馈装置
本章主要学习模拟量控制系统中锅炉部分的各主要子控制系统:给水控制系统、气 温控制系统和燃烧控制系统。
一、 模拟量闭环控制系统(MCS)
主要包括以下子系统: 1.锅炉给水控制系统 锅炉给水控制系统是调节锅炉的给水量以适应机组负荷(蒸汽量)的变化, 保持汽包水位稳定(对于汽包锅炉)或保持在不同锅炉负荷下的最佳燃水 比(对于直流锅炉) 2.汽温控制系统 汽温控制的质量直接影响到机组的安全与经济运行。它包括主蒸汽温度控制和 再热蒸汽温度控制 (过热气温调节:喷减温水;再热气温调节:烟气挡板位置)
火力发电厂350MW机组集控运行的汽水系统与锅炉控制
火力发电厂350MW机组集控运行的汽水系统与锅炉控制摘要:火力发电厂350MW机组集控的汽水系统及锅炉设备有效控制将进一步解决火力发电厂设备运行管理的安全性及技术性问题,是现阶段火力发电厂发展建设所需研究的主要课题之一。
本文将根据火力发电厂350MW机组集控运行特点,对其汽水系统与锅炉设备控制问题进行分析,并制定合理化的问题解决方案,以此为火力发电厂的350MW机组集控系统科学化运用提供相关的建设性建议。
关键词:火力发电厂;350MW;集控运行;汽水系统;锅炉引言现今,火力发电系统应用逐步广泛,不仅局限于大环境下的电力网络应用,同时在大型企业内部及基础设施建设方面运用频次也进一步增加,使之成为各地区现代化发展建设的重要内涵。
火力发电的350MW机组集控系统应用较为普遍,是现代火力发电发展的主要技术应用方向,尤其是对汽水系统及锅炉设备的合理化控制,使火力发电厂实际发电生产效率得以有效提升,为火力发电厂电力资源配置与应用创造了有利的技术应用环境。
一、火力发电厂350MW机组集控汽水系统运行现状与问题火力发电厂对于发电效率的要求相对较高,为提高发电功效,通常需要采用集控运行设计对单元机组进行一体化控制,尤其对于350MW发电机组而言,可有效的降低设备运行成本并提高人员配置合理性,避免不必要的火力资源浪费。
虽然火力发电厂的集控设计优势明显,但在控制细节上仍存在一定的问题,从而影响到火力发电厂350MW机组运行的稳定性及时效性。
(一)350MW机组运行再热汽温度控制与应用再热汽温控制主要目的在于提高机组运行热循环效率,避免机组设备出现老化及能源浪费,有效控制机组运行能耗,确保设备能够在良好的环境温度下正常运转。
在热汽温的调节目前有喷水减温法、汽汽热交换器法、烟气再循环法、分割烟道挡板调节法和调节火焰中心位置法五种。
由于烟气挡板具有设备安全简单,控制灵活,无额外的辅助动力要求,能够双向调温的特点,作为机组稳定运行时的主要调节手段得到了广泛应用,同时在机组启动初期和事故情况下辅以喷水减温调节。
300MW火电机组给水控制的设计
300MW火电机组给水控制的设计摘要:随着发电机组容量的增加和参数的不断提高,机组的控制与运行管理变得越来越复杂和困难。
为了减轻运行人员的劳动强度,保证机组的安全运行,要求实现更为先进,适合范围更宽,功能更为完备的自动控制系统。
这就产生了全程控制系统。
所谓全程控制系统是指在启停和正常运行时均能实现自动控制的系统。
给水控制系统是火力发电厂非常重要的控制子系统,稳定的汽包水位是汽包锅炉安全运行的重要指标。
火电厂给水系统构成复杂,汽包水位受到机组负荷,汽包压力、温度,给水量等多项参数的影响;不同负荷阶段,给水设备不同,又需要采取不同的控制方式。
关键词:全程控制系统无扰切换单级三冲量串级三冲量300 MW thermal power unit water control designAbstract:Along with the increase of generating unit capacity and parameter unceasing enhancement, the unit control and operation management become more and more complex and difficult. In order to reduce the operational