高数解析几何复习试题及答案
高考数学《解析几何》专项训练及答案解析
![高考数学《解析几何》专项训练及答案解析](https://img.taocdn.com/s3/m/5716e3bf31126edb6f1a10ae.png)
高考数学《解析几何》专项训练一、单选题1.已知直线l 过点A (a ,0)且斜率为1,若圆224x y +=上恰有3个点到l 的距离为1,则a 的值为( )A .B .±C .2±D .2.已知双曲线2222:1x y C a b-=(0,0)a b >>,过右焦点F 的直线与两条渐近线分别交于A ,B ,且AB BF =uu u r uu u r,则直线AB 的斜率为( ) A .13-或13B .16-或16C .2D .163.已知点P 是圆()()22:3cos sin 1C x y θθ--+-=上任意一点,则点P 到直线1x y +=距离的最大值为( )AB .C 1D 2+4.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .⎡⎣B .(C .33⎡-⎢⎣⎦D .33⎛⎫- ⎪ ⎪⎝⎭5.已知抛物线C :22x py =的焦点为F ,定点()M ,若直线FM 与抛物线C 相交于A ,B 两点(点B 在F ,M 中间),且与抛物线C 的准线交于点N ,若7BN BF =,则AF 的长为( )A .78B .1C .76D6.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2-BC .2D7.已知抛物线C :22(0)y px p =>的焦点F ,点00(2p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,以M 为圆心的圆与直线2p x =交于A 、B 两点(A 在B 的上方),若5sin 7MFA ∠=,则抛物线C 的方程为( )A .24y x =B .28y x =C .212y x =D .216y x =8.已知离心率为2的椭圆E :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,过点2F 且斜率为1的直线与椭圆E 在第一象限内的交点为A ,则2F 到直线1F A ,y 轴的距离之比为( )A .5B .35C .2D二、多选题9.已知点A 是直线:0l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .(B .()1C .)D .)1,110.已知抛物线2:2C y px =()0p >的焦点为F ,F ,直线l 与抛物线C交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =uuu r uu rC .2BD BF = D .4BF =三、填空题11.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.12.已知圆()2239x y -+=与直线y x m =+交于A 、B 两点,过A 、B 分别作x 轴的垂线,且与x轴分别交于C 、D 两点,若CD =m =_____.13.已知双曲线()2222:10,0x y C a b a b-=>>的焦距为4,()2,3A 为C 上一点,则C 的渐近线方程为__________.14.已知抛物线()220y px p =>,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于,A B 两点,1A 、1B 分别为A 、B 在l 上的射影,M 为11A B 的中点,给出下列命题: (1)11A F B F ⊥;(2)AM BM ⊥;(3)1//A F BM ;(4)1A F 与AM 的交点的y 轴上;(5)1AB 与1A B 交于原点. 其中真命题的序号为_________.四、解答题15.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点(0,Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.16.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅u u u r u u u u r的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.参考答案1.D 【解析】 【分析】因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,即圆心到直线l 的距离为1,根据点到直线的距离公式即可求出a 的值. 【详解】直线l 的方程为:y x a =-即0x y a --=.因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,而圆的半径为2,即圆心到直线l 的距离为1.1=,解得a =故选:D . 【点睛】本题主要考查直线与圆的位置关系的应用,以及点到直线的距离公式的应用,解题关键是将圆上存在3个点到l 的距离为1转化为两条直线与圆的位置关系,意在考查学生的转化能力与数学运算能力,属于中档题. 2.B 【解析】 【分析】根据双曲线的离心率求出渐近线方程,根据AB BF =u u u r u u u r,得到B 为AF 中点,得到B 与A 的坐标关系,代入到渐近线方程中,求出A 点坐标,从而得到AB 的斜率,得到答案. 【详解】因为双曲线2222:1x y C a b-=(0,0)a b >>,又222c e a =22514b a =+=,所以12b a =,所以双曲线渐近线为12y x =± 当点A 在直线12y x =-上,点B 在直线12y x =上时, 设(),A A Ax y (),B B B x y ,由(c,0)F 及B 是AF 中点可知22A B A B x c x y y +⎧=⎪⎪⎨⎪=⎪⎩,分别代入直线方程,得121222A A A A y x y x c ⎧=-⎪⎪⎨+⎪=⋅⎪⎩,解得24A Ac x c y ⎧=-⎪⎪⎨⎪=⎪⎩,所以,24c c A ⎛⎫-⎪⎝⎭, 所以直线AB 的斜率AB AFk k =42cc c =--16=-,由双曲线的对称性得,16k =也成立. 故选:B. 【点睛】本题考查求双曲线渐近线方程,坐标转化法求点的坐标,属于中档题. 3.D 【解析】 【分析】计算出圆心C 到直线10x y +-=距离的最大值,再加上圆C 的半径可得出点P 到直线10x y +-=的距离的最大值. 【详解】圆C 的圆心坐标为()3cos ,sin θθ+,半径为1,点C 到直线10x y +-=的距离为sin 14d πθ⎛⎫===++≤+ ⎪⎝⎭因此,点P 到直线1x y +=距离的最大值为12122++=+. 故选:D. 【点睛】本题考查圆上一点到直线距离的最值问题,当直线与圆相离时,圆心到直线的距离为d ,圆的半径为r ,则圆上一点到直线的距离的最大值为d r +,最小值为d r -,解题时要熟悉这个结论的应用,属于中等题. 4.D 【解析】设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径22411k k d k -=≤+,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确. 5.C 【解析】 【分析】由题意画出图形,求出AB 的斜率,得到AB 的方程,求得p ,可得抛物线方程,联立直线方程与抛物线方程,求解A 的坐标,再由抛物线定义求解AF 的长. 【详解】解:如图,过B 作'BB 垂直于准线,垂足为'B ,则'BF BB =,由7BN BF =,得7'BN BB =,可得1sin 7BNB '∠=, 3cos 7BNB '∴∠=-,tan 43BNB '∠=又()23,0M ,AB ∴的方程为2343y x =-, 取0x =,得12y =,即10,2F ⎛⎫ ⎪⎝⎭,则1p =,∴抛物线方程为22x y =. 联立223432y x x y ⎧=-⎪⎨⎪=⎩,解得23A y =.12172326A AF y ∴=+=+=. 故选:C . 【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题. 6.D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出22,22P c ⎛⎫⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点, 由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题. 7.C 【解析】 【分析】根据抛物线的定义,表示出MF ,再表示出MD ,利用5sin 7MFA ∠=,得到0x 和p 之间的关系,将M 点坐标,代入到抛物线中,从而解出p 的值,得到答案.【详解】抛物线C :22(0)y px p =>, 其焦点,02p F ⎛⎫⎪⎝⎭,准线方程2p x =-,因为点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线上一点, 所以02p MF x =+AB所在直线2p x =, 设MD AB ⊥于D ,则02p MD x =-, 因为5sin 7MFA ∠=,所以57 MD MF=,即5272pxpx-=+整理得03x p=所以()3,66M p将M点代入到抛物线方程,得()26623p p=⨯,0p>解得6p=,所以抛物线方程为212y x=故选:C.【点睛】本题考查抛物线的定义,直线与圆的位置关系,求抛物线的标准方程,属于中档题.8.A【解析】【分析】结合椭圆性质,得到a,b,c的关系,设2AF x=,用x表示112,AF F F,结合余弦定理,用c表示x,结合三角形面积公式,即可。
高中数学解析几何测试题(答案版)
![高中数学解析几何测试题(答案版)](https://img.taocdn.com/s3/m/ae209f5a6ad97f192279168884868762caaebb3a.png)
高中数学解析几何测试题(答案版)高中数学解析几何测试题(答案版)第一部分:平面解析几何1. 已知平面P1:2x + 3y - 4 = 0和平面P2:5x - 7y + 2z + 6 = 0,求平面P1和平面P2的夹角。
解析:首先,我们需要根据平面的一般式方程确定法向量。
对于平面P1,法向量为(n1, n2, n3) = (2, 3, 0),对于平面P2,法向量为(n4, n5,n6) = (5, -7, 2)。
根据向量的内积公式,平面P1和平面P2的夹角θ可以通过以下公式计算:cosθ = (n1 * n4 + n2 * n5 + n3 * n6) / √[(n1^2 + n2^2 + n3^2) * (n4^2 + n5^2 + n6^2)]代入数值计算,得到cosθ ≈ 0.760,因此夹角θ ≈ 40.985°。
2. 已知四边形ABCD的顶点坐标为A(1, 2, 3),B(4, 5, 6),C(7, 8, 9)和D(10, 11, 12),判断四边形ABCD是否为平行四边形,并说明理由。
解析:要判断四边形ABCD是否为平行四边形,我们需要比较四边形的对角线的斜率。
四边形ABCD的对角线分别为AC和BD。
根据两点间距离公式,我们可以计算出AC的长度为√99,BD的长度为√99。
同时,我们还需要计算坐标向量AC = (6, 6, 6)和坐标向量BD = (9, 9, 9)。
由于AC和BD的长度相等,且坐标向量AC与坐标向量BD的比值为1∶1∶1,因此四边形ABCD是一个平行四边形。
第二部分:空间解析几何3. 已知直线L1:(x - 1) / 2 = y / 3 = (z + 2) / -1和直线L2:(x - 4) / 3= (y - 2) / 1 = (z + 6) / 2,判断直线L1和直线L2是否相交,并说明理由。
解析:为了判断直线L1和直线L2是否相交,我们可以通过解方程组的方法来求解交点。
高三数学复习 解析几何(含答案)
![高三数学复习 解析几何(含答案)](https://img.taocdn.com/s3/m/0a83cb7a0b1c59eef8c7b4c2.png)
苏州市高三数学 解析几何一.填空题【考点一】:直线方程及直线与直线的位置关系例1.若直线ax +(2a -1)y +1=0和直线3x +ay +3=0垂直,则a 的值为_________. 【答案】a =0或a =-1.【解析】由两直线垂直得3a +(2a -1)a =0,解得a =0或a =-1.例2.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的范围是_________. 【答案】⎝⎛⎭⎫π6,π2.【解析】方法一:由⎩⎨⎧y =kx -3,2x +3y -6=0,解得:⎩⎪⎨⎪⎧x =6+332+3k ,y =6k -232+3k .因为交点在第一象限,所以⎩⎪⎨⎪⎧6+332+3k >0,6k -232+3k >0,解得:k >33. 所以,直线l 的倾斜角的范围是⎝⎛⎭⎫π6,π2.方法二:因为直线l :y =kx -3恒过定点(0,-3),直线2x +3y -6=0与x 轴,y 轴交点的坐标分别为(3,0),(0,2) .又点(0,-3)与点(3,0)连线的斜率为0+33-0=33,点(0,-3)与点(0,2)连线的斜率不存在,所以要使直线l 与直线2x +3y -6=0的交点位于第一象限,则k >33,所以直线l 的倾斜角的范围是⎝⎛⎭⎫π6,π2.例3.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是 . 【答案】⎝⎛⎭⎫1-22,12.【解析】由⎩⎪⎨⎪⎧x +y =1,y =ax +b 消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝⎛⎭⎫-b a ,0,结合图形知12×a +b a +1×⎝⎛⎭⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b.∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故答案为⎝⎛⎭⎫1-22,12. 例4.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则P A ·PB 的最大值是 . 【答案】5.【解析】因为直线x +my =0与mx -y -m +3=0分别过定点A ,B ,所以A (0,0),B (1,3). 当点P 与点A (或B )重合时,P A ·PB 为零; 当点P 与点A ,B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知此两直线垂直, 所以△APB 为直角三角形,所以AP 2+BP 2=AB 2=10,所以P A ·PB ≤P A 2+PB 22=102=5,当且仅当P A =PB 时,上式等号成立.【考点二】: 圆方程及直线与圆的位置关系例5.圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2),则该圆的标准方程是 . 【答案】(x -1)2+(y +4)2=8.【解析】方法一: 如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =22, 故圆的方程为(x -1)2+(y +4)2=8.方法二:设所求方程为(x -x 0)2+(y -y 0)2=r 2,根据已知条件得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=--+--=r y x r y x x y 2|1|)2()3(4002202000,解得⎪⎩⎪⎨⎧=-==224100r y x ,因此所求圆的方程为(x -1)2+(y +4)2=8.例6.已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为________. 【答案】6【解析】如图所示,则圆心C 的坐标为(3,4),半径r =1,且AB =2m .因为∠APB =90°,连接OP ,易知OP =12AB =m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为OC =32+42=5, 所以OP max =OC +r =6, 即m 的最大值为6.例7.在平面直角坐标系xOy 中,(2,0)A ,O 是坐标原点,若在直线0x y m ++=上总存在点P,使得PA ,则实数m 的取值范围是 .【答案】11m +≤.【解析】设P (x ,y ),由PA =得,化简得22(1)3x y ++=,所以点P 是直线0x y m ++=与圆22(1)3x y ++=,的公共点,即直线与圆,解得11m -≤.例8.已知圆C :22(1)5x y +-=,A 为圆C 与x 负半轴的交点,过点A 作圆的弦AB ,记线段AB 的中点为M .若OA OM =,则直线AB 的斜率 . 【答案】2k =.【解析】设直线AB :(2)y k x =+. 因为CM AB ⊥,直线CM :11y x k=-+. 将它与直线AB 的方程联立得222(12)2(,)11k k k kM k k -+++.因为2OA OM ==2=,2k =±. 当2k =-不符合,故2k =.例9.已知直线3y ax =+与圆22280x y x ++-=相交于,A B 两点,点00(,)P x y 在直线2y x =上,且PB PA =,则0x 的取值范围为 .【答案】(1,0)(0,2)-.【解析】先从第一个条件出发,确定参数a 的取值范围.因为P 在线段AB 的中垂线上,从而用a 的代数式表示直线PC 的斜率后得到00211x x a=-+, 3,04a a <->解得:0x 的取值范围为(1,0)(0,2)-.例10.设P 为直线3x +4y +3=0上的动点,过点P 作圆C :x 2+y 2-2x -2y +1=0的两条切线,切点分别为A ,B ,则四边形P ACB 的面积的最小值为________. 【答案】3.【解析】圆C :(x -1)2+(y -1)2=1的圆心是点C (1,1),半径是1, 易知PC 的最小值等于圆心C (1,1)到直线3x +4y +3=0的距离,即105=2,而四边形P ACB 的面积等于2S △P AC =2×(12P A ·AC )=P A ·AC =P A =PC 2-1=22-1=3,因此四边形P ACB 的面积的最小值是3.例11.在平面直角坐标系xOy 中,已知圆()41:22=-+y x C .若等边PAB ∆的一边AB为圆C 一条弦,则PC 的最大值为 . 【答案】4.【解析】由PAB ∆为等腰三角形,PAB ∆为等边三角形,故PC 与AB 垂直,设PC 与AB 交于点H ,记,,AH BH x PH y PC t ====,则CH =,满足()224,0x y x y t y ⎧+=>⎪⎨=+⎪⎩求PC的最小值.记直线:l y t =+,利用线性规划作图,可知当直线l 与圆弧()224,0x y x y +=>相切时,则t 取最大值,求得max 4t =,即PC 的最大值为4.例12.已知圆C 的方程为22(1)(1)9x y -+-=,直线:3l y kx =+与圆C 交于,A B 两点,M 为弦AB 上一动点,以M 为圆心,2为半径的圆与圆C 总有公共点,则实数k 的范围________. 【答案】k ≥34-. 【解析】因为5MC <,只要MC ≥1对于任意的点M 恒成立, 只需点位于的中点时存在公共点即可. 点(1,1)到直线的距离d =≥1,解得:k ≥34-. 【考点三】: 圆锥曲线方程与性质例13.若椭圆2215x y m+=的离心率e =,则m 的值是________.【答案】3或253. 【解析】当焦点在x轴上时,e ==3m =; 当焦点在y轴上时,e ==253m =. 例14.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上的一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为________. 【答案】34.【解析】∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== .例15.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若AB =10,BF =8,cos ∠ABF =45,则C 的离心率为________.【答案】35.【解析】如图,设AF =x ,则cos ∠ABF =82+102-x 22×8×10=45. 解得x =6,∴∠AFB =90°,由椭圆及直线关于原点对称可知AF 1=8,∠F AF 1=∠F AB +∠FBA =90°,△F AF 1是直角三角形,所以F 1F =10,故2a =8+6=14,2c =10,∴c a =57.例16.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为 . 【答案】6.【解析】由题意,F (-1,0),设点P 00(,)x y ,则有2200143x y +=,解得22003(1)4x y =-, 因为00(1,)FP x y =+,00(,)OP x y =,所以2000(1)OP FP x x y ⋅=++=00(1)OP FP x x ⋅=++203(1)4x -=20034x x ++,此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,所以当02x =时,OP FP ⋅取得最大值222364++=.例17.设P 是有公共焦点F 1,F 2的椭圆C 1与双曲线C 2的一个交点,且PF 1⊥PF 2,椭圆C 1的离心率为e 1,双曲线C 2的离心率为e 2.若e 2=3e 1,则e 1=________.【答案】53. 【解析】设椭圆C 1的长半轴长为a 1,短半轴长为b 1,双曲线C 2的实半轴长为a 2,虚半轴长为b 2.∵ PF 1⊥PF 2,根据椭圆的性质可得S △PF 1F 2=b 21,又e 1=c a 1,∴ a 1=c e 1,∴ b 21=a 21-c 2=c 2⎝⎛⎭⎫1e 21-1.根据双曲线的性质可得S △PF 1F 2=b 22,∵ e 2=c a 2,a 2=c e 22,∴ b 22=c 2-a 22=c 2⎝⎛⎭⎫1-1e 22,∴ c 2⎝⎛⎭⎫1e 21-1=c 2⎝⎛⎭⎫1-1e 22,即1e 21+1e 22=2.∵ 3e 1=e 2,∴ e 1=53. 例18.已知直线:20l x y m -+=上存在点M 满足与两点(2,0)A -,(2,0)B 连线的斜率34MA MB K K =-,则实数m 的值是___________.【答案】[]4,4-.【解析】点M 的轨迹为221(2)43x y x +=≠. 把直线:2l x y m =-代入椭圆方程得,221612(312)0y my m -+-=. 根据条件,上面方程有非零解,得△≥0,解得-4≤m ≤4.例19.已知椭圆2222:1(0)x y C a b a b+=>>.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为 .【答案】152022=+y x . 【解析】因为椭圆的离心率为23, 所以23==a c e ,2243a c =,222243b a ac -==,所以2241a b =,即224b a =. 双曲线的渐近线为x y ±=,代入椭圆得12222=+bx a x ,即1454222222==+b x b x b x . 所以b x b x 52,5422±==,2254b y =,b y 52±=, 则第一象限的交点坐标为)52,52(b b .四边形的面积为16516525242==⨯⨯b b b ,故52=b .因此,椭圆方程为152022=+y x . 例20.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为12F F ,,以12F F 为直径的圆与双曲线在第一象限的交点为P .若1230PF F ∠=︒,则该双曲线的离心率为 .1.【解析】由双曲线定义易得,12122,PF PF a PF -==,1212212F F ce a PF PF ===-. 例21.已知圆O :224x y +=与x 轴负半轴的交点为A ,点P 在直线l0y a +-=上,过点P 作圆O 的切线,切点为T .(1)若a =8,切点1)T -,求直线AP 的方程; (2)若P A =2PT ,求实数a 的取值范围.【解析】由题意,直线PT 切于点T ,则OT ⊥PT ,又切点T 的坐标为(4,3)-,所以OT k =,1PT OT k k =-=,故直线PT的方程为1y x +-40y --=. 联立直线l 和PT,40,80,y y --=+-=解得2,x y ⎧=⎪⎨=⎪⎩即2)P ,所以直线AP的斜率为k ===,故直线AP的方程为2)y x =+,即1)21)0x y -+=,即1)20x y -+=.(2)设(,)Pxy ,由P A =2PT ,可得2222(2)4(4)x y x y ++=+-,即22334200x y x ++-=,即满足P A =2PT 的点P 的轨迹是一个圆22264()39x y -+=,所以问题可转化为直线0y a +-=与圆22264()39x y -+=有公共点,所以83d =,即16|3a -≤a . 