第四章 电气主接线及设计1讲解

合集下载

Chap4 水电站电气主接线

Chap4 水电站电气主接线

Lanzhou University of Technology
6. 双母线带旁路母线接线 接线图
W3 QS4
QF4
QF2
W2
W1 QF1 电源1 电源 电源2 电源
Lanzhou University of Technology
母联兼作旁路断路器 一组母线带旁路 W 两组母线带旁路 增设旁路跨条
G
Lanzhou University of Technology
旁路母线的作用 不停电检修进出线断路器。 不停电检修进出线断路器。 操作方式(检修QF 不停电) 操作方式(检修 4,且WL4不停电) 经QF 如 A 、 B 段 经 1 和 QS1 、 QS2 并列 运 行 , 则 闭 合 QS5→ 断开 1→ 断开 断开QF 断开QS1→ 闭合 闭合QS3→ 闭合 1 使 闭合QF W3带电(不要首先闭合 8)。此时若 3隐含故障, 带电(不要首先闭合QS 此时若W 隐含故障, 则由继电保护装置动作断开QF 则由继电保护装置动作断开 1。 充电正常,操作可以继续进行: 合上QS 若W3充电正常, 操作可以继续进行:→合上 8→ 断 开 QF4 。 这 时 WL4 由 母 线 B→QS2→QF1→QS3 → 供电。 并由QF 替代断路器QF →W3→QS8→ WL4 供电 。 并由 1 替代断路器 4 。 QF4检修前,应把 6、QS7断开。 检修前,应把QS 断开。 适用范围 中小型发电厂和35~110kV的变电所。 的变电所。 中小型发电厂和 的变电所
Lanzhou University of Technology
3. 单母线分段加装旁路母线接线 分段断路器QF 兼旁母断路器) 接线图 (分段断路器 1兼旁母断路器)
WL1 WL2 WL3 WL4

发电厂电气部分_第四章

发电厂电气部分_第四章

WL1
QS1
QS11
QF1
QS12 QS13
QS21 QF2
QS22
QS2
T1 T2
WL2 WI
WII
六、单元接线
1、发电机-双绕组变压器单元接线
优点:接线简单,开关设备少,操作简便。 存在的技术问题: ①当主变QS1发生故障,除了跳主变高压侧断路器外还需跳发电机磁 场开关。 ②发电Q机F1故障时,若变压器高压侧断路器失灵拒跳,只能通过失 灵保护出口启动母差保护或发远方跳闸信号使线路对侧断路器跳
T
闸;若因通道原因远方跳闸信号失效,则只能由对侧后备保护切 除故障,故障切除时间大大延长,会造成发电机、主变压器严重 损坏。QS2 ③发电G机故障跳闸时,将失去厂用工作电源,而这种情况下备用 电源的~快速切换极有可能不成功,因而机组面临厂用电中断的威 胁。
2、发电机-三绕组变压器(自耦变压器)单元接线
下列情况下,可不设置旁路设施 (1)当系统条件允许断路器停电检修时(如双回路供电 的负荷); (2)当接线允许断路器停电检修时(如角形、一台半 断路器接线等); (3)中小型水电站枯水季节允许停电检修出线断路器 时; (4)采用六氟化硫(SF6)断路器及封闭组合电器(GIS)时。
4、电源侧断路器是否接入旁路母线
变电站的主变压器可靠性较高,通常不需检修,但是高压 侧断路器有定期检修需要,则应接入;
发电厂升压变压器高压侧断路器的定期检修,可安排在发 电机组检修期同步进行,则不需接入。
5、设置旁路设施
35~60KV配电装置采用单母线分段接线且断路器无条件 停电检修时,可设置不带专用旁路断路器的旁路母线;当采 用双母线时,不宜设置旁路母线,有条件时可设置旁路隔离 开关。
(1)3/2断路器接线的特点 WI 任一母线故障或检修, QS11

电气主接线及设计专题PPT课件

电气主接线及设计专题PPT课件

WL2 WP
QS3
QS4
QFd
QS1
QS2
WII
QS5
S1
S2
24
正常运行: QS1、QFd、QS2合, QS3、QS4、QS5断, QFd作为分段断路器
旁路接到I段: QS3→QFd→QS2 旁路接到II段: QS4→QFd→QS1
检修QF1: 合QS5→断开QFd→ 断开QS2→合QS4→合 QFd→合QS15→断开 QF1、QS12、QS11
四. 一台半断路器接线
优点:
31
(1)任一母线故障或检修均不致
停电
(2)任一断路器检修,不引起停
W2