personnel Labour intensity, guarantee the unit operation, demanding more advanced, suitable for a wider, function and more complete automatic control system. This creates the whole control system. So-called process control system refers to the start-stop and normal operation are to achieve automatic control system. Water control system is the coal-fired power plant very important control subsystem, stable drum drum water level is an important index of the safe operation of the boiler. Thermal water system structure is complex, the drum water level by the unit loads, steam pressure, temperature, water etc. Several parameters influence; Different load stage, water supply equipment, and the need to adopt different different control modes.Key words:Process control system Undisturbed switch Single grade three impulse Cascade three impulse1选题背景随着发电机组容量的增加和参数的不断提高,机组的控制与运行管理变得越来越复杂和困难。
电站锅炉给水加联氨控制系统
加联氨控制系统技术参数1引言电站锅炉给水中的溶解氧是引起热力设备腐蚀, 威胁锅炉安全运行的主要因素之一。
往给水中加入联氨是继除氧器之后实现进一步强化除氧的化学方法氨的加药量要求控制严格, 加药量过少, 保证不了除氧效果, 因而达不到防止锅炉腐蚀保障电厂安全经济运行的目的; 而加药量过多, 不仅造成不必要的浪费, 而且还会导致环境污染。
如果采用联氨自动加药系统, 则可以根据锅炉的实际运行工况, 自动调整联氨的加入量, 使给水中联氨的浓度保持在最佳范围内, 在满足除氧效果的前提下, 达到节约药品和保护环境的目的。
自动加药系统的常用执行机构是电动调节阀和直流电机。
采用电动调节阀, 由于存在机械磨损和非线性, 可靠性不高, 并要对原有加药管路进行改造,因而在联氨加药系统中没有得到广泛应用。
直流电机虽然可以进行调速控制, 但由于故障频繁, 可靠性较差, 使得自动投入率不高。
随着电力电子技术的发展, 近年来, 人们开始采用变频调速进行联氨自动加药, 由于不需要对管路进行改造, 系统可靠, 得到了人们的认同, 取得了良好的效果。
应用常规的P I 控制算法, 适用于迟延时间较小的控制对象, 即适用于加药点与取样之间距离较近, 并且取样管不太长的场合。
因此, 当取样管较长时, 必须采用其它的控制算法或控制方案。
否则必须对取样管路进行改造, 加大工作量, 造成设备维护困难。
在这里我们将讨论一种改进P I 控制算法及其在联氨加药系统中的应用。
2联氨自动加药控制系统的组成一般来说, 联氨的加药点在除氧器之后, 而联氨的取样点在给水泵之后(某些系统在高压加热器之后)。
联氨自动加药控制系统如图2—1 所示。
系统由取样管、联氨表、控制器、变频器、加药泵、加药管等组成。
控制器是整个系统的核心,它根据联氨表的指通过运算确定变频器的频率,进而控制电机的转速,达到控制加药量的目的。
图2—1所示的联氨自动加药控制系统可以等效为如下的方框图2—2。
