比例阀控制非对称液压缸系统的非线性建模与仿真

合集下载

基于Simulink的比例阀控液压缸的建模与仿真

基于Simulink的比例阀控液压缸的建模与仿真

基于Simulink的比例阀控液压缸的建模与仿真张兵;邓子龙【摘要】By improving the hydraulic system of the clamp experiment table to make it a closed-loop control system, and taking the system as the research object, the mathematical model and simulink simulation model are established. The dynamic performance in time and frequency domains is analyzed. Aiming at the improvement of the dynamic performance ofthe system, the damping ratioδh , the hydraulic cylinder frequency wh ,and the open loop gain Kc , of the close-loop control ing system, and their effect on the dy-namic performance of the system are analyzed by using MATLAB so as to provide reference for the design, calibration and optimiza-tion of the hydraulic system.%通过对夹具实验台液压系统进行改进,使其成为闭环控制系统并以此系统为研究对象,建立数学模型和Simulink仿真模型,分析了系统在时域和频域的动态性能。

从提高系统动态特性的角度出发,应用MATLAB分析了液压缸频率wh、阻尼比δh 和闭环控制系统开环增益Kc 对系统动态性能的影响,从而为液压系统的设计、校正、优化提供借鉴。

阀控缸建模方法的数字仿真比较

阀控缸建模方法的数字仿真比较

]:电极,则电极尺寸比所需要的尺寸小,通过电火花
放电加工后的模具尺寸相应偏小,丽产品尺寸也偏
小;只有通过方法三(“画出工件缩小余量值之后的
3D图形,再使用平底刀以。的余量直接加工”),加
工后的电极尺寸最为准确,通过电火花放电加工后的
模具尺寸也最为准确,相应的产品尺寸才准确,因此 推荐在实际的加工过程中,尽量使用这种方法。
E:兰集竽
砭——流量增益、m2/s:
(7)
C;(PI—p:)一C。p。】 式中:G。——流量系数,无因次;
(2d)
”——阀口面积梯度,“;
托——阀口开度,“;
P——液体密度,kg/m3;
卢,——系统的等效容积弹性系数,Pa;
见——供液压力,Pa;
p。——液压缸左腔压力,Pa;
p:——液压缸右腔压力,Pa;
编程时给刀具端部侧边增加一个R值,图6所 示,月的值为工件余量的绝对值,然后再指定工件负 的余最值,而实际使用没有端部侧边R角的相同直 径刀具进行加I:。
局部放大图
局部放大图
图8
图9
则加亡情况如图7及图8局部放大图所示,加工过程
中,刀具端部R与工件R面相切,只要工件的负余
量的绝对值不火于刀具的只值,则加工的结果就是
我们所需要的结果。然而,我们实际使用的刀具并不
存在端部的R,所以加工的实际情况不是上图8所示
的理想情况,而是如『翻9所示.川具底部的尖角切入
丁工件内,加工的帮体结果如图l()所示.外侧轮廓 线表示理想的工件外形,内N”E域
轮廓线表示实际加工出的工
件外形。,显而易见,实际加
工出的工件外形小于理想的
l:件外形,刀具切人工件内
应频率与振幅的关系曲

电液比例阀控液压缸系统建模与仿真

电液比例阀控液压缸系统建模与仿真

本 文搭 建 了 比例 阀控 非 对 称 液压 缸 控 制 系统 , 建 立 了该 系 统 的数 学 模 型 ,着 重 对 阀 控 非 对 称 液 压 缸 的建 模 方 法 进 行 了研 究 ,并 利 用 Maa tb中 的 l Smuik进行 仿真 分析 ,设 计 了 PD控制 器 对 系统 i l n I
进 行校 正 。Biblioteka 2 比例 阀控 液压 缸控 制系统 的数学模型
2 1 阀控非 对称 液压 缸的数 学模 型 .
1 系 统 的 组 成 及 原 理
比例 阀控 非 对 称 液 压 缸 控 制 系 统 的硬 件 组 成 如 图 1 示 ,主要 由滤 油 器 1和 6 所 、溢 流 阀 2、液
广泛 的应 用 。
液压 缸加 载指 定 负 载 (±2 ) 0t ,位 移传 感 器 将 液 压 缸 活 塞 的位 置 信 息 通 过 数 据 采 集 卡传 递 给计 算 机 与 理想 位 移 进行 比较 ,得 出差 值 ,经 过 优 化 处 理 和转 换 输 出控 制 信 号 ,通 过 比例放 大 器 放 大 后 驱 动 电液 比例 方 向 阀工 作 ,从 而 实 现对 液 压 缸 位 置 的精 确控 制 。
n l sswi t b a d c l rt st es s m v at e d sg e I o t l r h e ut h w a h y t m d l sc r ay i t Ma l n ai ae y t i h e in d P D c n r l .T er s l s o t t e s se mo e o — h a b h e oe s h t i r c ,a d h s hg e c u a y a d b t r s b l y atrt e c l r t n e t n a ih ra c r c n et t i t f h a i ai . e a i e b o