例22.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0. (1)求证:对m ∈R ,直线l 与圆C 总有两个交点;(2)设直线l 与圆C 交于点A ,B ,若AB =17,求直线l 的倾斜角;(3)设直线l 与圆C 交于A ,B ,若定点P (1,1)满足2AP →=PB →,求此时直线l 的方程. 【解析】(1)证明 直线l 恒过定点P (1,1),由12+(1-1)2<5知点P 在圆C 内, 所以直线l 与圆C 总有两个交点.(2)圆心到直线的距离d =222⎪⎭⎫ ⎝⎛-AB r =32,又d =|0-1+1-m |m 2+1,所以32=|0-1+1-m |m 2+1,解得m =±3,所以,l 的倾斜角为π3或2π3.(3)方法一:设A (x 1,y 1),B (x 2,y 2).由2AP →=PB →得:2(1-x 1,1-y 1)=(x 2-1,y 2-1), 所以x 2+2x 1=3,①直线l 的斜率存在,设其方程为y -1=k (x -1),⎩⎨⎧=-+-=-5)1()1(122y x x k y ⇒(k 2+1)x 2-2k 2x +k 2-5=0, 所以⎪⎪⎩⎪⎪⎨⎧+-=+=+③②,15,1222212221k k x x k k x x由①②③消去x 1,x 2解得k =±1,故所求直线l 的方程为x -y =0或x +y -2=0.方法二:如图,过点C 作CD ⊥AB 于D ,设AP =t ,则PB =2t ,AD =1.5t ,PD =0.5t .在Rt △CDP 中,有CP 2=CD 2+PD 2,得CD 2=1-(0.5t )2,在Rt △CDA 中,CD 2=5-()1.5t 2,所以t =2, 从而,CD =22,又直线AB 的方程为mx -y +1-m =0,d =|m |m 2+1=22, 解得m =±1,故所求直线l 的方程为x -y =0或x +y -2=0.例23.如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点(在x 轴上方),连结PF 1并延长交椭圆于另一点Q ,设PF 1→=λF 1Q →.(1) 若点P 的坐标为⎝⎛⎭⎫1,32,且△PQF 2的周长为8,求椭圆C 的方程; (2) 若PF 2垂直于x 轴,且椭圆C 的离心率e ∈⎣⎡⎦⎤12,22,求实数λ的取值范围.【解析】 (1) 因为F 1,F 2为椭圆C 的两焦点,且P ,Q 为椭圆上的点,所以PF 1+PF 2=QF 1+QF 2=2a , 从而△PQF 2的周长为4a .由题意,得4a =8,解得a =2.因为点P 的坐标为⎝⎛⎭⎫1,32, 所以1a 2+94b2=1,解得b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2) (法1)因为PF 2⊥x 轴,且P 在x 轴上方,故设P (c ,y 0),y 0>0.设Q (x 1,y 1). 因为P 在椭圆上,所以c 2a 2+y 20b 2=1,解得y 0=b 2a ,即P ⎝⎛⎭⎫c ,b 2a .因为F 1(-c ,0),所以PF 1→=⎝⎛⎭⎫-2c ,-b 2a ,F 1Q →=(x 1+c ,y 1).由PF 1→=λF 1Q →,得-2c =λ(x 1+c ),-b 2a=λy 1,解得x 1=-λ+2λc ,y 1=-b2λa ,所以Q ⎝⎛⎭⎪⎫-λ+2λc ,-b 2λa .因为点Q 在椭圆上,所以⎝⎛⎭⎫λ+2λ2e 2+b2λ2a2=1,即(λ+2)2e 2+(1-e 2)=λ2,(λ2+4λ+3)e 2=λ2-1.因为λ+1≠0,所以(λ+3)e 2=λ-1,从而λ=3e 2+11-e 2=41-e 2-3. 因为e ∈⎣⎡⎦⎤12,22,所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围是⎣⎡⎦⎤73,5.(法2)因为PF 2⊥x 轴,且P 在x 轴上方, 故设P (c ,y 0),y 0>0.因为P 在椭圆上,所以c 2a 2+y 20b 2=1,解得y 0=b 2a,即P ⎝⎛⎭⎫c ,b 2a . 因为F 1(-c ,0),故直线PF 1的方程为y =b 22ac(x +c ).由⎩⎨⎧y =b22ac(x +c ),x 2a 2+y2b 2=1,得(4c 2+b 2)x 2+2b 2cx +c 2(b 2-4a 2)=0.因为直线PF 1与椭圆有一个交点为P ⎝⎛⎭⎫c ,b 2a ,设Q (x 1,y 1),则x 1+c =-2b 2c 4c 2+b 2,即-c -x 1=2b 2c4c 2+b 2.因为PF 1→=λF 1Q →所以λ=2c -c -x 1=4c 2+b 2b 2=3c 2+a 2a 2-c 2=3e 2+11-e 2=41-e 2-3. 因为e ∈⎣⎡⎦⎤12,22,所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围是⎣⎡⎦⎤73,5.例24.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P (1,32),离心率e =12,直线l 的方程为x=4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记P A ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.【解析】(1)由P ⎝⎛⎭⎫1,32在椭圆上得,1a 2+94b 2=1.① 依题设知a =2c ,则b 2=3c 2.② ②代入①解得c 2=1,a 2=4,b 2=3. 故椭圆C 的方程为x 24+y 23=1.(2)法一:由题意可设直线AB 的斜率为k , 则直线AB 的方程为y =k (x -1).③代入椭圆方程3x 2+4y 2=12并整理,得(4k 2+3)x 2-8k 2x +4(k 2-3)=0. 设A (x 1,y 1),B (x 2,y 2),则有 x 1+x 2=8k 24k 2+3,x 1x 2=4(k 2-3)4k 2+3.④在方程③中令x =4得,M 的坐标为(4,3k ). 从而k 1=y 1-32x 1-1,k 2=y 2-32x 2-1,k 3=3k -324-1=k -12.由于A ,F ,B 三点共线,则有k =k AF =k BF ,即有y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=y 1x 1-1+y 2x 2-1-32⎝⎛⎭⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-(x 1+x 2)+1.⑤④代入⑤得k 1+k 2=2k -32·8k 24k 2+3-24(k 2-3)4k 2+3-8k 24k 2+3+1=2k -1,又k 3=k -12,所以k 1+k 2=2k 3.故存在常数λ=2符合题意.法二:设B (x 0,y 0)(x 0≠1),则直线FB 的方程为y =y 0x 0-1(x -1),令x =4,求得M ⎝⎛⎭⎫4,3y 0x 0-1,从而直线PM 的斜率为k 3=2y 0-x 0+12(x 0-1),联立⎩⎨⎧y =y 0x 0-1(x -1),x 24+y23=1,得A ⎝⎛⎭⎪⎫5x 0-82x 0-5,3y 02x 0-5,则直线P A 的斜率为k 1=2y 0-2x 0+52(x 0-1),直线PB 的斜率为k 2=2y 0-32(x 0-1),所以k 1+k 2=2y 0-2x 0+52(x 0-1)+2y 0-32(x 0-1)=2y 0-x 0+1x 0-1=2k 3,故存在常数λ=2符合题意.例25.如图6,已知椭圆22:1124x y C +=,点B 是其下顶点,过点B 的直线交椭圆C 于另一点A (A 点在x 轴下方),且线段AB 的中点E 在直线y x =上. (1)求直线AB 的方程;(2)若点P 为椭圆C 上异于,A B 的动点,且直线,AP BP 分别交直线y x =于点,M N ,证明:OM ON ⋅为定值.【解析】(1)设点E (m ,m ),由B (0,-2)得A (2m ,2m +2). 代入椭圆方程得224(22)1124m m ++=,即22(1)13m m ++=, 解得32m =-或0m =(舍). 所以A (3-,1-).故直线AB 的方程为360x y ++=.(2)设00(,)P x y ,则22001124x y +=,即220043x y =-. 设),(M M y x M ,由M P A ,,三点共线, ∴)3)(1()1)(3(00++=++M M x y y x . 又点M 在直线x y =上,图6解得M 点的横坐标000032M y x x x y -=-+.设),(N N y x N ,由N P B ,,三点共线, ∴00(2)(2)N N x y y x +=+.点N 在直线y x =上,解得N 点的横坐标00022N x x x y -=--.所以OM ON ⋅0|0|M N x x --=2||||M N x x ⋅=200003||2y x x y --+0002||2x x y -⋅--=2000200262||()4x x y x y ---=2000220000262||23x x y x x x y ---=2000200032||3x x y x x y --=6. 例26.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 已知直线l 交椭圆C 于A ,B 两点.① 若直线l 经过椭圆C 的左焦点F ,交y 轴于点P ,且满足P A →=λAF →,PB →=μBF →.求证:λ+μ为定值;② 若OA ⊥OB (O 为原点),求△AOB 面积的取值范围.【解析】(1)由题设知c =1,a 2c=2,a 2=2c ,∴ a 2=2,b 2=a 2-c 2=1,∴ 椭圆C :x 22+y 2=1.(2) ① 证明:由题设知直线l 的斜率存在,设直线l 的方程为y =k (x +1),则P (0,k ).设A (x 1,y 1),B (x 2,y 2),直线l 方程代入椭圆方程,得x 2+2k 2(x +1)2=2,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0,∴ x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.由P A →=λAF →,PB →=μBF →知,λ=-x 11+x 1,μ=-x 21+x 2,∴ λ+μ=-x 1+x 2+2x 1x 21+x 1+x 2+x 1x 2=--4k 21+2k 2+4k 2-41+2k 21+-4k 21+2k 2+2k 2-21+2k2=--4-1=-4(定值). ②当直线OA ,OB 分别与坐标轴重合时,易知△AOB 的面积S =22.当直线OA ,OB 的斜率均存在且不为零时,设OA :y =kx ,OB :y =-1kx .设A (x 1,y 1),B (x 2,y 2),将y =kx 代入椭圆C 方程,得x 2+2k 2x 2=2,∴ x 21=22k 2+1,y 21=2k 22k 2+1,同理可得x 22=2k 22+k 2,y 22=22+k 2, △AOB 的面积S =OA ·OB 2=(k 2+1)2(2k 2+1)(k 2+2).令t =k 2+1∈[1,+∞),则S =t 2(2t -1)(t +1)=12+1t -1t2;令u =1t∈(0,1),则S =1-u 2+u +2=1-⎝⎛⎭⎫u -122+94∈⎣⎡⎭⎫23,22. 综上所述,S ∈⎣⎡⎦⎤23,22,即△AOB 面积的取值范围是⎣⎡⎦⎤23,22.三.课本改编题1.课本原题(必修2第112页习题2.2第12题):已知点(,)M x y 与两个定点(0,0),(3,0)O A 的距离之比为12,那么点M 的坐标应满足什么关系?画出满足条件的点M 所构成的曲线.改编1:(2008高考江苏卷第13题)满足条件2,AB AC ==的三角形ABC 的面积的最大值为 .改编2:(2013高考江苏卷第18题)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y=2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.[说明]:利用阿波罗尼斯圆进行命题的经典考题很多,最著名的当属高考中出现的这两题.课本上虽未出现阿波罗尼斯圆的字眼,但是必修2教材上的这道习题已经体现了这类问题的本质.如果我们平时能钻研教材,对这道习题有所研究,那么我们的数学意识就会有所增强,再碰到此类问题时就会得心应手.2.课本原题(1)(选修2-1第42页习题第5题)在ABC D 中,(6,0),(6,0)B C -,直线AB 、AC 的斜率乘积为94,求顶点A 的轨迹.原题(2)(选修2-2第105页复习题第14题):已知椭圆具有如下性质:设M 、N 是椭圆22221(0)x y a b a b+=>>上关于原点对称的两点,点P 是椭圆上的任意一点.若直线PM 、PN 的斜率都存在并分别记为,PM PN k k ,则P M P N k k ×是与点P 的位置无关的定值.试类比椭圆,写出双曲线22221(0,0)x y a b a b-=>>的一个类似性质,并加以证明.改编1:(2012年南通市高三数学第二次模拟考试第13题)在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,B 、C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一交点为D .若cos ∠F 1BF 2=725,则直线CD 的斜率为____.改编2:(2013苏北四市期末18题第2、3问)如图,在平面直角坐标系xOy 中,椭圆E的方程为22143x y +=.若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆 上异于A ,B 的任意一点,直线AP 交l 于点.M(1)设直线OM 的斜率为,1k 直线BP 的斜率为2k ,求证:21k k 为定值;(2)设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.改编3:(2011年高考江苏卷第18题)如图,在平面直角坐标系xOy中,M、N分别是椭圆22142x y+=的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线P A的斜率为k.(1)当直线P A平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:P A⊥PB.[说明]原题是推理与证明中的复习题,教学中可以把握教材前后的联系,在椭圆的学习中就可以对该结论进行探究.利用该结论进行命题的经典考题非常多,以上几例利用这个结论会大大降低运算的难度.平时我们要多留意课本上的常见结论,加强知识储备,这对提高我们的解题能力大有帮助.3.课本原题(必修2 P88思考运用13):已知直线l 过点(2,3),与两坐标轴在第一象限围成的三角形面积为16,求该直线l 的方程改编1:过点(-5,-4)且与两坐标轴围成的三角形面积为5的直线方程是 . [解析]设所求直线方程为)5(4+=+x k y .依题意有5)45)(54(21=--k k. ∴01630252=+-k k (无解)或01650252=+-k k ,解得52=k ,或58=k . ∴直线的方程是01052=--y x ,或02058=+-y x .改编2:(2006年上海春季卷)已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,则△OAB 面积的最小值为 . [解析]设直线AB 的方程为)0()2(1<-=-k x k y ,则1111111(2)(12)44[4(4)()][442222OAB S k k k k k k ∆=--=--=+-+-+=≥,当且仅当k k 14-=-即21-=k 时取等号, ∴当21-=k 时,OAB S ∆有最小值4. 改编3:已知射线)0(4:>=x x y l 和点)4,6(M ,在射线l 上求一点N ,使直线MN 与l 及x 轴围成的三角形面积S 最小. [解析]设)1)(4,(000>x x x N ,则直线MN 的方程为0)4)(6()6)(44(00=-----y x x x .令0=y 得1500-=x x x , ∴]211)1[(101]1)1[(101104)15(2100020020000+-+-=-+-=-=⋅-=x x x x x x x x x S2]40=≥, 当且仅当11100-=-x x 即20=x 时取等号. ∴当N 为(2,8)时,三角形面积S 最小.[说明]原题的本质是建立三角形的面积与斜率之间的方程关系,通过解方程求出未知量,而变体题则是建立这两者之间的函数关系,利用求函数最值的知识解决问题。
高三数学总复习专题10 解析几何(答案及解析)
![高三数学总复习专题10 解析几何(答案及解析)](https://img.taocdn.com/s3/m/b1ea9b05df80d4d8d15abe23482fb4daa58d1d90.png)
高三数学总复习专题10 解析几何方法点拨1.圆锥曲线中的最值 (1)椭圆中的最值12,F F 为椭圆()222210+=>>x y a b a b的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有: ①[],∈OP b a ; ②[]1,∈-+PF a c a c ;③2212,⎡⎤⋅∈⎣⎦PF PF b a ;④1212∠≤∠F PF F BF . (2)双曲线中的最值12,F F 为双曲线()222210,0-=>>x y a b a b的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有:①≥OP a ;②1≥-PF c a . (3)抛物线中的最值点P 为抛物线()220=>y px p 上的任一点,F 为焦点,则有: ①2≥pPF ;②(),A m n 为一定点,则+PA PF 有最小值. 2.定点、定值问题(1)由直线方程确定定点,若得到了直线方程的点斜式:()00-=-y y k x x ,则直线必过定点()00,x y ;若得到了直线方程的斜截式:=+y kx m ,则直线必过定点()0,m . (2)解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值. 3.圆锥曲线中范围、最值的求解策略(1)数形结合法:利用待求量的几何意义,确定出临界位置后数形结合求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. 4.定点问题的l 过定点问题的解法:设动直线方程(斜率存在)为=+y kx t 由题设条件将t 用k 表示为=t mk ,得()=+y k x m ,故动直线过定点(),0-m .(2)动曲线C 过定点问题的解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.(3)从特殊位置入手,找出定点,再证明该点符合题意. 5.求解定值问题的两大途径(1)首先由特例得出一个值(此值一般就是定值)然后证明定值:即将问题转化为证明待证式与参数(某些变量)无关.(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值. 6.解决探索创新问题的策略存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.经典试题汇编一、选择题.1.(陕西省渭南市临渭区2021届高三一模)若直线:3=-l y kx 与直线2360+-=x y 的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A .ππ,43⎡⎫⎪⎢⎣⎭B .ππ,32⎡⎫⎪⎢⎣⎭C .ππ,42⎛⎫⎪⎝⎭ D .ππ,32⎛⎫⎪⎝⎭2.(安徽省淮北市2020-2021学年高三一模)过圆2216+=x y 上的动点作圆22:4+=C x y 的两条切线,两个切点之间的线段称为切点弦,则圆C 内不在任何切点弦上的点形成的区域的面积为( ) A .πB .32πC .2πD .3π3.(山西省大同市天镇县实验中学2021-2022学年高三一模)圆222440+-+-=x y x y 与直线2140()---=∈R tx y t t 的位置关系为( ) A .相离B .相切C .相交D .以上都有可能4.(吉林省长春市2022届高三一模)已知圆22:(2)(3)2-+-=C x y ,直线l 过点(3,4)A 且与圆C 相切,若直线l 与两坐标轴交点分别为,M N ,则MN =( )A .B .6C .D .85.(河南省联考2021-2022学年高三一模)若点()2,1--P 为圆229+=x y 的弦AB 的中点,则弦AB 所在直线的方程为( )A .250++=x yB .250+-=x yC .250-+=x yD .250--=x y6.(四川省南充市2021-2022学年高三一模)若A ,B 是O :224+=x y 上两个动点,且2⋅=-OA OB ,A ,B 到直线l 40+-=y 的距离分别为1d ,2d ,则12+d d 的最大值是( ) A .3B .4C .5D .67.(湖南省长沙市雅礼中学2021届高三一模)过双曲线2214-=y x 的左焦点1F 作一条直线l 交双曲线左支于P ,Q 两点,若4=PQ ,2F 是双曲线的右焦点,则2△PF Q 的周长是( ) A .6B .8C .10D .128.(四川省成都市2020-2021学年高三一模)已知抛物线24=x y 的焦点为F ,过F的直线l 与抛物线相交于A ,B 两点,70,2⎛⎫⎪⎝-⎭P .若⊥PB AB ,则=AF ( )A .32B .2C .52D .39.(湖南省湘潭市2021-2022学年高三上学期一模)已知抛物2:2C y px =(0>p )的焦点为F ,点T 在C 上,且52=FT ,若点M 的坐标为()0,1,且⊥MF MT ,则C 的方程为( ) A .22=y x 或28=y x B .2=y x 或28=y x C .22=y x 或24=y xD .2=y x 或24=y x10.(河南省联考2021-2022学年高三一模)点F 为抛物线22=y px ()0>p 的焦点,l 为其准线,过F 的一条直线与抛物线交于A ,B 两点,与l 交于点C .已知点B 在线段CF 上,若BF ,AF ,BC 按照某种排序可以组成一个等差数列,则AFBF的值为( ) A .32或3B .2或4C .32或4D .2或311.(贵州省遵义市2021届高三一模)双曲线221927-=x y 上一点P 到右焦点2F 距离为6,1F 为左焦点,则12∠F PF 的角平分线与x 轴交点坐标为( )A .()1,0-B .()0,0C .()1,0D .()2,012.(吉林省长春市2022届高三一模)已知P 是抛物线24=y x 上的一动点,F 是抛物线的焦点,点(3,1)A ,则||||+PA PF 的最小值为( )A .3B .C .4D .13.(多选)(湖南省湘潭市2021-2022学年高三一模)已知双曲线2222:1-=x y C a b(0>a ,0>b )的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若=a b ,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12△PF F 的内切圆圆心的横坐标=x aD .若M 为直线2=a x c(=c 0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 14.(江西省赣州市2021届高三3月一模)已知M 、N 是双曲线()2222:10,0-=>>x y C a b a b上关于原点对称的两点,P 是C 上异于M 、N 的动点,设直线PM 、PN 的斜率分别为1k 、2k .若直线12=y x 与曲线C 没有公共点,当双曲线C 的离心率取得最大值时,且123≤≤k ,则2k 的取值范围是( ) A .11,128⎡⎤⎢⎥⎣⎦B .11,812⎡⎤--⎢⎥⎣⎦ C .11,32⎡⎤⎢⎥⎣⎦D .11,23⎡⎤--⎢⎥⎣⎦15.(四川省成都市2021-2022学年高三一模)已知双曲线()222210,0-=>>x y a b a b的一条渐近线方程为=y ,则该双曲线的离心率为( )A B C .2D .316.(四川省成都市2020-2021学年高三一模)已知平行于x 轴的一条直线与双曲线()222210,0-=>>x y a b a b 相交于P ,Q 两点,4=PQ a ,π3∠=PQO (O 为坐标原点),则该双曲线的离心率为( )A B C D17.(甘肃省嘉谷关市第一中学2020-2021学年高三一模)已知双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点F ,过点F 作一条渐近线的垂线,垂足为M ,若三角形OMF 的面积为2,则双曲线的离心率为( )AB .16C D .4或4318.