QF1
(3)当同一串中有一条进线、一
条出线时,当两组母线同时
QF2
故障的极端情况下,可以通
过联络断路器继续输送功率
QF3
(4)隔离开关不作操作电气,仅 W1 在检修时起隔离电压的作用
(5)除联络断路器内部故障外,
QF2 W1
无汇流母线的电气主接线 六. 单元接线
~G
~G
~G
(a)
(b)
(c)
(a)发电机-双绕组变压器单元接线; (b)发电机-三绕组变压器单元接线
(c)发电机-变压器-线路单元接线
扩大单元接线
适用范围:
发电机单机容 量偏小(仅为 系统容量的1% -2%)或更小, 而电厂的升高 电压等级又较 高,可采用扩 大单元接线。
缺点: 单元中任一元件故障或检修都会影响整个单元的工作
适用范围: 200MW及以上大机组一般采用与双绕组变压器组成单
元接线,当电厂具有两种升高电压等级时,则装设联络 变压器。
七. 桥形接线

第四章-电气主接线PPT课件

第四章-电气主接线PPT课件

8/11/2024
52
多数情况下,分段数与电源数相同。
8/11/2024
53
二、双母线接线及双母线分段接线
有两组工作母线的接线称为双母线接线,每个 回路都经过一台断路器和两台母线隔离开关分别 与两组母线连接,其中一台隔离开关闭合,另一 台隔离开关断开;两母线之间通过母线联络断路 器(简称母联断路器)连接。
8/11/2024
7
三、经济性
欲使主接线可靠灵活,必然要选用高质量的设备和现代化的自动装置, 从而导致投资费用的增加。因此,主接线的设计应在满足可靠性和灵活 性的前提下作到经济合理。一般应从以下几个方面考虑:
(1)投资省 主接线应简单清晰,以节省开关电器数量,降低投资;
要适应采用限制短路电流的措施,以便选用价廉的电器或轻型电器;二 次控制与保护方式不应过于复杂,以利于运行和节约二次设备及电缆的 投资。
8/11/2024
11
8/11/2024
12
8/11/2024
13
8/11/2024
14
什么是主接线的基本形式?
就是主要电气设备常用的几种连接方式。
8/11/2024
15
第二节 主接线的基本接线形式
主接线的基本形式可分为两大类:
有汇流母线的接线形式 无汇流线线的接线形式
8/11/2024
16
8/11/2024
9
主要电气设备文字与图形符号表
8/11/2024
10
设备基本知识 1、断路器:现场将其称为“开关”,具有灭弧作
用,正常运行时可接入或断开电路,故障情况下, 受继电器的作用,能将电路自动切断。
2、隔离开关:可辅助切换操作,或用以与带
电部分可靠地隔离。

主接线的基本接线形式

主接线的基本接线形式

一、单母线接线及单母线分段接线
第四章 电气主接线及设计
1.接线特点
一、单母线接线
每一回线路均经过一台断路器QF和
2隔.优离缺开点关Q分S析接于一组母线上。
3优.典点:型接操线作简单清晰,设备少, 4操缺L.1适作点线方:用路便可范停,靠围电投性操资和作少灵:,活线便性路于较侧隔扩差离建。开。在关
第二节 主接线的基本接线形式
五、变压器-母线组接线
变压器直接接 入母线,各出线 回路采用双断路 器接线 。
调度灵活,电 源与负荷可自由 调配,安全可靠, 利于扩建。
《风电厂电气系统》 第四章 电气主接线及设计
出线双断路器接线 出线一台半断路器接线
第二节 主接线的基本接线形式 六、单元接线
《风电厂电气系统》 第四章 电气主接线及设计
断开90QF, 合上15QS, 合上90QF,
1QF
2QF
905QS 90QF
检查90QF三
11QS
相电流平衡,
I段
901QS 902QS
Ⅱ段
断开1QF,
断开13QS,
01QS
02QS
断开11QS,
按检修要求做
0QF
好安全措施,即 可对1QF进行检
动画点击
第二节 主接线的基本接线形式 思考练习
思考练习
有母线的主接线:由于设置了母线,使得电源和引出线之
间连接方便,接线清晰,接线形式多,运行灵活,维护方便, 便于安装和扩建。
但有母线的主接线使用的开关电器多,配电装置占地面积 较大,投资较大。
无母线的主接线:使用的开关电器少,配电装置占地面积 较小,投资较小。
第二节 主接线的基本接线形式
《风电厂电气系统》