对称四通阀控非对称液压缸系统的建模与仿真

对称四通阀控非对称液压缸系统的建模与仿真

l P s - P L
2 01 5 . 0 9建设机械技术与管理 8 7
个节 流窗 口是 匹配 和对 称 的,供 油压 力 恒定 ,回油压 力 为零 。则可 建立 阀的线性 化流量方程 为 [ 4 ] :
q L =Kq x 一 K £ ( 5 )

q l + q 2
g l +g 2
在式 ( 7 )和 ( 8 ) 中,外 泄 露 流 量 C e p P 和C :
通 常 很小 ,可 以忽 略 妞果 压 缩 流 量 和


( 6 ) - 2 v 亟 相 等 q d t … 一 l =2 u q 2。 。
以滑 阀为研 究 对 象 ,假 定 阀与液 压 缸 的连 接 管道
对 非对 称 液 压 缸 的分 析,建 立 了对 称 四通 阀控 制非对
P 一P
( 3 )
由式 ( 1 )~( 3 )可得 :
P , + 2  ̄ P L
( 4 )
称 液压 缸的数 学模 型 ,利用 MAT L AB中的 S i mu l i n k 工具包 建 立了系 统的仿真模 型 ,并结合 实际例子对其 动 态特性 进 行 了仿真分析 。

— -

2( ]  ̄ P 1 ) =


( 2 )
p S
Po
式中 : C d一 流量 系数 ; W一 阀的面积梯度 / m; P 油液密度 / ( k g / m 1 。 定义负载压 力 P L 为:

图1 对称 液 压 缸也 称为 单杆 活塞 缸 ,与对 称 液压 缸
豳长安大学 道路施 工技术与装备教 育部重点实验 室 刘 航/ L I U Ha n g 谢 东/ XI E D o n g 赵 ’  ̄/ Z HA O Wu