(四川省乐山市高中2022届一模)已知双曲线()222210,0-=>>x y a b a b,过原点的直线与双曲线交于A ,B 两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若ABF 的面积为22a ,则双曲线的离心率为( )AB C D .219.(四川省达州市2021-2022学年高三一模)双曲线()222210,0-=>>x y a b a b的左顶点为A ,右焦点(),0F c ,若直线=x c 与该双曲线交于B 、C 两点,ABC 为等腰直角三角形,则该双曲线离心率为( )A .2BCD .320.(陕西省汉中市2022届高三一模)已知F 是椭圆2222:1(0)+=>>x y C a b a b 的右焦点,点P 在椭圆C 上,线段PF 与圆22239⎛⎫-+= ⎪⎝⎭c b x y 相切于点Q ,且2=PQ QF ,则椭圆C 的离心率等于( )A B .23C .2D .1221.(广西柳州市2022届高三一模)已知1F ,2F 分别为双曲线C :22221-=x y a b()0,0>>a b 的左,右焦点,以12F F 为直径的圆与双曲线C 的右支在第一象限交于A 点,直线2AF 与双曲线C 的右支交于B 点,点2F 恰好为线段AB 的三等分点(靠近点A ),则双曲线C 的离心率等于( )A B C .3D .12+ 二、填空题.22.(贵州省遵义市2021届高三一模)直线1=-+y kx k 与圆224+=x y 交于,A B 两点,则AB 最小值为________.23.(湖南省长沙市雅礼中学2021届高三一模)若抛物线22=y px 上一点()02,P y 到其准线的距离为4,则抛物线的标准方程为___________.24.(四川省成都市第七中学2021-2022学年高三一模)已知12,F F 为双曲线22:1169-=x y C 的两个焦点,,P Q 为C 上关于坐标原点对称的两点,且12=PQ F F ,则四边形12PF QF 的面积为________.25.(四川省达州市2021-2022学年高三一模)设直线()y kx k =∈R 交椭圆221164+=x y 于A ,B 两点,将x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角,则AB 的取值范围是___________.26.(四川省成都市2021-2022学年高三一模)已知斜率为13-且不经过坐标原点O的直线与椭圆22+197x y =相交于A ,B 两点,M 为线段AB 的中点,则直线OM 的斜率为________. 三、解答题.27.(四川省成都市第七中学2021-2022学年高三一模)已知两圆221:(2)54C x y -+=,222:(2)6C x y ++=,动圆M 在圆1C 内部且和圆1C 内切,和圆2C 外切.(1)求动圆圆心M 的轨迹C 的方程;(2)过点()3,0A 的直线与曲线C 交于,P Q 两点,P 关于x 轴的对称点为R ,求ARQ 面积的最大值.28.(四川省成都市2020-2021学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,且直线1+=x ya b与圆222+=x y 相切. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且O 点在以AB 为直径的圆上.记AOM ,△BOP的面积分别为1S ,2S ,求12S S 的取值范围. 29.(陕西省汉中市2022届高三一模)已知椭圆2222:1(0)+=>>x y C a b a b 的离心率为12,左、右焦点分别为12,F F ,O 为坐标原点,点P 在椭圆C 上,且满足2122,3π=∠=PF F PF .(1)求椭圆C 的方程;(2)已知过点(1,0)且不与坐标轴垂直的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点Q ,使得∠=∠MQO NQO ,若存在,求出点Q 的坐标;若不存在,说明理由.30.(四川省南充市2021-2022学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,椭圆C 的下顶点和上顶点分别为1B ,2B ,且122=B B ,过点()0,2P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程; (2)当1=k 时,求OMN 的面积;(3)求证:直线1B M 与直线2B N 的交点T 的纵坐标为定值.31.(江西省赣州市2021届高三3月一模)设离心率为12的椭圆2222:1(0)+=>>x y E a b a b 的左,右焦点分别为1F ,2F ,点P 在E 上,且满足1260∠=︒F PF ,12△PF F(1)求a ,b 的值;(2)设直线:2(0)=+>l y kx k 与E 交于M ,N 两点,点A 在x轴上,且满足0⋅+⋅=AM MN AN MN ,求点A 横坐标的取值范围.32.(广西柳州市2022届高三一模)已知椭圆C :22221+=x y a b()0>>a b 的左右焦点分别为1F ,2F ,过2F 且与x 轴垂直的直线与椭圆C 交于A ,B 两点,AOB 的面积为﹐点P 为椭圆C 的下顶点,2=PF . (1)求椭圆C 的标准方程;(2)椭圆C 上有两点M ,N (异于椭圆顶点且MN 与x 轴不垂直).当OMN 的面积最大时,直线OM 与ON 的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由. 33.(湖南省湘潭市2021-2022学年高三一模)已知圆锥曲线E 上的点M 的坐标(),x y=.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,点P 为()2,1. ①求直线l 在y 轴上的截距的取值范围; ②求证:∠APB 的平分线总垂直于x 轴.34.(四川省乐山市高中2022届一模)如图,从椭圆22221(0)+=>>x y a b a b上一点P 向x轴作垂线,垂足恰为左焦点1F .又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y轴正半轴的交点,且=OP AB k ,13=F A . (1)求椭圆的方程;(2)直线l 交椭圆于M 、Q 两点,判断是否存在直线l ,使点2F 恰为MQB △的重心?若存在,求出直线l 的方程;若不存在,请说明理由.35.(安徽省淮北市2020-2021学年高三一模)已知椭圆2222:1(0)+=>>x y C a b a b的离心率为12,左顶点为A ,右焦点F ,3=AF .过F 且斜率存在的直线交椭圆于P ,N 两点,P 关于原点的对称点为M . (1)求椭圆C 的方程;(2)设直线AM ,AN 的斜率分别为1k ,2k ,是否存在常数λ,使得12λ=k k 恒成立?若存在,请求出λ的值;若不存在,请说明理由.36.(湖南省长沙市雅礼中学2021届高三一模)已知椭圆()222210:x y a b a bC +=>>,连接椭圆上任意两点的线段叫作椭圆的弦,过椭圆中心的弦叫做椭圆的直径.若椭圆的两直径的斜率之积为22-b a,则称这两直径为椭圆的共轭直径.特别地,若一条直径所在的斜率为0,另一条直径的斜率不存在时,也称这两直径为共轭直径.现已知椭圆22:143x y E +=.(1)已知点31,2⎛⎫ ⎪⎝⎭A ,31,2⎛⎫-- ⎪⎝⎭B 为椭圆E 上两定点,求AB 的共轭直径的端点坐标;(2)过点()作直线l 与椭圆E 交于1A 、1B 两点,直线1A O 与椭圆E 的另一个交点为2A ,直线1B O 与椭圆E 的另一个交点为2B .当11A OB 的面积最大时,直径12A A 与直径12B B 是否共轭,请说明理由;(3)设CD 和MN 为椭圆E 的一对共轭直径,且线段CM 的中点为T .已知点P 满足:λ=OP OT ,若点P 在椭圆E 的外部,求λ的取值范围.参考答案一、选择题. 1CACCADDDADDC 13.【答案】ABD【解析】对于A 中,因为=a b ,所以222=a c ,故C的离心率==ce a所以A 正确; 对于B 中,因为()1,0-F c 到渐近线0-=bx ay的距离为==d b ,所以B 正确;对于C 中,设内切圆与12△PF F 的边1221,,F F F P F P 分别切于点1,,A B C , 设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212-=+--=-PF PF PC CF PB BF CF BF1112=-A F A F ()()22=+--==c x c x x a ,解得=x a ,当点P 在双曲线的左支上时,可得=-x a ,所以12△PF F 的内切圆圆心的横坐标=±x a ,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin =∠AF R AMF ,所以当2sin ∠AMF 最大时,R 最小,因为2<a a c,所以2∠AMF 为锐角,故2sin ∠AMF 最大,只需2tan ∠AMF 最大,由对称性,不妨设2,⎛⎫ ⎪⎝⎭a M t c (0>t ),设直线2=a x c 与x 轴的交点为N ,在直角2△NMF 中,可得222tan ==∠-a c NF NM NMF ct , 在直角△NMA 中,可得2tan =-=∠a a NA A NM NM c t,又由2222tan tan tan tan()1tan tan NMF NMAAMF NMF NMA NMF NMA∠-∠∠=∠-∠=∠⋅+∠222222()1c c a ab c a a a a c ct t a a c t a c c t tc t -==≤+-----⨯-+, 当且仅当()22-=ab c a t c t ,即=t 2tan ∠AMF 取最大值, 由双曲线的对称性可知,当=t 2tan ∠AMF 也取得最大值,所以D 正确,故选ABD . 14.【答案】A【解析】因为直线12=y x 与双曲线()2222:10,0-=>>x y C a b a b 没有公共点,所以双曲线C 的渐近线的斜率12=≤bk a ,而双曲线C的离心率====c e a 当双曲线C 的离心率取最大值时,b a 取得最大值12,即12=b a ,即2=a b ,则双曲线C 的方程为222214-=x y b b,设()11,M x y 、()11,--N x y 、()00,P x y ,则2211222200221414⎧-=⎪⎪⎨⎪-=⎪⎩x y b b x y b b , 两式相减得()()()()10101010224+-+-=x x x x y y y y b b ,即1010101014-+⋅=-+y y y y x x x x , 即1214⋅=k k , 又123≤≤k ,211,128⎡⎤∈⎢⎥⎣⎦k ,故选A . 15.【答案】B【解析】双曲线22221-=x y a b 的渐近线方程为=±by x a,因为渐近线方程为=y ,所以=ba故可得====e B . 16.【答案】D【解析】如图,由题可知,△POQ 是等边三角形,4=PQ a ,()2,∴P a ,将点P 代入双曲线可得22224121-=a a a b ,可得224=b a,∴离心率===c e a D .17.【答案】C【解析】抛物线2=x 的交点坐标为(F ,又双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点,∴双曲线的半焦距=c ,三角形OMF 的面积为2,且=OM a ,=MF b ,∴122=⋅ab ,即4=ab , 有22217+==a b c ,∴1=a 或4=a ,∴双曲线的离心率为=e ,故选C .18.【答案】B【解析】设双曲线的左焦点为'F ,连接'AF ,'BF , 因为以AB 为直径的圆恰好经过双曲线的右焦点(),0F c , 所以⊥AF BF ,圆心为()0,0O ,半径为c , 根据双曲线的对称性可得四边形'AFBF 是矩形,设=AF m ,=BF n ,则222224122⎧⎪-=⎪+=⎨⎪⎪=⎩n m a n m c mn a ,由()2222-=+-n m m n mn ,可得222484-=c a a ,所以223=c a ,所以2223==c e a,所以=e ,故选B .19.【答案】A【解析】联立22222221=⎧⎪⎪-=⎨⎪=+⎪⎩x cxy a b c a b,可得2=±b y a ,则22=b BC a ,易知点B 、C 关于x 轴对称,且F 为线段BC 的中点,则=AB AC ,又因为ABC 为等腰直角三角形,所以2=BC AF ,即()222=+b c a a, 即()222+==-a c a b c a ,所以=-a c a ,可得2=c a , 因此,该双曲线的离心率为2==ce a,故选A . 20.【答案】A【解析】圆22239⎛⎫-+= ⎪⎝⎭c b x y 的圆心为,03⎛⎫ ⎪⎝⎭c A ,半径为3=b r . 设左焦点为1F ,连接1PF ,由于124,33==AF c AF c , 所以12==AF PQAF QF,所以1//AQ PF ,所以12,2==-PF b PF a b , 由于⊥AQ PF ,所以1⊥PF PF , 所以()()()22222224+-==-b a b c a b ,2320,3-==b b a a ,===c e a ,故选A .21.【答案】C【解析】设2=AF x ,则22=BF x ,由双曲线的定义可得1222=+=+AF AF a a x ,12222=+=+BF BF a a x , 因为点A 在以12F F 为直径的圆上,所以190∠=F AB ,所以22211+=AF AB BF ,即()()()2222322++=+a x x a x ,解得23=x a , 在12△AF F 中,1823=+=AF a x a ,223=AF a ,122=F F c , 由2221212+=AF AF F F 可得()22282233⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭a a c ,即22179=a c ,所以双曲线离心率为3===e ,故选C .二、填空题. 22.【答案】【解析】直线1=-+y kx k 过定点过()1,1M , 因为点()1,1M在圆的内部,且OM == 由圆中弦的性质知当直线与OM 垂直时,弦长最短, 此时结合垂径定理可得AB ==故答案为 23.【答案】28=y x【解析】抛物线的准线方程为2=-p x ,点()02,P y 到其准线的距离为22+p , 由题意可得242+=p,解得4=p , 故抛物线的标准方程为28=y x ,故答案为28=y x . 24.【答案】18【解析】由双曲线的对称性以及12=PQ F F 可知,四边形12PF QF 为矩形,所以1222212284100⎧-==⎪⎨+==⎪⎩PF PF a PF PF c ,解得1218=PF PF , 所以四边形12PF QF 的面积为1218=PFPF , 故答案为18.25.【答案】(⎤⎦【解析】设1122(,),(,)A x y B x y ,联立方程组221164=⎧⎪⎨+=⎪⎩y kx x y ,可得22(14)160+-=k x , 可得1212216,014=-+=+x x x x k ,所以221221614==+x x k , 将椭圆x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角, 分别作,⊥⊥BC x AD x 于点,C D ,如图所示, 则2222=++AB BC CD AD ,又由222222222211,====BC y k x AD y k x ,2222212*********64()2()414=-=+-=+-=+CD x x x x x x x x x x k, 所以222222221226414=++=+++AB BC CD AD k x k x k 2222232648(417)78(1)141414+⋅++===⋅++++k k k k k , 因为∈R k ,所以20≥k ,所以2411+≥k ,所以270741<≤+k ,所以2788(1)6414<⋅+≤+k ,即2864<≤AB,所以8<≤AB ,所以AB的取值范围是(⎤⎦,故答案为(⎤⎦.26.【答案】73【解析】设直线AB 的方程为13=-+y x b ,联立2213197⎧=-+⎪⎪⎨⎪+=⎪⎩y x b x y ,得221()3197-++=x b x ,即22869630-+-=x bx b ,由223632(963)0b b ∆=-->,得-<<b 设11(,)A x y ,22(,)B x y ,00(,)M x y ,则120328+==x x b x ,0011373388=-+=-⨯+=b by x b b , 即37(,)88b bM ,则直线OM 的斜率为0073==y k x ,故答案为73.三、解答题.27.【答案】(1)2212420+=x y ;(2.【解析】(1)依题意,圆1C 的圆心()12,0C,半径1=r 圆2C 的圆心()22,0-C,半径2=r设圆M 的半径为r ,则有11=-MC r r ,22=+MC r r ,因此,1212124+=+=>=MC MC r r C C ,于是得点M 的轨迹是以12,C C为焦点,长轴长2=a 此时,焦距24=c ,短半轴长b 有22220=-=b a c ,所以动圆圆心M 的轨迹C 的方程为2212420+=x y .(2)显然直线PQ 不垂直于坐标轴,设直线PQ 的方程为3(0)=+≠x my m ,1122(,),(,)P x y Q x y ,由22356120=+⎧⎨+=⎩x my x y ,消去x 得22(56)30750++-=m x my , 则1226350+=-+m y y m ,1227556=-+y y m , 点P 关于x 轴的对称点11(,)-R x y ,1211|2|||2=⋅⋅-PQRSy x x ,111232=⋅⋅-APRS y x ,如图,显然1x 与2x 在3的两侧,即21-x x 与13-x 同号, 于是得()()()1211121133=-=---=⋅---AQRPQRAPRSSSy x x x y x x x121212275|||75|||3|||||||6565|||==⋅-==⋅==++≤m y x y my my y m m m , 当且仅当65||||=m m ,即=m 时取“=”,因此,当=m 时,max ()=AQR S,所以ARQ 面积的最大值4. 28.【答案】(1)22163+=x y;(2)⎣⎦.【解析】(1)∵椭圆的离心率为2,∴2=c a (c 为半焦距), ∵直线1+=xy ab与圆222+=x y=,又∵222+=c b a ,∴26=a ,23=b ,∴椭圆C 的方程为22163+=x y .(2)∵M 为线段AB 的中点,∴12==AOM BOP OMS S S S OP△△. (ⅰ)当直线l 的斜率不存在时,由⊥OA OB 及椭圆的对称性,不妨设OA 所在直线的方程为=y x ,得22=Ax .则22=Mx ,26=P x,∴123==OM S S OP ; (ⅱ)当直线l 的斜率存在时,设直线():0=+≠l y kx m m ,()11,A x y ,()22,B x y ,由22163=+⎧⎪⎨+=⎪⎩y kx mx y ,消去y ,得()222214260++-=+k x kmx m , ∴()()()2222221682138630k m k m k m ∆=-+-=-+>,即22630-+>k m .∴122421+=-+kmx x k ,21222621-=+m x x k .∵点O 在以AB 为直径的圆上,∴0⋅=OA OB ,即12120+=x x y y , ∴()()221212121210+=++++=x x y y k x x km x x m ,∴()22222264102121-⎛⎫++-+= ⎪++⎝⎭m km k km m k k . 化简,得2222=+m k ,经检验满足0∆>成立, ∴线段AB 的中点222,2121⎛⎫-⎪++⎝⎭km m M k k , 当0=k 时,22=m,此时123==S S ; 当0≠k 时,射线OM 所在的直线方程为12=-y x k, 由2212163⎧=-⎪⎪⎨⎪+=⎪⎩y x k x y ,消去y ,得2221221=+P k x k ,22321=+P y k , ∴==M P OM y OP y ∴12==S S12,33⎛∈ ⎝⎭S S , 综上,12S S的取值范围为⎣⎦.29.【答案】(1)22143+=x y ;(2)存在,()4,0.【解析】(1)在12△PF F 中,1122,2=-=cPF a a ,所以,由余弦定理()224(22)4222=-+--c a a,解得2,==a b ,所以,椭圆方程为22143+=x y .(2)假设存在点(),0Q m 满足条件,设直线l 的方程为()10=+≠x ty t ,设()()1122,,,M x y N x y ,联立()22221,34690143=+⎧⎪++-=⎨+=⎪⎩x ty t y ty x y , 121212221269,,3434--+==+=+++--MQ NQy y t y y y y k K t t x m x m, 又因为∠=∠MQO NQO ,所以0+=MQ NQ K K ,即1212=--y y x m m x , 即()()1211-=-y m x y m x ,将11221,1=+=+x ty x ty 代入化简得()()121212-+=m y y ty y , 即()2261183434---=++t m tt t ,计算得4=m ,所以存在()4,0点使得∠=∠MQO NQO .30.【答案】(1)2212+=x y ;(2)面积不存在;(3)证明见解析.【解析】(1)因为122=B B ,所以22=b ,即1=b ,因为离心率为2,所以2=c a ,设=c m,则=a ,0>m , 又222=-c a b ,即2222=-m m b ,解得1=m 或1-(舍去),所以=a 1=b ,1=c ,所以椭圆的标准方程为2212+=x y .(2)由22122⎧+=⎪⎨⎪=+⎩x y y x ,得()222220++-=x x ,23860++=x x ,284360∆=-⨯⨯<,所以直线与椭圆无交点,故OMN 的面积不存在.(3)由题意知,直线l 的方程为2=+y kx ,设()11,M x y ,()22,N x y ,则22212=+⎧⎪⎨+=⎪⎩y kx x y ,整理得()2221860+++=k x kx ,则()()22122122846120821621Δk k k x x k x x k ⎧=-⨯+>⎪⎪⎪+=-⎨+⎪⎪=⎪+⎩,因为直线和椭圆有两个交点,所以()()22824210k k ∆=-+>,则232>k ,设(),T m n ,因为1B ,T ,M 在同一条直线上,则111111313+++===+y kx n k m x x x , 因为2B ,T ,N 在同一条直线上,则222221111-+-===+y kx n k m x x x , 由于()21212283311213440621⎛⎫⋅- ⎪++-+⎝⎭+⋅=+=+=+k x x n n k k k m m x x k ,所以12=n , 则交点T 恒在一条直线12=y 上,故交点T 的纵坐标为定值12.31.【答案】(1)2=a,=b (2)6⎡⎫-⎪⎢⎪⎣⎭. 【解析】(1)设椭圆短轴的端点为B ,则21sin 2∠=OBF ,所以26π∠=OBF ,123π∠=F BF ,所以点P 即为点B,所以12122=⋅⋅==△PF F S c b bc ,又12=c a ,222=-a b c ,所以2=a,=b(2)设(,0)A m ,()11,M x y ,()22,N x y ,MN 的中点()00,H x y ,由2223412=+⎧⎨+=⎩y kx x y ,得()22431640+++=k x kx , 所以()()222(16)164348410k k k ∆=-+=->, 又0>k ,所以12>k ,所以1221643+=-+kx x k , 所以12028243+==-+x x k x k ,0026243=+=+y kx k ,即2286,4343⎛⎫- ⎪++⎝⎭k H k k , 因为()20⋅+⋅=+⋅=⋅=AM MN AN MN AM AN MN AH MN , 所以⊥AH MN ,所以226143843+=---+k k k mk ,得2223434=-=-++k m k k k , 因为12>k,所以34+≥k k,当且仅当=k =”号,所以⎡⎫∈⎪⎢⎪⎣⎭m , 故点A的横坐标的取值范围是6⎡⎫-⎪⎢⎪⎣⎭. 32.【答案】(1)22184+=x y ;(2)12-,理由见解析.【解析】(1)由题意可得:在2OPF Rt 中,22222+=OP OF PF ,即)222+=b c ,所以=b c ,椭圆C :22221+=x y a b 中,令=x c 可得2422221⎛⎫=-= ⎪⎝⎭c b y b a a,所以2=±b y a ,可得22=b AB a,所以22122=⋅⋅==AOBb bc Sc a a所以2=b c ,因为=b c ,222=+a b c,所以34====b b , 可得24=b ,所以2==c b ,2228=+=a b c ,所以椭圆C 的标准方程为22184+=x y .