电气主接线及设计

电气主接线及设计

电气主接线及设计1. 引言电气主接线是电气系统中至关重要的一环,它负责将电源与各个电气设备之间进行连接,使电能得以传输和利用。

在电气系统设计过程中,主接线的设计合理与否直接影响到电气设备的正常运行和系统的安全性。

本文将详细介绍电气主接线的概念、设计原则以及关键步骤,以帮助读者了解和掌握电气主接线的基本知识。

2. 电气主接线的概念电气主接线是指通过电线或电缆将电源与各个电气设备之间进行连接的系统。

主接线通常由主干线、支干线和分支线组成。

其中,主干线负责将主电源与电气设备连接起来,支干线则负责将主干线连接到各个分支设备上。

电气主接线的设计主要考虑功率传输、电压降低、电气设备的组织布局以及系统的可靠性等因素。

3. 电气主接线的设计原则3.1 安全性原则电气主接线的设计首先要求保证系统的安全性。

这包括合理设置过载保护装置、漏电保护装置以及接地保护装置等,以防止电气设备的损坏和人身安全事故的发生。

此外,还应考虑电气设备的绝缘性能,避免因绝缘破损导致电气故障。

3.2 系统可靠性原则电气主接线的设计需要保证系统的可靠性,尽量减少电线和电缆的故障概率。

这包括选择合适的导线截面积、减少线路阻抗、合理布置线路等措施,以提高系统的可靠性和稳定性。

3.3 经济性原则电气主接线的设计需要综合考虑经济因素。

在满足系统需要的前提下,应尽量选择价格合理的电线和电缆,并通过合理布线节省材料和人工成本。

同时,应合理利用现有线路资源,尽量减少线路的开挖和占用,降低工程投资。

4. 电气主接线设计的关键步骤4.1 确定电气设备布置在进行电气主接线设计之前,首先需要根据实际情况确定电气设备的布置。

这包括了解主要电气设备的功率和数量、设备之间的相对位置以及设备的工作方式等。

4.2 计算负荷和电流在了解了电气设备布置后,需要计算每个电气设备的负荷和电流。

负荷和电流的计算是电气主接线设计的基础,它们直接决定了后续选线和设备的选择。

4.3 选择导线和电缆根据负荷和电流的计算结果,需要选择合适的导线和电缆。

第四章电气主接线及设计精品PPT课件

第四章电气主接线及设计精品PPT课件

单母线
单母线接线 单母线分段
单母线分段带旁路母线
有汇流母 线的接线 形式
普通双母线 双母线分段
主 接 线
双母线接线 双母线分段带旁路母线 一台半(3/2)断路器 4/3接线
第四章船舶电电气气主设接备线与及系设统计
课件
2020/10/1 4
本章的主要内容 对电气主接线的基本要求、发电 厂或变电所典型的基本接线形式和特点、变压器的 选择及限制短路电流的措施。 重点内容 单母接线、双母接线、单元接线和桥形 接线的特点以及检修母线和断路器的操作步骤。限 制短路电流的措施。 难点 断路器和隔离开关的防误操作。
电气工程轮与机自工动程化学院船电电力系
第四章船舶电电气气主设接备线与及系设统计
课件
一、对电气主接线的基本要求
2020/10/1 4
1.可靠性 在规定条件和规定时间内保证不中止供电的能 力--供电的连续性
分析和评估主接线可靠性通常从以下方面综合考虑: (1)发电厂或变电所在电力系统中的地位和作用
发电厂和变电所都是电力系统的重要组成部分,其可 靠性应与在系统中的地位和作用一致。
轮机工程学院船电系
第四章船舶电电气气主设接备线与及系设统计
课件
2020/10/1 4
第一节 电气主接线设计原则和程序
电气主接线:是发电厂或变电站电气部分的 主体,直接影响运行的可靠性、对配电装置布置 、继电保护配置、自动装置及控制方式的拟定都 有决定性的关系。
对电气主接线的基本要求是:可靠性、灵活 性和经济性。
2.灵活性
1)操作的方便性。
2)调度方便性。主接线能适应系统或本厂所的各种运行
电气工程轮与机自工动程化学院船电电力系
第四章船舶电电气气主设接备线与及系设统计

【学习课件】第四章电气主接线及设计

【学习课件】第四章电气主接线及设计

完整版ppt
13
2、以国家经济建设的方针、政策、技术规定、 标准为准绳。`国家建设的方针、政策、技 术规范和标准是根据电力工业的技术特点、 结合国家实际情况而制定的,它是科学、技 术条理化的总结,是长期生产实践的结晶, 设计中必须严格遵循,特别应贯彻执行资源 综合利用、保护环境、节约能源和水源、节 约用地、提高综合经济效益和促进技术进步 的方针。
完整版ppt
10
二、灵活性
1、调度灵活、操作方便。 2、检修安全。 3、扩建方便。
完整版ppt
11
三、经济性
1、投资省。 2、年运行费小。 3、占地面积小。 4、在可能的情况下,应采取一次设计,分
期投资、投产,尽快发挥经济效益。
完整版ppt
12
4.1.2电气主接线设计的原则
1、以设计任务书为依据。
3、结合工程实际情况,使主接线满足可靠性、 灵活性、经济性和先进性要求。
完整版ppt
14
4.1.3电气主接线的设计程序
可行性研究阶段
初步设计阶段
技术设计阶段
施工设计阶段
完整版ppt
15
设计步骤和内容:
1、对原始资料分析
发电厂类型
(1)工程 情况
设计规划容量(近期、远景)
单机容量及台数
最大负荷利用小时数 及可能的运行方式
完整版ppt
21
缺点:有母线的接线形式使用的开关 电器较多,配电装置占地面积较大, 投资较大,母线故障或检修时影响范 围较大。
适用范围:进出线较多(一般超过4回) 并且有扩建和发展可能的发电厂和变 电所。
完整版ppt
22
无汇流母线:
特点:
➢ 没有母线这一中间环节,使用的开关电 器少;