锅炉双冲量给水控制系统设计_毕业设计
锅炉双冲量给水控制系统设计_毕业设计第一章论文选题背景及理论发展1.1 目的及意义随着电子产品的降价及自动化生产线工艺控制连续稳定优势的凸现,越来越多的企业准备将自己的核心生产线改成全自动化生产线或者对个别关键工艺参数采用自动控制。
工业应用自控技术在中国的推广使用较晚,但近年来发展较快。
国内现在做汽包水位自动控制系统方面的设计公司很多,但由于能够集工艺要求、自动化技术和电气技术三者于一体的设计不多,所以人们清楚地认识到自动控制技术在工业应用中的重要地位和作用,在水位控制系统中,主要采用“三冲量控制”方案来实现锅炉汽包水位控制更是重中之重。
本课题的目的及意义:锅炉汽包水位控制是维持锅筒水位在允许的范围内,使锅炉的给水量适应锅炉的蒸发量。
由于锅炉的水位同时受到锅炉侧和气轮机侧的影响,因此,当锅炉负荷变化或气轮机用汽量变化时,通过给水调节系统保持锅炉的水位正常是保证锅炉和气轮机安全运行的重要条件。
水位过高或过低,都是不允许的。
水位过高会影响汽水分离器的正常工作,严重时会导致蒸汽带水增加,使过热器管壁和气轮机叶片结垢,造成事故;锅炉出口蒸汽带水过多还会使过热蒸汽温度产生急剧变化。
水位过低,则会破坏正常水循环,危及水冷壁受热面的安全。
一般要求锅筒水位维持在设计值±75~±100mm范围内。
1.2 自动控制理论的发展一、“经典控制理论”阶段上世纪50年代前发展的控制理论被称为“古典控制理论”。
它主要研究的自动控制系统为线性定常系统,被控对象集中于SISO系统。
经典控制理论所采用的方法通常是以传递函数、频率特性、根轨迹分布为基础的波德图法和根轨迹法,包括各种稳定性判据和对数频率特性。
二、“现代控制理论”阶段60年代以后发展起来的现代控制理论主要研究MIMO系统。
系统可以是线性或非线性的,定常或时变的。
它采用状态方程代替经典理论中的一个高阶微分方程式来描述系统,并且系统中各个变量均为时间t的函数,因而属于时域分析方法。
发电厂锅炉和汽轮机组协调控制系统分析
发电厂锅炉和汽轮机组协调控制系统分析随着工业的发展,发电厂的需求量也在不断增加。
为了满足这一需求,发电厂必须提高发电效率和稳定性。
而发电厂的锅炉和汽轮机组作为核心设备,其协调控制系统的设计和优化显得尤为重要。
本文将重点分析发电厂锅炉和汽轮机组协调控制系统的设计原理和优化方法。
一、锅炉和汽轮机组的基本原理1.锅炉锅炉是发电厂的重要设备之一,其主要功能是将水加热成蒸汽,然后供给汽轮机组进行发电。
常见的锅炉有燃煤锅炉、燃气锅炉和燃油锅炉等。
锅炉的工作原理是利用燃料燃烧产生高温烟气,通过烟气与水的热交换,将水加热成蒸汽。
2.汽轮机组汽轮机组是将热能转换为机械能的设备,它将锅炉产生的高温高压蒸汽转化为旋转功,驱动发电机发电。
汽轮机组的工作原理是利用高温高压蒸汽推动叶片进行旋转,从而带动转子转动,最终带动发电机转动发电。
二、协调控制系统的设计原理锅炉和汽轮机组的协调控制系统是为了保证锅炉和汽轮机组的运行状态稳定,发电效率高。
其主要原理是实现锅炉和汽轮机组之间的蒸汽供应平衡,确保蒸汽的流量、温度和压力达到设计要求。
在运行过程中,锅炉和汽轮机组需要根据负荷需求进行调节,而协调控制系统则需要根据实际工况不断优化控制参数,实现锅炉和汽轮机组的协调工作。
协调控制系统的实现主要包括传感器采集、信号处理、控制算法设计和执行器控制等步骤。
传感器采集系统用于实时监测锅炉和汽轮机组的运行状态,信号处理系统用于对传感器采集的信息进行处理,控制算法设计用于根据实时监测信息设计合理的控制策略,执行器控制系统用于根据控制策略实现锅炉和汽轮机组的调节。
协调控制系统的设计需要考虑到锅炉和汽轮机组之间的协调性,确保二者在不同负荷下的运行状态稳定和发电效率高。
三、优化方法1.参数优化协调控制系统的参数优化是确保锅炉和汽轮机组协调运行的重要手段。
通过对锅炉和汽轮机组的传感器采集、控制算法设计和执行器控制等方面的参数进行优化,可以实现锅炉和汽轮机组的运行状态更加稳定和效率更高。
《锅炉自动控制系统》课件