液压缸动力学特性的建模与仿真

液压缸动力学特性的建模与仿真

液压缸动力学特性的建模与仿真液压缸是一种常见的执行元件,广泛应用于各类工业设备中。

在工程设计和优化过程中,了解液压缸的动力学特性对于提高其性能和可靠性至关重要。

本文将探讨液压缸动力学特性的建模与仿真方法。

液压缸的动力学特性是指其在工作过程中受到的力和力矩对速度、加速度和位移的影响。

建立液压缸的动力学模型可以帮助工程师更好地理解其运动规律,并据此进行优化设计。

基于这样的考虑,建模和仿真成为了研究液压缸动力学特性的重要手段。

在液压缸的建模过程中,最常用的方法是基于物理原理的方法。

这种方法通过对液压缸内部液体流动、活塞运动和密封摩擦等因素的分析,建立数学方程描述液压缸的动力学行为。

其中,液体流动方程、动量守恒方程和力矩平衡方程是建立液压缸动力学模型的重要基础。

此外,还需要考虑活塞与缸体之间的摩擦力和液压系统的非理想性等因素。

建立液压缸动力学模型的另一个重要问题是选择适当的仿真工具。

目前,常用的仿真软件有MATLAB/Simulink、LabVIEW和AMESim等。

这些软件具有强大的仿真功能和友好的用户界面,可以同时模拟液压系统和液压缸的动力学行为。

通过这些仿真工具,工程师可以直观地观察液压缸的运动轨迹、力矩曲线和速度变化等,从而优化设计方案。

除了基于物理原理的建模方法,还有基于系统辨识的方法可以用于液压缸的动力学建模。

系统辨识是一种通过实验数据来估计系统的数学模型的方法。

在液压缸建模中,可以通过对其施加不同的输入信号,并记录输出信号的变化来进行系统辨识。

常用的系统辨识方法有ARX模型、ARMAX模型和State Space模型等。

通过系统辨识可以获得更加准确的液压缸动力学模型,进而进行仿真和优化设计。

液压缸动力学特性的仿真研究不仅有助于优化设计,还可以用于故障诊断和故障预测。

通过对液压缸的模拟仿真,可以分析其在不同工况下的性能变化,并预测潜在故障的出现。

这对于维护人员来说是非常有价值的,可以提前采取相应的维护措施,避免设备故障对生产过程造成影响。

基于对称四通阀控非对称液压缸的电液比例位置控制系统建模与仿真

基于对称四通阀控非对称液压缸的电液比例位置控制系统建模与仿真
力机构的 pL 和 Q L 可引用非对称情形下的定 义, 阀控 对称液压缸是阀控非对称液压缸的一种特例。文中定
义的 pL 和 Q L 对非对称和对称动力机构均适 用, 具有 普遍意义。
1 2 2 液压缸负载流量方程的推导
( 1) 比例阀的流量方程
如图 2所示, 假设回 油压力 p0 = 0, 则比例 阀左 右两腔的流量方程为
1 电液比例位置控制系统的数学模型 电液比例位置 控制系 统由控 制器、比 例放 大器、
比例方向阀、液压缸、负载以及位移传感器组成, 如 图 1所示。
图 1 电液比例位置控制系统组成示意图
1 1 比例放大器和比例方向阀数学模型的简化 由于在系统工作频率范围内起主导作用的是阀控
缸动力机构环节, 其固有频率一般是系统中的最低转 折频率, 而比例方向节流阀的转折频率由比例阀本身 的特性决定, 其转折频率往往远远高于阀控液压缸的 转折频率。
96
机床与液压
第 37卷
动 (即 y > 0) 的情形 为例 进行分 析建模, 活塞负 向 运动的情形可依此类推。
1 2 1 pL 和 Q L 的重新定义 负载压力 pL 和负载流量 QL 是液压动力机 构特性
研究和系统优化设计的基础。目前对阀控非对称液压
缸的 pL 和 QL 的定义通常采用 2种形式: 一种 是沿用 对称情况下的定 义, pL = p1 - p2, QL = (Q 1 + Q2 ) /2; 另一种定义是 pL = p1 - p2, QL = (Q 1 + Q 2 ) / 2, 其中
力系数,
kc =
1 2
∀xv
pp - pL。
pp - pL;
kc 为 流量 压
1 2 3 阀控缸机构的基本方程

阀控非对称缸位置系统的非线性建模

阀控非对称缸位置系统的非线性建模
和 回油压 力 ; 、 P1 P2与 Q1 Q2分 别 为 无 杆 腔 与有 、 杆 腔 的压力 和 流量 ; 与 A2 别 为无 杆 腔 和有 杆 A】 分 腔 的活 塞有 效 面 积 ; 为 伺 服 阀 阀 芯位 移 ; z Y为 液
式 中 : 一Vd / v为液 压 弹 性模 量 , m2 V 为 = pd N/ ; 液压 缸腔 总容 积 , ; 为 无 杆 腔 容 积 , ; m3 V1 m3 V2为 有杆 腔容 积 , ; i 内泄 流量 , / ; m3 QL 为 m。s Qg 为外泄
【 d X  ̄2P —P )l z < 0 一C W / ( s 2/ , D
式中 : Q1为 Pl腔 流 量 , /; m s Q2为 P2腔 流 量 ,
m3s Cd 流量 系数 ; 2 /; 为 7 为节 流窗 口面积梯 度 , p X m; 为 液体 密度 ,g m3z k / ; 为 阀芯位 移 , 定义 向右 为 m, 正 方 向. 2 液 压缸 连续 性方 程为 )
压缸 活塞 所受 外干 扰力 .
为 了方便 系统 原理性 方程 的建 立 , 如下 假设 : 做
① 4个 节流 窗 口是 匹配而且 对 称 的 ; 节 流窗 口处 ② 的流 动为 紊流 , 液体 压缩 性 的影 响在 阀中予 以忽 略 ; ③ 每个 相应工 作 腔 的各 点压 力相 同 , 液温 度 和容 油 积弹性模 数 可 以认 为 是 常 数 ; 油 源 供 油 压 力 恒 ④ 定 , 回油 压力 为零 . 且 由于伺服 阀与 液压 缸之 间连接
免 了分段带来 的问题 , 型 中参 量 均 为 实 际物理 量 , 模
j d  ̄2P —P )P ≥ 0 /( s 1/, c
l C w  ̄2P1一P )p, < 0 ,、 dx /( T/ z