发电厂电气部分 第4章 电气主接线

发电厂电气部分 第4章 电气主接线

改进:
单母线分段 加装旁路母线
发 电 厂 电 气 部 分
— 第 四 章
一、单母线接线(续)
• 单母线分段接线
• (1)分段断路器闭合运行: 两个电源分别接在两段母线上; 两段母线上的负荷应均匀分配。 可靠性比较好,但线路故障时 短路电流较大。 • (2)分段断路器断开运行: 每个电源只向接至本段母线上 的引出线供电,可以限制短路 电流,两段母线上的电压可不 相同 。 • 可在分段断路器处装设备自 投装臵,重要用户可以从两段 母线引接采用双回路供电。
发 电 厂 电 气 部 分
— 第 四 章
一、单母线接线(续)
• 2.优缺点分析 • 优点:供电可靠性较高 • (1)当母线发生故障时,仅故障母线段停止工作,另 一段母线仍继续工作。 • (2)两段母线可看成是两个独立的电源,提高了供电 可靠性,可对重要用户供电。 • 缺点:停电范围仍较大 • (1)当一段母线故障或检修时,该段母线上的所有支 路必须断开,停电范围较大。 • (2)任一支路的断路器检修时,该支路必须停电。 • 3.适用范围 • (1)6~10k:出线回路数为6回及以上; • (2)35~63kV:出线回路数为4~8回; • (3)110~220kV:出线回路数为3~4回。
第一节 对电气主接线的基本要求
由发电机、变压器、断路器等一次设备按其功能要求, 通过连接线连接而成的用于表示电能的生产、汇集和分 配的电路,通常也称一次接线或电气主系统。
一、可靠性
电力系统中,按负荷重要性的不同将负荷分为三类: ① Ⅰ类负荷:即使短时停电也将造成人身伤亡和重大 设备损坏的最重要负荷; ② Ⅱ类负荷:停电将造成减产,使用户蒙受较大的经 济损失的负荷; ③ Ⅲ类负荷: Ⅰ类、 Ⅱ类负荷以外的其它负荷。 可靠性评价可定性分析,也可定量计算。主要衡量设 备事故时或检修时对用户供电的影响程度。 不同类型的发电厂、变电所有不同的可靠性指标要求。

第四章 电气接线及设计

第四章 电气接线及设计

1213刀闸
110kvI母
旁带操作:步骤4
精品课件
1214刀闸
1201刀闸 120开关 1203刀闸
110kv旁母
1211刀闸 121开关
1213刀闸
110kvI母
旁带操作:步骤5
精品课件
1214刀闸
1201刀闸 120开关 1203刀闸
110kv旁母
1211刀闸 121开关
1213刀闸
110kvI母
精品课件
110kV四 号母线
1211刀闸
121开 关 1214刀闸
精品课件
110kV四 号母线
1211刀闸
1215刀闸
121开 关
1214刀闸
110kV五 号母线
精品课件
110kV四 号母线
1211刀闸
1215刀闸
121开 关
1214刀闸
110kV五 号母线
精品课件
4、双母线
➢接线特点:每条出线通过一个断路器和两个隔离 开关和两条母线相连,母线之间通过母线联络断 路器(母联)连接。
➢可靠性
1、任一母线检修时,将出线负荷倒到另一母线上,
不停电。 2、任一母线故障时,可将出线负荷倒到另一母线
上,迅速地恢复正常工作。 3、检修任一回路的母线隔离开关时,只需要断开
这一条回路,将检修母线的出线负荷倒到另一母线上。
精品课件
练习: 结合接线图,演示将一条出线由一条母线倒到
另一条母线的刀闸操作过程(倒母操做) ➢运行方式:
3、直接关系到电力系统的安全、稳定、灵活和 经济运行。
精品课件
对电气主接线的基本要求
可靠性 :根据系统和用户的要求,保证连续不
断地把质量合格、数量充足的电能送往系统或用 户。停电机会越少、影响范围越小、停电时间越 短、主接线的可靠程度就越高。