(2)设直线MN 的方程为=+y kx t ,()11,M x y ,()22,N x y ,由22184=+⎧⎪⎨+=⎪⎩y kx tx y ,可得()222214280+++-=k x ktx t , ()()222216421280k t k t ∆=-+->,即2284<+t k ,122412-+=+ktx x k,21222812-=+t x x k , 所以()()()2212121212=++=+++y y kx t kx t k x x kt x x t()()22222222222228124812121212-+-=-+=++++k t k t k t t k k k k k,12=-=MN x==, 点()0,0O 到直线=+y kx t的距离=d所以OMN的面积为1122⋅==MN d222284212+-+≤=+t k t k, 当且仅当22284=-+t k t 即2224-=t k 时等号成立,2222222122222128128241122828282-+--+⋅==⨯===-+---OM ONy y t k k t k t t k k x x k t t t , 所以当OMN 的面积最大时,直线OM 与ON 的斜率之积是12-.33.【答案】(1)E是以(),)为焦点,长轴长为22163+=x y ;(2)①(3,-;②证明见解析. 【解析】(1)圆锥曲线E是以(),)为焦点,长轴长为的椭圆,其标准方程为22163+=x y .(2)①设直线l :=+y x m ,()11,A x y ,()22,B x y ,由22163⎧+=⎪⎨⎪=+⎩x y y x m ,消去y ,得2234260++-=x mx m , 由题意,有()()22122124432604032603m m mx x m x x ∆⎧=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3-<<m , 所以直线l 在y轴上的截距的取值范围为(3,-.②因为点P 在椭圆上,若直线l 过点P ,即点A (或点B )与P 重合,则l 与E 的另一个交点为25,33⎛⎫--⎪⎝⎭,不合题意,所以点A (或点B )与P 不重合; 若AP 或BP 的斜率不存在,则直线l 过点()2,1-,此时,l 与E 只有一个交点, 所以AP 与BP 的斜率都存在,设直线AP 的斜率为1k ,直线BP 的斜率为2k , 因为A ,B 在轴的右侧,结合图象,可知,要证∠APB 的平分线总垂直于x 轴,只要证120=+k k , 因为11112-=-y k x ,22212-=-y k x ,也即证()()()()122112120--+--=y x y x ,而()()()()()()()()1221122112121212--+--=+--++--y x y x x m x x m x()()()2121241242344344033-⎛⎫=+-+-+=+---+= ⎪⎝⎭m m x x m x x m m m 成立, 故∠APB 的平分线总垂直于x 轴.34.【答案】(1)22143+=x y ;(2)存在,:80--=l y .【解析】(1)由题可知,(,0)A a ,(0,)B b ,2,⎛⎫- ⎪⎝⎭b P c a ,因为=OP AB k,则200--=---b b a c a,解得=b ,故有2223+=⎧⎪=⎨⎪+=⎩a cb bc a ,解得2=a,=b椭圆方程为22143+=x y .(2)法一:假设存在,易知直线l 的斜率存在, 设直线l 的方程为=+y kx m ,()11,M x y ,()22,Q x y ,联立22143=+⎧⎪⎨+=⎪⎩y kx mx y ,得()2223484120+++-=k x kmx m , 则122212283441234⎧+=-⎪⎪+⎨-⎪=⎪+⎩km x x k m x x k , 因为2F 为MQB △的重心,则121201303++⎧=⎪⎪⎨++⎪=⎪⎩x x y y,解得12123+=⎧⎪⎨+=⎪⎩x x y y则122128334⎧+=-=⎪+⎨⎪+++=⎩km x x k kx m kx m,化简得228334634⎧=-⎪⎪+⎨⎪=⎪+⎩km k m k,解得⎧=⎪⎪⎨⎪=⎪⎩k m ,所以直线:80--=l y .法二:设()11,M x y ,()22,Q x y ,因为2F 为MQB △的重心,则120130++⎧=⎪⎪=x x,解得12123+=⎧⎪⎨+=⎪⎩x x y y设MQ 的中点R,则3,2⎛ ⎝⎭R , 因为M ,Q 在椭圆22143+=x y 上,则22112222143143⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减得34⋅=-MQ OR k k,即=MQ k所以直线:80--=l y .35.【答案】(1)22143+=x y ,(2)3λ=.【解析】(1)因为离心率为12,所以12==c e a , 又3=AF ,所以3+=a c ,解得2=a ,1=c , 又222=-c a b ,所以23=b ,所以椭圆方程为22143+=x y .(2)由(1)知()1,0F ,()2,0-A ,设直线PN 的方程为1=+x my ,()11,P x y ,()22,N x y , 因为M 与P 关于原点对称,所以()11,--M x y , 所以1112=-y x k ,2222=+yk x , 若存在λ,使得12λ=k k 恒成立,所以121222λ=-+y yx x , 所以()()122122λ+=-y x y x ,两边同乘1y 得()()21221122λ+=-y x y y x ,又因为()11,P x y 在椭圆上,所以2211143+=x y ,所以()()2112113223144-+⎛⎫=-= ⎪⎝⎭x x x y ,所以()()()()112211322224λ-++=-x x x y y x ,当12≠x 时,则()()12213224λ-++=x x y y , 所以()21212136124λ--+-=x x x x y y ①; 当12=x 时,M 与A 重合,联立方程221143=+⎧⎪⎨+=⎪⎩x my x y ,消元得()2234690++-=m y my ,所以212212934634-⎧=⎪⎪+⎨-⎪+=⎪+⎩y y m m y y m ,所以()212128234+=++=+x x m y y m ,()222121212412134-=+++=+m x x m y y m y y m ,代入①得22221236489124343434λ-+--+-=+++m m m m , 整理得10836λ-=-,解得3λ=. 36.【答案】(1)2-⎭和2⎛ ⎝⎭;(2)直径12A A 与直径12B B 共轭,理由见解析;(3)λ>λ< 【解析】(1)由题设知32=AB k ,设所求直线方程为=y kx ,则34⋅=-AB k k ,则12=-k , 故共轭直径所在直线方程为12=-y x .联立椭圆与12=-y x ,即2212143⎧=-⎪⎪⎨⎪+=⎪⎩y x x y 可得23=x,=x故端点坐标为⎭和⎛ ⎝⎭.(2)由题设知,l 不与x 轴重合,故设l:=x my ()111,A x y 、()122,B x y ,联立方程()22223430143⎧=⎪⇒+--=⎨+=⎪⎩x my m y x y ,则12234+=+y y m ,122334-=+y y m ,2122121234-=+m x x m ,122223434=-=⋅=++S y mm 63=≤=,当且仅当2313+=m ,即223=m 时取等号, 此时121221222123312124-⋅===-=--A A B By y b k k x x m a,故直径12A A 与直径12B B 共轭. (3)设点()11,C x y ,()22,M x y ,当CD 不与坐标轴重合时,设CD l :=y kx ,则MN l :34=-y x k, 联立2222211221212,3434143=⎧⎪⇒==⎨+++=⎪⎩y kx k x y x y k k , 同理可得22221634=+k x k ,222934=+y k. 由椭圆的对称性,不妨设C 在第一象限,则M 必在第二象限或第四象限,则1=x1=y若M在第二象限,则2=x2=y ,从而 ⎪⎝⎭T ,则⎫⎪⎪⎪ ⎪⎝⎭P .又P在椭圆外,则223412⎫⎪⎪+>⎪ ⎪ ⎪⎝⎭⎝⎭, 化简可得22λ>,即λ>λ<若M 在第四象限,同理可得22λ>,即λ>λ<当CD 与x 轴垂直或重合时,由椭圆的对称性,不妨取()2,0C,(M ,则λ⎛⎫⎪ ⎪⎝⎭P . 又P 在椭圆外,则2223341224λλλ+⋅>⇒>,即λ>λ<综上:λ>λ<。
高中数学解析几何复习 题集附答案
![高中数学解析几何复习 题集附答案](https://img.taocdn.com/s3/m/556b1b69905f804d2b160b4e767f5acfa1c783ba.png)
高中数学解析几何复习题集附答案高中数学解析几何复习题集附答案一、直线的方程在解析几何中,我们经常需要求解直线的方程。
直线的一般方程可以表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
下面我们通过一些例题来复习直线的方程的求解方法。
例题1:已知直线L1经过点(2,3)和(4,1),求直线L1的方程。
解析:首先我们可以求出直线L1的斜率k。
直线L1的斜率可以通过两个已知点的坐标计算出来:k = (y2 - y1) / (x2 - x1) = (1 - 3) / (4 - 2) = -1接下来,我们可以使用点斜式的形式来表示直线L1的方程:y - y1 = k(x - x1)将已知点(2,3)代入方程中,得到:y - 3 = -1(x - 2)化简得到直线L1的方程为:y = -x + 5因此,直线L1的方程为y = -x + 5。
例题2:已知直线L2过点(3,-2)且与直线L1: 2x - 3y + 4 = 0 平行,求直线L2的方程。
解析:由于直线L2与直线L1平行,所以它们具有相同的斜率。
直线L1的斜率为:k = 2 / (-3) = -2/3因此,直线L2的斜率也为-2/3。
再结合已知直线L2过点(3,-2),我们可以使用点斜式来表示直线L2的方程:y - y1 = k(x - x1)将已知点(3,-2)代入方程中,得到:y - (-2) = (-2/3)(x - 3)化简得到直线L2的方程为:3y + 2x + 10 = 0因此,直线L2的方程为3y + 2x + 10 = 0。
二、直线和平面的交点在解析几何中,我们经常需要求解直线和平面的交点。
我们可以通过直线的方程和平面的方程来求解交点的坐标。
下面我们通过一些例题来复习直线和平面交点的求解方法。
例题3:已知直线L3的方程为2x - y + 3z - 7 = 0,平面Q的方程为x + y - z + 4 = 0,求直线L3与平面Q的交点坐标。
高中数学解析几何深度练习题及答案
![高中数学解析几何深度练习题及答案](https://img.taocdn.com/s3/m/4caa23b9f605cc1755270722192e453610665b90.png)
高中数学解析几何深度练习题及答案1. 平面几何题目一:已知平面上三点A(1, -2),B(3, 4),C(7, 1),求证:三角形ABC为等腰三角形。
解答:首先计算AB、AC、BC的长度,分别利用两点之间的距离公式:AB = √[(3-1)^2 + (4-(-2))^2] = √[4 + 36] = √40AC = √[(7-1)^2 + (1-(-2))^2] = √[36 + 9] = √45BC = √[(7-3)^2 + (1-4)^2] = √[16 + 9] = √25由于AB的平方等于BC的平方,即AB^2 = BC^2,可以得出AB = BC。
因此,三角形ABC为等腰三角形。
题目二:已知平面上直线L1过点A(2, -1),斜率为k,与直线L2:3x + ky + 5 = 0 互相垂直,求k的值。
解答:首先计算直线L2的斜率:L2: 3x + ky + 5 = 0化简得:ky = -3x - 5因此,L2的斜率k2为 -3/k。
由于L1与L2互相垂直,根据垂直直线的特性可知斜率k1与k2之积为 -1。
即 k * (-3/k) = -1。
解上述方程可以得出:k^2 = 3,因此k的两个解为k = √3 和 k = -√3。
题目三:已知直线L1:4x + 3y - 2 = 0 与直线L2垂直,并且直线L2通过点A(5,-1),求直线L2的方程式。
解答:由于L1与L2垂直,它们的斜率之积为 -1。
L1的斜率为 -4/3,所以L2的斜率为 3/4。
通过点斜式可以得到L2的方程式:y - (-1) = (3/4)(x - 5)化简得到:y = (3/4)x + 2因此,直线L2的方程式为:y = (3/4)x + 2。
2. 空间几何题目一:已知直线L1:x = 3 - 2t,y = 5 + 3t,z = -1 + 4t,求直线L1的参数方程。
解答:直线的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct,其中(a, b, c)为直线的方向向量。
高考数学平面解析几何专项训练(100题-含答案)
![高考数学平面解析几何专项训练(100题-含答案)](https://img.taocdn.com/s3/m/9b3dcb50bf1e650e52ea551810a6f524ccbfcb01.png)
高考数学平面解析几何专项训练(100题-含答案)1.在平面直角坐标系xOy 中,已知点12(1,0),(1,0)F F -,点M 满足12MF MF +=记点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)点T 在直线2x =上,过T 的两条直线分别交C 于,A B 两点和,P Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)2212x y +=(2)0【解析】【分析】(1)根据122MF MF +=,利用椭圆的定义求解;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立,利用参数的几何意义求解.(1)解:因为122MF MF +=,所以点M 的轨迹是以12(1,0),(1,0)F F -为焦点的椭圆,则21,1a c b ===,所以椭圆的方程是2212x y +=;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立()()2222cos 2sin 4cos 4sin 420t m t m θθθθ+++++=,由参数的几何意义知:12,TA t TB t ==,则22122224242cos 2sin 2cos m m t t θθθ++⋅=-=-+-,设直线PQ 的参数方程为:()2cos ,sin x y m λαλλα=+⎧⎨=+⎩为参数,则12,TP TQ λλ==,则22122224242cos 2sin 2cos m m λλααα++⋅=-=-+-,由题意得:222242422cos 2cos m m θα++-=---,即22cos cos θα=,因为αθ≠,所以cos cos θα=-,因为0,0θπαπ<<<<,所以θαπ+=,所以直线AB 的斜率tan θ与直线PQ 的斜率tan α之和为0.2.设n S 是数列{}n a 的前n 项和,13a =,点(),N n S n n n *⎛⎫∈ ⎪⎝⎭在斜率为1的直线上.(1)求数列{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =+(2)152522n n n T ++=-【解析】【分析】(1)根据斜率公式可得出()222n S n n n =+≥,可知13S =满足()222n S n n n =+≥,可得出22n S n n =+,再利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式;(2)求得1212n n n c ++=,利用错位相减法可求得n T .(1)解:由13a =,点,n S n n ⎛⎫ ⎪⎝⎭在斜率为1的直线上,知1111n S S n n -=-,即()222n S n n n =+≥.当1n =时,113S a ==也符合上式,故22n S n n =+.当2n ≥时,()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦;13a =也满足上式,故21n a n =+.(2)解:112122n n n n a n c +++==.则2341357212222n n n T ++=++++ ,所以,3412135212122222n n n n n T ++-+=++++ ,上式-下式得1232211113111213214212422224212n n n n n n n T -++⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎝⎭- 252542n n ++=-,因此,152522n n n T ++=-.3.椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且过点(3,1).(1)求椭圆C 的方程;(2)A ,B ,P 三点在椭圆C 上,O 为原点,设直线,OA OB 的斜率分别是12,k k ,且1213k k ⋅=-,若OP OA OB λμ=+,证明:221λμ+=.【答案】(1)221124x y +=(2)证明见解析【解析】【分析】(1)由条件可得c a22911a b +=,222c b a +=,解出即可;(2)设()()()112200,,,,,A x y B x y P x y ,由条件可得012012x x x y y y λμλμ=+⎧⎨=+⎩,12123x x y y =-,然后将01212x x x y y y λμλμ=+⎧⎨=+⎩代入椭圆方程可得2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后可得答案.(1)因为ca=22911a b +=,222c b a +=所以可解得2a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程221124x y +=.(2)设()()()112200,,,,,A x y B x y P x yOP OA OB λμ=+ ,012012x x x y y y λμλμ=+⎧∴⎨=+⎩()()222212120011124124x x y y x y λμλμ+++=∴+= 即2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222112211124124x y x y +=+= ,,即22121221124x x y y λμλμ⎛⎫+++= ⎪⎝⎭又1212121133y y k k x x ⋅=-∴=- ,即12123x x y y =-,221λμ∴+=4.已知椭圆()2222:10x y C a b a b+=>>,A 、B 分别为椭圆C 的右顶点、上顶点,F 为椭圆C的右焦点,椭圆C 的离心率为12,ABF 的面积为32.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 上的动点(不是顶点),点P 与点M ,N 分别关于原点、y 轴对称,连接MN 与x 轴交于点E ,并延长PE 交椭圆C 于点Q ,则直线MP 的斜率与直线MQ 的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)22143x y +=(2)是定值,定值为32-【解析】【分析】(1)根据椭圆的离心率可得到a,b,c 的关系,再结合ABF 的面积可得到()a c b -=,由此解得a,b ,可得答案.(2)设直线方程,并联立椭圆方程,得到根与系数的关系式,结合直线MP 的斜率与直线MQ 的斜率之积,代入化简可得答案.(1)由题意得12c a =,则2a c =,b =.ABF 的面积为()1322a cb -=,则()a c b -将2a c =,b =代入上式,得1c =,则2a =,b =,故椭圆C 的标准方程为22143x y +=.(2)由题意可知直线PQ 的斜率一定存在,设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,M x y --,()11,N x y -,()1,0E x -,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,得()2223484120k x kmx m +++-=,∴122834kmx x k +=-+,∴()12122286223434km m y y k x x m k m k k ⎛⎫+=++=-+= ⎪++⎝⎭,∴21212263348434MQmy y k k km x x kk ++===-+-+,112PEPQ y k k k x ===,∵11112222MP PE y yk k k x x ====,∴33242MP MQ k k k k ⋅=-⨯=-∴MP MQ k k ⋅为定值32-.【点睛】本题考查了椭圆方程的求法以及直线和椭圆的位置关系,综合考查了学生分析问题,解决问题以及计算方面的能力和综合素养,解答的关键是理清解决问题的思路,并能正确地进行计算.5.已知圆M 过点()1,0,且与直线1x =-相切.(1)求圆心M 的轨迹C 的方程;(2)过点()2,0P 作直线l 交轨迹C 于A 、B 两点,点A 关于x 轴的对称点为A '.问A B '是否经过定点,若经过定点,求出定点坐标;若不经过,请说明理由.【答案】(1)24y x =(2)()2,0-【解析】【分析】(1)根据抛物线的定义计算可得;(2)设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y ,则()11,A x y '-,联立直线与抛物线方程,消元、列出韦达定理,再表示出直线A B '的方程,将12y y +、12y y 代入整理即可得解;(1)解:由题意知动点M 的轨迹C 是以(0,0)O 为顶点,()1,0为焦点,1x =-为准线的抛物线,所以动圆圆心M 的轨迹方程为:24y x =;(2)解:设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y 不妨令21y y >,则()11,A x y '-,联立直线l 与抛物线方程得224x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则124y y t +=、128y y =-,则直线A B '的方程为()()211121y y y y x x x x +--=--,即()()21212121x x y x y y y x y x -+=+-,则()()()()2121212122ty ty y ty y y y x y ty -++=+-+,()()()2121211222t y y y y y x ty y y y -=+--+,即()()21211222y y y x ty y y y =+--+,所以()42824y tx t t ⋅=-⨯--⨯,即()2y t x =+,令200x y +=⎧⎨=⎩解得20x y =-⎧⎨=⎩,所以直线A B '恒过定点()2,0-;6.已知1F ,2F 是椭圆C :()222104x yb b+=>的左、右焦点,过1F 的直线与C 交于A ,B两点,且22::3:4:5AF AB BF =.(1)求C 的离心率;(2)设M ,N 分别为C 的左、右顶点,点P 在C 上(P 不与M ,N 重合),证明:MPN MAN ∠≤∠.【答案】(2)见解析【解析】【分析】(1)由题意设223,4,5AF m AB m BF m ===,由勾股定理的逆定理可得290BAF ∠=︒,再根据椭圆的定义可求出m 的值,从而可求出12,AF AF 的值,则可得点A 是椭圆短轴的一个端点,进而可求出离心率,(2)由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则可得0000tan ,tan 22y y x x αβ==+-,然后求出tan tan αβ+,tan tan αβ,再利用正切的两角和公式可得02tan()y αβ+=,由正切函数可求出αβ+的最小值,从而可求出()MPN παβ∠=-+的最大值,进而可证得结论(1)由()222104x y b b+=>,得24a =,得2a =,由题意设223,4,5AF m AB m BF m ===,则22222AF AB BF +=,所以290BAF ∠=︒,因为223451248AF AB BF m m m m a ++=++===,所以23m =,所以22AF =,所以122422AF a AF =-=-=,所以12AF F △为等腰直角三角形,所以点A 是椭圆短轴的一个端点,所以b c =,因为222224b c b a +===,得b c =所以椭圆的离心率为2c e a ==(2)由(1)可得椭圆方程为22142x y +=,则(2,0),(2,0)M N -,因为点A是椭圆短轴的一个端点,所以不妨设A ,由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则0000tan ,tan 22y y x x αβ==+-,2200142x y +=,所以2200002200001tan tan 22422y y y y x x x y αβ⋅=⋅===+--,00002200000442tan tan 2242y y y y x x x y y αβ+=+===+--,所以0tan tan 4tan()1tan tan y αβαβαβ++==-,所以当0y =tan()αβ+取得最小值由(1)可知290BAF ∠=︒,所以()0,2παβ⎛⎫+∈ ⎪⎝⎭,所以当tan()αβ+取得最小值时,αβ+取得最小值,即点P 与点A 重合时,αβ+取得最小值,此时()MPN παβ∠=-+取得最大,所以MPN MAN∠≤∠7.