阀控非对称液压缸建模方法研究

阀控非对称液压缸建模方法研究
学模型。
PL F = =

P一 l
() 2
( )当活塞 反 向缩 回(< 0 时 , 2 y ) 负载 压 力 为
PL =A




= z 一 n

() 3 、
n=A: A。 液 压 缸 有 杆 腔 面 积 和 无 杆 腔 面 积 / 为
之 比。
阀控液压 缸系统 ,是工程上应用 比较广泛的传
动 和 动力 系 统 。其 中 , 阀控 对 称 缸 系统 与 阀控 非 对称 缸 相 比 , 有 很 好 的 控 制特 性 , 实 际 生 产 中得 到 了 具 在
F——活塞杆伸 出的外负载 , N; P、 2 — 液 压 缸无 杆 腔 、 杆 腔 的 有压 力 ,a l — P 有 P; ,、 — — 液 压 缸 无 杆 腔 、 杆 腔 的 有 效 工作 面 有
和 阀控 对 称 液 压 缸 的 数 学模 型 , 阀 控 缸 系统 的静 动 态 特 性 分 析 提 供 了理 论基 础 。 为
关键词 : 阀控非对称 液压缸 ; 负载压 力; 负载流 量 ; 学模 型 数 中图分类号 : H1 75 T 3 . 文献标识码 : A 文章编号 : 6 2 5 5 2 1 】3 0 0 — 4 1 7 — 4 X( 0 10 - 0 9 0
假定 : 阀与液 压 缸 的连 接 管 道 对称 且 短 而粗 , 管 道 中的 压力 损 失 和 管道 动 态 可 以忽 略 ;液压 缸 每 个 工 作 腔 内各 处 压 力 相等 ,油 温 和体 积 弹 性模 量 为 常 数 ; 压缸 内外 泄 漏均 为层 流 流动 。 液 () 1当活 塞正 向伸 出 (> 0 时 , y ) 流人 液 压缸 进 油

对称阀控非对称液压缸的电液比例位置控制系统建模与分析

对称阀控非对称液压缸的电液比例位置控制系统建模与分析

文 章 编 号 :0 05 1 (0 70 —1 50 10 —8 1 2 0 )40 0 —5
对 称 阀控 非 对 称 液压 缸 的 电液 比例 位 置
控 制 系统 建 模 与 分 析
沈 瑜 ,高 晓 丁 ,王 筠
( 安 工 程 大 学 机 电工 程学 院 , 西 西安 7 0 4 ) 西 陕 1 0 8
第4 期

瑜 等 : 称 阀 控 非 对 称 液 压 缸 的 电液 比 例 位 置 控 制 系 统 建 模 与 分 析 对
又Io I一d t VV Ap V 2 v 2 + =A 2 ‘ x
由于 泄漏 及其 液容 效应所 引 起 的流量 远小 于液 压 缸活 塞 运 动所 引起 的 流量 , 当忽 略 泄漏 及 其 液 容效
以可 以作 为一个 二 阶环节 并建 立数 学模 型 , 传递 函数 可 以简化 为 :

G s 一丁—去_ ( )

T,
() 2
式 中 , 一衔 铁 及 弹 簧 的 固有 频 率.
’ 2 2 2 四边滑 阀流 量压 力方 程 . .
+ I
(J £T
+ 1 I ^
量,
比例 阀一 般 多 为 正 重 叠 阀. 为
简化 分析 , 两 点 假 设 : 1 阀结 构 作 () 理 想 对称 ;2 能源压 力恒 定. ()
ห้องสมุดไป่ตู้
图 3 阀控缸一 负载 原理 图
图 3所示 为 四边 滑 阀控非 对称 液压 缸组 成 的动 力 机 构 示 意 图 , 它
电液 比例位置 控 制系 统 由控 制器 、 比例 放 大器 、 液压 泵 、 比例 方 向阀 、 压缸 、 载 以及 位移 传 感 器组 液 负

阀控液压缸动力机构通用非线性建模与试验验证

阀控液压缸动力机构通用非线性建模与试验验证

2018年4月第47 第4期机械设计与 工程Machine Design and Manufacturing EngineeringApr.2018Vol.47 No.4DOI:10. 3969/j.issn.2095 - 509X.2018.04. 021阀控液压缸动力机构通用非线性建模与试验验证郭洪波,水涌涛,李磊,及红娟(北京航天 飞行器研究所,北京100076 $摘要:在分析阀控液压缸动力机构工作原理的基础上,应用流量和力平衡方程建立了阀控液压缸 动 构的非线性状态方程数学模型,并运用该模型分别对某六自由度实验平台的对称阀控制非对称缸电液伺服系统和某实际非对称阀控制非对称缸电液伺服系统的压力特性进行仿真分析,通过仿真和试验结果的对比,验证了所建阀控液压缸动力机构非线性状态方程数学模型的正 确性。

该数学模型具有通用性,可用于各类阀控液压缸系统的仿真、设计和控制策略等的理论研 究。

关键词:阀控液压缸;非线性状态方程模型;压力特性;仿真与试验中图分类号:T H137 文献标识码:B 文章编号:2095 -509X(2018)04 -0095 -04是 伺服系统中常见的一种驱动机构,其动 性 约着整个系统的性能,所以建立其数学模型,获其动性是和设 统的 &,对 因其具 构 、工作空 间 点,被大量引入伺服系统中,进而引 对 对 ,是对对 、动 性研究的 [1_4]。