发电厂电气部分-第四章 电气主接线及设计1讲解

发电厂电气部分-第四章 电气主接线及设计1讲解

单母线分段接线特点
• 优点
– 当母线发生故障时,仅故障母线 段停止工作,另一段母线仍继续 工作。
– 对重要用户,可由不同段母线分 别引出的两个回路供电,以保证 供电的可靠。
– 当一段母线故障或检修时,必须 断开接在该段母线上的所有支路, 使之停止工作,但不影响另一段 母线上所连的支路。
– 供电可靠性提高,运行较之灵活。
Ⅲ类负荷:Ⅰ类和Ⅱ负荷之外的其它负荷。 对 Ⅲ类负荷的供电要求:可以较长时间的停电,可用单回路 线路供电。
由此可见,对于带Ⅰ、Ⅱ类型负荷的发电厂和变 电站,应选择可靠性较高的主接线形式。
设备的可靠性程度 电气主接线是由电气设备组成的,选择可靠性
高、性能先进的电气设备是保证主接线可靠性的基 础。
电气主接线反映了:
1)发电机、变压器、线路、断路器和隔离开关等有 关电气设备的数量; 2)各回路中电气设备的连接关系; 3)发电机、变压器和输电线路及负荷间的连接方式。
• 电气主接线图
– 用规定的图形与文字符号将发电机、变压器、母线、 开关电器、输电线路等有关电气设备,按电能流程顺 序连接而成的电路图。
大、中型发电厂和变电站,其电气主接线采取供电可靠性 高的接线形式;对于小型发电厂和变电站对于接线可靠性要 求低。
我国发电机单机容量大小划分:
小型机组:50MW以下; 中型机组:50~200MW; 大型机组:200MW以上;
发电厂容量大小划分:
小型发电厂:总装机容量在100MW以下; 中型发电厂:250~1000MW; 大型发电厂:1000M供电可靠性的要求不同分
为三个等级,即Ⅰ、Ⅱ、Ⅲ类负荷。
Ⅰ类负荷:对这类负荷突然中断供电,将造成人身伤亡,或 造成重大设备损坏,或给国民经济带来重大的损失。 例:冶金行业的炉体冷却水泵、浇注车间、连续轧钢车间、 矿山企业的主排水泵、主扇风机、化工企业的反应炉;医院 的手术室;国家的铁路枢纽、通信枢纽、国防设施等。

第四章电气主接线资料

第四章电气主接线资料
确定主接线的可靠性时,要考虑发电厂与变电所在电力系统 中的地位和作用、负荷的性质、设备的可靠性和运行实践等因 素。
发电厂电气部分
➢分析和评估主接线可靠性时应该考虑的几个问题
(1)发电厂与变电所在系统中的地位和作用
对于大、中型发电厂和变电所,在电力系统中的地位非常 重要,其电气主接线应具有很高的可靠性。对于小型发电厂和 变电所就没有必要过分地追求过高的可靠性而选择复杂的主接 线形式。
变压器组。
3. 年运行费用小
年运行费用包括电能损耗费、折旧费及大修费、日常小修
的维护费等。
电能损耗主要由变压器引起,因此要合理选择主变压器的
型式、容量和台数及避免两次变压而增加损耗。
4. 在可能的情况下,应采取一次设计,分期投资、投产,尽快 发挥经济效益。
发电厂电气部分
第二节 有汇流母线的主接线
(1) 电气主接线的基本环节是电源、母线和出现(馈线)。
(3)扩建方便 :在主接线设计时,应留有余地,应能容易地从 初期过渡到最终接线,使在扩建时一、二次设备所需的改造最 少。
发电厂电气部分
三、经济性
主接线应在满足可靠性和灵活性的前提下,做到:
1. 节约投资
主接线应力求简单清晰,节省断路器、隔离开关等一次电
气设备;
要使相应的控制、保护不过于复杂,节省二次设备与控制
重要用户可用双回路接于不同母线端,保证不间断供电。
任一段母线或母线隔离开关检修,只停该段。
分段断路器QFd增加了线路的灵活性。
对于用分段隔离开关QSd分段,当该段母线故障,全部短时
停电,拉开QSd后恢复完好段供电。
发电厂电气部分
2) 分段单母线接线增加了分段设备的投资和占地面积;某段母 线故障仍有停电问题;某回路断路器检修该回路停电;扩建时 需向两端均衡扩建。

第4章 电气主接线及设计

第4章 电气主接线及设计

2.主接线方案的拟定 3.短路电流计算和主要电气设备选择 4.绘制电气主接线图 5.编制工程概算 等各项步骤,请参见P103~104
第二节 主接线的基本接线
相关专业术语及基本概念

主接线的基本形式——主要电气设备常用的几种连接 方式。它以电源和出线为主体。

汇流母线——发电厂或变电站出线回路和电源进线的 中间环节,以便于电能的汇集和分配。 由于各个发电厂或变电站的出线回路数和电源数 不同,且每路馈线所传输的功率也不一样 当进出线数较多时(一般超过4回),通常采用母 线连接。
(4)长期实践运行经验


主接线可靠性与运行管理水平和运行值班人员的素质 等因素有密切关系,衡量可靠性的客观标准是运行实 践。 国内外长期运行经验的积累,经过总结均反映于技术 规范之中,在设计时均应予以遵循(应采用典型设 计)。
2.灵活性