应用领域与优势
应用领域
锅炉自动控制系统广泛应用于工业、 商业和家庭等领域,如发电厂、供热 系统、工业制造等。
优势
提高能源利用效率,降低能耗和减少 环境污染,提高生产效率和安全性。
实际应用案例
案例一
某热力公司采用锅炉自动控制系统,实现了供热系统的智能化控制,提高了供热效率,减少了能源浪 费。
案例二
数据处理与通讯
01
02
03
数据采集与处理
实时采集锅炉运行数据, 进行预处理和分析,为控 制系统提供决策依据。
数据存储与备份
将重要数据存储在数据库 中,定期备份数据,确保 数据安全可靠。
数据通讯接口
支持多种通讯协议,实现 控制系统与上位机、传感 器等设备之间的数据传输 与交互。
04
锅炉自动控制系统应用与案例
《锅炉自动控制系统》PPT 课件
目录
• 锅炉自动控制系统概述 • 锅炉自动控制系统硬件 • 锅炉自动控制系统软件 • 锅炉自动控制系统应用与案例 • 锅炉自动控制系统维护与故障排除
01
锅炉自动控制系统概述
定义与功能
定义:锅炉自动控制系统是指利用自动化技术实现对锅 炉运行过程的自动控制,以达到提高效率、保证安全、 降低能耗等目的的控制系统。 1. 自动调节锅炉运行参数,保持稳定运行;
设备出现故障时,应立即停止使用,并及时联系专业人员进行
03
维修。
感谢您的观看
THANKS
模糊控制算法
基于模糊逻辑理论,处理具有不确定 性和非线性的复杂系统,提高控制系 统的鲁棒性和适应性。
人机界面
监控界面
实时显示锅炉的运行状态、参数和报警信息,方便操作人员监控系 统运行状况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要随着科技的发展,人们越来越离不开电。
大型火力发电厂地位显得尤其重要。
其机组由锅炉、汽轮机发电机组和辅助设备组成的庞大的设备群。
工艺流程复杂,设备众多,管道纵横交错,有上千个参数需要监视、操作和控制,这就需要有先进的自动化设备和控制系统使之正常运行,并且电能生产要求高度的安全可靠和经济性,尤其是大型骨干机组。
大型发电单元机组是一个以锅炉,高压和中、低压汽轮机和发电机为主体的整体。
锅炉作为电厂中的一个重要设备,起着重要的作用,根据生产流程又可以分为燃烧系统和汽水系统。
其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制。
本次课程设计主要研究发电厂给水控制系统,即锅炉汽包水位控制。
其要求是提供合格的蒸汽,使锅炉发汽量适应符合的需要。
为此,生产过程的各个主要工艺参数必须加以严格控制。
锅炉设备是一个复杂的控制对象,主要输入变量是负荷、锅炉给水、燃料量、减温水、送风和引风等。
主要输出变量是汽包水位、蒸汽压力、过热蒸汽温度、炉膛负压、过剩空气等。
发电厂锅炉给水控制系统1.概述大型火力发电机组由锅炉、汽轮机发电机组和辅助设备组成的庞大的设备群。
工艺流程复杂,设备众多,管道纵横交错,有上千个参数需要监视、操作和控制,这就需要有先进的自动化设备和控制系统使之正常运行,并且电能生产要求高度的安全可靠和经济性,尤其是大型骨干机组。
大型发电单元机组是一个以锅炉,高压和中、低压汽轮机和发电机为主体的整体。
锅炉作为电厂中的一个重要设备,起着重要的作用,根据生产流程又可以分为燃烧系统和汽水系统。
其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制。
本次课程设计主要研究发电厂给水控制系统,即锅炉汽包水位控制。
锅炉汽包水位是一种非线性、时变大、强耦合的多变量系统。
在锅炉运行中,水位是一个很重要的参数。
若水位过高,则会影响汽水分离的效果,使用气设备发生故障;而水位过低,则会破坏汽水循环,严重时导致锅炉爆炸。
同时高性能的锅炉产生的蒸汽流量很大,而汽包的体积相对来说较小,所以锅炉水位控制显得非常重要。
锅炉水位自动控制的任务,就是控制给水流量,使其与蒸发量保持平衡,维持汽包内水位在允许的范围内变化。
本次课程设计研究发电厂给水控制系统的控制方式及整定。