前工程上广泛使用的 模型是在假定活位置做微量运动时,对和的特性运用开环线性化 的简化模型,故不能精确反映 在参数大化时的动 :性[5_8]。

对性能要求很高的系统或者对系 统进行深入的理论研究时,学者 用非线性模型[9-12]。

性 程模型也可以用于对理想阀口进行研究,可以 考虑4个口因加工误差而引起的死区和开口不一致进而引起的动力机构压力特性的 ,能更真实地反映系统的实际工 ,是 确和理想的数学模型。

本 对各种类型的(包括采用对 和非对 、对 和非对称缸)的动态建模 ,给出通用的 性 程数学模型,并 通过两个工程实例的仿真和试验对比研究,验所建 性 程模型的正确性,供进一步研究作 参考。

阀控非对称液压缸同步系统建模研究

阀控非对称液压缸同步系统建模研究

2 ρ
P2
≈A2
dy dt
( 1)
Q1=Ci(P
P1-
P2)

V1 βe
dP1 + dV1 dt dt
( 9) 山
流出液压缸的流量:

Q2=Ci(P
P1- P2) - CePP2-
V2 βe
dP2 - dV2 dt dt
( 10)
机 械
式中: CiP— ——内泄漏系数, m5(/ N·S) ;
CeP— ——外泄漏系数, m5(/ N·S) ;
V1— ——无杆腔容积, m3;
V2— ——有杆腔容积, m3;
βe— ——液体的容积模数, Pa 。
式中: Q1— ——无杆腔的流量, m3/s;
由式( 6) 、( 8) 、( 9) 可知:
Q2— ——有杆腔的流量, m3/s; Cd— — — 流 量 系 数 ; W— ——伺服阀窗口的面积梯度, m; ρ— ——液体的密度, Kg/ m3;
( 上接第 27 页) 将 式( 11) 、( 12) 、( 13) 分 别 进 行
活塞杆内缩时阀芯必然左移, 即, 伺服阀的流
拉氏变换, 得:
QL=KqxV- KCPL
( 14)
QL=CiePL-
CtaPs+
Vt 4βe
SPL+A1Sy
A1PL=MS2y+BSy+Ky+FL
( 15) ( 16)
由式( 14) 、( 15) 、( 16) 消去中间变量 QL 和 PL,
Key words: Synchronization control Asymmetric hydraulic cylinder
本文针对山 东大学“ 985”一期 重点建 设 项 目— — — 负 载 敏 感 液 压 综 合 开 发 平 台 中 阀 控 液 压 缸 同步系统模块进行研究。

阀控非对称缸液压伺服系统建模与仿真分析

阀控非对称缸液压伺服系统建模与仿真分析

煤矿机械Coal Mine MachineryVol.32No.10Oct.2011第32卷第10期2011年10月引言随着水下机器人技术的不断发展,水下机器人的作业范围和作业水深不断增加。

在恶劣的海洋环境下,要完成复杂的水下作业任务,水下机器人上搭载的机械手的作用显得尤为重要。

没有机械手,水下机器人充其量只是一个观察探测台架。

目前,水下机械手多为液压驱动关节式,主要包括线性关节和转动关节,线性关节主要依靠直线液压缸的伸缩实现有限范围内的摆动,转动关节则依靠液压马达实现有限范围的转动或连续回转,每个关节都可以通过液压伺服系统精确控制,实现机械手自身的作业动作。

阀控非对称缸是水下液压机械手的重要驱动环节,由于其结构的不对称及非线性等特点,可能产生跳跃谐振或等幅振荡,直接影响整个机械手液压伺服系统的动态特性。

本文主要研究水下液压机械手线性关节的阀控非对称缸位置伺服系统,在具体分析阀控非对称缸控制特性的基础上进行动态特性的推导、建模及仿真,为各线性关节伺服控制系统的设计和分析提供参考。

1阀控非对称液压缸位置伺服系统建模以非对称液压缸为研究对象,进行动态特性分析和数学建模,系统物理模型如图1所示。

图1伺服阀控非对称液压缸模型(1)伺服阀的负载压力-流量特性图1中,各物理量以箭头方向为正,以液压缸正向移动Y >0为例,伺服阀的流量方程为Q 1=C d WX v 2(p s -p 1)/r 姨=A 1d y(1)Q 2=C d WX v 2p 2/r 姨=A 2d yd t(2)式中Q 1———液压缸无杆腔流量,m 3/s ;Q 2———液压缸有杆腔流量,m 3/s ;C d ———阀的流量系数,取c d =0.7;W ———窗口面积梯度,m ;X v ———伺服阀位移,m ;p 1———伺服阀无杆腔压力,MPa ;p 2———伺服阀有杆腔压力,MPa ;p s ———油源压力,MPa ;r ———液压油密度,kg/m 3。