灵活性指电气主接线应能适应各种运行状态,并能灵 活地进行运行方式的转换。
包括当地的气温、湿度、覆冰、污秽、风向、水文、 地质、海拔高度及地震等因素,对主接线中电气设备 的选择和配电装置的实施均有影响,应予以重视。 330kv以上电压的电气设备和配电装置要遵循《电磁 辐射防护规程》、控噪、控静电感应的场强水平和电 晕无线电干扰。对重型设备的运输条件亦应充分考虑。
(5)设备供货情况 这往往是设计能否成立的重要前提,为使所设计的主 接线具有可行性,必须对各主要电气设备的性能、制 造能力和供货情况、价格等资料汇集并分析比较。
工程设计中设计任务书(或委托书)的内容
根据国家经济发展及电力负荷增长率的规划 (1)所设计电厂(变电站)的容量、机组台数; (2)电压等级、出线回路数、主要负荷要求; (3)电力系统参数和对电厂的具体要求; (4)设计的内容和范围。

《电气主接线形式》

《电气主接线形式》

6~10KV单母或单母分段,出线数较多
随着断路器和隔离开关质量提高,电网结构合理,计划检修向状 态检修过渡,将逐步取消旁路。
精选ppt
6、一台半断路器接线 (1)接线特点分析
3个断路器构成1串,接在 两母线间,引出2条出线
可靠性:高
断路器检修: 母线检修:
灵活性:高
操作:避免用隔离开关进行大量倒闸操作 调度和扩建
精选ppt
9、角形接线
断路器首尾相连,连接的回路数
与断路器数相等。
(1)接线特点分析
可靠性:
断路器检修
灵活性:
操作:方便
调度:闭环,开环。保护配置难度大
扩建:不便于
经济性:比单母分段或双母线少1个开关
(2)适用范围
不超过6角
发展已定型的110KV及以上的配电装置
中小容量水利发电厂
精选ppt
三、典型主接线
出线带电抗器的 6~10KV配电装置中。 35~60KV 出线数超过8回,或连接电源较大、负荷较大 110~220KV出线数5回以上 4、双母线分段 (1)接线特点分析(与双母线比)
双母线再分段,三分段或四分段
可靠性
母线故障:该分段的回路倒母线
经济性:
一次投资:增加分段和母联设备。
(2)适用范围
发电厂的6~10KV配电装置,出线和电源较多
精选ppt
二、电气主接线的基本接线形式
有母线接线
单母线接线
单母线分段 增设旁路
双母线接线
双母线分段 增设旁路
一台半断路器接线
无母线接线
单元接线
扩大单元接线
桥形接线
内桥/外桥
角形接线
三角/四角/五角/六角