2.给水调节对象的动态特性汽包水位是工业蒸汽锅炉安全、稳定运行的重要指标,是锅炉蒸汽负荷与给水间物质是否平衡的重要标志,维持汽包水位正常是保证锅炉和汽轮机安全运行的必要条件。
汽包锅炉给水控制系统的作用是使锅炉的给水量自动适应锅炉的蒸发量,维持汽包水位在规定范围内波动。
其中给水流量和蒸汽流量是影响汽包水位的两种主要扰动,前者来自调节器,称为内扰,后者来自负荷侧,称为外扰。
汽包炉给水控制对象的结构如图2-1所示。
影响水位的因素主要有:锅炉蒸发量(负荷D ),给水量G ,炉膛热负荷(燃烧率M ),汽包压力b P 。
控制系统的物质平衡方程为:dt D G Ddt Gdt dH A )()('''-=-=-ρρ (2-1) 将式(2-1)进一步变换得:D G dt dH A -=-)('''ρρ (2-2) 令 '''()C A ρρ=-,则上式变为:D G dtdH C -= (2-3) 式中 H ——汽包水位,m 或cm ; A ——汽水分离面积,2m 或2cm ;'ρ——水的密度,t /3m 或kg /3cm ; "ρ——蒸汽密度,t /3m 或kg /3cm ;D ——蒸发量,/t h 或/kg s ; G ——给水量,/t h 或/kg s ;C ——容量系数。
图2-1 给水调节对象2.1 给水扰动汽包水位在给水流量作用下的动态特性:给水量是锅炉的输入量,如果蒸汽负荷不变,那么给水流量变化时,汽包水位的运动方程式可以表示为:W W W W u k dt du T dt dh T dth d T T +=+12221 (2-4) 可以得到汽包水位在给水流量作用下的传递函数为:)1()()(21)(01++==S T S T K S T V S H S G W W S W (2-5) 对于中压锅炉,上式中Tw 的数值很小,常常可以忽略不计,因此可以进一步改写为:)1()()(2)(01+==S T S V S H S G S W ε (2-6) 给水量扰动时水位阶跃响应曲线如图2-2所示。
图2-2 给水量扰动时水位阶跃响应曲线图2-2中曲线1为沸腾式省煤器情形下水位的动态特性,曲线2为非沸腾式省煤器情形下水位的动态特性。
从物质平衡的观点来看,加大了给水量G ,水位应立即上升,但实际上并不是这样,而是经过一段迟延,甚至先下降后再上升。
这是因为给水温度远低于省煤器的温度,即给水有一定的过冷度,水进入省煤器后,使一部分汽变成了水,特别是沸腾式省煤器,给水减轻了省煤器内的沸腾度,省煤器内的汽泡总容积减少,因此,进入省煤器内的水首先用来填补省煤器中因汽泡破灭容积减少而降低的水位,经过一段迟延甚至水位下降后,才能因给水量不断从省煤器进入汽包而使水位上升。
在此过程中,负荷还未发生变化,汽包中水仍然在蒸发,因此水位也有下降趋势。
2.2 蒸汽流量扰动汽包水位在蒸汽流量扰动下的动态特性,可以用下式表示(假定给水量不变))(12221D D D D u k dt du T dt dh T dth d T T +-=+ (2-7) 则 )1()()(21)(2++-==S T S T K S T V S H S G D DS D F (2-8) 上式可通过两个动态环节的并联来等效,即11)()(2'')(22++-==S T K S T V S H S G a S D F (2-9) 式中:Da K T T 1'= 12'2/)(T T T K K D D -=。
图2-3 蒸汽量D 扰动下的水位阶跃响应曲线如果只从物质平衡的角度来看,蒸发量突然增加D ∆时,蒸发量高于给水量,汽包水位是无自平衡能力的,所以水位应该直线下降,如图2-3中1()H t 所示那样,但实际水位是先上升,后下降,这种现象称为“虚假水位”现象,如图中()H t 所示。
其原因是由于负荷增加时,在汽水循环回路中的蒸发强度也将成比例增加,水面下汽泡的容积增加得也很快,此时燃料量M 还来不及增加,汽包中汽压b p 下降,汽包膨胀,使汽泡体积增大而水位上升。
如图2-3中2()H t 所示。
在开始的一段时间2()H t 的作用大于1()H t 。