阀控非对称液压缸数学模型及建模方法研究

阀控非对称液压缸数学模型及建模方法研究

MECHANICAL ENGINEER阀控非对称液压缸数学模型及建模方法研究炘李晓园,陈,叶鹏,李鑫,徐祥,蒋辉,李琼柱(红塔烟草(集团)有限责任公司玉溪卷烟厂,云南玉溪653100)摘要:非对称液压缸两腔结构参数不同,给阀控非对称缸数学建模带来了较大的困难。

文中针对现行阀控非对称液压缸数学模型及简化方法作了分析比较,提出了一种新的简化方法,并据此导出了较为精确的数学模型。

关键词:非对称液压缸;数学模型;建模方法;辅助方程中图分类号:TH137文献标志码:A文章编号:1002-2333(2020)08-0104-04 Research on Mathematical Model and Modeling Method of Valve Controlled Asymmetric Hydraulic Cylinder LI Xiaoyuan,CHEN Xin,YE Peng,LI Xin,XU Xiang,JIANG Hui,LI Qiongzhu (The Second Workshop of Cigarette Packaging of Yuxi Cigarette Factory,Hongta Tobacco(group)Co.,Ltd.,Yuxi653100,China) Abstract:The structural parameters of the two chambers of the asymmetric hydraulic cylinder are different,which brings great difficulties to the mathematical modeling of the valve-controlled asymmetric cylinder.This paper analyzes and compares the current mathematical models and simplified methods of valve-controlled asymmetric hydraulic cylinders, proposes a new simplified method,and derives a more accurate mathematical model based on this.Keywords:asymmetric hydraulic cylinder;mathematical model;modeling method;auxiliary equation0引言液压控制系统的种类及分类方法很多,根据液压放大器与执行元件的不同组合,可分成阀控缸、阀控马达、泵控缸、泵控马达4种[1-2],其中阀控缸响应快、精度高、应用最广。

阀控非对称液压缸自适应非线性控制研究

阀控非对称液压缸自适应非线性控制研究

槡 WD l.;X
&TK[TD ! [&#
!!$$
T! l&!TK[[&T# D
T&
lTK!,[&&&#TD
!!!$
从公式!- $ % !* $ % !!$ $ 和 !!! $ 可以看出"
非对称缸正反向运动时" 其负载流量和两腔的压
力是不同的" 印证了其非对称性的特点&
!O#%液压缸流量连续性方程
(-Z(
重 型 机 械%% %%%%%%%%%%%%%%%%&$&& 8,O!
模型& 研究控制系统" 建立控制算法数学模型" 需
要注意的是" 非线性控制系统相较复杂" 并存在 全部或部分参数未知" 则非线性控制往往需要与 自适应控制相结合& 在非线性控制领域中" 具有 代表性% 广泛性应用的方法是反步法& &$ 世纪 "$ 年代" oAGH6Cb等人)** 提出了一种处理非线性 问题的方法---反步法" 该方法得到了广泛的应 用)/* & 在自适应控制领域" 文献)"" !$* 用输出 反馈的方法实现了对液压缸的自适应控制" 该控 制主要 适 合 只 有 位 移 输 出 已 知 的 情 况# 文 献 )!!" !&* 采用自适应反步法研究阀控缸系统的 位移和受 力 控 制& 另 外" 学 者 d45)!# ,!W* 采 用 投 影法和反步法相结合" 进行非对称缸的控制算法 设计& 在综合参考上述文献的前提下" 由于本文 所研究的阀控缸系统所有状态已知" 而部分参数 未知" 因而适合采用自适应反步法进行控制&

电液比例阀控缸速度控制系统的建模与仿真

电液比例阀控缸速度控制系统的建模与仿真

Q 来达到调速的目的 , 通常采用回路流量 Q 作为闭环
反馈信号 , 但是这种控制系统受液压缸泄漏 、 油温和黏 度变化的影响很大 , 在需要精确控制负载运行速度的 场合精度要求得不到保证 。 因此本文针对位置控制系 统 , 利用速度与位移的关系 , 提出了将活塞的速度控制 通过离散的精确位移来实现 。
图 1 中 , 液压系统采用定量泵和溢流阀组成的定 压供油单元 , 用电液比例方向阀在液压缸的进油回路
23
液压气动与密封/2011 年第 8 期
上组成进油节流调速回路 , 控制活赛的运行速度 。 位移 传感器检测出液压缸活塞杆当前的位移值 , 经 A/D 转 换器转换为电压信号 , 将该电压信号与给定的预期位 移电压信号比较得出偏差量 , 计算机控制系统根据偏 差量计算得出控制电压值 , 再通过比例放大器转换成 相应的电流信号 , 由其控制电液比例方向阀阀芯的运 动 , 调节回路流量 , 从而通过离散的精确位移实现对负 载速度的精确调节 。 系为 :
Abstract : Based on the electro -hydraulic proportional control technology, this paper proposes a methods of controlling the speed of hydraulic cylinder contraposing the position servo system , it is that using discrete precise displacement realizes the piston speed control, establishing the mathematic model of the valve controlled asymmetrical hydraulic speed servo system . the system were simulated by the use of Simulink Toolbox of Matlab with the approach of integral separation PID controller , The simulation results demonstrate the dynamic response of the model is satisfied in lower frequency and verify the validity of the method. Key Words : speed servo system ; valve-controlled asymmetrical hydraulic cylinder ; modeling ; simulation