电气主接线设计

电气主接线设计

2、双母线带旁路母线的接线 、 双母线可以带旁路母线,用旁路断路器替代检修中 的回路断路器工作,使该回路不致停电。 分为:设专用旁路断路器;旁路断路器兼作母联断 路器;母联断路器兼作旁路断路器。
WP WP
QFP
QFC
W1 W2
W1 W2
3、旁路母线设置的原则 、 110KV及以上高压配电装置中,需设置旁路母线, 110KV出线在6回及以上、220KV出线在4回及以上时, 宜采用带专用旁路断路器的旁路母线。 在出线回路数较少的情况下,也可为节省投资, 采用母联断路器或分段断路器与旁路断路器之间互相 兼用的带旁路母线的接线方式。 下列情况下,可不设置旁路设施:
第二节 主接线的基本接线形式
电气主接线基本接线形式和规律: 以电源和出线为主体。为便于电能的汇集和分配, 在进出线数较多时,采用母线作为中间环节,可使接 线简单和清晰,运行方便,有利于安装和扩建。无汇 流母线的接线使用电气设备较少,配电装置占地面积 较小,通常用于进出回路少,不再扩建和发展的发电 厂或变电站。 1.单母线接线 1.汇流母线 2.双母线接线 主接线的接线形式 1.桥形接线 2.无汇流母线 2.多角形接线 3.单元接线
无汇流母线的主接线 单元接线 发电机—双绕组变压器单元接线 发电机—三绕组变压器(或自耦变压器)单元接线 发电机—变压器扩大单元接线 发电机—变压器—线路组单元接线 桥型接线 内桥接线 外桥接线 多角型接线 三角型接线 四角型接线
六、单元接线
发电机—变压器单元 接线,是大型机组采用 的接线方式。 单元接线简单,开 关设备少,操作简便, 不设发电机电压级母线。 存在问题: (1)当主变压器或厂总变 压器发生故障时,除了 跳主变压器高压侧出口 断路器外,还需跳发电 机磁场开关。 (2)发电机定子绕组本身故障时,若变压器高压侧断路器失灵 拒跳,则只能通过失灵保护出口启动母差保护。 (3)发电机故障跳闸时,将失去厂用工作电源。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.5kV电压级:地方负荷容量最大为20MW,共有10回电缆 馈线,与50MW发电机机端电压相等,采用直馈线为宜。
18kV电压级: 300MW发电机出口电压,既无直配负荷, 又无特殊要求,拟采用单元接线形式。
220kV电压级:出线回路数为5回,为保证检修出线断路 器不致对该回路停电,拟采取带旁路母线接线形式为宜。
4-4 限制短路电流的方法
一、选择适当的主接线形式和运行方式
1、发电机组采用单元接线 2、环形电网开环运行 3、并联运行的变压器分开运行 二、装设限流电抗器
1、在发电机电压母线上装设分段电抗器 2、在发电机电压电缆出线上装设出线电抗器 3、装设分裂电抗器 三、采用低压绕组分裂变压器
4-5 电气主接线设计举例
厂 备 用 电 源
某新建热电厂原始资料如下
1、发电厂规模: ①装机容量:2台QFQ-50-2机组,额定电压10.5kV,功 率因数为0.8;2台QFN-100-2机组,额定电压10.5kV,功率 因数为0.85。 ②厂用电率:按10%考虑。 2、电力负荷及与电力系统连接情况: ①10.5kV电压级:电缆馈线14回,每回平均输送容量3MW。 10.5kV最大综合负荷为35MW,最小负荷为25MW,功率 因数为0.8。 ②60kV电压级: 架空线路2回,60kV最大负荷为30MW,最 小负荷为20MW,功率因数为0.8。 ③220kV电压级: 架空线路6回,220kV与电力系统连接, 接受该厂的剩余功率。
220~500kV容量较大的发电厂或变电所高压接线,有时 采用双母线三分段或四分段接线。
三、带旁路母线的单母线和双母线接线
1、单母线带旁路母线的接线 ①普通单母线带旁路母线接线 ②单母线分段带旁路接线
③利用分段兼旁路(旁路兼分段) 单母线分段接线
单母线(或分段)带旁路母线的应用范围 (1)6~10kV屋内配电装置一般情况下不装设旁路母线。 (2)35~60kV配电装置一般不设旁路母线,因为重要用户 多为双回路供电,允许停电检修断路器。如果线路断路器 不允许停电检修,在采用单母线分段接线时可考虑增设旁 路母线,但多用分段断路器兼作旁路断路器。 (3)110~220kV如果采用单母分段,一般应设置旁路母线 且以专用旁路断路器为宜。 (4)凡采用SF6断路器的接线,可不装设旁路母线。
4-2 主接线的基本接线形式 一、单母线接线及单母线分段接线
1、单母线接线 2、单母线分段接线
6~10kV出线在6回及以上时,每段所接 容量不超过25MW;35~60kV出线回路数 不超过8回;110~220kV出线回路数不宜 超过4回。
二、双母线接线及双母线分段接线
1、双母线接线 (1)检修任一组母线都不必停止对用户供电 (2)一组母线故障后能迅速恢复供电 (3)检修任一组母线隔离开关不影响其它回路运行 (4)检修任一出线断路器可用母联断路器代替其工作
T
QS2
G ~
QS3 QF3
T
QS1 QS2
QF1 QF2
G1
G2
~
~
QS3 QF3
T
QS1
QS2
QF1
G1 ~
QF2
G2 ~
QF1 QS11
T QS21 QF2 QS22
QS3
QF3
G ~七、桥形接线源自1、内桥接线适用于线路较长和变压器不需要经常切换的情况。
2、外桥接线 适用于线路较短和变压器需要经常切换的情况。
第四章 电气主接线及设计
250MW
282MW 74MW
106MW 176MW
300MW
发电厂电气部分