已知椭圆()2222:10x y C a b a b+=>>的长轴长为,且过点)P(1)求C 的方程:(2)设直线()0y kx m m =+>交y 轴于点M ,交C 于不同两点A ,B ,点N 与M 关于原点对称,BO AN ⊥,Q 为垂足.问:是否存在定点M ,使得·NQ NA 为定值?【答案】(1)221102x y +=(2)存在【解析】【分析】(1)利用待定系数法求方程;(2)联立方程组,结合韦达定理可得直线恒过定点,进而求解.(1)依题意知2a =a =所以C 的方程可化为222110x y b+=,将点)P代入C 得251110b +=,解得22b =,所以椭圆方程为221102x y +=;(2)设点()11,A x y ,()22,B x y ,联立221102x y y kx m ⎧+=⎪⎨⎪=+⎩得,()22215105100k x kmx m +++-=,()()()222104155100km k m ∆=-+->,解得22210m k <+,1221015km x x k -+=+,212251015m x x k -=+,注意到Q ,N ,A 三点共线,NQ NA NQ NA ⋅=⋅,又()NQ NA NB BQ NA NB NA ⋅=+⋅=⋅()()()()1212121222x x y m y m x x kx m kx m =+++=+++()()()()222222212122215102012441515k m k mkx xmk x x mm kk+-=++++=-+++()222221510510415k m m m k--+-=++当()2215105510m m --=-,解得1m =±,因为0m >,所以1m =,此时1NQ NA ⋅=-,满足0∆>,故存在定点()0,1M ,使得1NQ NA ⋅=-等于定值1.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.已知椭圆C :22221(0)x y a b a b +=>>,4a M b ⎛⎫ ⎪⎝⎭为焦点是22y x =的抛物线上一点,H 为直线y a =-上任一点,A ,B 分别为椭圆C 的上,下顶点,且A ,B ,H 三点的连线可以构成三角形.(1)求椭圆C 的方程;(2)直线HA ,HB 与椭圆C 的另一交点分别交于点D ,E ,求证:直线DE 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)由椭圆的离心率求出,a c 的关系式,再由,4a M b ⎛⎫⎪⎝⎭为抛物线22=y x 上的点,结合222a b c =+,即可求出椭圆C 的方程.(2)设点()(),20H m m -≠,求得HA ,HB 的方程,与椭圆联立求得,D E 坐标,写出直线DE 的方程,即可求出DE 恒过的定点.(1)由题意知,222224c aa b a b c⎧=⎪⎪⎪=⨯⎨⎪=+⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为2214x y +=.(2)设点()(),20H m m -≠,易知()0,1A ,()0,1B -,∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--.联立223114y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴22436D m x m =+,223636D m y m -=+,同理可得284E m x m -=+,2244E m y m -=+,∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-,∴直线DE 过定点10,2⎛⎫- ⎪⎝⎭.9.已知点(1,2)M -在抛物线2:2(0)E y px p =>上.(1)求抛物线E 的方程;(2)直线12,l l 都过点12(2,0),,l l 的斜率之积为1-,且12,l l 分别与抛物线E 相交于点A ,C 和点B ,D ,设M 是AC 的中点,N 是BD 的中点,求证:直线MN 恒过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)将点坐标代入求解抛物线方程;(2)设出直线方程,表达出,M N 的坐标,求出直线MN 的斜率,利用直线斜率之积为-1,求出直线MN 恒过的定点,从而证明出结论.(1)∵点(1,2)M -在抛物线2:2E y px =上,∴2(2)2p -=,∴解得:2p =,∴抛物线E 的方程为:24y x =.(2)由12,l l 分别与E 相交于点A ,C 和点B ,D ,且由条件知:两直线的斜率存在且不为零.∴设1122:2,:2l x m y l x m y =+=+由214,2y x x m y ⎧=⎨=+⎩得:21480y m y --=设()()1122,,,A x y C x y ,则1214y y m +=,∴12M y m =,又2122M x m =+,即()21122,2M m m +同理可得:()22222,2N m m +∴()()212212212212222MN m m k m m m m -==++-+,∴()211121:222MN y m x m m m -=--+即MN :()1212121y x m m m m =--⎡⎤⎣⎦+,∵12,l l 的斜率之积为1-,∴12111m m ⋅=-,即121m m =-,∴121:(4)MN y x m m =-+,即直线MN 过定点(4,0).10.已知抛物线()20x ay a =>,过点0,2a M ⎛⎫ ⎪⎝⎭作两条互相垂直的直线12,l l ,设12,l l 分别与抛物线相交于,A B 及,C D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1.(1)求抛物线的方程;(2)设线段,AB CD 的中点分别为,E F ,O 为坐标原点,求证直线EF 过定点.【答案】(1)24x y =;(2)证明见解析.【解析】【分析】(1)结合导数知识,利用切线斜率构造方程可得a ,由此可得抛物线方程;(2)将直线AB 方程代入抛物线方程中,结合韦达定理可确定中点坐标,同理可得CD中点坐标,利用直线方程两点式可得直线EF 方程,化简可知其过定点()0,4.(1)由2x ay =得:21y ax =,则2y x a '=,241x y a=∴==',解得:4a =,∴抛物线方程为:24x y =;(2)由题意知:直线12,l l 的斜率都存在且都不为零,由(1)知:()0,2M ,设直线:2AB y kx =+,代入24x y =得:2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,()21212444y y k x x k ∴+=++=+,AB ∴中点()22,22E k k +;12l l ⊥ ,1:2CD y x k ∴=-+,同理可得:CD 中点222,2F k k ⎛⎫-+ ⎪⎝⎭;EF ∴的方程为:()()222222222222k k y k x k k k ⎛⎫+-+ ⎪⎝⎭-+=-+,化简整理得:14y k x k ⎛⎫=-+ ⎪⎝⎭,则当0x =时,4y =,∴直线EF 恒过定点()0,4.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.11.在直角坐标系xOy 中,曲线:C 221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后的曲线为1C ,以x 轴正半轴为级轴,建立极坐标系.曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若1C 上的一点P 到2C 的距离的最大,求距离的最大值及P 点的坐标.【答案】(1)1C :2213y x +=,2C :40x y +-=;(2)max d =,1322P ⎛⎫-- ⎪⎝⎭,.【解析】【分析】()1直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换;()2利用三角函数关系式的变换和点到直线的距离公式的应用求出结果.(1)解:由伸缩变换x xy '='=⎧⎪⎨⎪⎩得,代入曲线:C 221x y +=得:1C 的普通方程为2213y x +=,由极坐标方程sin 4πρθ⎛⎫+= ⎪⎝⎭sin y ρθ=,cos x ρθ=可得:2C 的直角坐标方程为40x y +-=.(2)解:直线2C 的普通方程为40x y +-=,设1C上的为点()cos P θθ,到2C 的距离为d =当且仅当()223k k Z πθπ=-+∈时,取得max d =,又因为1cos 23y 2x θθ⎧==-⎪⎪⎨⎪==-⎪⎩,即点P 的坐标为1322⎛⎫-- ⎪⎝⎭.12.已知椭圆C :2222+x y a b=1(a >b >0)经过点A (0,1),且右焦点为F (1,0).(1)求C 的标准方程;(2)过点(0,12)的直线l 与椭圆C 交于两个不同的点P .Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .证明:以MN 为直径的圆过y 轴上的定点.【答案】(1)2212x y +=(2)证明见解析【解析】【分析】(1)由已知得,c b ,再求得a ,即得椭圆方程;(2)由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,由直线,AP AQ 方程求出,M N 坐标,求出以MN 为直径的圆的方程,然后代入1212,x x x x +求得圆方程的常数项,从而可得y 的定点坐标.(1)由题意可得1,1c b ==从而22a =.所以椭圆的标准方程为2212x y +=.(2)证明:由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,将直线l 代入椭圆方程得()2242430k x kx ++-=,所以12122243,,4242k x x x x k k --+==++,直线AP 的方程为1111y y x x -=+,直线AQ 的方程为2211y y x x -=+.可得1212,0,,011x x M N y y ⎛⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭,以MN 为直径的圆方程为,21212011x x x x y y y ⎛⎫⎛⎫+++= ⎪⎪--⎝⎭⎝⎭,即()()221212121201111x x x x x y x y y y y ⎛⎫++++= ⎪----⎝⎭.①因为()()()1212122121212124111142122x x x x x x y y k x x k x x kx kx ==---++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭22212612842k k k -==--+++.所以在①中令0x =,得26y =,即以MN 为直径的圆过y轴上的定点(0,,13.已知抛物线C :()220y px p =>,过点()2,0R 作x 轴的垂线交抛物线C 于G ,H 两点,且OG OH ⊥(O 为坐标原点).(1)求p ;(2)过()2,1Q 任意作一条不与x 轴垂直的直线交抛物线C 于A ,B 两点,直线AR 交抛物线C 于不同于点A 的另一点M ,直线BR 交抛物线C 于不同于点B 的另一点N .求证:直线MN 过定点.【答案】(1)1p =(2)证明见解析【解析】【分析】(1)由题意知2RG OR ==,不妨设()2,2G ,代入抛物线方程中可求出p 的值,(2)设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫⎪⎝⎭,则可表示出直线AB ,AM ,BN 的方程,再由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-,再表示出直线MN 的方程,结合前面的式子化简可得结论(1)由题意知,2RG OR ==.不妨设()2,2G ,代入抛物线C 的方程,得44p =解得1p =.(2)由(1)知,抛物线C 的方程为22y x =.设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫ ⎪⎝⎭,则直线AB 的斜率为12221212222AB y y k y y y y -==+-.所以直线AB 的方程为2111222y y x y y y ⎛⎫=-+ ⎪+⎝⎭,即()121220x y y y y y -++=.同理直线AM ,BN ,MN 的方程分别为()131320x y y y y y -++=,()242420x y y y y y -++=,()343420x y y y y y -++=,由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-.又直线MN 的方程为()343420x y y y y y -++=,即1212441620x y y y y y ⎛⎫+++= ⎪⎝⎭.所以直线MN 的方程为()1212280y y x y y y +++=.把()121240y y y y -++=代入()1212280y y x y y y +++=,得()12122480y y x y y y +++=,()122)880(y y x y y +++=,所以由20x y +=,880y +=可得2x =,1y =-.所以直线MN 过定点()2,1-.14.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于P ,A 两点,且PF λFA = .(1)若λ=4,求直线l 的方程;(2)设点E (a ,0),直线PE 与抛物线C 的另一个交点为B ,且PE EB μ=.若λ=4μ,求a的值.【答案】(1)4340x y --=或4340x y +-=(2)4【解析】【分析】(1)由4PF FA =得014y y =-,设直线l :1x my =+,与抛物线C :24y x =联立,结合韦达定理,即得解;(2)由PF λFA = 得01y y λ=-,结合014y y =-,可得204y λ=,再由PE EB μ= 得02y y μ=-,设直线PB :x ny a =+,与抛物线C :24y x =联立由韦达定理可得024y y a =-,故204y aμ=,又4λμ=,代入运算即得解(1)易知焦点F (1,0),设P (0x ,0y ),A (1x ,1y )由4PF FA =得014y y =-设直线l :1x my =+,与抛物线C :24y x =联立得2440y my --=,其中216160m ∆=+>,所以014y y =-由①②可得0141y y =⎧⎨=-⎩或0141y y =-⎧⎨=⎩又014y y m +=,所以34m =或34m =-所以直线l 的方程为314x y =+或314x y =-+.化简得4340x y --=或4340x y +-=(2)由PF λFA =得01y y λ=-又014y y =-可得204y λ=设点B (2x ,2y ),由PE EB μ= 得02y y μ=-设直线PB :x ny a =+,与抛物线C :24y x =联立得2440y ny a --=.所以216()0n a ∆=+>,024y y a=-故204y aμ=又4λμ=,所以2200444y y a=⋅,考虑到点P 异于原点,所以00y ≠,解得4a =此时2216()16(4)0n a n ∆=+=+>所以a 的值为415.平面直角坐标系xOy 中,双曲线22:136x y C -=的右焦点为F ,T 为直线:1l x =上一点,过F 作TF 的垂线分别交C 的左、右支于P 、Q 两点,交l 于点A .(1)证明:直线OT 平分线段PQ ;(2)若3PA QF =,求2TF 的值.【答案】(1)证明见解析(2)12+【解析】【分析】(1)设直线PQ 的方程为3x ty =+,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,求出线段PQ 的中点N 的坐标,计算得出ON OT k k =,证明出O 、T 、N 三点共线,即可证得结论成立;(2)由3PA QF =得3PA QF = ,可得出1238x x -+=,变形可得出()()12212184384x x x x x x ⎧++=⎪⎨+-=⎪⎩,两式相乘结合韦达定理可求得2t 的值,再利用两点间的距离公式可求得2TF 的值.(1)解:依题意,3F x ==,即()3,0F ,设()1,2T t ,则直线PQ 的方程为3x ty =+,由22326x ty x y =+⎧⎨-=⎩得()222112120t y ty -++=,设()11,P x y 、()22,Q x y ,则()222210Δ14448210t t t ⎧-≠⎪⎨=-->⎪⎩,故212t ≠,由韦达定理可得1221221t y y t +=--,1221221y y t =-,所以()121226621x x t y y t +=++=--,又直线PQ 分别交C 的左、右支于P 、Q 两点,所以()()()22121212122963339021t x x ty ty t y y t y y t +=++=+++=-<-,故212t >所以PQ 中点为2236,2121t N t t ⎛⎫-- ⎪--⎝⎭,所以2ON OT k t k ==,故O 、T 、N 三点共线,即直线OT 平分线段PQ .(2)解:依题意,由3PA QF =得3PA QF =,则()12133x x -=-,即1238x x -+=,所以()12284x x x ++=,①,()121384x x x +-=,②①×②得()()21212123166416x x x x x x +++-=,所以()22222366963166416212121t t t t+⨯-⨯-=-⨯---,解得28374t +=,或28374t -=(舍去),此时,224412t TF =+=+【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.16.已知抛物线2:4E y x =,F 为其焦点,O 为原点,A ,B 是E 上位于x 轴两侧的不同两点,且5OA OB ⋅=.(1)求证:直线AB 恒过一定点;(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等;(3)在(2)的条件下,当F 为ABC 的内心时,求ABC 重心的横坐标.【答案】(1)证明见解析(2)见解析(3)173【解析】【分析】(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x =+⎧⎨=⎩,消x 得:2440y my n --=,124y y m +=,124y y n =-,结合向量的数量积,转化求解直线AB 的方程,推出结果.(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等即CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,根据斜率和为零,从而可得结果;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,由题意可得32AC CF AN NF ==,坐标化,结合点在抛物线上可得点的坐标,从而得到结果.(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x=+⎧⎨=⎩,消x 得:2440y my n --=,则124y y m +=,124y y n =-,由5OA OB ⋅= 得:21212()516y y y y +=,所以:1220y y =-或124y y =(舍去),即4205n n -=-⇒=,所以直线AB 的方程为5x my =+,所以直线AB 过定点(5,0)P .(2)由(1)知,直线AB 过定点(5,0)P 可设直线AB 的方程为5x my =+,此时124y y m +=,1220y y =-,设x 轴上定点C 坐标为(,0)t ,要使F 到直线AC 和BC 的距离相等,则CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,故0AC BC k k +=,即21210y yx t x t+=--,∴()()21120y x t y x t -+-=,∴()()1212250my y t y y +-+=,∴()40450m m t -+-=对任意m 恒成立,∴510t -=,5t =-,故在x 轴上有一定点C (5,0)-,使F 到直线AC 和BC 的距离相等;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,∵F 为ABC 的内心,∴32AC CF AN NF ==,32=,即2211126250x y x +-+=,又2114y x =,∴21122250x x -+=,同理22222250x x -+=,∴12,x x 是方程222250x x -+=的两个根,∴1222x x +=,∴三角形重心的横坐标为1251733x x +-=.17.已知椭圆C 的两个顶点分别为()2,0A -,()2,0B ,焦点在x (1)求椭圆C 的方程;(2)若直线()()10y k x k =-≠与x 轴交于点P ,与椭圆C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于Q ,求MN PQ的取值范围.【答案】(1)2214x y +=;(2)(4,【解析】【分析】(1)由顶点和离心率直接求,,a b c 即可;(2)先联立直线和椭圆方程,借助弦长公式表示出弦长MN ,再求出垂直平分线和Q 坐标,表示出PQ ,最后分离常数求取值范围即可.(1)由题意知2222,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩可得1,2a b ==,故椭圆C 的方程为2214x y +=.(2)由()22114y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222418440k x k x k +-+-=,设()()1122,,,M x y N x y ,则22121222844,4141k k x x x x k k -+=⋅=++,()121222241k y y k x x k -+=+-=+,线段MN 的中点为2224,4141k k k k ⎛⎫- ⎪++⎝⎭,线段MN 的垂直平分线方程为22214()4141k k y x k k k --=--++,令0y =,得22341kx k =+,所以223,041k Q k ⎛⎫ ⎪+⎝⎭,又(1,0)P ,则22223114141k k PQ k k +=-=++,又12MN x x =-=所以2241141MN k k PQk +==++220,1331k k ≠∴<-<+ ,故MN PQ的取值范围为(4,.【点睛】(1)关键在于建立,,a b c 的关系式求解;(2)关键在于联立直线和椭圆方程,依次求出垂直平分线和弦长MN 、PQ ,转化成关于k 的代数式求范围即可.18.定义平面曲线的法线如下:经过平面曲线C 上一点M ,且与曲线C 在点M 处的切线垂直的直线称为曲线C 在点M 处的法线.设点()()000,0M x y y >为抛物线2:2(0)C y px p =>上一点.(1)求抛物线C 在点M 处的切线的方程(结果不含0x );(2)求抛物线C 在点M 处的法线被抛物线C 截得的弦长||AB 的最小值,并求此时点M 的坐标.【答案】(1)002y py x y =+(2);()p 【解析】【分析】(1)先化简求导确定切线斜率,再按照在点处的切线方程进行求解;(2)先联立法线和抛物线方程,借助弦长公式表示弦长,最后换元构造函数,求导确定最小值.(1)因为点()()000,0M x y y >在抛物线上方,所以由2:2(0)C y px p =>得y =py y'=,所以在点M 处的切线斜率0y y pk y y ='==,所求切线方程为000()py y x x y -=-,又202y x p=,故切线方程为2000()2y p y y x y p -=-,即002y p y x y =+.