电液比例阀控缸速度控制系统的建模与仿真

电液比例阀控缸速度控制系统的建模与仿真

0 引 言
近 年来 , 着 电液 比例控 制 技 术 的发 展 , 随 电液 比例
数据采 集卡组 成 ( 图 1 示 ) 如 所 。电液 比例方 向阀采用 华 德生 产 的 4 A1E 0直 动 型滑 阀 : wR 0 4 比例 控 制器采 用 配 套 的 v 一 0 63 1受 控 差 动 电压  ̄ O 最 大 输 出电 流 T 3 0 (Байду номын сангаас , l V, 80 0 mA; 压 缸采用 四川长 江液 压件 厂生 产 的双 作用 单 液
液 压 缸 机 构 在该 系统 中 主要 以惯 性 负 载 为 主 。 根
(= ) ( j 3 )
P = l 2 LP 一
据 牛顿 第 二定 律 ,可 得液 压 缸输 出力 与 负 载力 的平 衡
方程 为 : AIL A - P - A2 +L F (0 1)
关 键词 : 度 控 制 ; 速 阀控 非 对 称 缸 ; 模 ; 真 建 仿
中 图分 类号 :T 3 .1 H1 75 文献标识码 : A 中图 分 类 号 :10 — 8 3 2 1 0 — 0 3 0 0 8 0 1 ( 01 ) 8 0 2 — 5
The M o ei g a S m u ai n f Elc r —h d a l Pr po t na d l nd i lto o e to — y r u i n c o ri l o V ave — o tol d Cy i d r S e S r o S se l —c n r l e l e pe d n e v y tm
定义 q 为滑 阀的 负载流量 , q = 即 Lg , 液压缸 在稳 态时 总能流 量连续 性方 程 :

( ) ( 2 )