(3)500kV电压级 500kV负荷容量大,为保证可靠性,有多种接线形式, 经定性分析筛选后,可选用的方案为双母线带旁路接线和 一台半断路器接线。 通过联络变压器与220kV连接,并通过一台三绕组变压 器联系220kV及10kV电压,以提高可靠性。 将一台300MW机组与变压器组成单元接线,直接将功率 送往500kV电力系统。
(1)节省一次投资;(2)占地面积少;(3)电能损耗少。
二、电气主接线设计的原则
三、电气主接线的设计程序
1、对原始资料分析 (1)工程情况 (2)电力系统情况 (3)负荷情况 (4)环境条件 (5)设备供货情况 2、主接线方案的拟定与选择
3、短路电流计算和主要电器选择
4、绘制电气主接线图
5、编制工程概算
1、对原始资料的分析 设计电厂容量:2×50+2×300MW=700MW; 占系统总容量700/(3500+700) ×100%=16.7%; 超过系统检修备用容量8%~15%和事故备用容量10%的 限额。 说明该厂在系统中的作用和地位至关重要。 由于年利用小时数为6500h>5000h,远大于电力系统发 电机组的平均最大负荷利用小时数。 该电厂在电力系统中将主要承担基荷,从而在设计电气主 接线时务必侧重考虑可靠性。
(1)与3/2接线相比有何特点 QS32 QF3
(2)应用范围
T1
WL2 WL3 T2
WI
WII T3
五、变压器—母线接线
WL1
WL2
WI
QS1
QS11
QF1
QS12 QS13
QS21 QF2
QS22
WII QS2
T1 T2
WL1
QS1
QS11
QF1
QS12 QS13
QS21 QF2
QS22
QS31 QS33
QF3 QS32
QS2 WL3
T1 T2
WL2 WI
WII WL4
六、单元接线
1、发电机-双绕组变压器单元接线 2、发电机-三绕组变压器(自耦变压器)单元接线
3、发电机-变压器-线路单元接线
4、发电机-双绕组变压器扩大单元接线
5、发电机-分裂变压器扩大单元接线
QS12
QS1 QF1
T
QS2
G ~
QS1 QF1
第四章 电气主接线及设计
4-1 电气主接线设计原则和程序
一、对电气主接线的基本要求 1、可靠性 (1)发电厂或变电站在电力系统中的地位和作用; (2)负荷性质和类别; (3)设备的制造水平; (4)长期实践运行经验。
2、灵活性 (1)操作的方便性; (2)调度的方便性; (3)扩建的方便性。 3、经济性
500kV电压级:与系统有4回馈线,最大可能输送的电力为 700-15-200-700×6%=443MW。500kV电压级的接线对可靠 性要求应当很高。
2、主接线方案的拟定 (1)10kV电压级 10kV出线回路多,发电机单机容量为50MW, 根据设计规程规定:当每段母线超过24MW时,采用双 母线分段接线,将2台50MW机组分别接在两段母线上。 剩余功率通过主变压器送往电压220kV。 50MW机组为供热式机组,通常“以热定电”,机组年负荷 小时数较低,即10kV电压级与220kV电压之间按弱联系考虑, 只设1台主变压器; 10kV电压最大负荷20MW,远小于2×50MW发电机组装 机容量,即使在1台发电机检修的情况下,也可保证该电 压等级负荷要求。
某新建热电厂原始资料如下
1、发电厂规模: ①装机容量:2台QFQ-50-2机组,额定电压10.5kV,功 率因数为0.8;2台QFN-100-2机组,额定电压10.5kV,功率 因数为0.85。 ②厂用电率:按10%考虑。 2、电力负荷及与电力系统连接情况: ①10.5KV电压级:电缆馈线18回,每回平均输送容量 3MW。10kV最大综合负荷为50MW,最小负荷为40MW, 功率因数为0.8。 ②60kV电压级: 架空线路8回,60kV最大负荷为60MW,最 小负荷为40MW,功率因数为0.85。 ③220kV电压级: 架空线路6回,220KV与电力系统连接, 接受该厂的剩余功率。
为选择轻型电气设备,应在分段处加装母线电抗器,各
条电缆馈线上装设线路电抗器。
220kV
500kV
5
Pmax=20MW
5
Pmin=15MW
(2)220kV电压级 出线回路数大于4回,为使其出线断路器检修时不停电, 拟采用单母线分段带旁路接线或双母线带旁路接线。 从10kV送来剩余容量: 2×50-[(2×50×6%)+20]=74MW, 不能满足220kV最大负荷250MW的要求。 拟以1台300MW机组按发电机—变压器单元接线形式接 至220kV母线上, 剩余容量或机组检修时不足容量应如何处理? 由联络变压器与500kV接线连接,相互交换功率。
4-3 主变压器的选择
一、主变压器容量和台数的确定原则
1、单元接线的主变压器 2、具有发电机电压母线接线的主变压器
3、连接两种升高电压母线的联络变压器
4、变电站主变压器 二、变压器型式和结构的选择原则 1、三相变压器与单相变压器 2、双绕组变压器与三绕组变压器 3、普通型变压器与自耦变压器 4、分裂绕组变压器的选用 5、调压方式 6、绕组接线组别 7、冷却方式的选择
2、双母线带旁路母线的接线
(1)普通双母线带旁路母线的接线
(2)利用旁路兼母联(母联兼旁路)的双母线带旁路接线 3、旁路母线设置的原则 4、电源侧断路器是否接入旁路母线
5、设置旁路设施 WL1
WL2
WL3
WL4
QS16 QF4
QS17 QF5
QS18 QF6
QS19 QF7
QS7 QS8 QS9 QS10 QS11 QS12 QS13 QS14 QS15
另外当系统中有穿越功率通过高压侧,或桥形接线的2条
线路接入环网时。 WL1 优缺点
适用范围
QS12
小容量发电厂或变 QF1
电站,以及作为最终 QS11
WL2
WL1
WL2
QS22 QF2 QS21
QS5 QS3
QS6 QS4
QS1 QS31 QF3 QS32 QS2
相关文档
最新文档