(2)点M 处的法线方程为2000()2y y y y x p p-=--,即220022y p p x y y p +=-+.联立抛物线2:2(0)C y px p =>,可得()2232000220y y p y y p y +-+=,可知0∆>,设()()1122,,,A x y B x y ,()2221212002,2p y y y y y p y +=-⋅=-+,所以322212202()y p AB y y y +⋅-=.令200t y =>,则3222()(0)t p AB t t +=>,令3222()()(0)t p f t t t +=>,1312222222223()()()(2)2()2t p t t p t p t p f t t t +⋅-++⋅-'=⨯=,所以()f t 在()20,2p 单调递减,在()22,p +∞单调递增,所以()2min ()2f t f p ==,即min AB =,此时点M的坐标为()p .【点睛】(1)关键在于化简出0y >时的抛物线方程,借助求导确定切线斜率;(2)写出法线方程,联立抛物线求弦长是通用解法,关键在于换元构造函数之后,借助导数求出最小值.19.已知点()11,0F -,()21,0F ,M 为圆22:4O x y +=上的动点,延长1F M 至N ,使得1MN MF =,1F N 的垂直平分线与2F N 交于点P ,记P 的轨迹为Γ.(1)求Γ的方程;(2)过2F 的直线l 与Γ交于,A B 两点,纵坐标不为0的点E 在直线4x =上,线段OE 分别与线段AB ,Γ交于,C D 两点,且2OD OC OE =⋅,证明:AC BC =.【答案】(1)22143x y +=;(2)证明见解析.【解析】【分析】(1)由线段垂直平分线和三角形中位线性质可证得12124PF PF F F +=>,可知P 点轨迹为椭圆,由此可得轨迹方程;(2)由已知可知24D C x x =;当l 斜率不存在时显然不成立;当l 斜率存在时,设l 方程,将其与椭圆方程联立,结合韦达定理可得AB 中点横坐标;设():0OE y k x k ''=≠,与直线l 和椭圆方程联立可求得34k k'=-,由此可整理得到C x ,与AB 中点横坐标相同,由此可得结论.(1)连接1,MO PF,PM 是1NF 的垂直平分线,1PF PN ∴=,1222PF PF PN PF NF ∴+=+=;,M O 分别为112,NF F F 中点,224NF MO ∴==,12124PF PF F F ∴+=>,P ∴点轨迹是以12,F F 为焦点,长轴长为4的椭圆,即2a =,1c =,23b ∴=,P ∴点轨迹Γ的方程为:22143x y +=;(2)2OD OC OE =⋅ ,即OD OE OC OD =,D EC Dx x x x ∴=,由题意知:0C x >,4E x =,24D C x x ∴=,①当直线l 斜率不存在时,即:1l x =,此时1C x =,2D x <,此时24D C x x =不成立;②当直线l 斜率存在时,设():1l y k x =-,()11,A x y ,()22,B x y ,由()221431x y y k x ⎧+=⎪⎨⎪=-⎩得:()22223484120k x k x k +-+-=,2122212283441234k x x k k x x k ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,AB ∴中点的横坐标为21224234x x k k +=+;设直线OE 的方程为:()0y k x k ''=≠,由()1y k x y k x ='=⎧⎨-⎩得:kx k k ='-,即C k x k k ='-;由22143y k xx y =⎧='⎪⎨+⎪⎩得:221234x k ='+,即221234D x k ='+;由24D C x x =得:212434k k k k =''+-,整理可得:34k k '=-,2122434324C x x kk x k k k+∴===++,C ∴为线段AB 的中点,AC BC ∴=.【点睛】关键点点睛:本题考查定义法求解轨迹方程、直线与椭圆综合应用问题;本题证明C 为AB 中点的关键是能够通过已知等式得到,C D 两点横坐标之间满足的等量关系,进而表示出AB 中点横坐标和C 点横坐标,证明二者相等即可.20.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F ,2F,离心率2e =,P为椭圆上一动点,12PF F △面积的最大值为2.(1)求椭圆E 的方程;(2)若C ,D 分别是椭圆E 长轴的左、右端点,动点M 满足MD CD ⊥,连结CM 交椭圆于点N ,O 为坐标原点.证明:OM ON ⋅为定值;(3)平面内到两定点距离之比是常数()1λλ≠的点的轨迹是圆.椭圆E 的短轴上端点为A ,点Q 在圆228x y +=上,求22QA QP PF +-的最小值.【答案】(1)22142x y +=;(2)见解析;4.【解析】【分析】(1)结合离心率和12PF F △面积的最大值列出关于,,a b c 的方程,解方程即可;(2)设直线CM 方程,写出点M 坐标,联立椭圆方程,求点N 坐标,通过向量数量积计算即可;(3)设点R 坐标,借助点Q 在圆228x y +=上,将2QA 转化成RA ,再借助椭圆定义将2PF 转化成14PF -,最后通过1,,R P F 三点共线求出最小值.(1)当P 为短轴端点时,12PF F △的面积最大,2bc =,222222,c a bc a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,a b c ===,故椭圆E 的方程为22142x y +=.(2)由(1)知,()2,0,(2,0)C D -,设直线():2CM y k x =+,11(,)N x y ,,(2,4)MD CD M k ⊥∴ ,联立221,42(2)x y y k x ⎧+=⎪⎨⎪=+⎩整理得()22222218840k x k x k +++-=,由21284221k x k --=+得2122421k x k -=+,1124(2)21ky k x k =+=+,222244(,)2121k k N k k -∴++,2222442442121k kOM ON k k k -⋅=⨯⨯++ ,故OM ON ⋅为定值4.(3)由题意(A ,设()(0,),,R m Q x y ,使2QA QR =,()()22222,4QR x y m QAx y +-==+,整理得222282833m m x y y --++=,又点Q 在圆228x y +=上,20,883m =∴⎨-⎪=⎪⎩解得m =,(0,R 由椭圆定义得124PF PF =-,2112(4)4QA QP PF QR QP PF QR QP PF +-=+--∴=++-,当1,,R P F三点共线时,(10,,(R F 22QA QP PF +-∴4.【点睛】(1)关键在于建立,,a b c 的方程;(2)关键在于设出直线方程,联立得出点N 坐标;(3)关键在于利用题目中给出的圆的定义将2QA 转化成RA ,再结合椭圆定义,将问题简化成共线问题.21.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知O 为坐标原点,P 为椭圆C 上的一个动点,过点E0)作OP 的平行线交椭圆C 于M ,N 两点,问:是否存在实数t (t >0),使得||,||,||EM t OP EN 构成等比数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,12t =【解析】【分析】(1)由题意可得2a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中可求出2b ,从而可求得椭圆的方程,(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =,将直线方程代入椭圆方程中可求出22,x y ,则可得2OP ,设直线MN的方程为()()1122(,,,y k x M x y N x y =,将直线方程代入椭圆方程消去y ,利用根与系数的关系,再利用两点间的距离公式表示出||,||EM EN ,再计算||||EM EN 与2OP 比较可求出t 的值,②当OP 的斜率不存在时,可得||OP =MN的方程为x ||||EM EN 的值,进而可求出t (1)由题意可得24a =,所以2a =.因为点(1,32)在椭圆C 上,所以221914a b +=,解得23b =.所以椭圆C 的标准方程为22143x y +=.(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =.联立方程,得22143y kxx y =⎧⎪⎨+=⎪⎩解得221234x k =+,2221234k y k =+.解得()2222221211212||343434k k OP k k k+=+=+++,设直线MN的方程为()()1122(,,,y k x M x y N x y =-.联立方程,得(22143y k x x y ⎧=-⎪⎨⎪+=⎩化简,得()22223412120k x x k +=+-=.因为点E0)在椭圆内部,所0∆>,221213221212,3434k x x x x k k-+=⋅=++,所以1||EM x =-.同理可得2||EN x =所以()(())22121212||||113EM EN kx xk x x x x ⋅=+=+⋅++()()22222223112122413343434k k kk k k k +-=+⋅-+=+++,假设存在实数(0)t t >),使得||,||,||EM t OP EN 构成等比数列,则22||||||EM EN t OP ⋅=.所以()()22222311213434k k tk k ++=⋅++.解得214t=.四为1t >,所以12t =,②当OP 的斜率不存在时,||OP =MN 的方程为x =x =22143x y +=,得234y =.所以||||2EM EN ==,当||,||,||EM t OP EN 构成等比数列时,22||||||EM EN t OP ⋅=,即2334t =.因为0t >,所以12t =.综上所述,存在实数12t =,使得||,||,||EM t OP EN 构成等比数列.22.在平面直角坐标系xOy 中,曲线C 的参数方程为x y αααα⎧=-⎪⎨=+⎪⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为()cos sin 3m m ρθθ++=l 与曲线C 交于A ,B 两点.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =CD .【答案】(1)2212x y +=,30mx y m ++=;(2)4.【解析】【分析】(1)消参法求曲线C 的普通方程,公式法求直线l 的直角坐标方程.(2)由(1)所得普通方程,结合圆中弦长、半径、弦心距的几何关系求圆心到直线l 的距离,再利用点线距离公式列方程求参数m ,即可得直线的倾斜角大小,由AB 、CD 的关系求CD 即可.(1)由题意,消去参数α,得曲线C 的普通方程为2212x y +=.将cos x ρθ=,sin y ρθ=代入()cos sin 3m m ρθθ++得直线l的直角坐标方程为30mx y m ++=.(2)设圆心到直线l:30mx y m ++=的距离为d,则AB =3d =.3=,解得3m =-.所以直线l的方程为60x +=,则直线l 的倾斜角为30θ=︒.所以4cos30AB CD ==︒.23.在平面直角坐标系xOy中,已知直线340x y ++=与圆1C :222x y r +=相切,另外,椭圆2C :()222210x y a b a b +=>>的离心率为32,过左焦点1F 作x 轴的垂线交椭圆于C ,D 两点.且1CD =.(1)求圆1C 的方程与椭圆2C 的方程;(2)经过圆1C 上一点P 作椭圆2C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆1C 相交于M ,N 两点(异于点P ),求△OAB 的面积的取值范围.【答案】(1)225x y +=,2214x y +=;(2)4,15⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)由直线与圆的相切关系及点线距离公式求参数r ,即可得圆1C 的方程,根据椭圆离心率、22b CD a=及椭圆参数关系求出a 、b 、c ,即可得椭圆2C 的方程.(2)设()11,A x y 、()22,B x y 、()00,P x y ,讨论直线PA ,PB 斜率存在性,则直线PA 为()111y k x x y =-+、直线PB 为()222y k x x y =-+,联立椭圆方程并结合所得一元二次方程0∆=求1k 、2k ,进而得直线PA 为1114x x y y +=、直线PB 为2214x xy y +=,结合P 在直线PA ,PB 上有AB 为0014x xy y +=,联立椭圆方程,应用韦达定理、弦长公式、点线距离公式,结合三角形面积公式得0OAB S = .(1)由题设,圆1C :222x y r +=的圆心为()0,0,因为直线340x y ++=与圆1C相切,则r ==所以圆1C 的方程为225x y +=,因为椭圆2Cc e a ==c =,由221b CD a==,则22a b =,又222a b c =+,所以22324a a a =+,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=.综上,圆1C 为225x y +=,椭圆2C 为2214x y +=.(2)设点()11,A x y ,()22,B x y ,()00,P x y .当直线PA ,PB 斜率存在时,设直线PA ,PB 的斜率分别为1k ,2k ,则直线PA 为()111y k x x y =-+,直线PB 为()222y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y 得:()()()22211111111148440k x k y k x x y k x ++-+--=.所以()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=,则11111122111444x y x y x k x y y --=-==-,所以直线PA 为()11114x y x x y y -=-+,化简得:22111144x x y y y x +=+,即1114x x y y +=.经验证,当直线PA 斜率不存在时,直线PA 为2x =或2x =-也满足1114x xy y +=.同理,可得直线PB 为2214x xy y +=.因为()00,P x y 在直线PA ,PB 上,所以101014x x y y +=,202014x xy y +=.综上,直线AB 为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y 得:()22200035816160y x x x y +-+-=.所以01220835x x x y +=+,21220161635y x x y -=+.所以12AB x =-=)20203135y y +==+.又O 到直线AB的距离d ==所以)20200311235OABy S y +=⋅+ t =,[]1,4t ∈,则24444OAB t S t t t∆==++,又[]44,5t t+∈,所以△OAB 的面积的取值范围为4,15⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问,设点及直线PA ,PB 的方程,联立椭圆结合相切关系求参数关系,进而确定PA ,PB 的方程,由P 在直线PA ,PB 上求直线AB 的方程,再联立椭圆并应用韦达定理、弦长公式、点线距离公式求三角形面积的范围.24.已知点A ,B 是抛物线x 2=2py (p 为常数且p >0)上不同于坐标原点O 的两个点,且0OA OB ⋅= .(1)求证:直线AB 过定点;(2)过点A 、B 分别作抛物线的切线,两切线相交于点M ,记 OMA 、 OAB 、 OMB 的面积分别为S 1、S 2、S 3;是否存在定值λ使得22s =λS 1S 3?若存在,求出λ值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,4λ=【解析】【分析】(1)设11(,)A x y ,22(,)B x y ,设直线AB 方程为y kx t =+,代入抛物线方程中,消去y ,。
解析几何 高中数学试题解析版
![解析几何 高中数学试题解析版](https://img.taocdn.com/s3/m/10e10022cbaedd3383c4bb4cf7ec4afe04a1b1f9.png)
一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.若椭圆x2+y2a =1(a>0)的离心率为√ 22,则a的值为( )A. 2B. 12C. 2或√ 22D. 2或12【答案】D【解析】【分析】本题考查椭圆的性质的应用及分类讨论的思想,属于基础题.考虑a>1和0<a<1两种情况,根据离心率的公式计算得到答案.【解答】解:当a>1时,离心率为√ a−1√ a =√ 22,解得a=2;当0<a<1时,离心率为√ 1−a=√ 22,解得a=12.综上所述:a=2或a=12.故选:D2.把一个圆心角为120°的扇形卷成一个圆锥的侧面,则此圆锥底面圆的半径与这个圆锥的高之比是( )A. 1∶4B. √ 2∶2C. √ 2∶√ 3D. √ 2∶4【答案】D【解析】【分析】本题考查圆锥的计算,理解圆锥的展开图中扇形的弧长等于圆锥的底面周长是关键.设母线为l,半径为r,利用圆锥的展开图中扇形的弧长等于圆锥的底面周长得到半径与母线的关系,再根据勾股地理得到高,从而可以得出结果.【解答】解:设圆锥的母线为l,底面半径为r,高为ℎ则扇形的弧长为120180π×l=23πl,由圆锥的展开图中扇形的弧长等于圆锥的底面周长,得2πr=23πl,则r=13l,再由勾股定理得ℎ=√ l2−r2=2√ 23l,故r ℎ=13l 2√ 23l =√ 24,故选D .3.已知原点到直线l 的距离为1,圆(x −2)2+(y −√ 5)2=4与直线l 相切,则满足条件的直线l 有 ( ) A. 1条 B. 2条C. 3条D. 4条【答案】C 【解析】【分析】本题主要考查点到直线的距离,圆与圆位置关系,先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定公切线的直线条数. 【解答】解:∵(x −2)2+(y −√ 5 )2=4, ∴圆心坐标(2,√ 5),半径为2, ∵以坐标原点为圆心,以1为半径, ∴圆方程x 2+y 2=1, ∴两圆圆心距√ 5+22=3, ∴两圆相外切,∴两圆有三条公切线,(两条外公切线,一条内公切线). 故选C .4.已知PA ⃗⃗⃗⃗⃗ =(2,1,−3),PB ⃗⃗⃗⃗⃗ =(−1,2,3),PC ⃗⃗⃗⃗⃗ =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=( ) A. 9 B. −9C. −3D. 3【答案】B 【解析】【分析】由共面向量定理得PC ⃗⃗⃗⃗⃗ =x PA ⃗⃗⃗⃗⃗ +y PB ⃗⃗⃗⃗⃗ ,从而(7,6,λ)=x(2,1,−3)+y(−1,2,3),由此能求出λ的值. 本题考查实数值的求法,考查共面向量定理等基础知识,考查运算求解能力,是基础题. 【解答】解:∵PA ⃗⃗⃗⃗⃗ =(2,1,−3),PB ⃗⃗⃗⃗⃗ =(−1,2,3),PC ⃗⃗⃗⃗⃗ =(7,6,λ), P ,A ,B ,C 四点共面,∴存在一对实数x ,y ,PC⃗⃗⃗⃗⃗ =x PA ⃗⃗⃗⃗⃗ +y PB ⃗⃗⃗⃗⃗ , ∴(7,6,λ)=x(2,1,−3)+y(−1,2,3),∴{7=2x−y6=x+2yλ=−3x+3y,解得λ=−9.故选:B.5.已知点A为圆(x+3)2+(y−2)2=1上的动点,点B的坐标为(1,1),P为x轴上一动点,则|AP|+|BP|的最小值是( )A. 3B. 4C. 5D.6【答案】B【解析】【分析】本题考查到圆上点的距离的最值及点关于线的对称点的求法,属于拔高题.根据三角形三边关系以及两点间距离公式求解即可.【解答】解:设圆心M(−3,2),半径为1,B关于x轴的对称点B1(1,−1),连接MB1交x轴于N点,则N即是P,因为这时|NB|=|NB1|,|NB|+|MN|=|MB1|,当P在x轴的其它位置F时,|FB|=|FB1|,借助图形可得|FB|+|FM|>|MB1|(三角形的两边和大于第三边),所以|AP|+|BP|的最小值是为|MB1|−1=√ 42+32−1=5−1=4,此时A为线段MB1与圆的交点.故选B.6.已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点,若AB的中点坐标为(1,−1),则E的方程为( )A. x245+y236=1 B. x236+y227=1 C. x227+y218=1 D. x218+y29=1【答案】D【解析】【分析】本题考查求椭圆的方程,考查直线与椭圆的位置关系,点差法的运用,考查学生的计算能力,属于中档题,设A(x1,y1),B(x2,y2),代入椭圆的方程,两式相减,根据线段AB的中点坐标为(1,−1),进而可得a,b的关系,根据右焦点为F(3,0),求出a,b的值,即可得出椭圆的方程.【解答】解:设A(x 1,y 1),B(x 2,y 2),代入椭圆方程得{x 12a 2+y 12b 2=1x 22a 2+y 22b2=1, 相减得x 12−x 22a 2+y 12−y 22b2=0, ∴x 1+x 2a 2+y 1−y 2x 1−x 2⋅y 1+y 2b2=0,∵x 1+x 2=2,y 1+y 2=−2,k AB =y 1−y2x 1−x 2=−1−01−3=12,∴2a 2+12×−2b2=0,化为a 2=2b 2,又c =3=√ a 2−b 2,解得a 2=18,b 2=9. ∴椭圆E 的方程为x 218+y 29=1.故选D .7.已知圆C:x 2+y 2=1,直线l:x +y +2=0,P 为直线l 上的动点,过点P 作圆C 的两条切线,切点分别为A ,B ,则直线AB 过定点 ( ) A. (−12,−12)B. (−1,−1)C. (−12,12)D. (12,−12)【答案】A 【解析】【分析】本题考查直线与圆的位置关系,涉及圆方程的综合应用,属于中档题.根据题意,设P 的坐标为(t,−2−t),由圆的切线性质可得PA ⊥AC ,PB ⊥BC ,则有点A 、B 在以PC 为直径的圆上,求出该圆的方程,与圆C 的方程联立可得直线AB 的方程,将其变形分析可得答案. 【解答】解:根据题意,P 为直线l :x +y +2=0上的动点,设P 的坐标为(t,−2−t), 过点P 作圆C 的两条切线,切点分别为A ,B ,则PA ⊥AC ,PB ⊥BC , 则点A 、B 在以PC 为直径的圆上,又由C(0,0),P(t,−2−t),则以PC 为直径的圆的方程为x(x −t)+y(y +2+t)=0, 变形可得:x 2+y 2−tx +(t +2)y =0,则有{x 2+y 2=1x 2+y 2−tx +(t +2)y =0,联立可得:1−tx +(t +2)y =0,变形可得:1+2y −t(x −y)=0, 即直线AB 的方程为1+2y −t(x −y)=0,则有{1+2y =0x −y =0,解可得{x =−12y =−12,故直线AB 过定点(−12,−12), 故选:A .8.已知F 1,F 2是椭圆与x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过左焦点F 1的直线与椭圆交于A ,B 两点,且满足|AF 1|=2|BF 1|,|AB|=|BF 2|,则该椭圆的离心率是( ) A. 12B. √ 33C. √ 32D. √ 53【答案】B 【解析】【分析】本题考查椭圆的简单性质的应用,考查数形结合以及转化思想的应用,属于中档题. 利用已知条件,画出图形,通过三角形的边长关系,结合余弦定理,求解椭圆的离心率即可. 【解答】解:作出图形,如下:由题意可得:|F 1B|+|BF 2|=2a ,|AB|=|BF 2|,可得|AF 1|=a ,|AF 2|=a ,|AB|=|BF 2|=32a ,|F 1F 2|=2c , 在△ABF 2中,由余弦定理得cos∠BAF 2=94a 2+a 2−94a 22×32a×a=13,在△AF 1F 2中,由余弦定理得cos∠BAF 2=a 2+a 2−4c 22×a×a =1−2(c a)2,所以13=1−2(ca )2,即e =c a =√ 33. 故选:B .二、多选题(本大题共4小题,共20.0分。
高考数学解析几何专题练习与答案解析版
![高考数学解析几何专题练习与答案解析版](https://img.taocdn.com/s3/m/5f0e51fde109581b6bd97f19227916888486b930.png)