非对称油缸控制系统仿真及控制

非对称油缸控制系统仿真及控制

非对称油缸控制系统仿真及控制
李从心
【期刊名称】《中国机械工程》
【年(卷),期】1993(000)003
【总页数】1页(P4)
【作者】李从心
【作者单位】无
【正文语种】中文
【中图分类】TH137.51
【相关文献】
1.挖掘机非对称动臂油缸动态特性检测分析 [J], 陈刚;胡勇
2.非对称油缸受力方向对停位保持的影响 [J], 孙天健;李军
3.阀控非对称油缸正反向速度比的分析 [J], 周士昌;周恩涛
4.非对称油缸施力系统状态变量模型的建立 [J], 田富俊;周恩涛;周士昌
5.两串联非对称油缸的同步控制 [J], 刘庆和;陈斌
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 3年 第 4期
本 文 以 电液位 置 控 制 系统 为 研 究 对 象 , 首 先建 立
在式( 1 )~ 式( 3 ) 中, 消去 中 间变 量 Q 和Q , 以 阀 芯位移 为输 入 , 以两腔 压力 P 。 、 P 以及 活塞杆 的位 移 Y和速度 Y为状 态变量 , 在 MA T L A B中编 辑 S - F u n c t i o n 便 可得 到 阀芯正 向移动 时 的阀控缸 模型 。 同样 阀芯 负 向移动 的模 型可 根据式 ( 4 )~式 ( 6 ) 得到, 两 者 可通 过
控 非对 称缸 整个 闭环 系统 的仿 真分 析 , 为 系统 的设计 提供 指 导 。 关键 词 : 比例 阀 ; 非对 称缸 ; 非 线性模 型 : 仿 真 中 图分类 号 : T H1 3 7 文 献标 志码 : B 文章 编号 : 1 0 0 0 - 4 8 5 8 ( 2 0 1 3 ) 0 4 - 0 0 2 5 - 0 5 引言
称会 不会 超 出额 定流 量 , 这 些疑 问都 使 考查 系统的 中间状 态显得 非 常重要 。 签 于此 , 该 文建 立 了阀控 非 对称 缸 的非 线性微 分 方程 模型 , 同时在 A ME S i m 液 压仿 真软 件 中建 立 了相 同的模 型 以进 行 对 比验 证 , 最后 进行 阀
差 分析 , 很难 把握 系统 的 中间状 态( 如 液压缸 两腔压 力和 流 量的 变化 ) 。 而直接 以物理 微 分 方程 建 立起 的 阀 控缸 非 线性模 型 可 方便 地 进行 数值 仿 真分 析 , 从 而 对 系统 的 中间状 态有 直接认 识 。 当采 用 对称 阀控 制 非对
的开 环和 闭环 传递 函数 。这 种方 法对 分 析 系统 的稳定 性 和稳 态 误差 非常 有效 , 但 对一 些 中间变 量 , 如液 压缸
两缸压 力 、 流量 的变化难 以把握 。另 外 , 当采用 对 称 阀 控制 非对 称缸 时 , 其 负载 压 力 和 负 载 流 量 的 定 义 又存 在较 多 的差 异 _ 2 J , 不 利 于传 递 函数 的求 取 。此 外 , 由 于非对 称 液压 缸两 腔 作 用 面积 不 等 , 故 阀 芯在 方 向切 换 时会 使 两腔 压力 产 生 突 变 , 压 力 的突 变会 不会 产 生
电液 比例控 制 系统 一 般 由 P I D控 制 器 、 功 率 放 大 器、 电液 比例方 向 阀 、 液压 泵 、 液压缸、 负载、 传 感 器 等 组成 , 图1 所示 为 典型 的 电液 比例位 置控 制 系统 ¨ ] , 它
可 用于 车辆 的助 力转 向 、 后轮 主动 转 向及 油气悬 架 。
ZHENG Ka i — f e ng,CHEN S i — z h o n g
( 北京理工 大学 机械 与车辆学院 , 北京
1 0 0 0 8 1 )
摘 要 : 电液 比例 阀控 制 液压 缸 组成 的 闭环 系统 多以传 递 函数 的形 式进 行 系统 的稳 定性 分 析 和稳 态误
收稿 日期 : 2 0 1 2 — 1 0 — 1 7
作 者简介 : 郑 凯锋 ( 1 9 8 3 一) , 男, 陕西 宝鸡 人 , 博 士生 , 主 要 从 事 车 辆 主 动 转 向研 究 工作 。
图 中位 置控 制 系统采 用 定量 泵和 溢流 阀组 成定 压 供 油单 元 , 位移传 感 器 检 测 出 活塞 杆 的实 际位 移 并 将
图1 电 液 比例 位 置 控 制 系统
气蚀 或超 压 , 而流 量 的变化 是不 是在 额 定范 围 内 , 都不 能 以传递 函数 的形 式 表 现 出来 。相 反 , 以阀 控 非对 称
液压 缸 的非线 性微 分方 程模 型及 其 数值 仿真 分析 可 以 得到 两腔 压力 和流 量 变 化 时 域 特 性 叫J , 从 而更 全 面 地把 握整 个 系统 的 响应特性 。
的进 出油 量 , 进而 实现 对活 塞杆 的位 移控 制 。 针对 上述 的闭环 控 制 系 统 , 可 以通 过 引 人 负 载压 力和 负载 流量 , 将 流量 方 程 进 行 适 当简 化并 作 线 性 化 处理 得 到 阀控 缸 的传 递 函数模 型 , 进 而 得 出 整个 系统
2 0 1 3年 第 4期
液 压 与 气动
2 5
比例 阀 控 制 非 对 称 液 压 缸 系 统 的 非 线 性 建 模 与 仿 真
郑 凯 锋 ,陈 思 忠
Mo d e l i n g a n d S i mu l a t i o n o n t h e C l o s e — l o o p S y s t e m o f P r o p o r t i o n a l Va l v e Co n t r o l l e d As y mme t r i c a l Hy d r a u l i c C y l i n d e r
其 转换 成 电压信 号 , 与 给 定 的 预 期 位移 电压 信 号 比较
得 出偏 差量 , P I D 控 制 器便 根 据 此 偏 差 量 得 出控 制 电
压值 , 功率 放大 器则 将 得 到 的控 制 电压 放 大 并 以 电流
形式 输 出用 于驱 动 比例 电磁 铁 , 比例 电磁 铁 得 电后 产 生 一定 的输 出力 推 动 阀 芯移 动 , 从 而调 节 液 压 缸 两 腔
称缸 时 , 因液压缸 两腔 的作 用面积 不 等 , 使 活塞在 方向切 换 时导致 液 压缸 两腔 压 力 的 突 变 , 同 时流 量在 两 个
运 动方 向上 的不 对称 也会 引起 活 塞杆位 移 和速度 的不一 致 , 压 力的 突 变会 不会 产 生超 压或 气蚀 , 流 量的 不对
相关文档
最新文档