当过了一段时间后,当汽泡容积和负荷相适应而达到稳定后,水位就要反映出物质平衡关系而下降。
因此,水位的变化应是上述两者之和,即12()()()H t H t H t =+2.3 燃料量扰动图2-4 燃料量扰动下水位阶跃响应曲线炉膛热负荷扰动即是指燃料量M的扰动。
燃料量增加时,锅炉吸收更多的热量,使蒸发强度增大,如果不调节蒸汽阀门,由于锅炉出口汽压提高,蒸汽流量也增大,这时蒸发量大于给水量,水位应下降。
但由于在热负荷增加时蒸发强度的提高,使汽水混合物中的汽泡容积增加,而且这种现象必然先于蒸发量增加之前发生,从而使汽包水位先上升,从而引起“虚假水位”现象。
当蒸发量与燃烧量相适应时,水位便会迅速下降,这种“虚假水位”现象比蒸汽量扰动时要小一些,但其持续时间较长。
以上三种扰动在锅炉运行中都可能经常发生。
但是由于控制通道在给水侧,因此蒸汽流量D和燃料量M习惯上称为外部扰动,它们只影响水位波动的幅度。
而给水量G扰动在控制系统的闭合回路里产生,一般称为内部扰动。
因此,汽包水位对于给水扰动的动态参数是给水控制系统调节器参数整定的依据,此外,由于蒸汽流量D和燃料量M的变化也是经常发生的外部扰动。
所以常引入D、M信号作为给水控制系统里的前馈信号,以改善外部扰动时的控制品质。
影响水位的因素除上述之外,还有给水压力、汽包压力、汽轮机调节汽门开度、二次风分配等。
不过这些因素几乎都可以用D、M、G的变化体现出来。
为了保证汽压的稳定,燃料量和蒸发量必须保持平衡,所以这两者往往是一起变化的,只是先后的差别。
3. 控制方案选择与设计3.1 方案选择从反馈控制的思想出发,自然想到一水位信号为被调量,构成单回路控制系统。
对于小容量锅炉来说,它的蓄水量较大,水面以下气泡的体积不占很大比重,因此给水容积迟延和假水位现象不明显,可以采用单冲量控制系统。
单冲量控制系统即为汽包水位的单回路反馈液位控制系统。
单冲量水位控制系统以汽包水位作为唯一的控制信号。
单冲量水位控制系统由汽包、变送器、调节器、执行器及调节阀等组成,水位测量信号经变送送到水位调节器,水位调节器根据水位测量值与给定值的偏差去控制给水阀门,改变给水量来保持汽包水位在允许的操作范围内。
这种控制系统是典型的单回路定值控制系统。
对于水在汽包内的停留时间较长,且负荷又比较稳定的情况,“虚假水位”现象不严重.采用单冲量控制系统,进行PID调节一般就能满足生产要求。
单冲量汽包水位调节存在着一些缺点,主要是这种调节方案只根据水位调节给水量,在负荷变化时,由于“虚假水位”现象,在调节过程一开始,给水量的变化将与负荷变化的方向相反,扩大了进出流量的不平衡,而且从给水扰动下水位变化的动态特性可以估计到,当水位已经偏离给定值后再调节给水量,因给水量改变后要经过一定迟延时间 才能影响到水位,因此必将导致水位波动幅度大、调节时间长。
对于大型超高压锅炉也可以采用这种控制对象,因为在超高压下,汽和水的密度相差不大,假水位并不显著。
但是,对于大中型锅炉来说,这种系统不能满足要求。
因为汽机耗汽量改变所产生的假水位将引起给水调节机构的的误动作,致使汽包水位激烈地上下波动,严重影响设备的寿命和安全。
从物质平衡的观点来看,只要保证给水量永远等于蒸发量,就可以保证汽包水位大致不变,因此可以采用比值控制系统,用汽机耗汽量D作为调节系统的设定值,使给水量W 跟踪耗汽量D。
然而,它对于汽包水位来说只是开环控制。
如果耗汽量和给水量的测量不准,或者由于有锅炉排污及管道泄漏等,蒸汽量和给水量并非总是确定的比值,此系统不能达到水汽平衡,因为汽包水位H对于(D-W)是一个积分关系,微小的D和W之差可以在长时间的积累中形成很大的水位偏差。
所以不能单独使用比值控制系统。
所以将两种方案结合构成三冲量控制系统。
“冲量”即为变量,三冲量锅炉汽包给水自动控制系统是以汽包水位为主控制信号,蒸汽流量为前馈控制信号,给水流量为反馈控制信号组成的控制系统。
三冲量水位控制系统有两个闭合回路:一个是由给水流量、给水变送器、调节器和调节阀组成的内回路;另一个是由汽包水位对象和内回路构成的主回路。