高考数学解析几何专题练习解析版82页1.一个顶点的坐标2,0,焦距的一半为3的椭圆的标准方程是()A.19422yxB.14922yxC.113422yxD.141322yx2.已知双曲线的方程为22221(0,0)x y a b ab,过左焦点F 1作斜率为3的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( )A .3B .32C .31D .323.已知过抛物线y 2=2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为22,则m 6+ m 4的值为()A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为A .30oB.45oC.60oD.120o5.已知曲线C 的极坐标方程ρ=22cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上(B)P 、Q 都不在曲线C 上(C)P 不在曲线C 上,Q 在曲线C 上(D)P 、Q 都在曲线C 上6.点M 的直角坐标为)1,3(化为极坐标为()A .)65,2( B.)6,2( C .)611,2( D.)67,2(7.曲线的参数方程为12322tyt x (t 是参数),则曲线是()A 、线段B 、直线C 、圆D 、射线8.点(2,1)到直线3x-4y+2=0的距离是()A .54B .45C .254D .4259.圆06422y x yx的圆心坐标和半径分别为()A.)3,2(、13B.)3,2(、13 C.)3,2(、13 D.)3,2(、1310.椭圆12222by x的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN,则该椭圆离心率取得最小值时的椭圆方程为( )A.1222yxB.13222yxC.12222yxD.13222yx11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB 是直角三角形,则此双曲线的离心率e 的值为()A .32B .2C .2D .312.已知)0(12222baby ax ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021k k ,则21k k 的最小值为1,则椭圆的离心率为( ).(A)22 (B) 42 (C)23 (D)4313.设P 为双曲线11222yx上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21PF PF ,则△PF 1F 2的面积为()A .36B .12C .123D .2414.如果过点m P,2和4,m Q 的直线的斜率等于1,那么m 的值为( )A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516xy 上,若A 点坐标为(3,0),||1AM ,且0PM AM 则||PM 的最小值是()A .2 B.3 C.2 D.316.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D、17.已知椭圆2222:1(0)x y C a b ab>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AFFB ,则k()(A )1(B )2(C )3(D )218.圆22(2)4x y与圆22(2)(1)9x y 的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是()(A)圆或椭圆或双曲线(B)两条射线或圆或抛物线(C)两条射线或圆或椭圆(D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是()A .[6,3) B.(6,2) C.(3,2) D.[6,2]21.直线l 与两直线1y 和70x y 分别交于,A B 两点,若线段AB 的中点为(1,1)M ,则直线l 的斜率为()A .23B .32 C .32D .2322.已知点0,0,1,1O A,若F 为双曲线221xy的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP uu r uu r的取值范围为()A .21,1 B.21,2 C.1,2 D .2,23.若b a,满足12b a ,则直线03b yax过定点().A 21,61B .61,21C .61,21.D 21,6124.双曲线1922yx 的实轴长为 ( )A.4 B. 3 C. 2 D. 125.已知F 1、F 2分别是双曲线1by ax 2222(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若9021PF F ,且21PF F 的三边长成等差数列,则双曲线的离心率是()A .2B.3C. 4D. 526.过A(1,1)、B(0,-1)两点的直线方程是()A.B.C. D.y=x 27.抛物线x y 122上与焦点的距离等于6的点横坐标是()A .1B.2C.3D.428.已知圆22:260C xyx y,则圆心P 及半径r 分别为()A 、圆心1,3P ,半径10r ;B 、圆心1,3P ,半径10r ;C 、圆心1,3P ,半径10r;D 、圆心1,3P ,半径10r。
高中数学解析几何测试题(答案版)
![高中数学解析几何测试题(答案版)](https://img.taocdn.com/s3/m/b0a842cea76e58fafbb00325.png)
解析几何练习题一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( )A 、12B 、12- C 、13D 、13-3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( )A .21B .21- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y xB .032=--y xC .210x y ++=D .210x y +-=6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( )A .0,4B .0,2C .2,4D .4,27.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m ,n 的值分别为A.4和3B.-4和3C.- 4和-3D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( )A.(x -2)2+(y+3)2=12B.(x -2)2+(y+3)2=2C.(x +2)2+(y -3)2=12D.(x +2)2+(y -3)2=210.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242x y -++=的切线,则此切线段的长度为( )A .2B .32C .12D .211.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为( ) A .50x y --=B .50x y -+=C .50x y ++=D .50x y +-=12.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若MN ≥则k 的取值范围是( )A. 304⎡⎤-⎢⎥⎣⎦,B.[]304⎡⎤-∞-+∞⎢⎥⎣⎦,,C. ⎡⎢⎣⎦ D. 203⎡⎤-⎢⎥⎣⎦, 二填空题:(本大题共4小题,每小题4分,共16分.)13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的值最小时,点P 的坐标是 。
高三数学解析几何习题及答案
![高三数学解析几何习题及答案](https://img.taocdn.com/s3/m/29e89a3c2cc58bd63086bd7e.png)
数学试卷〔解析几何综合卷〕时间:90分钟,满分:120分一、选择题〔共60分,每小题5分,说明:选做题3选2〕1. 从集合{1,2,3…,11}中任选两个元素作为椭圆方程22221x y m n +=中的m 和n,则能组成落在矩形区域{(,)|||11,||9}B x y x y =<<且内的椭圆个数为A.43B. 72C. 86D. 902. 若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 A .2- B .2 C .4- D .43. 短轴长为5,离心率32=e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为〕A .3B .6C .12D .244. 以双曲线1322=-x y 的一个焦点为圆心,离心率为半径的圆的方程是A .4)2(22=+-y xB .2)2(22=-+y xC .2)2(22=+-y xD .4)2(22=-+y x5. 抛物线241x y =的焦点坐标是 A .〔161,0〕B .〔0,161〕C .〔0,1〕D .〔1,0〕6. 已知双曲线的中心在原点,焦点在x 轴上,它的一条渐近线与x 轴的夹角为α,且34παπ<<,则双曲线的离心率的取值X 围是A .)2,1(B .)2,2(C .〔1,2〕D .)2,1(7.〔选作〕设21,F F 分别是双曲线1922=-y x 的左右焦点.若点P 在双曲线上,且021=•PF PF =+A .10B .102C .5D .528. 已知直线422=+=+y x a y x 与圆交于A 、B 两点,O 是坐标原点,向量OA 、OB 满足||||OB OA OB OA -=+,则实数a 的值是A .2B .-2C .6或-6D .2或-29. 直角坐标平面内,过点P 〔2,1〕且与圆 224x y +=相切的直线 A .有两条 B .有且仅有一条 C .不存在 D .不能确定10. 双曲线24x -212y =1的焦点到渐近线的距离为A .23B .2C .3D .111. 〔选作〕点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点〞,那么下列结论中正确的是 A .直线l 上的所有点都是“点〞 B .直线l 上仅有有限个点是“点〞 C .直线l 上的所有点都不是“点〞D .直线l 上有无穷多个点〔点不是所有的点〕是“点〞12. 6A .22124x y -=B .22142x y -=C .22146x y -=D .221410x y -= 13. 经过圆:C 22(1)(2)4x y ++-=的圆心且斜率为1的直线方程为 A .30x y -+=B .30x y --= C .10x y +-=D .30x y ++=二、填空题〔共30分,每小题5分,说明:选作题4选2,注明所选题号。
高考数学——解析几何专题经典试题练习及解析
![高考数学——解析几何专题经典试题练习及解析](https://img.taocdn.com/s3/m/a03786cd6bd97f192379e910.png)
1 / 21高考数学解析几何专题经典试题练习及解析1、已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1)(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足、证明:存在定点Q ,使得|DQ |为定值【解析】(1)由题意可得:22222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y .因为AM ⊥AN ,∴·0AM AN =,即()()()()121222110x x y y --+--=,① 当直线MN 的斜率存在时,设方程为y kx m =+,如图1. 代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=,2121222426,1212km m x x x x k k-+=-=++ ②, 根据1122,y kx m y kx m =+=+,代入①整理可得:()()()()221212k1x 2140x km k x x m ++--++-+=将②代入,()()()22222264k 121401212m kmkm k m k k-⎛⎫++---+-+= ⎪++⎝⎭,2 / 21整理化简得()()231210k m k m +++-=,∵2,1A ()不在直线MN 上,∴210k m +-≠,∴23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭, 所以直线过定点直线过定点21,33E ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,如图2.代入()()()()121222110x x y y --+--=得()2212210x y -+-=,结合2211163x y +=,解得()1122,3x x ==舍,此时直线MN 过点21,33E ⎛⎫-⎪⎝⎭,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,3 / 21所以AE 中点Q 满足QD 为定值(AE=). 由于()21,32,13,A E ⎛⎫-⎪⎝⎭,故由中点坐标公式可得41,33Q ⎛⎫ ⎪⎝⎭. 故存在点41,33Q ⎛⎫⎪⎝⎭,使得|DQ|为定值. 2、已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点、求直线AB 的方程、【答案】(Ⅰ)221189x y +=;(Ⅰ)132y x =-,或3y x =-、 【解析】(Ⅰ)椭圆()222210x y a b a b +=>>的一个顶点为()0,3A -,∴3b =,由OA OF=,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在,4 / 21设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭, 由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-. 3、已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =(Ⅰ)求椭圆C 的方程:5 / 21(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q 、求||||PB BQ 的值【解析】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++. 直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.6 / 21很明显0P Q y y <,且:PQPB y PQy =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭, 而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y BQy ==. 4、已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.7 / 21所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d==,由两点之间距离公式可得||AM==.所以△AMN的面积的最大值:11825⨯=.5、如下图已知椭圆221:12xC y+=,抛物线22:2(0)C y px p=>,点A是椭圆1C与抛物线2C的交点,过点A的直线l交椭圆1C于点B,交抛物线2C于M(B,M不同于A)(Ⅰ)若116=p,求抛物线2C的焦点坐标;(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值、【答案】(Ⅰ)1(,0)32;【解析】(Ⅰ)当116=p时,2C的方程为218y x=,故抛物线2C的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x yB x y M x y I x y mλ=+,8/ 219 / 21由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,40p ≤, 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .10 / 21将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p模拟试题1、在平面直角坐标系中,曲线Γ:0(),F x y =和函数21()4f x x =的图像关于点(1,2)对称. (1)函数21()4f x x =的图像和直线4y k x =⋅+交于A 、B两点,O 是坐标原点,求证:2AOB π∠=; (2)求曲线Γ的方程;(3)对于(2),依据课本章节《圆锥曲线》的抛物线的定义,求证:曲线Γ为抛物线.【解析】(1)设()()1122,,A B x y x y ,,由2144y x y kx ⎧=⎪⎨⎪=+⎩得24160x kx --=,则1212+4,16x x k x x =⋅=-, 又1212+OA OB x x y y ⋅=⋅⋅ ()()22112121222211++16+160441616x x x x x x x x =⋅⋅=⋅⋅=-⨯-=,11 / 21所以OA OB ⊥,所以2AOB π∠=;(2)设曲线Γ:0(),F x y =上任意一点(),P x y ,点P 关于点(1,2)对称的点()111,P x y ,则1124x xy y =-⎧⎨=-⎩,代入到214y x =中得()21424y x -=-, 所以曲线Γ的方程是2134y x x =-++;(3)设曲线Γ:0(),F x y =上任意一点(),P x y ,则满足2134y x x =-++,设点()2,3F ,直线:5l y =,则()()22223PFx y =-+-()()22222211233244x x x x x x ⎛⎫⎛⎫=-+-++-=-+-+ ⎪ ⎪⎝⎭⎝⎭()2222251123544x x x x y ⎛⎫⎛⎫=-+=-++-= ⎪ ⎪⎝⎭-⎝⎭,所以曲线Γ:0(),F x y =上任意一点P 到点()2,3F 的距离与到直线:5l y =的距离相等,根据抛物线的定义得到曲线Γ为抛物线.2、点P 是直线2y =-上的动点,过点P 的直线1l 、2l 与抛物线2y x 相切,切点分别是A 、B .(1)证明:直线AB 过定点;(2)以AB 为直径的圆过点()2,1M ,求点P 的坐标及圆的方程. 【解析】(1)设点()11,A x y 、()22,B x y 、(),2P b -,对函数2yx 求导得2y x '=,所以,直线1l 的方程为()1112y y x x x -=-,即1120x x y y --=,同理可得直线2l 的方程为2220x x y y --=,12 / 21将点P 的坐标代入直线1l 、2l 的方程得1122220220bx y bx y -+=⎧⎨-+=⎩,所以,点A 、B 的坐标满足方程220bx y -+=,由于两点确定一条直线,所以,直线AB 的方程为220bx y -+=,该直线过定点()0,2; (2)设直线AB 的方程为()22y kx k b =+=,将直线AB 的方程与抛物线的方程联立得220x kx --=,则240k ∆=+>,由韦达定理得122x x =-,12x x k +=,因为()2,1M 在AB 为直径的圆上,所以0MA MB ⋅=,()()11112,12,1MA x y x kx =--=-+,同理()222,1MB x kx =-+,()()()()()()()21212121222111250MA MB x x kx kx k x x k x x ∴⋅=--+++=++-++=,即2230k k +-=,解得1k =或3k =-.当1k =时,1,22P ⎛⎫-⎪⎝⎭,直线AB 的方程为2y x =+,圆心为15,22⎛⎫⎪⎝⎭,半径2r ==,圆的标准方程为22159222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭; 当3k =-时,3,22P ⎛⎫-- ⎪⎝⎭,直线AB 的方程为32y x =-+,圆心为313,22⎛⎫- ⎪⎝⎭,半径r ==2231385222x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭. 综上所述,当1k =时,1,22P ⎛⎫- ⎪⎝⎭,圆的标准方程为22159222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;13 / 21当3k =-时,3,22P ⎛⎫-- ⎪⎝⎭,圆的标准方程为2231385222x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭.3、设椭圆E 的方程为2212x y +=,斜率为1的动直线l 交椭圆E 于A 、B 两点,以线段AB 的中点C 为圆心,AB 为直径作圆S(1)求圆心C 的轨迹方程,并描述轨迹的图形; (2)若圆S 经过原点,求直线l 的方程;(3)证明:圆S 内含或内切于圆223x y +=.【答案】(1)圆心C的轨迹方程为1233y x x ⎛⎫=--<< ⎪ ⎪⎝⎭,轨迹为线段;(2)3y x =±;(3) 【解析】(1)设斜率为1的动直线l 的方程为y x t =+,联立椭圆方程2222x y +=,可得2234220x tx t ++-=,设()11,A x y 、()22,B x y ,则()2221612222480t t t ∆=--=->,即t <<由韦达定理得1243t x x +=-,212223t x x -=,则中点2,33t t C ⎛⎫- ⎪⎝⎭,可得圆心C的轨迹方程为12y x x ⎛=-<< ⎝⎭,即轨迹为线段; (2)由(1)可得AB ===可得圆S 的方程为2222124339t t t x y -⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,若圆S 经过原点,可得()2243599t t -=,解得3t =±,14 / 21因此,直线l的方程为y x =±; (3)圆223x y +=的圆心设为()0,0O圆S 的圆心2,33t t S ⎛⎫-⎪⎝⎭由222225124133393933t t OS t ⎫⎛⎫--=--+=+-⎪ ⎪⎪ ⎪⎝⎭⎝⎭,()03m m =<<,则2293m t -=,可得()2222941312033333m m OS m ⎫--=+-=--≤⎪⎪⎝⎭, 可得圆S 内含或内切于圆223x y +=.4、在平面直角坐标系xOy 中,抛物线C 关于x 轴对称,顶点为坐标原点,且经过点()2,2 (1)求抛物线C 的标准方程;(2)过点()1,0Q 的直线交抛物线于M 、N 两点,P 点是直线:1l x =-上任意一点.证明:直线PM PQ PN 、、的斜率依次成等差数列.【解析】(1)由条件设抛物线为22y px =,而点()2,2在抛物线上,从而有2222p =⨯,得1p =,故抛物线方程为22y x =;(2)设点()1,P t -是直线l 上任意一点,15 / 21由条件知直线MN 的斜率不等于0,设:1MN x my =+交抛物线于()()1122,,M x y N x y 、,由212x my y x=+⎧⎨=⎩可得:2220y my --= 从而有12122,2y y m y y +==-1212112PM PN PQ y t y t tk k k x x --===-++,, 121211PM PN y t y tk k x x --+=+++ ()()()12122121222424my y tm y y tm y y m y y +-+-=+++222424tm t t m --==-+, 而2PQ k t =-,即证2PM PN PQ k k k +=. 即证直线PM ,PQ ,PN 的斜率成等差数列.5、已知椭圆C :22221x y a b +=(0a b >>)的离心率是2,原点到直线1x y a b +=的距离等于3. (1)求椭圆C 的标准方程.(2)已知点()0,3Q ,若椭圆C 上总存在两个点,A B 关于直线y x m =+对称,且328QA QB ⋅<,求实数m 的取值范围【答案】(1)22142x y+=;(2)13⎛⎫⎪⎪⎝⎭,.【解析】(1)因为椭圆的离心率是2,原点到直线1x ya b+=的距离等于3,所以=⎪⎪⎨=,解得224,2a b==,所以椭圆C的标准方程为22142x y+=、(2)根据题意可设直线AB的方程为y x n=-+,联立22142y x nx y=-+⎧⎪⎨+=⎪⎩,整理得22342(2)0x nx n-+-=,由22(4)432(2)0n n=--⨯⨯->△,得26n<、设1122(),(,)A x x nB x x n-+-+,,则()21212224,33nnx x x x-+==又设AB的中点为00()M x x n-+,,则12002,233x x n nx x n+==-+=.由于点M在直线y x m=+上,所以233n nm=+,得3n m=-代入26n<,得296m<,所以m<<,因为1122(,3),(,3)QA x x n QB x x n=-+-=-+-,所以212122(3)()(3)QA QB x x n x x n⋅=--++-2224(2)4(3)3619(3)333n n n n nn---+=-+-=.由328QA QB⋅<,得2361928n n-+<,即13n-<<,所以133m-<-<,即113m-<<,16/ 2117 / 21所以113m m ⎧<<⎪⎪⎨⎪-<<⎪⎩,解得13m <<.实数m的取值范围为133⎛⎫- ⎪ ⎪⎝⎭,. 6、椭圆2222:1(0)x y C a b a b +=>>F 与长轴垂直的直线与椭圆在第一象限相交于点M ,1||2MF =. (1)求椭圆C 的标准方程;(2)设椭圆C 的左顶点为A ,右顶点为B ,点P 是椭圆上的动点,且点P 与点A ,B 不重合,直线PA 与直线3x =相交于点S ,直线PB 与直线3x =相交于点T ,求证:以线段ST 为直径的圆恒过定点.【答案】(1)2214x y +=;(2)证明见解析. 【解析】(1)由题意,离心率为c e a ==,右焦点为(),0F c ,将x c =代入22221x y a b +=,可得2b y a=±;又过椭圆右焦点F 与长轴垂直的直线与椭圆在第一象限相交于点M ,1||2MF =,所以21||2b MF a ==,联立2212c a b a ⎧==⎪⎪⎨⎪=⎪⎩解得:2a =,1b =,18 / 21所以椭圆C 的标准方程为2214x y +=;(2)证明:由(1)知()2,0A -,()2,0B ,设直线AP 的斜率为k ,则直线AP 的方程为(2)y k x =+, 联立3x =得()3,5S k ;设()00,P x y 代入椭圆的方程有:()22000124x y x +=≠±整理得:()220144y x =--,故2020144y x =--, 又002y k x =+,002y k x '=-(k ,k '分别为直线PA ,PB 的斜率) 所以2020144y kk x '==--, 所以直线PB 的方程为:1(2)4y x k =--,联立3x =得13,4T k ⎛⎫ ⎪-⎝⎭, 所以以ST 为直径的圆的方程为:2225151(3)2828k k x y k k ⎡⎤⎛⎫⎛⎫-+--=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令0y =,解得:3x =±, 所以以线段ST为直径的圆恒过定点3⎛⎫± ⎪ ⎪⎝⎭. 7、已知定点()1,0M -,圆()22:116N x y -+=,点Q 为圆N 上动点,线段MQ 的垂直平分线交NQ 于19 / 21点P ,记P 的轨迹为曲线C (1)求曲线C 的方程;(2)过点M 与N 作平行直线1l 和2l ,分别交曲线C 于点A 、B 和点D 、E ,求四边形ABDE 面积的最大值.【答案】(1)22143x y +=;(2)6. 【解析】(1)由中垂线的性质得PM PQ =,42MP NP PQ NP MN ∴+=+=>=, 所以,动点P 的轨迹是以M 、N 为焦点,长轴长为4的椭圆,设曲线C 的方程为()222210x y a b a b +=>>,则2a =,b =,因此,曲线C 的方程为:22143x y +=;(2)由题意,可设2l 的方程为1x ty =+,联立方程得()2222134690431x y t y ty x ty ⎧+=⎪⇒++-=⎨⎪=+⎩, 设()11,D x y 、()22,E x y ,则由根与系数关系有122122634934t y y t y y t ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩,所以()2212134t DE t +===+,20 / 21同理()2212134t AB t +=+,1l 与2l的距离为d =所以,四边形ABDE的面积为24S =,u =,则1u ≥,得224241313u S u u u==++,由双勾函数的单调性可知,函数13y u u=+在[)1,+∞上为增函数, 所以,函数2413S u u=+在[)1,+∞上为减函数, 当且仅当1u =,即0t =时,四边形ABDE 的面积取最大值为6.8、已知椭圆C :22221x y a b +=(0a b >>)的左、右焦点分别为1F ,2F ,M 为椭圆上任意一点,当1260F MF ∠=︒时,12F MF △2b =(1)求椭圆C 的方程;(2)设O 为坐标原点,过椭圆C 内的一点()0,t 作斜率为k 的直线l 与椭圆C 交于A ,B 两点,直线OA ,OB 的斜率分别为1k ,2k ,若对任意实数k ,存在实数m ,使得124k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)1,2⎛⎫+∞ ⎪⎝⎭. 【解析】(1)设1MF m =,2MF n =,则2m n a +=,在12MF F △中,1sin 602S mn =︒=4mn =, 由余弦定理可得2222cos604m n mn c +-︒=,即()2234m n mn c +-=,21 / 21代入计算可得223a c -=,23b ∴=,又2b =,2a ∴=,则椭圆C 的方程为22143x y +=; (2)设直线l 的方程为y kx t =+, 由22143y kx t x y =+⎧⎪⎨+=⎪⎩,得()2223484120k x ktx t +++-=, 设()11,A x y ,()22,B x y , 则122834kt x x k +=-+,212241234t x x k-=+. ()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--. 由124k k mk +=对任意k 成立,得()221223t m t =--, ()23212m t m -∴=, 又()0,t 在椭圆内部,203t ∴<<, 即()321032m m-<<,解得12m >. m ∴的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.。
高三数学解析几何专题(含解析)
![高三数学解析几何专题(含解析)](https://img.taocdn.com/s3/m/802bb432f68a6529647d27284b73f242326c315b.png)
高三数学解析几何专题(含解析)1.【理科】已知动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且∠APB=2θ,且d1d2cos2θ=1.Ⅰ)求动点P的轨迹C的方程;Ⅱ)过点B作直线l交轨迹C于M,N两点,交直线x=4于点E,求|EM||EN|的最小值。
2.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的离心率为2,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=7/2,PF·PF3/12=4.其中O为坐标原点。
I)求椭圆C的方程;Ⅱ)如图,过点S(0,1/3),且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。
3.已知两定点F1(-2,0)、F2(2,0),满足条件PF2-PF1=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。
Ⅰ)求k的取值范围;Ⅱ)如果AB=63,且曲线E上存在点C,使OA+OB=mOC,求m的值和△ABC的面积S。
4.已知抛物线W:y=ax^2经过点A(2,1),过A作倾斜角互补的两条不同的直线L1、L2.1)求抛物线W的方程及其准线方程;2)当直线L1与抛物线W相切时,求直线L2与抛物线W所围成封闭区域的面积;3)设直线L1、L2分别交抛物线W于B、C两点(均不与A重合),若以BC为直径的圆与抛物线的准线相切,求直线BC的方程。
5.动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.I)求动点M的轨迹C的方程;II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由。
6.椭圆M的中心在坐标原点D,左、右焦点F1、F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,26)。
高中数学解析几何应用复习 题集附答案
![高中数学解析几何应用复习 题集附答案](https://img.taocdn.com/s3/m/c56cd1973086bceb19e8b8f67c1cfad6195fe9ba.png)
高中数学解析几何应用复习题集附答案高中数学解析几何应用复习题集附答案解析几何是高中数学中的一门重要学科,它将代数与几何相结合,通过分析几何中的图形性质和特点,运用代数方法来解决几何问题。
在高中数学的学习过程中,解析几何是一个相对难度较大的部分,需要学生进行大量的练习和复习。
为了帮助同学们更好地巩固解析几何的知识,下面将为大家提供一套高中数学解析几何应用的复习题目,并附上相应的答案。
题目一:已知点A(1,2)、B(4,5)、C(6,1),求△ABC的周长和面积。
解法:首先,我们计算△ABC的边长AB、BC和AC的长度:AB = √((x2 - x1)² + (y2 - y1)²)= √((4 - 1)² + (5 - 2)²)= √(3² + 3²)= √(18)= 3√2BC = √((x2 - x1)² + (y2 - y1)²)= √((6 - 4)² + (1 - 5)²)= √(2² + (-4)²)= √(20)= 2√5AC = √((x2 - x1)² + (y2 - y1)²)= √((6 - 1)² + (1 - 2)²)= √(5² + (-1)²)= √(26)因此,△ABC的周长为AB + BC + AC = 3√2 + 2√5 + √26。
接下来,我们计算△ABC的面积,可以利用向量AB和向量AC的叉乘得到:S △ABC = 1/2 * |(x1 * y2 + x2 * y3 + x3 * y1) - (y1 * x2 + y2 * x3 +y3 * x1)|= 1/2 * |(1 * 5 + 4 * 1 + 6 * 2) - (2 * 4 + 5 * 6 + 1 * 1)|= 1/2 * |(5 + 4 + 12) - (8 + 30 + 1)|= 1/2 * |-6|= 3所以,△ABC的面积为3。
高中数学解析几何基础复习 题集附答案
![高中数学解析几何基础复习 题集附答案](https://img.taocdn.com/s3/m/d7385238178884868762caaedd3383c4bb4cb432.png)
高中数学解析几何基础复习题集附答案高中数学解析几何基础复习题集附答案在高中数学中,解析几何是一个非常重要的内容。
解析几何是指在直角坐标系中,通过代数的方法来研究几何问题。
掌握解析几何的基础知识对于学习高中数学以及应用数学都非常有帮助。
为了帮助大家进行复习,下面将提供一些高中数学解析几何基础题目,并附上详细的答案解析。
1. 已知直线L1:2x + 3y = 5和L2: y = 4x - 1,求两直线的交点坐标。
解析:首先将直线L1和L2的方程组合,得到2x + 3(4x - 1) = 5,化简得到14x - 3 = 5,继续化简得到14x = 8,x = 8/14 = 4/7。
代入L2的方程求y的值,得到y = 4(4/7) - 1 = 16/7 - 7/7 = 9/7。
所以两直线的交点坐标为(4/7, 9/7)。
2. 已知直线L:x + y = 4和曲线C:x^2 + y^2 = 5,求直线与曲线的交点坐标。
解析:将直线L的方程代入曲线C的方程中,得到(x + y)^2 + y^2 = 5,展开得到x^2 + y^2 + 2xy + y^2 = 5,化简得到x^2 + 2xy + 2y^2 = 5。
由于直线L与曲线C有交点,所以存在某个x和y满足这个方程。
观察方程的左边,可以发现它可以写成(x + y)^2 + y^2 = 5,也就是(x +y)^2 = 5 - y^2。
由于(x + y)^2必须大于等于0,所以5 - y^2必须大于等于0,解这个不等式得到-√5 ≤ y ≤ √5。
将y的取值范围代入方程(x +y)^2 = 5 - y^2,解得x = 4 - y。
因此,两直线的交点坐标为(x, y) = (4 - y, y),其中-√5 ≤ y ≤ √5。
3. 已知平面内三点A(1, 2),B(3, -4),C(-2, 3),判断是否共线。
解析:判断三点是否共线可以利用向量的共线条件。
设有两个向量AB和AC,若这两个向量共线,则存在一个实数k,使得AB = kAC。
高中解析几何试题及答案
![高中解析几何试题及答案](https://img.taocdn.com/s3/m/1da99abd51e2524de518964bcf84b9d529ea2c4f.png)
高中解析几何试题及答案一、选择题(每题4分,共40分)1. 若点P(2,3)在直线l上,则直线l的方程不可能是()A. 2x-y+1=0B. x+2y-7=0C. 3x-2y+4=0D. 4x+3y-5=02. 已知圆C的方程为(x-1)^2+(y-2)^2=25,圆心C的坐标为()A. (1,2)B. (-1,-2)C. (3,-2)D. (-3,2)3. 直线2x+y-3=0与x轴的交点坐标为()A. (3/2, 0)B. (0, 3)C. (3, 0)D. (0, -3)4. 若直线l的倾斜角为45°,则直线l的斜率k为()A. 1B. -1C. 0D. 无法确定5. 已知点A(1,2),B(4,6),则线段AB的中点坐标为()A. (2,4)B. (3,4)C. (2.5,4)D. (3,3)6. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1,若双曲线C的渐近线方程为y=±(b/a)x,则双曲线C的离心率为()A. √(1+(b/a)^2)B. √(1-(b/a)^2)C. √(a^2+b^2)D. √(a^2-b^2)7. 已知抛物线C的方程为y^2=4x,若点P(1,2)在抛物线C上,则抛物线C的焦点坐标为()A. (1,0)B. (0,1)C. (1,1)D. (0,2)8. 已知椭圆C的方程为x^2/a^2 + y^2/b^2 = 1,若椭圆C的离心率为e=√3/2,则椭圆C的长轴与短轴之比为()A. 2:1B. 1:2C. √3:1D. 1:√39. 若直线l的方程为y=kx+b,且直线l过点(1,2)和(2,3),则直线l的斜率k为()A. 1/2B. 1C. 3/2D. 210. 已知直线l1: x+y-1=0与直线l2: 2x-y+3=0平行,则直线l1与l2之间的距离为()A. √5B. 2√5C. √10D. 2√10二、填空题(每题4分,共20分)11. 已知直线l的方程为3x-4y+5=0,若点P(2,-1)在直线l上,则直线l与x轴的交点坐标为________。
2023高考数学解析几何复习 题集附答案
![2023高考数学解析几何复习 题集附答案](https://img.taocdn.com/s3/m/e8ccc20568eae009581b6bd97f1922791788be52.png)
2023高考数学解析几何复习题集附答案2023高考数学解析几何复习题集附答案*本文为2023年高考数学解析几何复习题集,共附带答案。
以下按照题目类型分类,分别给出题目和答案。
一、点、线、面的位置关系1. 已知点A(2,3)和B(-1,4),求向量AB的坐标。
解析:向量AB的坐标表示为<XB - XA, YB - YA>,其中XA和YA分别是点A的横纵坐标,XB和YB分别是点B的横纵坐标。
代入数据,得到向量AB的坐标为<-3, 1>。
2. 已知直线L的方程为2x - 3y + 6 = 0,求过点(1,2)且垂直于直线L 的直线方程。
解析:由于垂直于直线L的直线斜率的乘积为-1,所以我们需要知道直线L的斜率,即L的系数比例。
将L的方程转化为斜截式方程y = mx + b的形式,其中m为斜率,b为截距。
将2x - 3y + 6 = 0转化为y = mx + b形式得到 y = (2/3)x - 2。
斜率m 为2/3,垂直于L的直线的斜率为-3/2(斜率的乘积为-1)。
过点(1,2)且斜率为-3/2的直线方程为y - 2 = -3/2(x - 1)。
二、直线与圆的位置关系1. 已知直线L的方程为2x - 3y + 6 = 0,圆C的方程为x^2 + y^2 - 4x + 6y - 12 = 0,判断直线L和圆C的位置关系。
解析:我们可以通过求直线L的斜率与圆C的判别式(D)的符号来判断直线和圆的位置关系。
首先,将L的方程转化为斜截式方程y = mx + b的形式,其中m为斜率,b为截距。
将2x - 3y + 6 = 0转化为y = mx + b形式得到 y = (2/3)x - 2。
斜率m 为2/3。
将圆C的方程中的项进行配方,并移项得到(x - 2)^2 + (y + 3)^2 = 25。
判别式D为 D = (m^2 + 1)r^2 - (2mb + 2a)r + (b^2 + a^2 - r^2)其中,a、b分别为直线L和圆心的横纵坐标,r为圆的半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
李
解析几何部分复习题及答案
1. 设 a i j , b 2 j k ,则 a b
11 。
a bx a 2. 已知 a 为非零向量, b 2 , a 与 b 的夹角为 ,求 lim 。 x0 3 x
lim
x0
a bx a x
yoz 面上投影直线:
5 y 4 z 1 0 ; x 0
xoz 面上投影直线:
5 x 3 z 7 0 y 0
x 2 y 2 z 2 1 31. 求两个球面的交线 2 在 xOy 面上的投影曲线方程。 2 2 x y 1 z 1 1 x2 2 y2 2 y 0 z 0
| AC |2 | AB AD |2 | 6a b |2 (6a b) (6a b) 225 | BD |2 | AB AD |2 | 4a 5b |2 593
| AC | 15
| BD | 593
6. 在 yoz 面中求向量 p ,使它垂直于向量 a (12, 3, 4) 且与 a 有相同的模。
1 3 ( , 1, ) 2 2
22. P 1,1,2 到平面 x 2 y 2 z 1 的距离为 。
4 3
23. 求点 P0 1,0,1 到直线 L :
x y 3 的距离。 3 x y z 1
3
东华
李
求出一个线上点 P 1, 4, 0 ,直线的方向向量为 s 1, 1, 2
3. 求与三点 M 1 (1, 1, 2), M 2 (3, 3,1), M 3 (3,1, 3) 决定的平面垂直的单位向量。
17 (3, 2, 2) 17
4. 设 a , b 为非零向量,且向量 a 在向量 b 上的投影等于向量 b 在向量 a 上的投影,问向量
a , b 有什么关系。
18. 在直线方程 行。
m 2, n 0, p 6
19. 求 球 面 x y z 2 x 2 z 11 的 与 平 面 x y z 1 平 行 , 且 与 直 线
2 2 2
x y z 3 垂直的直径所在的直线方程。 1 1 2
( x 1) 2 y 2 ( z 1) 2 13 ,球心为 1, 0,1 , s (1,1, 1) (1, 1, 2) (1, 3, 2) ,
1 35 210 | AB AC | ; (3)高= 2 2 6
x 1 y z 绕 z 轴旋转生成的旋转曲面方程。 0 1 1
设曲面上任意一点为 M ( x, y , z ) ,过 M 做平面垂直于 z 轴交直线于点 M ( x1 , y1 , z ) , M 在 直线上所以 x1 1, y1 z ,两个点到 z 轴距离相等, x 2 y 2 x12 y12 1 z 2 ,故所求曲 面方程为 x y z 1
2 2 2 O 到 M1, M2 距离相等推出 t=1,进而 R=5,( x 1) ( y 1) z 25 O (7t 6, t , 5 5t ) ,
29. 求直线
x y z 1 在平面 x y z 0 上的投影直线。 x y z 1
52 39 p ( 0 , , ) 5 5 7. 已知非零向量 a , b 不共线,令 c ma b ,其中 m 为实数,证明当 c 最小时 c a 。
设 p (0, y , z ) , p a 0 ,
| p || a |
| c |2 ( ma b) (ma b) m 2 | a |2 2ma b | b |2
作平面束 x y z 1 ( x y z 1) 0 , ( 1) x (1 ) y ( 1) z 1 0
( 1,1 , 1) (1,1,1) 0 , 1 , y z 1 0
= lim
x0
= lim x a bx + a ) x 0 (
a bx a
2
2
a +|bx|2 +2xa b a x ( a bx + a )
2
2
lim
x0
|bx|2 +2x | a | | b |
1 2 x ( a bx + a )
lim
4 x 2 +2x | a | 1 x0 2x a
x y 0 x 3 y 1 0 和 L2 : 相交的直 x y z 4 0 y z 2 0
4 5
x 9 y 5 z 20 0
设通过 L2 和 P 的平面方程为 x 3 y 1 ( y z 2) 0 ,将 P (2, 3,1) 代入方程得
d
P0 P s |s|
93 3
24. 三角形 ABC 的三个顶点分别为 A(1,0,0), B (3,1,1), C ( 2,1,2) ,求(1)过 A,B,C 三点的平面的法向量; (2)求三角形 ABC 的面积; (3)求点 C 到边 AB 的高。 (1) n AB AC 1, 5, 3 ; (2) S 25. 求直线 L :
cos
1 2
cos
2 2
cos
2 1 , 3 2
3 4
3
9. 直线
x2 y3 z 4 π 与平面 2 x y z 6 0 的交角为 。 1 1 2 6
10. 平面 3 x y z 4 与平面 x y z 1 的夹角为 arccos
设 M 1 (1, 2,1), M 2 (5, 2, 7), M 1M 2 4(1,1, 2), n1 (1,1, 2) , 所 求 平 面 法 向 n1 (1,1, 2) , (1,1, 2) n1 2(1,1,1) ,故可取所求平面法向量为
直线的方程为
x 1 y z 1 1 3 2
20. 求点 P0 1,2,0 在平面 x 2 y z 1 0 上的投影点的坐标。
(
5 2 2 , , ) 3 3 3 x 1 y z 3 上投影点的坐标。 1 2 3
21. 求点 P 0,0,1 在直线
a b |b | a b |a|
| a | | b | 或 a b 0
5. 设 a 2 2 , b 3 ,向量 a 与向量 b 的夹角为
π , AB 5a 2b , AD a 3b ,试 4
求以 AB , AD 为边的平行四边形的对角线的长度。
2 2 2
26. 设圆柱面 S 的轴线是 L : S 的方程。
x y 1 z 2 ,点 p 0 (1,1,0) 在圆柱面 S 上,求圆柱面 1 2 2
设圆柱面上任一点为 P ( x, y , z ) ,L 上一点 M (0,1, 2),s (1, 2, 2) ,
MP ( x, y, z 2), MP 0 ( x 1, y 1, z ) ,P0, P 到 L 距离相等所以
(3)
2, m 2 或>10 时相离。
28. 若球面过点 M 1 1,3,3 和 M 2 5,2,0 且球心在直线
x 2 y z 1 上,求它的方程。 2 x y 3 z 3
4
东华
李
直线化为对称式方程
x6 y z 5 ,球心在直线上,故可设球心坐标为 7 1 5
33 。 11
11. 平面通过 M 1 ( a , a , 0), M 2 ( a , a , a ), O (0, 0, 0) 求该平面与平面 xoy 的交角。 ( a 0)
OM 1 (a, a, 0), OM 2 ( a, a, a ),
n1 (1, 1, 2), n2 (0, 0,1)
5
x 9 y 5 z 20 0 x 2 y 5 z 9 0 ,所求直线为两个平面的交线 L2 : x 2 y 5z 9 0
x4 y z 5 中,m, n, p 各取何值时, 直线与坐标平面 xoy , yoz 都平 2m n 6 p
x y 1 z 2 3 1 2
16. 过 0,0,0 而且与直线
x 2 y z 1 平行的直线方程为 2 x y z 0
。
2
东华
李
x y z 1 3 5
17. 求过点 P (2, 3,1) 且与两直线 L1 : 线方程。 设通过 L1 和 P 的平面方程为 x y z 4 ( x y ) 0 ,将 P (2, 3,1) 代入方程得
MP s MP0 s , MP s MP0 s ,
(2 y 2 z 2) 2 (2 x z 2) 2 (2 x y 1) 2 32
27. 讨论平面 x 2 y 2 z m 0 与球面 x y z 8 x 2 y 6 z 22 0 间各种相
1
东华
李
当m
a b |a|
2
2
时 c 最小,此时 c a m 2 | a |2 a b a b a b 0
8. 已知两点 M 1 4, 2 ,1 和 M 2 3,0,2 ,计算向量 M 1 M 2 的模、方向余弦和方向角。